Inductive-Inductive Definitions

Anton Setzer (Joint work with Fredrik Forsberg)

Swansea University, Swansea UK

5 June 2012

<ロト <部ト < 注ト < 注ト = 注

Fredrik Nordvall Forsberg

< □ > < 同 >

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

<ロ> <部> < 部> < き> < き> < き</p>

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

<ロト <部ト < 注ト < 注ト = 注

Preliminary Remarks

 Type Theory is only the syntactic framework. Induction-induction and induction-recursion not necessarily bound to this framework.

イロト 不得 トイヨト イヨト 二日

Type Theory

Judgements:

$$\begin{array}{ll} \Gamma \Rightarrow \mathrm{Context} \\ \Gamma \Rightarrow A : \mathrm{Set} & \Gamma \Rightarrow A = B : \mathrm{Set} \\ \Gamma \Rightarrow r : A & \Gamma \Rightarrow r = s : A \end{array}$$

Some Rules:

 $\emptyset : \text{Context} \qquad \qquad \frac{\Gamma \Rightarrow A : \text{Set}}{\Gamma, x : A \Rightarrow \text{Context}}$

$$\frac{\Gamma, x : A \Rightarrow B : \text{Set}}{\Gamma \Rightarrow (\Sigma x : A.B) : \text{Set}}$$

<ロ> <部> < 部> < き> < き> < き</p>

Simplifications

- Logical Framework:
 - Allows to form e.g.

 $A \to \text{Set} : \text{Type}$ ((x : A) $\to B \times \to \text{Set}$) : Type

• With the logical framework, rules for Σ becomes

$$\Sigma: (A: \operatorname{Set}) \to (B: A \to \operatorname{Set}) \to \operatorname{Set}$$

 That's how it occurs in theorem provers (Alf, Half, Agda, Coq, NuPrl).

イロト 不得 トイヨト イヨト 二日

Defining Semantics using Induction-Recursion

- ► Formulate Semantics of Type Theory inside Type Theory.
- ► So we formulate in type theory a model (Set, [[]]) of a weaker type theory.
- Done by defining
 - A set $\widehat{\operatorname{Set}}$ of codes for elements of Set inductively
 - ▶ a function $[] : Set \to Set$ recursively.

Defining Semantics using Induction-Recursion

Define inductive-recursively

$$\widehat{\operatorname{Set}}:\operatorname{Set}\qquad \qquad \llbracket \quad \rrbracket:\widehat{\operatorname{Set}}\to\operatorname{Set}$$

► Rule for Σ : $\Sigma : (A : Set) \rightarrow (B : A \rightarrow Set) \rightarrow Set$

is reflected into

$$\widehat{\Sigma} : (\boldsymbol{a} : \widehat{\operatorname{Set}}) \to (\boldsymbol{b} : \llbracket \boldsymbol{a} \rrbracket \to \widehat{\operatorname{Set}}) \to \widehat{\operatorname{Set}}$$
$$\llbracket \widehat{\Sigma} \ \boldsymbol{a} \ \boldsymbol{b} \rrbracket = \Sigma \llbracket \boldsymbol{a} \rrbracket (\lambda x . \llbracket \boldsymbol{b} \ x \rrbracket) : \operatorname{Set}$$

イロト 不得 トイヨト イヨト 二日

From Induction-Recursion to Induction-Induction

- General induction-recursion:
 - ► Define *A* : Set inductively,
 - while defining a function B : A → Set recursively. (Set can be generalised to types).

Induction-induction:

Instead of defining B recursively define B inductively. So we define simultaneously

- ► A : Set inductively,
- $B: A \rightarrow Set$ inductively.

Introduction

Defining Syntax using Induction-Induction

- Formulate Syntax of Type Theory inside Type Theory (Nils Danielsson)
- Define inductively simultaneously:
 - ► Context : Set.
 - Γ : Context represents $\Gamma \Rightarrow$ Context.
 - Set : Context \rightarrow Set. • $A : Set \Gamma$ represents $\Gamma \Rightarrow A : Set.$
 - ► $\widehat{\operatorname{Term}}$: (Γ : $\widehat{\operatorname{Context}}$) \rightarrow (A : $\widehat{\operatorname{Set}}$ Γ) \rightarrow Set.
 - $r : \widehat{\text{Term}} \Gamma A$ represents

$$\Gamma \Rightarrow r : A.$$

► $\widehat{\operatorname{SynSet}}_{=}$: (Γ : $\widehat{\operatorname{Context}}$) \rightarrow (A, B : $\widehat{\operatorname{Set}}$ Γ) \rightarrow Set.

- $p: \widehat{\operatorname{SynSet}} \models \Gamma \land B$ represents a derivation of $\Gamma \rightarrow A = B$: Set.
- etc.

Representation of Rules

Rule

 $\emptyset: \mathrm{Context}$

represented as

 $\widehat{\emptyset}$: $\widehat{\mathrm{Context}}$

Rule

$$\frac{\Gamma \Rightarrow A : \text{Set}}{\Gamma, x : A \Rightarrow \text{Context}}$$

represented (variable-free)

$$_\widehat{::}_: (\Gamma:\widehat{\mathrm{Context}}) \to (A:\widehat{\mathrm{Set}}\ \Gamma) \to \widehat{\mathrm{Context}}$$

where we write $\Gamma ::: A$ for $_::_ \Gamma A$.

Э

ヘロト 人間ト ヘヨト ヘヨト

Representation of Rules

Rule

$$\frac{\Gamma, x : A \Rightarrow B : \text{Set}}{\Gamma \Rightarrow \Sigma x : A.B : \text{Set}}$$

which in full reads

$$\frac{\Gamma: \text{Context} \quad \Gamma \Rightarrow A: \text{Set} \quad \Gamma, x: A \Rightarrow B: \text{Set}}{\Gamma \Rightarrow \Sigma x: A.B: \text{Set}}$$

is represented as

$$\widehat{\Sigma} : (\Gamma : \widehat{\text{Context}}) \rightarrow (A : \widehat{\text{Set}} \Gamma) \rightarrow (B : \widehat{\text{Set}} (\Gamma :: A)) \rightarrow \widehat{\text{Set}} \Gamma$$

Anton Setzer

Э

・ロト ・四ト ・ヨト ・ヨト

Observation

We define simultaneously

- ► Context : Set inductively,
- $\widehat{\operatorname{Set}} : \widehat{\operatorname{Context}} \to \operatorname{Set}$ inductively,
- $\widehat{\operatorname{Term}}$: $(\Gamma : \widehat{\operatorname{Context}}) \to \widehat{\operatorname{Set}} \ \Gamma \to \operatorname{Set}$ inductively.
- • •
- Here restriction to only 2 levels, we define
 - A : Set
 - ▶ $B : A \to Set$

inductive-inductively.

Observation

► In

- \blacktriangleright A : Set
- $\blacktriangleright \ B: A \to \mathrm{Set}$

the constructor of $B \times might$ refer to the constructor of A.

► For instance in

$$\begin{aligned} \widehat{\Sigma} &: (\Gamma : \widehat{\mathrm{Context}}) \\ &\to (A : \widehat{\mathrm{Set}} \ \Gamma) \\ &\to (B : \widehat{\mathrm{Set}} \ (\Gamma : A)) \\ &\to \widehat{\mathrm{Set}} \ \Gamma \end{aligned}$$

the second argument refers to the constructor $_::_$ for $\widehat{\operatorname{Set}}$.

Induction-Induction is not Indexed Induction

- In indexed inductive definitions
 - ▶ we have a given *I* : Set
 - and define sets $A: I \rightarrow Set$ inductively simultaneously.
- In induction-induction
 - ► the index set A: Set is defined simultaneously inductively with $B: A \rightarrow Set$.

Induction-Induction is not Induction-Recursion

For a constructor

we have no recursive equation:

$$B(C a b) = \cdots$$

- ► In fact constructors for *A* and constructors for *B* are not necessarily connected.
- However constructors of B might refer to constructors of A.
- $B : A \rightarrow Set$ is defined inductively not recursively.
- ► Constructors of *A*, *B* can refer to *B* only strictly positively.

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Э

・ロト ・四ト ・ヨト ・ヨト

Examples

Ordinal Notation System

- Typical definition:
 - \blacktriangleright The set of pre ordinals T is defined inductively by:
 - If $a_1, \ldots, a_k \in T$ and $n_1, \ldots, n_k \in \mathbb{N} \setminus \{0\}$ then

$$\omega^{a_1}n_1 + \cdots + \omega^{a_k}n_k \in T$$

• We define \prec on T recursively by

$$\omega^{a_1}n_1+\cdots+\omega^{a_k}n_k\prec\omega^{b_1}m_1+\cdots+\omega^{b_l}m_l$$

iff

$$(a_1, n_1, \ldots, a_k, n_k) \prec_{\text{lex}} (b_1, m_1, \ldots, b_l, m_l)$$

- We define $OT \subseteq T$ inductively:
 - ▶ If $a_1, \ldots, a_k \in \text{OT}$ and $a_k \prec \cdots \prec a_1$ and $n_1, \ldots, n_k \in \mathbb{N} \setminus \{0\}$ then

$$\omega^{a_1}n_1 + \cdots + \omega^{a_k}n_k \in \mathrm{OT}$$

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Examples

Definition of OT Inductive-Inductively

▶ Define OT : Set and \prec : $OT \rightarrow OT \rightarrow$ Set inductive-inductively:

▶ If $a_1, \ldots, a_k \in \text{OT}$ and $a_k \prec \cdots \prec a_1$ and $n_1, \ldots, n_k \in \mathbb{N} \setminus \{0\}$ then

$$\omega^{a_1}n_1 + \cdots + \omega^{a_k}n_k \in \mathrm{OT}$$

► If

$$\omega^{a_1} n_1 + \dots + \omega^{a_k} n_k$$
$$\omega^{b_1} m_1 + \dots + \omega^{b_l} m_l \in \text{OT}$$

and

$$(a_1, n_1, \ldots, a_k, n_k) \prec_{\text{lex}} (b_1, m_1, \ldots, b_l, m_l)$$

then

$$\omega^{a_1}n_1+\cdots+\omega^{a_k}n_k\prec\omega^{b_1}m_1+\cdots+\omega^{b_l}m_l$$

Conway's Surreal Numbers

- Like Dedekind cuts, but replacing rationals by previously defined surreal numbers.
- Surreal numbers contain all ordered fields.
- Definition in set theory.
- ► Definition of the class of surreal numbers Surreal together with an ordering ≤:
 - If $X_L, X_R \in \mathcal{P}(Surreal)$ such that

$$\neg \exists x_L \in X_L . \exists x_R \in X_R . x_R \leq x_L$$

then
$$(X_L, X_R) \in \text{Surreal}$$

 $X = (X_L, X_R) \leq (Y_L, Y_R) = Y$ iff
 $\neg \exists x_L \in X_L.Y \leq x_L$
 $\neg \exists y_R \in Y_R.y_R \leq X$

Examples

Surreal Numbers as an Inductive-Inductive Definition

Define simultaneously inductively

- $\mathcal{P}(\text{Surreal})$ replaced by $\Sigma a : U.T \ a \to \text{Surreal}$ for some universe U.
- We refer to this and $x \in X_L$ informally.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Inductive-Inductive Definition of Surreal

• If $X_L, X_R \in \mathcal{P}(Surreal)$, and

$$p: \forall x_L \in X_L. \forall x_R \in X_R. x_R \not\leq x_L$$

then $(X_L, X_R)_p$: Surreal.

► Assume $X = (X_L, X_R)_p$, $Y = (Y_L, Y_R)_q$: Surreal. Assume

$$\forall x_L \in X_L. Y \not\leq x_L \forall y_R \in Y_R. y_R \not\leq X$$

then $X \leq Y$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Inductive-Inductive Definition of Surreal

then $X \not\leq Y$.

<ロ> <部> < 部> < き> < き> < き</p>

Inductive-Inductive Definitions in Mathematics

- Inductive-inductive definitions seem to be very frequent in mathematics.
- Usually reduced to inductive definitions by
 - ► first defining simultanteously inductively *Apre* : Set, *Bpre* : Set by ignoring dependencies of *B* on *A*.
 - ► then selecting A ⊆ Apre, B ⊆ Bpre by selecting those elements which fulfil the correct rules.
- Seems to be a general method of reducing inductive-inductive definitions to inductive definitions (work in progress).

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Plan

- ► We define as for inductive-inductive definitions a closed formalisation.
- Complicated since it will define not just examples but all inductive-inductive definitions in one set of rules.

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Idea

► We define

a set

$$\operatorname{SP}^0_A:\operatorname{Set}$$

of codes for inductive definitions for A,

► a set

$$\mathrm{SP}^0_\mathrm{B}:\mathrm{SP}^0_\mathrm{A}\to\mathrm{Set}$$

of codes for inductive definitions for B.

• the set of arguments for the constructor of *A*:

$$\operatorname{Arg}^0_A : \operatorname{SP}^0_A \to (X : \operatorname{Set}) \to (Y : X \to \operatorname{Set}) \to \operatorname{Set}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Idea

▶ the set of arguments and indices for the constructor of *B*:

$$\begin{array}{rcl} \mathrm{Index}^0_\mathrm{B} & : & \cdots \text{ same arguments as for } \mathrm{Arg}^0_\mathrm{B} \cdots \\ & \to \mathrm{Arg}^0_\mathrm{B} \; \gamma_A \; X \; Y \; \textit{intro}_A \; \gamma_B \\ & \to X \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rules for the Inductive-Inductively Defined Set

- ► Assume $\gamma_A : SP^0_A$, $\gamma_B : SP^0_B \gamma_A$. Let $\gamma := (\gamma_A, \gamma_B)$.
- Formation rules

$$\mathbf{A}_{\gamma}:\mathbf{Set}\qquad \mathbf{B}_{\gamma}:\mathbf{A}_{\gamma}\rightarrow\mathbf{Set}$$

• Introduction rule for A_{γ} :

intro
$$A_{\gamma}$$
: $Arg^0_A \gamma_A A_{\gamma} B_{\gamma} \to A_{\gamma}$

• Introduction rule for B_{γ} :

$$\begin{array}{l} \operatorname{introB}_{\gamma} : \left(\textit{arg} : \operatorname{Arg}_{\mathrm{B}}^{0} \gamma_{\mathcal{A}} \operatorname{A}_{\gamma} \operatorname{B}_{\gamma} \operatorname{intro}_{\gamma} \gamma_{\mathcal{B}} \right) \\ \to \operatorname{B}_{\gamma} \left(\operatorname{Index}_{\mathrm{B}}^{0} \gamma_{\mathcal{A}} \operatorname{A}_{\gamma} \operatorname{B}_{\gamma} \operatorname{intro}_{\gamma} \gamma_{\mathcal{B}} \textit{arg} \right) \end{array}$$

Definition of SP_A

 \blacktriangleright Instead of defining SP^0_A we define a more general set

 $\mathrm{SP}_\mathrm{A}:(A_{\mathit{ref}}:\mathrm{Set})\to\mathrm{Type}$

which refers to elements A_{ref} of the set to be defined already referred to in inductive arguments.

Then

 $\operatorname{SP}^0_A := \operatorname{SP}_A \emptyset$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constructors for SP_A

Initial case: constructor with no arguments:

$$\mathrm{nil}:\mathrm{SP}_\mathrm{A}\;A_{ref}$$

► One non-inductive argument of type K followed by other arguments given by *γ*:

non – ind :
$$(K : \operatorname{Set}) \to (\gamma : K \to \operatorname{SP}_A A_{ref}) \to \operatorname{SP}_A A_{ref}$$

Inductive arguments of type A indexed over a set K followed by arguments (which can refer to these arguments) given by γ:

$$A-ind: (K: Set) \to (\gamma: SP_A (A_{ref} + K)) \to SP_A A_{ref}$$

Constructors for SP_A

Inductive arguments of type B indexed over a set K; we need to have the indices for B, for which we use a function index : K → A_{ref};

later arguments are given by γ :

$$\begin{array}{l} \text{B-ind} : (K : \text{Set}) \\ \rightarrow (\textit{index} : K \rightarrow A_{\textit{ref}}) \\ \rightarrow (\gamma : \text{SP}_{\text{A}} A_{\textit{ref}}) \\ \rightarrow \text{SP}_{\text{A}} A_{\textit{ref}} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Remaining Steps

- Define Arg_A recursively (straightforward).
- ► For defining Arg_B we need to define the set of terms ATerm of type A we can form from given elements of type A and the later defined constructor *intro_A*.
- Then define SP_B and Arg_B , $Index_B$.
- Requires some functorality problems.
- Main problems arise due to intensional equality.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Э

・ロト ・四ト ・ヨト ・ヨト

- Induction-induction is a natural way of defining the syntax of type theory inside type theory.
- ► Induction-induction occur naturally in mathematics.
 - Seem to be more common than induction-recursion.
 - Maybe, because they are more easily reduced to well-understood inductive definitions.
 - Usage of inductive-recursive definitions without having the concept is much more difficult.
 - Having them as first-class citizens reduces some of the complexity.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Examples can be formulated easily.
- Closed formalisation more complicated.

3

ヘロト 人間ト ヘヨト ヘヨト

Open Problems

► Elimination Rules (induction over an induction-inductive definitions).

- ► Elimination rules for concrete examples can be written down easily.
- An abstract general elimination rule has been defined.
- ► A general concrete elimination rule complicated (due to intensional equality).
- Formulation in ordinary mathematics (first order).
- Generalisations
 - More levels.
 - More complex structures such as $B : A \to A \to Set$.
 - Combination with induction-recursion.

イロト 不得 トイヨト イヨト 二日