The extended predicative Mahlo Universe and the need for partial proofs and partial objects in type theory.

Anton Setzer

Swansea University, Swansea, UK

jww Reinhard Kahle, Universidade Nova de Lisboa, Portugal

Proofs and Computation, Hausdorff Institute, Bonn, Germany

4 July 2018

Steps towards the Mahlo Universe

Extended Predicative Mahlo

Partial Proofs and Objects

Steps towards the Mahlo Universe

Extended Predicative Mahlo

Partial Proofs and Objects

Inductive-Recursive Definition of Universes

```
mutual  \begin{array}{lll} \operatorname{data} \ \operatorname{U}_0 : \operatorname{Set} \ \operatorname{where} \\ & \widehat{\mathbb{N}} \ : \ \operatorname{U}_0 \\ & \widehat{\mathbb{W}} \ : \ (x : \operatorname{U}_0) \to (\operatorname{T}_0 \ x \to \operatorname{U}_0) \to \operatorname{U}_0 \\ & \cdots \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &
```

Universe Operator and Super Universe (Palmgren)

Define

$$Fam(Set) = \Sigma X : Set.X \rightarrow Set$$

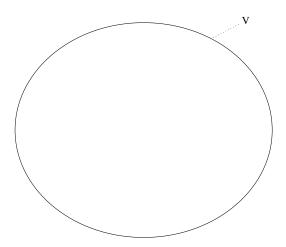
In rules Fam(Set) is avoided by Currying.

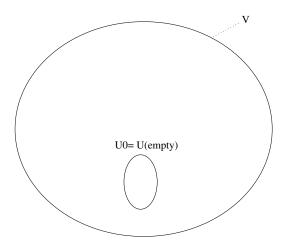
Define

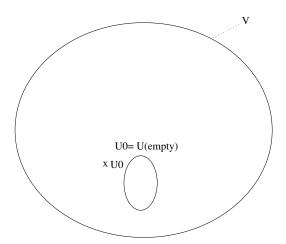
$$U^+ : Fam(Set) \to Fam(Set)$$

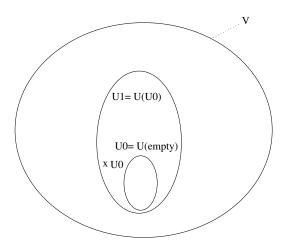
such that $U^+ A$ is a universe containing (codes for) A.

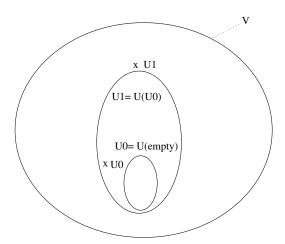
▶ Let a **super universe** be a universe closed under U⁺.

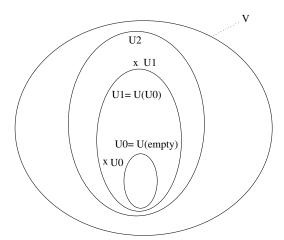


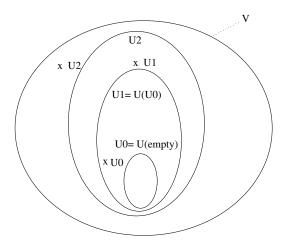


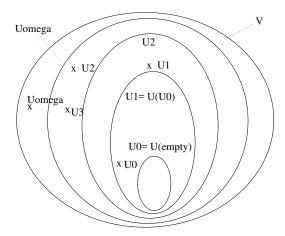












Super Universe Operator (Palmgren)

▶ Define the super universe operator

$$SU : Fam(Set) \rightarrow Fam(Set)$$

where SU A is a super universe containing A.

► Let a **super-super universe** be a universe closed under SU.

External Mahlo Universe

- Generalise the above to allow formation of universes closed under arbitrary operators:
 - ▶ If $f : \operatorname{Fam}(\operatorname{Set}) \to \operatorname{Fam}(\operatorname{Set})$ then

$$U_f : Fam(Set)$$

is a universe closed under f.

► The external Mahlo universe is the type theory formalising the existence of U_f for any such f.

Internal Mahlo Universe

► The **internal Mahlo universe** V is a universe internalising closure under $\lambda f.U_f$: If

$$f: \operatorname{Fam}(V) \to \operatorname{Fam}(V)$$

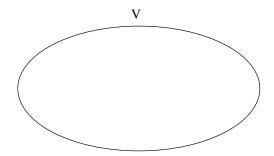
then

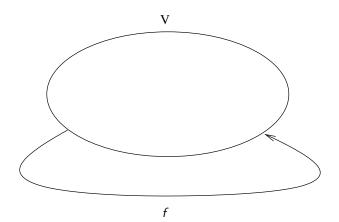
$$\widehat{\mathbf{U}}_f : \mathrm{Fam}(\mathbf{V})$$

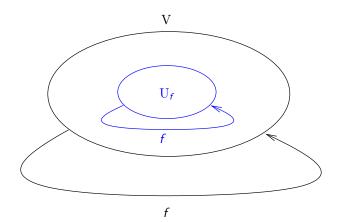
is a family of codes for a subuniverse

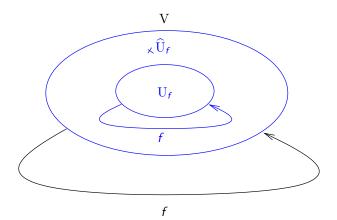
$$U_f : Fam(Set)$$

of V closed under f









Steps towards the Mahlo Universe

Extended Predicative Mahlo

Partial Proofs and Objects

Problems of Mahlo Universe

Constructor

$$\widehat{U}: (\operatorname{Fam}(V) \to \operatorname{Fam}(V)) \to V$$

refers to

the set of total functions

$$Fam(V) \rightarrow Fam(V)$$

- ▶ which depends on the totality of V.
- lacktriangle So the reason for adding \widehat{U} depends on the totality of V.
 - ▶ Less problematic since we don't have elimination rules for V.
 - ▶ So functions $Fam(V) \rightarrow Fam(V)$ can only make use of introduction rules for forming elements of V.
 - ► However, this idea hasn't been transformed yet into a formal model of the Mahlo universe.

Predicative Solution to the Mahlo Universe

- ▶ For defining U_f , only the restriction of f to $Fam(U_f)$ is required to be total.
 - ► Only local knowledge of V is needed.
 - ▶ Adding \widehat{U}_f to V does not affect the reason for adding it.

Idea for an Extended Predicative Mahlo Universe

▶ Idea: For partial functions *f* define a subuniverse

$\operatorname{Pre} f V$

of V closed under f as long as it stays in V.

- ▶ If Pre f V is closed under f, then we add a code \widehat{U}_f for Pre f V to V.
- ▶ Therefore reason for adding \widehat{U}_f doesn't depend on totality of V, V is **predicative**.
- ► Requires that we have the notion of a **partial function** *f*.

Explicit Mathematics (EM)

- ► Problem: In MLTT we have no access to the set of partial functions ("potential programs", collection of terms of our language).
- ▶ In Feferman's explicit mathematics (EM) this exist.
- ▶ We will work in EM, but use syntax borrowed from type theory,
 - ▶ however write $a \in B$ instead of a : B.

Basics of EM

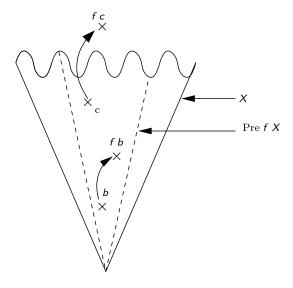
- ▶ EM more Russell-style, therefore we can have
 - $V \in Set.$
 - $ightharpoonup V \subset Set$,
 - \blacktriangleright no need to distinguish between \widehat{U} and U.
- ► We can encode Fam(V) into V, therefore need only to consider functions

$$f: V \rightarrow V$$

▶ We define now f, $X \in Set$, $X \subseteq Set$

Pre
$$f X \in \text{Set}$$
 Pre $f X \subseteq X$

Pre f X



Closure of Pre f X

- $ightharpoonup \operatorname{Pre} f X$ is closed under universe constructions, if result is in X.
- ▶ Closure under Σ (called join in EM):

$$\forall a \in \operatorname{Fam}(\operatorname{Pre} f X).\Sigma \ a \in X \to \Sigma \ a \in \operatorname{Pre} f X$$

▶ Pre f X is closed under f, if result is in X:

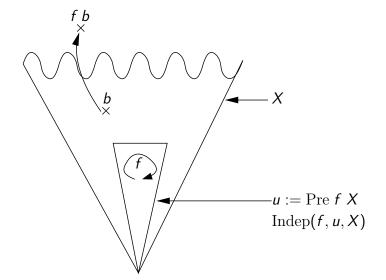
$$\forall a \in \text{Pre } f X. f a \in X \rightarrow f a \in \text{Pre } f X$$

Independence of Pre f X

▶ If, whenever a universe construction or *f* is applied to elements of Pre *f* X we get elements in X, then Pre *f* X is independent of future extensions of X.

$$\operatorname{Indep}(f,\operatorname{Pre} f\;X,X):=\big(\forall a\in\operatorname{Fam}(\operatorname{Pre} f\;X).\Sigma\;a\in X\big)\\ \wedge\cdots\\ \wedge f[\operatorname{Pre} f\;X]\subseteq X$$

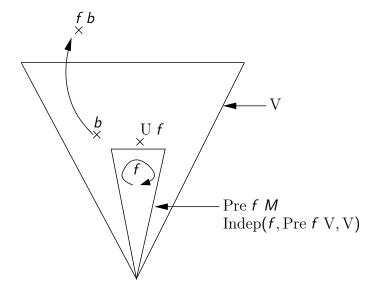
Indep X f



Introduction Rule for V

- ▶ $\forall f$. Indep $(f, \text{Pre } f \text{ V}, \text{V}) \rightarrow (\text{U}_f \in \text{Set} \land \text{U}_f =_{\text{ext}} \text{Pre } f \text{ V} \land \text{U}_f \in \text{V})$
- ▶ V admits an **elimination rule** expressing that V is the smallest universe closed under universe constructions and introduction of U_f .

Introduction Rule for V



Interpretation of Axiomatic Mahlo

► It easily follows:

$$\forall f \in V \to V. \text{ Indep}(f, \text{Pre } f V, V)$$

therefore

$$\forall f \in V \to V. \ U_f \in V \land \ \operatorname{Univ}(f) \land f \in U_f \to U_f$$

- ► So V closed under axiomatic Mahlo constructions.
- Therefore extended predicative Mahlo has at least strength of axiomatic Mahlo.
- ► We are currently working out the details of the model of the extended predicative Mahlo universe.

Steps towards the Mahlo Universe

Extended Predicative Mahlo

Partial Proofs and Objects

Partial Functions

- ▶ $s \in t$ is undecidable (since s can have infinitely many reductions).
- ► So in

$$s \in t$$

s is only a realiser not a proof of t.

- ▶ The proof that $s \in t$ is given by the derivation that $s \in t$.
- ► Can be made explicit by having proof objects:

$$p:s\in t$$

- ▶ In Martin-Löf Type theory p and s are encoded into one object.
 - ▶ Causes problems because there different proofs of $s \in t$ result in different elements of t which correspond to the same realiser.

```
suc : Term \rightarrow Term
   ap pu : Term \rightarrow Term \rightarrow Term
data \_ \sim > \_ : (s\ t : Term) \rightarrow Set where
data \inNat : Term \rightarrow Set where
   zeroproof : zero ∈Nat
  sucproof: (t: Term) \rightarrow t \in Nat \rightarrow suc \ t \in Nat
  eqproof : (s t : \mathsf{Term}) \to s \sim t \to t \in \mathsf{Nat} \to s \in \mathsf{Nat}
```

data Term : Set where nat zero m : Term

```
data _ \in Set : Term \rightarrow Set where natproof : nat \in Set puproof : (a\ f : Term) \rightarrow pu a\ f \in Set mproof : m \in Set eqproof : (s\ t : Term) \rightarrow s \sim > t \rightarrow t \in Set \rightarrow s \in Set
```

```
mutual
   data \in PU[ , ] : (x \ a \ f : Term) \rightarrow Set where
      aproof : \{a \ f : \mathsf{Term}\} \to a \in \mathsf{M} \to a \in \mathsf{PU}[a, f]
      fproof : \{a \ f \ x : \text{Term}\} \rightarrow x \in \text{PU}[a, f] \rightarrow \text{ap} \ f \ x \in M
                        \rightarrow ap f x \in PU[a, f]
      egproof : \{a \mid f \mid x : \text{Term}\} \rightarrow (s \mid t : \text{Term}) \rightarrow s \sim t
                        \rightarrow t \in PU[a, f] \rightarrow s \in PU[a, f]
   data \in M: Term \rightarrow Set where
      u:(a\ f:Term)
            \rightarrow a \in M
             \rightarrow ((x : \mathsf{Term}) \rightarrow x \in \mathsf{PU}[a, f] \rightarrow \mathsf{ap} f x \in \mathsf{M})
            \rightarrow pu a f \in M
      eq : (s t : \mathsf{Term}) \to s \sim t \to t \in \mathsf{M} \to s \in \mathsf{M}
```

```
PU2M : (a f x : Term) \rightarrow x \in PU[a, f] \rightarrow x \in M
PU2M a f .a (aproof am)
                                   = am
PU2M a f (ap .fy) (fproof ypu p) = p
PU2M \ a \ f \ s \ (eqproof \ s \ t \ st \ tpu) = eq \ s \ t \ st \ (PU2M \ a \ f \ t \ tpu)
\mathsf{M2set}: (t: \mathsf{Term}) \to t \in \mathsf{M} \to t \in \mathsf{Set}
M2set .(pu a f) (u a f m' indep) = puproof a f
M2set s (eq s t st tm) = eqproof s t st (M2set t tm)
PU2Set : (a f x : Term) \rightarrow x \in PU[a, f] \rightarrow x \in Set
PU2Set a f \times ispu = M2set \times (PU2M \ a \ f \times ispu)
```

```
\begin{array}{lll} \underline{\ \eta} \underline{\ } : (s\ t: \mathsf{Term}) \to \mathsf{Set} \\ s\ \eta \ \mathsf{nat} &= s \in \mathsf{Nat} \\ s\ \eta \ \mathsf{m} &= s \in \mathsf{M} \\ s\ \eta \ \mathsf{pu} \ a \ f = s \in \mathsf{PU}[\ a\ ,\ f\ ] \\ s\ \eta \underline{\ } &= \bot \end{array}
```

Conclusion

- Predicative presentation of the Mahlo universe based on partial functions.
- ▶ Requires access to the collection of all partial objects.
- ► Separation of realisers and proofs.