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1. Notations

Preliminaries

I Martin-Löf Type Theory = λ-calculus extended by dependent types,
inductive-recursive definitions.

I Propositions as types.
t : A could mean:

I t is an element of the data type A,
I t is a proof of proposition A.
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1. Notations

Notations

I We use functional notation for application so f a b is what in
standard mathematics is denoted by f (a)(b).

I Notations like :: for mixfix symbols
I s :: t instead of :: s t.

I Set is the collection of small types,
Type is the collection of large types.
Example: Type of matrices depending on dimensions is

Matrix : N → N → Set
N → N → Set : Type
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1. Notations

Notations

I

(x : A) → B

is type of functions f mapping x : A to f x : B where B might
dependent on A.
Example: Matrix multiplication:

matmult : (n, m, k : N) → Matrix n m → Matrix m k → Matrix n k

Other people use Πx : A.B
(subtle difference in Martin-Löf Type Theory).

I {x : A} → B for a hidden argument (usually omitted, can be inferred).
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1. Notations

Notations

I

(x : A)× B

is the dependent cross-product.
Elements are 〈x , y〉 where x : A and y : B where B might dependent
on A.
Example: sorted lists

SortedList = (l : List)× Sorted l
SortedList : Set

Other people use Σx : A.B
(subtle difference in Martin-Löf Type Theory).
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2. Finitary Inductive Definitions

Inductive Definitions

Inductive Definitions given essentially as algebraic data types.
Given as a set A together with constructors which are strictly positive in A.
Example using Agda notation.

data ListN : Set where
[] : ListN
:: : N → ListN → ListN

Means that we have

ListN : Set
[] : ListN
:: : N → ListN → ListN
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2. Finitary Inductive Definitions

Induction Principle

data ListN : Set where
[] : ListN
:: : N → ListN → ListN

Additionally we have an induction principle expressing ListN is least set
closed under these constructors:

inductionListN : (A : ListN → Set)
→ (step[] : A [])

→ (step:: : (n : N) → (l : ListN) → A l → A (n :: l))
→ (l : ListN)
→ A l

inductionListN A step[] step:: [] = step[]

inductionListN A step[] step:: (n :: l) =

step:: n l (inductionListN A step[] step:: l)

(We won’t mention those induction principles in the future).
9/ 65



2. Finitary Inductive Definitions

Models in General

I Our models will be PER modules, e.g.
I We have a set of raw terms Term plus a reduction relation −→ on it

which is confluent.
I Sets A are interpreted as partial equivalence relations on Term,

[[ A ]] ⊆ Term× Term

〈r , s〉 ∈ [[ A ]] means that r and s are equal elements in [[A ]]
〈r , r〉 ∈ [[ A ]] means r is an element of [[ A ]]

I For simplicity we will usually omit dealing with the fact that sets have
an equality on them and do as if

[[ A ]] ⊆ Term

I [[ Set ]] := P(Term)(= {X | X ⊆ Term}) , the set of interpretations of
sets (with this simplication).

10/ 65



2. Finitary Inductive Definitions

Model

ListN defined as the least fixed point of a monotone operator Γ on the
cpo

I [[ Set ]]

I with ordering X ≤ Y :⇔ X ⊆ Y .

where

Γ ∈ [[ Set ]] → [[ Set ]]
Γ(X ) = Closure−→({[]} ∪ {n :: l | n ∈ [[ N ]] ∧ l ∈ X})

When defining models as fixed point, we will for simplicity omit
Closure−→ (upward closure under −→).
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2. Finitary Inductive Definitions

Inductive and Non-inductive Arguments

ListN : Set
[] : ListN
:: : N → ListN → ListN

I The first argument of :: is a
::::::::::::::::
non-inductive

:::::::::::
argument.

I Refers to a set defined before one introduced ListN.

I The second argument is an
::::::::::
inductive

::::::::::::
argument.
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3. Parametrised Inductive Definitions

Parametrised Inductive Definitions

The above type can be made generic in the set argument.

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

A is a uniform parameter:
I The result type of the constructor is List A for arbitrary A

I Constructors
C : List N

or
C′ : (A : Set) → List (A× A)

are not allowed

I The constructor refers to the same set List A.
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4. Infinitary Inductive Definitions

Infinitary Inductive Definitions

We can as well have constructors having

::::::::::
infinitary

:::::::::::
inductive

:::::::::::::
arguments.

Example
data KleenesO : Set where

0 : KleenesO
S : KleenesO → KleenesO
lim : (N → KleenesO) → KleenesO

Height of KleenesO is ℵrec
1 .

Iterations of this type allows to define finitely iterated inductive definitions
or ordinals of height ℵrec

n .
Corresponding operator is

Γ(X ) = {0} ∪ {S x | x ∈ X}
∪{lim f | ∀n ∈ [[ N ]].f n ∈ X}
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4. Infinitary Inductive Definitions

Kleene’s O

S 0 S (S 0)

S (S ω)

S ω

ω = lim (λn.Sn 0)

0 S 0

0

0
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5. Dependent Inductive Definitions

Dependencies in Constructors

Because of dependent type theory, later arguments can depend on previous
arguments:

I Only on non-inductive arguments.

I When introducing the new set, say A, we don’t know what A is, so
cannot define a type truly depending on a : A.

Example:

data W (A : Set) (B : A → Set) : Set where
sup : (a : A) → (B a → W A B) → W A B
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5. Dependent Inductive Definitions

W-type

data W (A : Set) (B : A → Set) : Set where
sup : (a : A) → (B a → W A B) → W A B

We can see
KleenesO ≈ Wx : {0, 1, 2}.B x

where B 0 = ∅
B 1 = {∗}
B 2 = N

Third number class (of height ℵrec
3 ) can be defined as

KleenesO2 := Wx : {0, 1, 2, 3}.B x
where B 0, B 1, B 2 as before

B 3 = KleenesO

20/ 65



5. Dependent Inductive Definitions

Iterating KleenesO infinitely often

We can form as well if can define the nth iteration of KleenesO (by having
large elimination on N or a universe closed under W-type)

KleenesO : N → Set

the set
KleenesOω = Wn : N.KleenesOn

of height
ℵrec

ω = sup
n∈ω

ℵrec
n
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6. Indexed Inductive Definitions - Restricted and General

Simultaneous Inductive Definitions

Simultaneous inductive definitions allow to define several sets inductively
simultaneously:
Finitely branching trees:

mutual
data Fintree : Set where

node : FintreeList → Fintree

data FintreeList : Set where
[] : FintreeList
:: : Fintree → FintreeList → FintreeList
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6. Indexed Inductive Definitions - Restricted and General

Example of FinTree

node []

node ((node ((node []) :: [])) :: (node []) :: [])

node []node (node []) :: []
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6. Indexed Inductive Definitions - Restricted and General

Model

Consider the cpo

I [[ Set ]]2(= [[Set ]]× [[ Set ]])

I 〈X , Y 〉 ≤ 〈X ′, Y ′〉 :⇔ X ⊆ X ′ ∧ Y ⊆ Y ′.

Let Γ ∈ [[ Set ]]2 → [[ Set ]]2 monotone s.t.

Γ(〈X , Y 〉) = 〈{node x | x ∈ Y },
{[]} ∪ {x :: y | x ∈ X ∧ y ∈ Y }〉

We then define
〈[[ Fintree ]], [[ FintreeList ]]〉

as the last fixed point of Γ.
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6. Indexed Inductive Definitions - Restricted and General

Indexed Inductive Definitions

Generalised Inductive Definitions introduce sets A : I → Set for some index
set I simultaneously.
Example:

data Vector : N → Set where
[] : Vector 0
:: : {n : N} → N → Vector n → Vector (n + 1)

E.g.
(3 :: 2 :: []) : Vector 2
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6. Indexed Inductive Definitions - Restricted and General

Generalised Indexed Inductive Definitions

data Vector : N → Set where
[] : Vector 0
:: : {n : N} → N → Vector n → Vector (n + 1)

This is a generalised indexed inductive definition:

I index of the result type of a constructor arbitrary,

I constructor can refer to elements for this set for arbitrary other
indices.
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6. Indexed Inductive Definitions - Restricted and General

Restricted Indexed Inductive Definitions

An example of a restricted indexed inductive definition is
(assuming A : Set, < : A → A → Set)

data Acc : A → Set where
acc : (a : A) → ((b : A) → (b < a) → Acc b) → Acc a

The constructor (there could be several) of a restricted indexed inductive
definition of a set A : I → Set has the form

C : (i : I ) → · · · → (f : (b : B) → A (g i)) → · · · → A i

I result type is A applied to a variable,

I that variable is the first argument of the constructor,

I the constructor can refer to A i ′ for arbitrary i ′.
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6. Indexed Inductive Definitions - Restricted and General

Reason for Restricted Indexed Inductive Definitions

Restricted indexed inductive definitions allow definition by case distinction:
Assume

data A : I → Set where
C0 : (i : I ) → A i
C1 : (i : I ) → (b : B) → A t → A i

We can define for t : I

f : A t ′ → C
f x = case x of{(C0 t)) −→ · · ·

(C1 t b a) −→ · · ·

Possible since for A t ′ can be introduced by all constructors.
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6. Indexed Inductive Definitions - Restricted and General

Reason for Restricted Indexed Inductive Definitions

In case of generalised indexed inductive definitions this is not possible.
Consider

data A : (N → N) → Set where
C0 : A (λx .x)
C1 : (b : B) → A t ′ → A (λx .S x)

I We cannot define

f : (g : N → N) → A g → · · ·
f g x = case x of · · ·

because we don’t know whether g = λx .x or not.
I However, we can define f by pattern matching (“.” in front of an

argument means that this argument is enforced by matching of
another argument with a pattern):

f : (g : N → N) → A g → · · ·
f .(λx .x) C0 = · · ·
f .(λx .S x) (C b a) = · · ·

30/ 65



6. Indexed Inductive Definitions - Restricted and General

Pattern Matching

I So we could deal with pattern matching for a restricted indexed
inductive definition H : I → Set if the function was of type

f : (i : I ) → H i → · · ·

I We can as well deal with the situation where I is an inductive
definition, the result types of the constructors start with certain
constructors and the index of an argument starts with one
constructor, e.g.

data H : N → Set where
C0 : H 0
C1 : (n : N) → H (n + 4) → H (S (S n))

f : H (S (S (S 0))) → N
f (C1 .(S 0)) x = · · ·
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6. Indexed Inductive Definitions - Restricted and General

Reduction of Generalised to Restricted Indexed Inductive
Definitions

I Assuming an equality on arbitrary sets, generalised indexed inductive
definitions can be reduced to restricted ones:

data A : (N → N) → Set where
C0 : A (λx .x)
C1 : (b : B) → A t ′ → A (λx .S x)

can be replaced by

data A′ : (N → N) → Set where
C0 : (f : N → N) → f == λx .x → A f
C1 : (f : N → N) → (b : B) → A t ′ → (f == λx .S x) → A f
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6. Indexed Inductive Definitions - Restricted and General

Reduction of Generalised to Restricted Indexed Inductive
Definitions

I However the equality itself needs to be defined and can be defined by
a generalised indexed inductive definition:

data == A : Set(a : A) : A → Set where
refl : a == a
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6. Indexed Inductive Definitions - Restricted and General

Model

Consider a generalised indexed inductive definition A : I → Set.
Model uses the cpo

I [[ Set ]]I (= I → [[ Set ]])

I f ≤ g :⇔ ∀i ∈ I .f i ⊆ f j .

and for instance in case of

data A : (N → N) → Set where
C0 : A (λx .x)
C1 : (b : B) → A t ′ → A (λx .S x)

Γ ∈ ((N → N) → Set) → ((N → N) → Set)
Γ X f = {C0 | f = λx .x} ∪ {C1 b a | f = λx .S x ∧ b ∈ [[ B ]] ∧ a ∈ X t ′}

Note that this contains the reduction to restricted indexed inductive
definitions.
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7. Inductive-Recursive Definitions

Universes

A universe closed under N and Π is defined as follows:

mutual
data U : Set where

N̂ : U
Π̂ : (a : U) → (b : T a → U) → U

T : U → Set
T N̂ = N
T (Π̂ a b) = (x : T a) → T (b x)
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7. Inductive-Recursive Definitions

Observations

I U, T are defined simultaneously.

I Intuition is that whenever a new element u : U is introduced, then
T u is defined recursively.

I So when we make via an inductive argument use of a : U, we know
what T x is.

I Later arguments can now depend on inductive arguments via T.
I E.g. in

Π̂ : (a : U) → (b : T a → U) → U

the type of the second argument b depends on T a.
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7. Inductive-Recursive Definitions

Generalisation

I Definition of U : Set and T : U → D for an arbitrary type D.
I Precise formulation introduces:

I A data type OPD of inductive-recursive definitions.
I For γ : OPD operations

ArgU
γ : (U : Set) → (T : U → D) → Set

ArgT
γ : (U : Set) → (T : U → D) → ArgU

γ U T → D

I (ArgU
γ , ArgT

γ ) form an endofunctor

Argγ : Fam D → Fam D

where
Fam D = (X : Set)× (X → D)

I So OPD is a universe of functors on Fam D.
I 〈Uγ , Tγ〉 is the least fixed point of Argγ .
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7. Inductive-Recursive Definitions

Model

The cpo is

I Fam(D) = (X ∈ [[ Set ]])× (X → [[ D ]])

I 〈X , Y 〉 ≤ 〈X ′, Y ′〉 :⇔ X ⊆ X ′ ∧ Y ′ ¹ X = Y .

The operator is

Γ ∈ Fam(D) → Fam(D)

Γ 〈U, T 〉 = 〈{N̂}
∪{Π̂ a b | a ∈ U ∧ b ∈ T (a) [[→ ]] U},
N̂ 7→ [[ N ]]

Π̂ a b 7→ (x : T a) [[→ ]] T (b x)〉
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8. Inductive-Inductive Definitions

Inductive-Inductive Definitions

I Universes can be used to develop models of type theory.

I Inductive-inductive definitions were used for formulating the calculus
of type theory and the derivable sets and their elements inside type
theory.

I A consistency proof is obtained by
I formulating the calculus as an inductive-inductive definition,
I formulating a model as an inductive-recursive definitions,
I showing that a : ⊥ is not derivable since in the model [[⊥ ]] = ∅
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8. Inductive-Inductive Definitions

Inductive-Inductive Definitions

DerivableContex : Set
DerivableSet : DerivableContex → Set
DerivableTerm : (Γ : DerivableContex) → DerivableSet Γ → Set

I Here DerivableContex, DerivableSet and DerivableTerm are defined
simultaneously inductively.

I DerivableSet Γ is not fixed once Γ is introduced, but might grow.
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8. Inductive-Inductive Definitions

Formulating Type Theory inside Type Theory

The rules for deriving Contexts are

∅ : Context Γ : Context Γ ⇒ A : Set
(Γ :: A) : Context

This is mapped to rules:

∅ : DerivableContex
:: : (Γ : DerivableContex) → (A : DerivableSet Γ) → DerivableContex
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8. Inductive-Inductive Definitions

Formulating Closure under Π

The rule for closure under (x : A) → B is:

Γ ⇒ A : Set Γ, x : A ⇒ B : Set
Γ ⇒ (x : A) → B : Set

This is mapped to the following rules:

Π : (Γ : DerivableContex)
→ (A : DerivableSet Γ)
→ (B : DerivableSet (A :: Γ))
→ DerivableSet Γ
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8. Inductive-Inductive Definitions

Observations

I DerivableContex : Set and DerivableSet : DerivableContex → Set
are defined simultaneously inductively.

I :: constructs an element of DerivableContex using an element of
DerivableSet Γ.

I Π constructs an element of DerivableSet Γ by referring to
DerivableSet (Γ :: A) where (Γ :: A) is a constructed element of
DerivableContex.

I So the definition of these two sets cannot be separated.

I More details in talk by Frederik Forsberg.
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8. Inductive-Inductive Definitions

Model

A first approximation of the model uses the cpo

I Fam([[ Set ]]) = (X ∈ [[ Set ]])× (X → [[ Set ]]),

I 〈X , Y 〉 ≤ 〈X ′, Y ′〉 :⇔ X ⊆ X ′ ∧ ∀x ∈ X .Y (x) ⊆ Y ′(x).

However, it is easier to replace

X → [[ Set ]]

by the fibration
(Y : [[Set ]])× (Y → X )
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8. Inductive-Inductive Definitions

Model

So we have the cpo

I Fam′([[ Set ]]) = (X ∈ [[ Set ]])× (Y ∈ [[ Set ]])× (Y → X ),

I 〈X , Y , f 〉 ≤ 〈X ′, Y ′, f ′〉 :⇔ X ⊆ X ′ ∧ Y ⊆ Y ′ ∧ f ′ ¹ Y = f .

Γ(〈DerivableContext, DerivableSet, DerivableSetIndex〉)
= 〈DerivableContext ∪ {[]}

∪{A :: Γ | Γ ∈ DerivableContext
∧A ∈ DerivableSet
∧DerivableSetIndex(A) = Γ},

{Π Γ A B | Γ ∈ DerivableContext
∧A ∈ DerivableSet
∧DerivableSetIndex A = Γ
∧B ∈ DerivableSet
∧DerivableSetIndex B = A :: Γ},

Π Γ A B 7→ Γ〉
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9. The Mahlo Universe

The Mahlo universe

I Mahlo universe = universe V s.t. for every function
f : Fam(V) → Fam(V) we have

I Uf : V s.t.
I Uf is a universe with embedding T̂f : Uf → V,
I and there exist constructors f̂ s.t.

Fam(V)
f- Fam(V)

Fam(Uf )

Fam(T̂f )

6

f̂
- Fam(Uf )

Fam(T̂f )

6
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9. The Mahlo Universe

The Mahlo Universe

I The strength of the Mahlo universe is conjectured to be slightly
stronger than arbitrary inductive-recursive definitions.

I Note that V has a constructor which is negative in V.
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9. The Mahlo Universe

The Mahlo Universe

I We uncurry f : Fam(V) → Fam(V) and obtain

f : (a : V) → (b : S a → V) → V
g : (a : V) → (b : S a → V) → S (f a b)

I Correspondingly, f̂ is replaced by two constructors f̂, ĝ of type

f̂ : (a : Uf ,g ) → (b : S (T̂f ,g a) → Uf ,g ) → Uf ,g

ĝ : (a : Uf ,g ) → (b : S (T̂f ,g a) → Uf ,g )

→ T (f (T̂f ,g a) (T̂f ,g ◦ b))
→ Uf ,g
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9. The Mahlo Universe

Rules for the Mahlo Universe

mutual
dataV : Set where

N̂ : · · ·
Π̂ : · · ·
Û : (f : (a : V) → (b : S a → V) → V)

→ (g : (a : V) → (b : S a → V) → S (f a b) → V)
→ V

S : V → Set
S N̂ = · · ·
S (Π̂ a b) = · · ·
S (Ûf ,g ) = Uf ,g
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9. The Mahlo Universe

Rules for the Mahlo Universe (Cont.)

data U(f : (a : V) → (b : S a → V) → V)
(g : (a : V) → (b : S a → V) → S (f a b)
: Set where

N̂0 : · · ·
Π̂0 : · · ·
f̂ : (a : Uf ,g ) → (b : S (T̂f ,g a) → Uf ,g ) → Uf ,g

ĝ : (a : Uf ,g ) → (b : S (T̂f ,g a) → Uf ,g )

→ T (f (T̂f ,g a) (T̂f ,g ◦ b))
→ Uf ,g
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9. The Mahlo Universe

Rules for the Mahlo Universe (Cont.)

T̂ : (f : (a : V) → (b : S a → V) → V)
→ (g : (a : V) → (b : S a → V) → S (f a b))
→ Uf ,g

→ V
T̂f ,g N̂0 = · · ·
T̂f ,g (Π̂0 a b) = · · ·
T̂f ,g (̂f a b) = f (T̂f ,g a) (T̂f ,g ◦ b)

T̂f ,g (ĝ a b c) = g (T̂f ,g a) (T̂f ,g ◦ b) c
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10. The Extended Predicative Mahlo Universe

Problem of Mahlo Universe

I Mahlo universe in type theory has some impredicative character, since
we define V by referring to the collection of all functions

f : Fam(V) → Fam(V)

I No elimination rule allowed for the Mahlo universe.

In explicit mathematics a predicative construction of the Mahlo universe is
possible.
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10. The Extended Predicative Mahlo Universe

Explicit Mathematics

I Explicit mathematics alternative framework for constructive
mathematics.

I Based on untyped λ-calculus.

I In explicit mathematics access to the collection of arbitrary terms
possible.

I Simplification: In explicit mathematics we can encode Fam(Set) into
Fam, and therefore consider Mahlo universes M closed under
f : M → M rather than f : Fam(M) → Fam(M).
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Idea

I Instead of adding to our Mahlo universe M a code Ûf for total
f : M → M, add to M a code Ûf whenever we can form Ûf inside of
M.

I We will consider here universes not only closed under f but
containing as well an element a.

I We use here the name sub a f instead of Ûf .
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pre(a, f, v)

For all a, f (no restriction) and every set-indexed family of sets v
axiomatize that pre(a, f , v),

I is a set such that all elements are sets,

I closed under universe constructions relative to v , e.g.:

(x ∈ pre(a, f , v) ∧ y ∈ (x → pre(a, f , v)) ∧Σ(x, y) ∈ v)
→ Σ(x , y) ∈ pre(a, f , v)

I closed under a, f relative to v , i.e.:

(a ∈ v → a ∈ pre(a, f , v))
(x ∈ pre(a, f , v) ∧ f x ∈ v
→ f x ∈ pre(a, f , v)

I pre(a, f , v) is the least such set (expressed as an induction principle).
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pre(a, f, v)

    

c

f c

f b

b

v

a

u
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Indep(a,f,u,v)

We introduce a predicate Indep(a, f , u, v) expressing that u is independent
of v relative to a, f :
If u = pre(a, f , v), then the premise for adding an element to it is already
fulfilled:

Indep(a, f , u, v) :⇔
(∀x ∈ u.∀y ∈ (a → u).Σ(x , y) ∈ v)
∧ · · · (other universe operators) · · ·
∧a ∈ v
∧(∀x ∈ u → f x ∈ v)

We have

I pre(a, f , v) monotone in v .

I Indep(a, f , pre(a, f , v), v) ∧ v ⊆ v ′

→ Indep(a, f , pre(a, f , v), v ′) ∧ pre(a, f , v) =ext pre(a, f , v ′).
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Indep(a, f,pre(a, f, v),u)

    

f

a

v

Indep(a, f , u, v)

b

f b

u := pre (a, f , v)
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M

Axiomatize:

I M is a set such that all elements are sets,

I closed under universe operations,

I s.t.:
If Indep(a, f , pre(a, f , M), M) then

I sub(a, f ) is a set,
I sub(a, f ) =ext pre(a, f , M),
I sub(a, f ) ∈ M,

I M is the least such set.

(Elimination rules for M!).
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M

    

f

M

sub (a, f )

a

b

f b

pre (a, f , M)
Indep(a, f , pre (a, f , M), M)
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Interpretation of the Direct Variant of the Mahlo Universe

Assume
f : M → M

We have

I pre(a, f , M) ⊆ M. (Trivial ind. over pre(a, f , M)).

I M is a universe.

Therefore Indep(a, f , pre(a, f , M), M).
sub(a, f ) ∈ M.
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