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From Codata to Coalgebras

Coalgebras in Functional Programming

I Originally functional programming based on
I function types,
I inductive data types.

I In computer science, many computations are interactive.
I Since interactions might go on forever (if not terminated by the user),

they correspond to non-wellfounded data types
I Streams, which are infinite lists,
I non-wellfounded trees (IO-trees).
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From Codata to Coalgebras

Codata Type

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all

elements, and therefore undecidable.
I Problem 3: Underlying assumption is

∀s : Stream.∃n, s ′.s = cons n s ′

which results in undecidable equality.
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From Codata to Coalgebras

Subject Reduction Problem

I In order to repair problem of normalisation restrictions on reductions
were introduced.

I Resulted in Coq in a long known problem of subject reduction.
I In order to avoid this, in Agda dependent elimination for coalgebras

disallowed.
I Makes it difficult to use.
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Problem of Subject reduction:

data == {A : Set} (a : A) : A→ Set where
refl : a == a

codata Stream : Set where
cons : N→ Stream→ Stream

zeros : Stream
zeros = cons 0 zeros

force : Stream→ Stream
force s = case s of (cons x y)→ cons x y

lem1 : (s : Stream)→ s == force(s))
lem1 s = case s of (cons x y)→ refl

lem2 : zeros == cons 0 zeros
lem2 = lem1 zeros
lem2 −→ refl but ¬(refl : zeros == cons 0 zeros)



From Codata to Coalgebras

Coalgebraic Formulation of Coalgebras

I Solution is to follow the long established categorical formulation of
coalgebras.

Anton Setzer Copattern matching 8/ 51



Algebras and Coalgebras

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Copattern matching 9/ 51



Algebras and Coalgebras

Initial F-Algebras

I Inductive data types correspond to initial F-Algebras.

I E.g. the natural numbers can be formulated as

F (X ) = 1 + X
intro : F (N)→ N
intro (inl ∗) = 0
intro (inl n) = S n

and we get the diagram

1 + N = F (N)
intro

- N

1 + A = F (A)

1 + g = F (g)

? f
- A

∃!g

?
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Algebras and Coalgebras

Iteration

Existence of unique g corresponds to unique iteration (example N):

1 + N
intro

- N

1 + A

1 + g

? f
- A

∃!g

?

g 0 = g (intro inl) = f inl
g (S n) = g (intro (inr n)) = f (inr (g n))

By choosing arbitrary f we can define g by pattern matching on its
argument n:

g 0 = a0
g (S n) = f (g n) for some f : N→ N
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Algebras and Coalgebras

Recursion and Induction

I From the principle of unique iteration one can derive the principle of
recursion:
Assume

a0 : A
f0 : N→ A→ A

We can then define g : N→ A s.t.

g 0 = a0
g (S n) = f0 n (g n)

I Induction is as recursion but now

g : (n : N)→ A n
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Algebras and Coalgebras

Coalgebras

Final coalgebras F∞ are obtained by reversing the arrows in the diagram
for F-algebras:

A
f

- F(A)

F∞

∃!g

? case
- F(F∞)

F(g)

?
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Algebras and Coalgebras

Coalgebras

Consider Streams = F∞ where F(X ) = N× X :

A
f

- N× A

Stream

∃!g

? case
- N× Stream

id× g

?

Let
case s = 〈head s, tail s〉

and
f a = 〈f0 a, f1 a〉
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Algebras and Coalgebras

Guarded Recursion

A
〈f0, f1〉 - N× A

Stream

∃!g

? 〈head, tail〉
- N× Stream

id× g

?

Resulting equations:

head (g a) = f0 a
tail (g a) = g (f1 a)
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Algebras and Coalgebras

Example of Guarded Recursion

head (g a) = f0 a
tail (g a) = g (f1 a)

describes a schema of guarded recursion (or better coiteration)
As an example, with A = N, f0 n = n, f1 n = n + 1 we obtain:

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)
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Algebras and Coalgebras

Corecursion

In coiteration we need to make in tail always a recursive call:

tail (g a) = g (f1 a)

Corecursion allows for tail to escape into a previously defined stream.
Assume

A : Set
f0 : A→ N
f1 : A→ (Stream + A)

we get g : A→ Stream s.t.

head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′
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Algebras and Coalgebras

Definition of cons by Corecursion

head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = s
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Algebras and Coalgebras

Nested Corecursion

stutter : N→ Stream
head (stutter n) = n
head (tail (stutter n)) = n
tail (tail (stutter n)) = stutter (n + 1)

Even more general schemata can be defined.
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Algebras and Coalgebras

Definition of Coalgebras by Observations

I We see now that elements of coalgebras are defined by their
observations:
An element s of Stream is given by defining

head s : N
tail s : Stream

I This generalises the function type.
Functions f : A→ B are as well determined by observations, namely
by defining

f a : B

I An f : A→ B is any program which applied to a : A returns some
b : B.

I Inductive data types are defined by construction
coalgebraic data types and functions by observations.
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Algebras and Coalgebras

Relationship to Objects in Object-Oriented Programming

I Objects in Object-Oriented Programming are types which are defined
by their observations.

I Therefore objects are coalgebraic types by nature.
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Algebras and Coalgebras

Weakly Final Coalgebra

I Equality for final coalgebras is undecidable:
Two streams

s = (a0 , a1 , a2 , . . .
t = (b0 , b1 , b2 , . . .

are equal iff ai = bi for all i .

I Even the weak assumption

∀s.∃n, s ′.s = cons n s ′

results in an undecidable equality.

I Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

I However, one can extend schema of coiteration as above, and still
preserve decidability of equality.

I Those schemata are usually not derivable in weakly final coalgebras.
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Patterns and Copatterns

Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Copattern matching on f : N→ Stream:

f : N→ Stream
f n = ?
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve first case, copattern match on second case:

f : N→ Stream
head (f n) = n
head (tail (f n)) = ?
tail (tail (f n)) = ?
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve second line, pattern match on n

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = ?
tail (tail (f (S n))) = ?
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Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Solve remaining cases

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n
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Patterns and Copatterns

Results of paper in POPL (2013)

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemata for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A
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Codata types and Decidable Equality

Theorem Regarding Undecidabilty of Equality

Theorem

Assume the following:

I There exists a subset Stream ⊆ N,

I computable functions
head : Stream→ N, tail : Stream→ Stream,

I a decidable equality == on Stream which is congruence,

I the possibilty to define elements of Stream by guarded recursion
based on primitive recursive functions f , g : N→ N, such that the
standard equalities related to guarded recursion hold.

Then it is not possible to fulfil the following condition:

∀s, s ′ : Stream.head s = head s ′∧tail s == tail s ′ → s == s ′ (∗)
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Codata types and Decidable Equality

Consequences for Codata Approach

Remark

Condition (∗) is fulfilled if we have an operation
cons : N→ Stream→ Stream preserving equalities s.t.

∀s : Stream.s = cons (head s) (tail s)

So we cannot have a type theory with streams, decidable type checking
and decidable equality on streams such that

∀s.∃n, s ′.s == cons n s ′

as assumed by the codata approach.
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Codata types and Decidable Equality

Proof of Theorem

I Assume we had the above.

I By
s ≈ n0 :: n1 :: n2 :: · · · nk :: s ′

we mean the equations using head, tail expressing that s behaves as
the stream indicated on the right hand side.

I Define by guarded recursion l : Stream

l ≈ 1 :: 1 :: 1 :: · · ·
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Codata types and Decidable Equality

Proof of Theorem

I For e code for a Turing machine define by guarded recursion based on
primitive recursion functions f , g s.t. if e terminates after n steps and
returns result k then

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈


0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0
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Codata types and Decidable Equality

Proof of Theorem

f e ≈ 0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n times

:: l

g e ≈


0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸

n times

:: l if k = 0

0 :: 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
n+1 times

:: l if k > 0

I If e terminates after n steps with result 0 then

f e == g e

I If e terminates after n steps with result > 0 then

¬(f e == g e)
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Codata types and Decidable Equality

Proof of Theorem

I So
λe.(f e == g e)

separates the TM with result 0 from those with result > 0.

I But these two sets are inseparable.

Anton Setzer Copattern matching 33/ 51



Reduction of Mixed Pattern/Copattern Matching to Operators

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Codata types and Decidable Equality

Reduction of Mixed Pattern/Copattern Matching to Operators

Conclusion

Anton Setzer Copattern matching 34/ 51



Reduction of Mixed Pattern/Copattern Matching to Operators

Operators for Primitive (Co)Recursion

PN,A : A→ (N→ A→ A)→ N→ A
PN,A step0 stepS 0 = step0

PN,A step0 stepS (S n) = stepS n (PN,A step0 stepS n)

coPStream,A : (A→ N)→ (A→ (Stream + A))→ A→ Stream
head (coPStream,A stephead steptail a) = stephead a
tail (coPStream,A stephead steptail a) =

caseStream,A,Stream id (coPStream,A stephead steptail) (steptail a)
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Reduction of Mixed Pattern/Copattern Matching to Operators

Operators for full/primitive (co)recursion

RN,A : ((N→ A)→ A)→ ((N→ A)→ N→ A)→ N→ A
RN,A step0 stepS 0 = step0 (RN,A step0 stepS)
RN,A step0 stepS (S n) = stepS (RN,A step0 stepS) n

coRStream,A : ((A→ Stream)→ A→ N)
→ ((A→ Stream)→ A→ Stream)
→ Stream

head (coRStream,A stephead steptail a) = stephead

(coRStream,A stephead steptail) a
tail (coRStream,A stephead steptail a) = steptail

(coRStream,A stephead steptail) a
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Reduction of Mixed Pattern/Copattern Matching to Operators

Consider Example from above

f : N→ Stream
head (f n) = n
head (tail (f n)) = n
tail (tail (f 0)) = f N
tail (tail (f (S n))) = f n

This example can be reduced to primitive (co)recursion.
Step 1: Following the development of the (co)pattern matching definition,
unfold it into simulteneous non-nested (co)pattern matching definitions.
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Reduction of Mixed Pattern/Copattern Matching to Operators

Step 1: Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

f : N→ Stream
head (f n) = n
tail (f n) = ?
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Copattern matching on tail (f n):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f n) = ?

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = ?



Pattern matching on tail (tail (f n)):

f : N→ Stream
head (f n) = n
head (tail (f n) = n
tail (tail (f 0) = f N
tail (tail (f (S n)) = f n

corresponds to

f : N→ Stream
head (f n) = n
tail (f n) = g n

g : N→ Stream
(head (tail (f n)) =) head (g n) = n
(tail (tail (f n)) =) tail (g n) = k n

k : N→ Stream
(tail (tail (f 0)) =) k 0 = f N
(tail (tail (f (S n))) =) k (S n) = f n



Reduction of Mixed Pattern/Copattern Matching to Operators

Step 2: Reduction to Primitive (Co)recursion

I This can now easily be reduced to full (co)recursion.

I In this example we can reduce it to primitive (co)recursion.

I First combine f , g into one function f + g .
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

head ((f + g) (f n)) = n
head ((f + g) (g n)) = n

tail ((f + g) (f n)) = (f + g) (g n)

tail ((f + g) (f n)) = k n

k : N→ Stream
k 0 = (f + g) (f N)
k (S n) = (f + g) (f n)



Reduction of Mixed Pattern/Copattern Matching to Operators

Unfolding of the Pattern Matchings

I The call of k has result always of the form (f + g)( fbf n)).
So we can replace the recursive call k n by (f + g)(f (k ′ n)).
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

head ((f + g) (f n)) = n
head ((f + g) (g n)) = n

tail ((f + g) (f n)) = (f + g) (g n)

tail ((f + g) (f n)) = (f + g) (f (k ′ n))

k ′ : N→ N
k 0 = N
k (S n) = n



Reduction of Mixed Pattern/Copattern Matching to Operators

Unfolding of the Pattern Matchings

I (f + g) can be defined by primitive corecursion.

I k ′ can be defined by primitive recursion.
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

(f + g) =
coPStream,(f(N)+g(N) (λx .caser (x) of

(f n) −→ n
(g n) −→ n)

(λx .caser (x) of
(f n) −→ g n

(g n) −→ f (k ′ n))

k ′ : N→ N
k ′ = PN,N N (λn, ih.n)



Reduction of Mixed Pattern/Copattern Matching to Operators

Reduction to Primitive (Co)Recursion

I The case distinction can be trivially replaced by the case distinction
operator.
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f : N→ Stream
f n = (f + g) (f n)

(f + g) : (f(N) + g(N))→ Stream

(f + g) =
coPStream,f(N)+g(N) (casef(N)+g(N) id id)

(casef(N)+g(N) g (f ◦ k ′))

k ′ : N→ N
k ′ = PN,N N (λn, ih.n)



Conclusion
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Conclusion

Conclusion

I Codata types make the assumption

∀s : Stream.∃n, s ′.s = cons n s ′

which cannot be combined with a decidable equality.

I In general Codata types cause problems such as subject reduction.
I Solution:

I Coalgebra are determined by their elimination rule.
I Introduction rule corresponds to copattern matching.

I Solves problem of subject reduction.
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Conclusion

Conclusion

I One can reduce certain cases of recursive nested (co)pattern
matching to primitive (co)recursion.

I Systematic treatment needs still to be done.
I Cases which can be reduced should be those to be accepted by a

termination checker.
I If the reduction succeeds we get a normalising version (by Mendler and

Geuvers).
I Therefore a termination checked version of the calculus is normalising.
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