
Inductive-Recursive
Definitions

Anton Setzer
(Swansea University; joint work with Peter Dybjer)

(Cambridge, Logic and Semantics Seminar, May 2009)

1. Dependent Type Theory.

2. Sets in Martin-Löf Type Theory and Principles of
Ind.-Rec.

3. Closed Formalisation of Induction-Recursion.

4. Results.

Anton Setzer: Inductive Recursive Definitions 1

Goal of this Talk
Define an extension of Martin-Löf Type Theory (MLTT)
which allows to define all types definable in standard
extensions of MLTT without any encoding.

Gives rise to a proof theoretically very strong extension
of positive inductive definitions.

New principle where we define

T : U → Set

in such a way that the domain U of T depends on T.

Anton Setzer: Inductive Recursive Definitions 2

New Grant
Induction-Recursion topic of an EPSRC grant involving
Neil Ghani, Peter Hancock (Glasgow Strathclyde),
Thorsten Altenkirch (Nottingham) and A. S. (Swansea).

Anton Setzer: Inductive Recursive Definitions 3

1. Dep. Type Theory

Dependent type theory (version used here:
Martin-Löf Type Theory) is functional programming
based on dependent types.

Set
:::

will in the following denote a “small type”.

Most types used in ordinary programming languages
are simple types (no dependencies):

String : Set,
Integer : Set,
Integer → Integer : Set,
etc.

Anton Setzer: Inductive Recursive Definitions 4

Polymorphic Types
Polymorphic types (“generics”) allow types to depend
on other types.

E.g.
List : Set → Set ,

List(A) = set of lists of elements of set A.

Polymorphic types allow more generic programs.
One definition of a library for List

rather than defining this library for each of
List(Integer),
List(Char),
List(String),
· · ·

Anton Setzer: Inductive Recursive Definitions 5

Dependent Types
Dependent types allow types to depend on other types
and elements of other types.

Simple examples:
The set of n-tuples of elements of A is

Tuple(A, n)

where
Tuple : Set → N → Set

Allows to define functions, the result type of which
depends on the argument, e.g.

f : (n : N) → Tuple(N, n)

Anton Setzer: Inductive Recursive Definitions 6

Examples of Dependent Types
The set of n×m-matrices (of some fixed set) is

Mat(n,m)

where
Mat : N → N → Set

Matrix multiplication gets type

matmult : (n,m, k : N)

→ Mat(n,m) → Mat(m, k) → Mat(n, k)

Anton Setzer: Inductive Recursive Definitions 7

Predicates as Dependent Types
The predicate

Sorted : List(N) → Set

s.t. there exists p : Sorted(l) iff l is sorted is a dependent
type.

The set (l : List(N)) × Sorted(l) is the set of sorted lists.

The set

(l : List(N)) → (l′ : List(N))×Sorted(l′)×(EqElements(l, l′))

is the set of sorting functions on List(N).

Anton Setzer: Inductive Recursive Definitions 8

Logical Framework
Basic logic framework has 2 main constructions:

The dependent function type (x : A) → B(x) for A : Set,
x : A⇒ B(x) : Set.

Elements are roughly speaking

{f : A→
⋃

x:A

B(x) | ∀x ∈ A.f(x) ∈ B(x)}

A→ B is the special case (x : A) → B where B does
not depend on x.

The dependent product (x : A) ×B(x) for A : Set,
x : A⇒ B : Set.

Elements are roughly speaking

{〈a, b〉 | a ∈ A, b ∈ B(a)}

Anton Setzer: Inductive Recursive Definitions 9

Set vs. Type
We will use two type levels.

Set
:::

, the type of sets = small types.

Type
:::::

the collection of big types.

Set ⊆ Type, Set : Type.
Type closed under (dependent) functions and
products, but in the simplest version under nothing
else.

So we have for instance, if A : Set, then

A→ Set : Type

type of predicates over A.

Higher hierarchies are considered.
Universes provide a much more powerful type hierarchy.

Anton Setzer: Inductive Recursive Definitions 10

2. Sets in MLTT and Ind.-Rec.

Simples type = type of Booleans.

Formation rule:
Bool : Set

Introduction rules:

tt : Bool ff : Bool

Elimination/equality rules:

If then else.

Anton Setzer: Inductive Recursive Definitions 11

Visualisation of Bool

Bool

tt ff

2 Constructors, both no arguments .

Anton Setzer: Inductive Recursive Definitions 12

The Disjoint Union
Formation rule:

A : Set B : Set
A+B : Set

Introduction rules:

inl : A→ (A+B)

inr : B → (A+B)

(Additional premises of formation rule suppressed).

Elimination/equality rule:

case x of

{ inl(a) → · · ·

inr(b) → · · · }

Anton Setzer: Inductive Recursive Definitions 13

Visualisation of A+B

A + B

inl inr

A B

Both inl and inr have one non-inductive argument .

Anton Setzer: Inductive Recursive Definitions 14

The Σ-Type

Formation rule:

A : Set B : A→ Set
Σ(A,B) : Set

Introduction rule:

a : A b : B(a)

p(a, b) : Σ(A,B)

Elimination/equality rule:

case x of

{ p(a, b) → · · · }

Anton Setzer: Inductive Recursive Definitions 15

Visualisation of Σ(A,B)

A
a

p(a, b)

b

Σ(A, B)

B(a)

p has 2 non-inductive arguments .

The type of the 2nd argument depends on the 1st
argument.

Anton Setzer: Inductive Recursive Definitions 16

Natural numbers
Formation rule:

N : Set

Introduction rules:

0 : N
n : N

S(n) : N

Elimination/equality rule:

Induction/primitive recursion.

Anton Setzer: Inductive Recursive Definitions 17

Visualisation of N

N

S

0

0 has no arguments .

S has one inductive argument .

Anton Setzer: Inductive Recursive Definitions 18

W-Type

therefore leaf

sup(a, b)

y : B(a)

b(y′)

b′(z) = sup(a′′, b′′) B(a′′) empty,
b′(z′)

z : B(a′)z′

y′

b(y) = sup(a′, b′)

Assume A : Set, B : A→ Set.
W(A,B) is the type of well-founded recursive trees with
branching degrees (B(a))a:A.

Anton Setzer: Inductive Recursive Definitions 19

The W-Type
Formation rule:

A : Set B : A→ Set
W(A,B) : Set

Introduction rule:

a : A b : B(a) → W(A,B)

sup(a, b) : W(A,B)

Elimination/equality rule:

Induction over trees.

Anton Setzer: Inductive Recursive Definitions 20

Visualisation of W(A,B)

a
A

B(a)

W(A, B)

sup(a, b)

b(x) (x : B(a))

sup has 2 arguments :

First argument is non-inductive .

Second argument is inductive , indexed over B(a).

B(a) depends on the first argument a .
Anton Setzer: Inductive Recursive Definitions 21

Universes
A universe is a family of sets

Given by
a set U : Set of codes for sets,
a decoding function T : U → Set.

Anton Setzer: Inductive Recursive Definitions 22

Universes
Formation rules:

U : Set a : U
T(a) : Set

Introduction and Equality rules:

N̂ : U T(N̂) = N

a : U b : T(a) → U

Σ̂(a, b) : U

T(Σ̂(a, b)) = Σ(T(a),T ◦ b)

Similarly for other type formers (except for U).

Elimination/equality rules: Induction over U.

Anton Setzer: Inductive Recursive Definitions 23

Visualisation of U

bN

a bΣ(a, b)

T(a)
T(a)

Σ(T(a),T ◦ b)

T(b(x))
N

b(x) (x : T(a))

U

Anton Setzer: Inductive Recursive Definitions 24

Analysis
Elements of U are defined inductively , while defining
T(a) for a : U recursively .

Σ̂ has two inductive arguments
Second argument depends on T(a).

T(a) depends on T applied to first argument a.

T(Σ̂(a, b)) is defined from
T(a).
T(b(x)) (x : T(a)).

Principles for defining a universe can be generalised to
higher type universes , where T(a) can be an element
of any type, e.g. Set → Set.

Anton Setzer: Inductive Recursive Definitions 25

Advanced Example
Set of lists of natural numbers with distinct elements.

Inductive-recursive definition of
Freshlist : Set

_ # _ : Freshlist → N → Set.

Constructors:

nil : Freshlist ,

nil #m = ⊤

cons : (n : N, l : Freshlist, l # n) → Freshlist

cons(n, l, p) #m = (l#m) ∧ (n 6= m)

Anton Setzer: Inductive Recursive Definitions 26

3. Closed Formal. of Induct-Rec.

The above constructions are examples of
inductive-recursive definitions .

Many more sets can be defined in the same way.

Inductive-recursive Definitions = general concepts
which subsumes most standard extensions which have
been found up to now.

Excludes Mahlo universe and similar constructions.

Introduced originally by Peter Dybjer in a schematic
way.

Here: development of a rule based system, which
allows to introduce all ind.-rec. def. by finitely many
rule schemes .

Anton Setzer: Inductive Recursive Definitions 27

Encoding of Constructors into one
Several constructors can be encoded into one
constructor:

Assume constructors Ci : (a : Ai) → U (i = 1, . . . , n).
Replace them by one constructor
C : (i : {1, . . . , n}, a : Ai) → U .

Only required: finite sets.
Will be part of the logical framework.

Anton Setzer: Inductive Recursive Definitions 28

Induct. and Non-Induct. Arguments
Two kinds of arguments :

Non-inductive arguments .
Refer to sets previously introduced.

Inductive arguments .
Refer to the set to be defined ind.-rec.

Additional initial case : constructors with no
arguments.

Anton Setzer: Inductive Recursive Definitions 29

Depend. of Args. on Prev. Ones
Types of later arguments can depend directly on
previous non-inductive arguments .

Later arguments cannot depend directly on inductive
arguments (since nothing is known about the ind.-rec.
introduced set U).

However, they can depend on T applied to
inductive arguments .

Result of T applied to the constructed element can
depend in the same way on arguments as can later
arguments depend on previous arguments .

Anton Setzer: Inductive Recursive Definitions 30

Formalisation
We introduce inductive-recursively sets U : Set,
T : U → D for some type D.

Let D : Type be fixed.
In case of a standard universe

D = Set

In case of higher order universes

D = Fam(Set) → Fam(Set)

or higher types.
In case of inductive definitions (T is trivial)

D = {∗}

Anton Setzer: Inductive Recursive Definitions 31

OPD

We introduce a type of codes for ind.-rec. definitions :

OPD : Type

If γ : OPD, we introduce (Uγ,Tγ) ind.-rec.:

Uγ : Set

Tγ : Uγ → D

Anton Setzer: Inductive Recursive Definitions 32

FU
γ

Further, we define the set of arguments of the
constructor introγ of Uγ.

Argument set has to be defined, before Uγ, Tγ has
been introduced.
Will be defined for arbitrary U : Set, T : U → D

γ : OPD

FU
γ : (U : Set) → (T : U → D) → Set

Introduction Rule for Uγ:

introγ : FU
γ (Uγ,Tγ) → Uγ

Anton Setzer: Inductive Recursive Definitions 33

FT
γ

Furthermore, we have to define the result of Tγ applied
to introγ(a).

Again, we have to define it before the definition of
Uγ, Tγ is finished.

So we define

FT
γ : (U : Set) → (T : U → D) → FU

γ (U, T) → D

Equality Rule for Tγ:

Tγ(introγ(a)) = FT
γ (Uγ,Tγ , a)

Anton Setzer: Inductive Recursive Definitions 34

Fγ as a Functor
We have

FU
γ : (U : Set) → (T : U → D) → Set

FT
γ : (U : Set) → (T : U → D) → FU

γ (U, T) → D

FU
γ , FT

γ will form the object part of a functor

Fγ : Fam(D) → Fam(D)

where
Fam(D) := (U : Set) × (U → D)

and 〈Uγ ,Tγ〉 is the initial algebra of Fγ.
(Slight modification of the proof in the paper is needed.)

Anton Setzer: Inductive Recursive Definitions 35

Elimin./Equal. Rules for U γ, Tγ
For elimination and equality rules similar functions FIH

γ ,
Fmap
γ can be defined.

Not treated here.

Anton Setzer: Inductive Recursive Definitions 36

Initial Case
Initial case for OPD: No arguments.

We need only to define the result of Tγ applied to the
constructor, i.e. require one element ψ : D.

ψ : D

init(ψ) : OPD

FU
init(ψ)(U, T) = {∗} : Set

FT
init(ψ)(U, T, ∗) = ψ : D

Anton Setzer: Inductive Recursive Definitions 37

Noninductive Argument
For an noninductive argument we need to know

The set A, the argument is referring to.
Depending on A, the later arguments of the
constructor, i.e. a function ψ : A→ OPD.

A : Set ψ : A→ OPD
nonind(A,ψ) : OPD

FU
nonind(A,ψ)(U, T) = (a : A) × FU

ψ(a)(U, T) : Set

FT
nonind(A,ψ)(U, T, 〈a, b〉) = FT

ψ(a)(U, T, b) : D

Anton Setzer: Inductive Recursive Definitions 38

Inductive Argument
For an inductive argument we need to know

The set A, over which the argument is indexed over.
A = {∗} give the special case of a single
argument.

Depending on the result of T applied to the
arguments of A, i.e. depending on A→ D, the later
arguments of the constructor:
We need a function ψ : (A→ D) → OPD.

A : Set ψ : (A→ D) → OPD
ind(A,ψ) : OPD

FU
ind(A,ψ)(U, T) = (a : A→ U) × FU

ψ(T◦a)(U, T) : Set

FT
ind(A,ψ)(U, T, 〈a, b〉) = FT

ψ(T◦a)(U, T, b) : D

Anton Setzer: Inductive Recursive Definitions 39

Examples
If ψ,ψ′ : OPD, let ψ +OP ψ

′ be the code for the ind.-rec.
definitions with the constructors of ψ and ψ′ coded into
one constructor.

Ordinary inductive definitions correspond to elements of
OP{∗}.

Then Tγ : Uγ → {∗} is trivial.

Code for N is

init(∗)

+OPind({∗}, λx.init(∗)) : OP{∗}

Anton Setzer: Inductive Recursive Definitions 40

Examples
Code for A+B is

nonind(A, λx.init(∗))

+OPnonind(B, λx.init(∗)) : OP{∗}

Code for W(A,B) is

nonind(A, λx.ind(B(x), λy.init(∗))) : OP{∗}

Code for a universe closed under N, Σ is

init(N)

+OPind({∗}, λA.ind(A(∗), λB.init(Σ(A(∗), B))))

: OPSet

Anton Setzer: Inductive Recursive Definitions 41

4. Results
Generalisation to indexed inductive-recursive
definitions has been developed.

Corresponds to the simultaneous ind.-rec.
definitions of several sets Uγ(i) : Set (i : I), together
with Tγ(i) : Uγ(i) → D[i].

Special case: identity type.

Anton Setzer: Inductive Recursive Definitions 42

Applications in Generic Programm.

::::::::::

Generic (or better
::::::::::::::

generative) programming is the
definition of functions, which depend on the structure of
types.

More than just simple polymorphism , in which one
forms a type from another type without looking into it.

Generic programming is used in C + + where one can
define typelists and functions by induction over type
lists.

Similarly, in generic Haskell one defines functions by
induction over the definition of data types.

Goal is highly generic programs, automated software
production.

Anton Setzer: Inductive Recursive Definitions 43

OPD and Generic Programming
OPD is a very general data type of types.
Allows to define functions which take

an element of γ : OPD,
and an element of Uγ,

and compute
a new element γ′ : OPD
and a new element of Uγ′.

A very general form of generic programming .

One example is the embedding of an inductive type into
the same inductive type, but extended by one more
constructor.

Not possible to treat this using ordinary
polymorphism.

Anton Setzer: Inductive Recursive Definitions 44

OPD and Generic Programming
Marcin Benke, Patrik Jansson and Peter Dybjer have
used weak versions of OPD in generic programming.

One example is the type of finitary inductive
definitions (inductive argument not indexed over sets).

They were able to
define a generic decidable equality for such sets,
and show that it is an equivalence relation.

Anton Setzer: Inductive Recursive Definitions 45

Related Structures
In order to define models of type theory (or other
theories) inside type theory, one often needs to define

a U : Set

together with sets T : U → Set

simultaneously inductively.

So T(x) is not fixed but defined inductively by referring
to the inductive definition of U and other sets T(y).

Therefore we cannot refer to T(x) negatively as in

Σ̂ : (x : U) → (T(x) → U) → U

Anton Setzer: Inductive Recursive Definitions 46

Example
For instance one defines simultaneously inductively

Types : Set

Terms : Types → Set

with constructors like

ap : (A,B : Types)

→ Terms(A →̂ B)

→ Terms(A)

→ Terms(B)

(More precisely additional dependency on contexts
needed).

Anton Setzer: Inductive Recursive Definitions 47

Conclusion
Introduction into dependent type theory (Martin-Löf
Type Theory).

Ind-rec. definitions as a generalisation of the underlying
principles.

Introduction of a type theory of ind.-rec. definitions.

Contains a data type OPD of codes for ind.-rec.
definitions.

Proof-theoretic strength known to be in
[|KPM|, |KPM+|].

Applications in generic programming.

Anton Setzer: Inductive Recursive Definitions 48

Future Research
Integration of Mahlo principle
(“Mahlo-inductive-rec. definitions ”).

Combination with coalgebras (couniverses).

Integration of extended principles like the one just
mentioned.

More examples for usage of truly inductive-recursive
definitions in programming.

Only known non-universe examples are:
Modelling of partial functions in type theory.
Normalisation proof of Martin-Löf type theory.

Expected that there are many more applications.

More applications in generic/generative programming.

Anton Setzer: Inductive Recursive Definitions 49

	
	Goal of this Talk
	New Grant
	1. Dep. Type Theory
	Polymorphic Types
	Dependent Types
	Examples of Dependent Types
	Predicates as Dependent Types
	Logical Framework
	Set vs. Type
	2. Sets in MLTT and Ind.-Rec.
	Visualisation of Bool
	The Disjoint Union
	Visualisation of A+B
	The $Sigma $-Type
	Visualisation of $Sigma $(A,B)
	Natural numbers
	Visualisation of $Nbb $
	W-Type
	The W-Type
	Visualisation of W(A,B)
	Universes
	Universes
	Visualisation of U
	Analysis
	Advanced Example
	3. Closed Formal. of Induct-Rec.
	Encoding of Constructors into one
	Induct. and Non-Induct. Arguments
	Depend. of Args. on Prev. Ones
	Formalisation
	OP$_D$
	F$_gamma ^Urm $
	F$_gamma ^Trm $
	F$_gamma $ as a Functor
	Elimin./Equal. Rules for U$_gamma $, T$_gamma $
	Initial Case
	Noninductive Argument
	Inductive Argument
	Examples
	Examples
	4. Results
	Applications in Generic Programm.
	OP$_D$ and Generic Programming
	OP$_D$ and Generic Programming
	Related Structures
	Example
	Conclusion
	Future Research

