
Coalgebras in Dependent Type Theory

Anton Setzer
Swansea University

Swanesa, UK

September 8, 2010

1/ 31

1. Categorical View of Coalgebras

2. Codata

3. Nils Danielsson’s ∞

4. Suggested Solution

5. Model

2/ 31

1. Categorical View of Coalgebras

Algebraic Data Types

In most functional programming languages we have the notion of an
algebraic data type, e.g.

data NatList : Set where
nil : NatList
cons : N → NatList → NatList

3/ 31

1. Categorical View of Coalgebras

Algebraic Data Types

Notation:
nil′ + cons′(N, X)

stands for the labelled disjoint union, i.e. the set A s.t.

data A : Set where
nil′ : A
cons′ : N → X → A

Let
F : Set → Set
F X = nil′ + cons′(N, X)

4/ 31

1. Categorical View of Coalgebras

Algebraic Data Types

F X = nil′ + cons′(N, X)

Then the following is essentially equivalent to the definition of NatList:

data NatList : Set where
intro : F NatList → NatList

where
nil = intro nil′

cons n l = intro (cons′ n l)

5/ 31

1. Categorical View of Coalgebras

Categorical View of Initial Algebras

The introduction elimination and equality rules for algebraic data types
follow then from the diagram for initial F -algebras (denoted by µ F)

F (µ F)
intro

- µ F

F A

F g

? f
- A

∃! g

?

One writes µX .t for µ (λX .t) e.g.

NatList = µX .nil′ + cons′(N, X)

6/ 31

1. Categorical View of Coalgebras

Final Coalgebras

Final Coalgebras ν F are obtained by reversing the arrows:

A
f

- F A

ν F

∃!g

? case
- F (ν F)

F g

?

Again we write νX .t for ν (λX .t).
In weakly final coalgbras the uniqueness of g is omitted.

Coalgebras can be used to model interactive programs and objects
from object-oriented programming in dependent type theory.

7/ 31

1. Categorical View of Coalgebras

Suggested Notation

coalg NatColist : Set where
case : NatColist → nil + cons(N, NatColist)

I To an element of NatColist as above we can apply casedistinction as
above.

I Furthermore from the finality we can derive the principle of guarded
recursion:
We can define f : A → NatColist by saying what case (f a) is:

I nil
I cons n l for some n : N, l : NatColist
I cons n (f a′) for some n : N, a : A.

8/ 31

1. Categorical View of Coalgebras

Example

inclist : N → NatColist where
case (inclist n) = cons n (inclist (n + 1))

Main goal of this talk: To define nice notations so that coalgebras become
usable.

9/ 31

2. Codata

1. Categorical View of Coalgebras

2. Codata

3. Nils Danielsson’s ∞

4. Suggested Solution

5. Model

10/ 31

2. Codata

Codata

Coalgebras were introduced in programming languages as codata types:

codata NatColist : Set where
nil : NatColist
cons : N → NatColist → NatColist

Idea is that elements of NatColist are

I cons n1 (cons n2 (cons n3 · · · (cons nk nil) · · ·)) or

I cons n1 (cons n2 (cons n3 · · · .

11/ 31

2. Codata

Problem of codata

I No normalisation, e.g.

inclist 0 = cons 0 (cons 1 (cons 2 · · ·))

I Undecidability of equality.

cons (f 0) (cons (f 1) · · ·) = cons (g 0) (cons (g 1) · · ·)
⇔ ∀n.f n = g n

In case of coalgebras

I Elements of coalgebras are not expanded indefinitely. They are only
expanded if case is applied to them.

I In case of weakly final coalgebras equality of elements of the
coalgebras is equality of the underlying algorithms.

12/ 31

2. Codata

Denotational Problems of Coalgebras

coalg NatColist : Set where
case : NatColist → nil′ + cons′(N, NatColist)

case (inclist n) = cons′ n (inclist (n + 1))

is much more lenghty than

codata NatColist : Set where
nil : NatColist
cons : N → NatColist → NatColist

inclist n = cons n (inclist (n + 1))

13/ 31

2. Codata

Pseudo-Constructors

If we have

coalg NatColist : Set where
case : NatColist → nil′ + cons′(N, NatColist)

we can define by guarded recursion

nil : NatColist where
case nil = nil′

cons : N → NatColist → NatColist where
case (cons n l) = cons′ n l

14/ 31

2. Codata

Pseudo-Constructors

However we do not have

case a = cons′ n l implies a = cons n l

So elements of NatColist are not of the form nil or cons n l .

But behave like nil or cons n l .

15/ 31

2. Codata

∼-Notation

Let
s ∼ t ⇔ case s = case t

Then we have
case s = nil′ ⇔ s ∼ nil
case s = cons′ n l ⇔ s ∼ cons n l

So if s : NatColist then

s ∼ nil ∨ s ∼ cons n l for some n, l

16/ 31

3. Nils Danielsson’s ∞

1. Categorical View of Coalgebras

2. Codata

3. Nils Danielsson’s ∞

4. Suggested Solution

5. Model

17/ 31

3. Nils Danielsson’s ∞

Nils Danielsson’s ∞

Nils Danielsson and Thorsten Altenkirch suggested to have the following

∞ : Set → Set
[: {A : Set} → A →∞ A
\ : {A : Set} → ∞ A → A

∞ A denote coalgebraic arguments in a definition, and one defines
NatColist as

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

18/ 31

3. Nils Danielsson’s ∞

What is ∞ A?

∞ A cannot mean
νX .A

since νX .A is as a (non-weakly) final coalgebra isomorphic to A: With
F X = A we get

X
f
- F X = A

A

∃!g

? id
- F A = A

F g = id

?

19/ 31

3. Nils Danielsson’s ∞

What is ∞ A?

What is meant by it is, that if A is defined as an algebraic data type, ∞ A
is defined mutually coalgebraically:

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

stands for

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

coalg ∞ NatColist : Set where
\ : ∞ NatColist → NatColist

20/ 31

3. Nils Danielsson’s ∞

Order between data/codata

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

coalg ∞ NatColist : Set where
\ : ∞ NatColist → NatColist

But there are two interpretations of the above:

1.
F (X , Y) = nil + cons(N, Y).
G (X , Y) = X
F ′(Y) = µX .F (X , Y) = µX .nil + cons(N, Y)

∼= nil + cons(N, Y)
∞ NatColist = νY .G (F ′(Y), Y) = νY .F ′(Y)

∼= νY .nil + cons(N, Y)
NatColist = F ′(∞ NatColist)

= nil + cons(N,∞ NatColist)
21/ 31

3. Nils Danielsson’s ∞

Order between data/codata

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

coalg ∞ NatColist : Set where
\ : ∞ NatColist → NatColist

2.
G (X , Y) = X
F (X , Y) = nil + cons(N, Y).
G ′(X) = νY .G (X , Y) = νY .X

∼= X
NatColist = µX .F (X , G ′(X)) ∼= µX .F (X , X)

= µX .nil + cons(N, X)
∞ NatColist = G ′(NatColist)

∼= NatColist

22/ 31

3. Nils Danielsson’s ∞

Order between data/codata

First solution gives the desired result.
Origin of problem:

I If we have two functors F (X , Y), and G (X , Y) and if we want to
minimize X and maximize Y there are two solutions:

I Minimize X as a functor depending on Y .
Then maximize Y .

I Maximize Y as a functor depending on X .
Then minimize X .

I With mutual data types this problem didn’t occur since if we
minimize both X and Y , the order doesn’t matter.

23/ 31

4. Suggested Solution

1. Categorical View of Coalgebras

2. Codata

3. Nils Danielsson’s ∞

4. Suggested Solution

5. Model

24/ 31

4. Suggested Solution

Generality

In general we want to be able to form arbitrary combinations of µ and ν.
Idea: minimize and maximize in the order of occurrence.

25/ 31

data A : Set where
intro0 : F (A, B, C , D) → A

codata B : Set where
case0 : B → G (A, B, C , D)

data C : Set where
intro1 : H(A, B, C , D) → C

codata D : Set where
case1 : D → K (A, B, C , D)

to be interpreted as:

F0(Y , Z , Z ′) = µX .F (X , Y , Z , Z ′) A in terms of Y , Z , Z ′

G1(Z , Z ′) = νY .G (F ′(Y , Z , Z ′), Y , Z , Z ′) B in terms of Z , Z ′

F1(Z , Z ′) = F0(G1(Z , Z ′), Z , Z ′) A in terms of Z , Z ′

H2(Z
′) = µZ .H(F1(Z , Z ′), G1(Z , Z ′), Z , Z ′) C in terms of Z ′

G2(Z
′) = G1(H2(Z

′), Z ′) B in terms of Z ′

F2(Z
′) = F1(H2(Z

′), Z ′) A in terms of Z ′

D = νZ ′.K (F2(Z
′), G2(Z

′), H2(Z
′), Z ′) Final Value of D

C = H2(D) Final Value of C
B = G2(D) Final Value of B
A = F2(D) Final Value of A

4. Suggested Solution

Example: NatColist

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

stands for

data NatColist : Set where
nil : NatColist
cons : N →∞ NatColist → NatColist

coalg ∞ NatColist : Set where
\ : ∞ NatColist → NatColist

27/ 31

4. Suggested Solution

inclist

inclist : N →∞ NatColist
\ (inclist n) = cons n (inclist (n + 1))
or
inclist n ∼ [(cons n (inclist (n + 1)))

With
s . t :⇔ \s = t

we get
inclist n . cons n (inclist (n + 1))

28/ 31

5. Model

1. Categorical View of Coalgebras

2. Codata

3. Nils Danielsson’s ∞

4. Suggested Solution

5. Model

29/ 31

5. Model

Model

Form a term model with reduction rules corresponding to the equalities
stated.
E.g. inclist is a function symbol with equality rule

case (inclist n) = cons n (inclist (n + 1))

Interpretation of µX .F (X):

[[µX .F (X)]] =
⋂
{X ⊆ Term | intro[[[F (X)]]] ⊆ X}

Interpretation of νX .F (X):

[[νX .F (X)]] =
⋃
{X ⊆ Term | case[X] ⊆ [[F (X)]]}

30/ 31

5. Model

Conclusion

I Design decisions should be done by referring to the notion of
coalgebras.

I Introduction of ∼ was a good decision, since it flags which equalities
hold.
If one uses ∞ only, one might need ..

I If A is a data type referring to ∞ A,
then ∞ A gets is meaning as a coalgebra defined implicitly mutually
after the definition of A.

I Order of algebras coalgebras matters.

31/ 31

	1. Categorical View of Coalgebras
	2. Codata
	3. Nils Danielsson's
	4. Suggested Solution
	5. Model

