
Extraction of Programs from Proofs using Postulated
Axioms

Anton Setzer

Swansea University, Swansea UK
(Joint work with Chi Ming Chuang)

10 October 2011

1/ 31

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

2/ 31

1. Agda in 5 Slides

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

3/ 31

1. Agda in 5 Slides

Agda

I Agda is a theorem prover based on Martin-Löf’s intuitionistic type
theory.

I Proofs and programs are treated the same:

n : N
n = exp 5 20

p : A ∧ B
p = 〈· · · , · · ·〉

I For historic reasons types denoted by keyword Set.
I 3 main constructs:

I dependent function types,
I algebraic data types,
I coalgebraic data types.

4/ 31

1. Agda in 5 Slides

Dependent Function Types

I

(x : A)→ B

type of functions mapping a : A to an element of type B[x := a].

I E.g.

matmult : (n m k : N)→ Mat(n,m)→ Mat(m, k)→ Mat(n, k)
matmult n m k A B = · · ·

5/ 31

1. Agda in 5 Slides

Algebraic data types

data N : Set
zero : N
succ : N→ N

Functions defined by pattern matching

f : N→ N
f zero = 5
f (suc zero) = 12
f (suc (suc n)) = (f n) ∗ 20

6/ 31

1. Agda in 5 Slides

Coalgebraic data types

Syntax as I would like it to be:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

7/ 31

1. Agda in 5 Slides

Further Elements of Agda

I Postulated functions (functions without a definition)

postulate false : ⊥

I Hidden arguments

cons : {X : Set} → X → List X → List X

l : List N
l = cons 0 nil

8/ 31

2. Real Number Computations in Agda

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

9/ 31

2. Real Number Computations in Agda

Program Extraction in Agda

I Question by Ulrich Berger:
Can you extract programs from proofs in Agda?

I Obvious because of Axiom of Choice?
From

p : (x : A)→ ∃ [y : B] ϕ(y)

we get of course

f = λx .π0(f x) : A→ B
p = λx .π1(f x) : (x : A)→ ϕ(f x)

I However what happens in the presence of axioms?

10/ 31

2. Real Number Computations in Agda

Abstract Real Numbers

I Approach of Ulrich Berger transferred to Agda:
Axiomatize the real numbers abstractly. E.g.

postulate R : Set
postulate == : R→ R→ Set
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·

11/ 31

2. Real Number Computations in Agda

Computational Numbers

I Formulate N, Z, Q as standard computational data types.

data N : Set where
zero : N
suc : N→ N

+ : N→ N→ N
n + zero = n
n + suc m = suc (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
· · · 12/ 31

2. Real Number Computations in Agda

Embedding of N, Z, Q into R

I Embed N,Z,Q into R:

N2R : N→ R
N2R zero = 0R
N2R (suc n) = N2R n +R 1R

Z2R : Z→ R
· · ·

Q2R : Q→ R
· · ·

I We obtain a link between computational types and the postulated
type R:

13/ 31

2. Real Number Computations in Agda

Cauchy Reals

data CauchyReal (r : R) : Set where
cauchyReal : (f : Q+ → Q)

→ ((q : Q+)→ |Q2R (f q)−R r |R <R Q+2R r)
→ CauchyReal r

14/ 31

2. Real Number Computations in Agda

Program Extraction for Cauchy Reals

I Show CauchyReal closed under certain operations:

lemma : (r s : R)→ CauchyReal r → CauchyReal s
→ CauchyReal (r ∗R s)

I Extract from Cauchy Reals their approximations:

extract : {r : R} → CauchyReal r → Q+ → Q

I If we have r : R and p : CauchyReal r , then for q : Q+

extract p q : Q

is an approximation of r up to q. Can be computed in Agda.

15/ 31

2. Real Number Computations in Agda

Signed Digit Representations

I We can consider as well the real numbers with signed digit
representations.

I Signed digit representable real numbers in [−1, 1] are of the form

0.111(−1)0(−1)01(−1) · · ·

16/ 31

2. Real Number Computations in Agda

Coalgebraic Definition of Signed Digit Real Numbers (SD)

data Digit : Set where
−1d 0d 1d : Digit

coalg SD : R→ Set where
∈[−1, 1] : {r : R} → SD r → r ∈R [−1, 1]
digit : {r : R} → SD r → Digit
tail : {r : R} → (p : SD r) → SD (2R ∗R r −R (digit p))

17/ 31

2. Real Number Computations in Agda

Proof of “1R = 0.1d1d1d1d · · · ”

1SD : (r : R)→ (r ==R 1R)→ SD r
∈[−1, 1] (1SD r q) = · · ·
digit (1SD r q) = 1d
tail (1SD r q) = 1SD (2R ∗R r −R 1R) · · ·

Proofs of · · · can be

I inferred purely logically from axioms about R (using automated
theorem proving?)

I added as postulated axioms.

18/ 31

2. Real Number Computations in Agda

Extraction of Programs

I From
p : SD r

one can extract the first n digits of r .

I Show e.g. closure of SD under Q ∩ [−1, 1], + ∩ [−1, 1], ∗, π
10 · · ·

I Then we extract the first n digits of any real number formed using
these operations.

I Has been done (excluding π
10) in Agda.

19/ 31

2. Real Number Computations in Agda

First 1000 Digits of 29
37 ∗

29
3998

20/ 31

3. Theory of Program Extraction

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

21/ 31

3. Theory of Program Extraction

Problem with Program Extraction

I Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

I Example 1

postulate ax : (x : A)→ B[x] ∨ C [x]

a : A
a = · · ·

f : B[a] ∨ C [a]→ B
f (inl x) = tt
f (inr x) = ff

f (ax a) in Normal form, doesn’t start with a constructor

I Axioms with computational content should not be allowed.

22/ 31

3. Theory of Program Extraction

Example 2

postulate ax : A ∧ B

f : A→ B → B
f a b = · · ·

g : A ∧ B → B
g 〈a, b〉 = f a b

g ax in normal form doesn’t start with a constructor

I Problem actually occurred.

I Axioms with result type algebraic data types are not allowed.

23/ 31

3. Theory of Program Extraction

Example 3

r0 : R
r0 = 1R

r1 : R
r1 = 1R +R 0R

postulate ax : r0 == r1

24/ 31

postulate ax : r0 == r1

transfer : (r s : R)→ r == s → SD r → SD s
transfer r r refl p = p

firstdigit : (r : R)→ SD r → Digit
firstdigit r a = · · ·

p : SD r0
p = · · ·

q : SD r1
q = transfer r0 r1 ax

q′ : Digit
q′ = firstdigit r1 q

NF of q′ doesn’t start with a constructor

Problem actually occurred.

3. Theory of Program Extraction

Main Restriction

I If A is a postulated constant then either
I A : (x1 : B1)→ · · · → (xn : Bn)→ Set or
I A : (x1 : B1)→ · · · → (xn : Bn)→ A′ t1 · · · tn where A′ is a postulated

constant.

I Essentially: postulated constants have result type a postulated type.

26/ 31

3. Theory of Program Extraction

Theorem

I Assume some healthy conditions (e.g. strong normalisation,
confluence, elements starting with different constructors are different).

I Assume no record types or indexed inductive definitions are used
(probably can be removed).

I Assume result type of postulated axioms is always a postulated type.

I Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).

27/ 31

3. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed in normal form, A algebraic data type.
I Show by induction on length(t) that t starts with a constructor:

I We have t = f t1 · · · tn, f function symbol or constructor.
I f cannot be postulated or directly defined.
I If f is defined by pattern matching on say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF

I So f is a constructor.

28/ 31

3. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern
Matching

Difficult proof in the thesis of Chi Ming Chuang.

29/ 31

Conclusion

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

30/ 31

Conclusion

Conclusion

I If result types of postulated constants are postulated types, then
closed elements of algebraic types evaluate to constructor normal
form.

I Reduces the need burden of proofs while programming (by
postulating axioms or proving them using ATP).

I Axiomatic treatment of R.

I Program extraction for proofs with real number computations works
very well.

I Applications to programming with dependent types in general. and
totality.

31/ 31

	1. Agda in 5 Slides
	2. Real Number Computations in Agda
	3. Theory of Program Extraction
	Conclusion

