Extraction of Programs from Proofs using Postulated Axioms

Anton Setzer

Swansea University, Swansea UK (Joint work with Chi Ming Chuang)

10 October 2011

1/ 31

・ロト ・四ト ・ヨト ・ヨト

1. Agda in 5 Slides

- 2. Real Number Computations in Agda
- 3. Theory of Program Extraction

Conclusion

2/31

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

Agda

- Agda is a theorem prover based on Martin-Löf's intuitionistic type theory.
- Proofs and programs are treated the same:

 $n : \mathbb{N}$ $n = \exp 5 20$ $p : A \land B$ $p = \langle \cdots, \cdots \rangle$

- ► For historic reasons types denoted by keyword Set.
- ► 3 main constructs:
 - dependent function types,
 - algebraic data types,
 - coalgebraic data types.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Dependent Function Types

$$(x:A) \rightarrow B$$

type of functions mapping a : A to an element of type B[x := a].► E.g.

 $\begin{array}{l} \text{matmult}: (n \ m \ k : \mathbb{N}) \to \operatorname{Mat}(n,m) \to \operatorname{Mat}(m,k) \to \operatorname{Mat}(n,k) \\ \text{matmult} \ n \ m \ k \ A \ B = \cdots \end{array}$

▲日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Algebraic data types

data \mathbb{N} : Set zero : \mathbb{N} succ : $\mathbb{N} \to \mathbb{N}$

Functions defined by pattern matching

$$f: \mathbb{N} \to \mathbb{N}$$

$$f \qquad \text{zero} = 5$$

$$f \qquad (\text{suc zero}) = 12$$

$$f (\text{suc (suc n)}) = (f n) * 20$$

Coalgebraic data types

Syntax as I would like it to be:

coalg Stream : Set where head : Stream $\rightarrow \mathbb{N}$ tail : Stream \rightarrow Stream

inc : $\mathbb{N} \to \text{Stream}$ head (inc n) = ntail (inc n) = inc (n + 1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further Elements of Agda

Postulated functions (functions without a definition)

postulate false : \perp

Hidden arguments

$$\operatorname{cons}: \{X:\operatorname{Set}\} \to X \to \operatorname{List} X \to \operatorname{List} X$$

 $I : \text{List } \mathbb{N}$ $I = \text{cons } \mathbf{0} \text{ nil}$

<ロ> <部> < 部> < き> < き> < き</p>

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

Program Extraction in Agda

- Question by Ulrich Berger: Can you extract programs from proofs in Agda?
- Obvious because of Axiom of Choice?
 From

$$p:(x:A) \to \exists [y:B] \varphi(y)$$

we get of course

$$f = \lambda x.\pi_0(f x) : A \to B$$

$$\rho = \lambda x.\pi_1(f x) : (x : A) \to \varphi(f x)$$

However what happens in the presence of axioms?

Abstract Real Numbers

 Approach of Ulrich Berger transferred to Agda: Axiomatize the real numbers abstractly. E.g.

postulate	\mathbb{R}	:	Set
postulate	_ == _	:	$\mathbb{R} \to \mathbb{R} \to \operatorname{Set}$
postulate	_ + _	:	$\mathbb{R} \to \mathbb{R} \to \mathbb{R}$
postulate	$\operatorname{commutative}$:	$(r \ s : \mathbb{R}) \rightarrow r + s == s + r$

Э

・ロト ・四ト ・ヨト ・ヨト

Computational Numbers

▶ Formulate \mathbb{N} , \mathbb{Z} , \mathbb{Q} as standard computational data types.

data \mathbb{N} : Set where $zero : \mathbb{N}$ suc : $\mathbb{N} \to \mathbb{N}$ $+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ n + zero = n $n + \operatorname{suc} m = \operatorname{suc} (n + m)$ $* : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$. . . data \mathbb{Z} : Set where . . .

data \mathbb{Q} : Set where

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

2. Real Number Computations in Agda

Embedding of \mathbb{N} , \mathbb{Z} , \mathbb{Q} into \mathbb{R}

• Embed $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ into \mathbb{R} :

$$\begin{split} \mathbb{N}2\mathbb{R} &: \mathbb{N} \to \mathbb{R} \\ \mathbb{N}2\mathbb{R} & \text{zero} &= \mathbf{0}_{\mathbb{R}} \\ \mathbb{N}2\mathbb{R} & (\text{suc } n) &= \mathbb{N}2\mathbb{R} \; n +_{\mathbb{R}} \mathbf{1}_{\mathbb{R}} \\ \mathbb{Z}2\mathbb{R} &: \mathbb{Z} \to \mathbb{R} \\ \cdots \\ \mathbb{Q}2\mathbb{R} &: \mathbb{Q} \to \mathbb{R} \\ \cdots \end{aligned}$$

We obtain a link between computational types and the postulated type ℝ:

◆ロ ▶ ◆ 昂 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Cauchy Reals

data CauchyReal $(r : \mathbb{R})$: Set where cauchyReal : $(f : \mathbb{Q}^+ \to \mathbb{Q})$ $\to ((q : \mathbb{Q}^+) \to |\mathbb{Q}2\mathbb{R} (f q) -_{\mathbb{R}} r|_{\mathbb{R}} <_{\mathbb{R}} \mathbb{Q}^+ 2\mathbb{R} r)$ $\to CauchyReal r$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Program Extraction for Cauchy Reals

► Show CauchyReal closed under certain operations:

 $\begin{array}{l} \operatorname{lemma}:(r\ s:\mathbb{R})\to\operatorname{CauchyReal}\ r\to\operatorname{CauchyReal}\ s\\\to\operatorname{CauchyReal}\ (r\ast_{\mathbb{R}}\ s) \end{array}$

• Extract from Cauchy Reals their approximations:

extract : $\{r : \mathbb{R}\} \to \text{CauchyReal } r \to \mathbb{Q}^+ \to \mathbb{Q}$

▶ If we have $r : \mathbb{R}$ and p : CauchyReal r, then for $q : \mathbb{Q}^+$

extract $p\;q:\mathbb{Q}$

is an approximation of r up to q. Can be computed in Agda.

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Signed Digit Representations

- We can consider as well the real numbers with signed digit representations.
- Signed digit representable real numbers in [-1, 1] are of the form

$$0.111(-1)0(-1)01(-1)\cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

2. Real Number Computations in Agda

Coalgebraic Definition of Signed Digit Real Numbers (SD)

data Digit : Set where $-1_d \ 0_d \ 1_d$: Digit

<ロト <部ト < 国ト < 国ト = 国

Proof of " $\mathbf{1}_{\mathbb{R}}=0.1_{\mathrm{d}}\mathbf{1}_{\mathrm{d}}\mathbf{1}_{\mathrm{d}}\mathbf{1}_{\mathrm{d}}\cdots$ "

$$\begin{array}{lll} 1_{\mathrm{SD}} : (r : \mathbb{R}) \to (r ==_{\mathbb{R}} 1_{\mathbb{R}}) \to \mathrm{SD} \ r \\ \in [-1, 1] & (1_{\mathrm{SD}} \ r \ q) &= & \cdots \\ \mathrm{digit} & (1_{\mathrm{SD}} \ r \ q) &= & 1_{\mathrm{d}} \\ \mathrm{tail} & (1_{\mathrm{SD}} \ r \ q) &= & 1_{\mathrm{SD}} \left(2_{\mathbb{R}} \ast_{\mathbb{R}} r -_{\mathbb{R}} 1_{\mathbb{R}} \right) \cdots \end{array}$$

Proofs of $\cdots\,$ can be

- ► inferred purely logically from axioms about R (using automated theorem proving?)
- added as postulated axioms.

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Extraction of Programs

From

p: SD r

one can extract the first n digits of r.

- ▶ Show e.g. closure of SD under $\mathbb{Q} \cap [-1,1]$, $+ \cap [-1,1]$, *, $\frac{\pi}{10} \cdots$
- ► Then we extract the first *n* digits of any real number formed using these operations.
- Has been done (excluding $\frac{\pi}{10}$) in Agda.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

2. Real Number Computations in Agda

First 1000 Digits of $\frac{29}{37} * \frac{29}{3998}$

GN Command Prompt

C:\find digits>Appendix1.exe

8.000000<-1>010010<-1>00<-1>0<-1>01001000<-1><-1>0100<-1>0100<-1>0000010<-1>000<-1>000<-1> 100007-177-170107-17007-177-170107-17000101107-170001010100007-1707-170007-1700 RR(=1)R(=1)(=1)R1R(=1)RRR(=1)RRR1R(=1)RRR1RR1RR(=1)RR(=1)RRR(=1)RRR(=1)RRR1RRR(=1)(=1)(=1) 581 881 81 81 84 4-1 588 84 -1 584 -1 581 881 888 881 881 81 880 184 -1 5881 884 -1 588 884 -1 581 888 81 18 <-1>00<-1>00<-1>00<-1>00<-1>00110<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1>00<-1> 110<-1>00<-1>01000<-1>010000<-1>000100100101010000<-1>00<-1>000<-1>01000<-1>010000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>000<-1>0 C=1 20C=1 2001001001001010C=1 2000010101001000C=1 2000C=1 2000C=1 20000101000010C=1 2 300100004-1>004-1>001104-1>00100010010004-1>01004-1>0000104-1>0000104-1>00001010100001010 0100(-1)00(-1)00010(-1)0100(-1)00(-1)000(-1)000(-1)000(-1)00(-1)000(-1)00(-1)00(-1)00(-1)00(-1)

C:\find digits> _

Э

_ 🗆 X

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

3. Theory of Program Extraction

Problem with Program Extraction

- Because of postulates it is not guaranteed that each program reduces to canonical head normal form.
- ► Example 1

postulate ax : $(x : A) \rightarrow B[x] \lor C[x]$

- a: A $a = \cdots$ $f: B[a] \lor C[a] \to \mathbb{B}$
- $f(\operatorname{inl} x) = \operatorname{tt} f(\operatorname{inr} x) = \operatorname{ff}$

f(ax a) in Normal form, doesn't start with a constructor

► Axioms with computational content should not be allowed.

Example 2

postulate ax : $A \land B$ $f : A \to B \to \mathbb{B}$ $f a b = \cdots$ $g : A \land B \to \mathbb{B}$ $g \langle a, b \rangle = f a b$

g ax in normal form doesn't start with a constructor

- Problem actually occurred.
- ► Axioms with result type algebraic data types are not allowed.

3. Theory of Program Extraction

Example 3

$$egin{aligned} r0 &: \mathbb{R} \ r0 &= 1_{\mathbb{R}} \ r1 &: \mathbb{R} \ r1 &= 1_{\mathbb{R}} +_{\mathbb{R}} 0_{\mathbb{R}} \end{aligned}$$

postulate ax : r0 == r1

24/31

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

postulate ax : r0 == r1

transfer : $(r \ s : \mathbb{R}) \to r == s \to SD \ r \to SD \ s$ transfer $r \ r$ refl p = p

```
firstdigit : (r : \mathbb{R}) \to \text{SD} r \to \text{Digit}
firstdigit r \ a = \cdots
```

```
p: SD r_0p = \cdots
```

 $\begin{array}{l} q : \mathrm{SD} \ r_1 \\ q = \mathrm{transfer} \ r_0 \ r_1 \ \mathrm{ax} \end{array}$

q': Digit q' = firstdigit $r_1 q$

NF of q' doesn't start with a constructor

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Problem actually occurred.

Main Restriction

- If A is a postulated constant then either
 - $A: (x_1:B_1) \rightarrow \cdots \rightarrow (x_n:B_n) \rightarrow \text{Set or}$
 - $A: (x_1:B_1) \to \cdots \to (x_n:B_n) \to A' t_1 \cdots t_n$ where A' is a postulated constant.
- ► Essentially: postulated constants have result type a postulated type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem

- Assume some healthy conditions (e.g. strong normalisation, confluence, elements starting with different constructors are different).
- Assume no record types or indexed inductive definitions are used (probably can be removed).
- ► Assume result type of postulated axioms is always a postulated type.
- Then every closed term in normal form which is an element of an algebraic data type is in canonical normal form (starts with a constructor).

イロト 不得 トイヨト イヨト 二日

Proof Assuming Simple Pattern Matching

- ► Assume *t* : *A*, *t* closed in normal form, *A* algebraic data type.
- Show by induction on length(t) that t starts with a constructor:
 - We have $t = f t_1 \cdots t_n$, f function symbol or constructor.
 - ► *f* cannot be postulated or directly defined.
 - ▶ If *f* is defined by pattern matching on say *t_i*.
 - ▶ By IH *t_i* starts with a constructor.
 - t has a reduction, wasn't in NF
 - So f is a constructor.

イロト 不得 トイヨト イヨト 二日

3. Theory of Program Extraction

Reduction of Nested Pattern Matching to Simple Pattern Matching

Difficult proof in the thesis of Chi Ming Chuang.

ヘロト 人間ト ヘヨト ヘヨト

1. Agda in 5 Slides

2. Real Number Computations in Agda

3. Theory of Program Extraction

Conclusion

- If result types of postulated constants are postulated types, then closed elements of algebraic types evaluate to constructor normal form.
- Reduces the need burden of proofs while programming (by postulating axioms or proving them using ATP).
- Axiomatic treatment of \mathbb{R} .
- Program extraction for proofs with real number computations works very well.
- Applications to programming with dependent types in general. and totality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●