
Inductive-Inductive Definitions

Anton Setzer
(Joint work with Fredrik Forsberg)

Swansea University, Swansea UK

5 June 2012

Anton Setzer Inductive-Inductive Definitions 1/ 38

Fredrik Nordvall Forsberg

Anton Setzer Inductive-Inductive Definitions 2/ 38

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Anton Setzer Inductive-Inductive Definitions 3/ 38

Introduction

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Anton Setzer Inductive-Inductive Definitions 4/ 38

Introduction

Preliminary Remarks

I Type Theory is only the syntactic framework.
Induction-induction and induction-recursion not necessarily bound to
this framework.

Anton Setzer Inductive-Inductive Definitions 5/ 38

Introduction

Type Theory

I Judgements:
Γ⇒ Context
Γ⇒ A : Set Γ⇒ A = B : Set
Γ⇒ r : A Γ⇒ r = s : A

I Some Rules:

∅ : Context Γ⇒ A : Set
Γ, x : A⇒ Context

Γ, x : A⇒ B : Set

Γ⇒ (Σx : A.B) : Set

Anton Setzer Inductive-Inductive Definitions 6/ 38

Introduction

Simplifications

I Logical Framework:
I Allows to form e.g.

A→ Set : Type
((x : A)→ B x → Set) : Type

I With the logical framework, rules for Σ becomes

Σ : (A : Set)→ (B : A→ Set)→ Set

I That’s how it occurs in theorem provers
(Alf, Half, Agda, Coq, NuPrl).

Anton Setzer Inductive-Inductive Definitions 7/ 38

Introduction

Defining Semantics using Induction-Recursion

I Formulate Semantics of Type Theory inside Type Theory.

I So we formulate in type theory a model (Ŝet, [[]]) of a weaker type
theory.

I Done by defining
I A set Ŝet of codes for elements of Set inductively
I a function [[]] : Ŝet→ Set recursively.

Anton Setzer Inductive-Inductive Definitions 8/ 38

Introduction

Defining Semantics using Induction-Recursion

I Define inductive-recursively

Ŝet : Set [[]] : Ŝet→ Set

I Rule for Σ:
Σ : (A : Set)→ (B : A→ Set)→ Set

is reflected into

Σ̂ : (a : Ŝet)→ (b : [[a]]→ Ŝet)→ Ŝet

[[Σ̂ a b]] = Σ [[a]] (λx .[[b x]]) : Set

Anton Setzer Inductive-Inductive Definitions 9/ 38

Introduction

From Induction-Recursion to Induction-Induction

I General induction-recursion:
I Define A : Set inductively,
I while defining a function B : A→ Set recursively.

(Set can be generalised to types).

I Induction-induction:
Instead of defining B recursively define B inductively.
So we define simultaneously

I A : Set inductively,
I B : A→ Set inductively.

Anton Setzer Inductive-Inductive Definitions 10/ 38

Introduction

Defining Syntax using Induction-Induction

I Formulate Syntax of Type Theory inside Type Theory
(Nils Danielsson)

I Define inductively simultaneously:

I Ĉontext : Set.
I Γ : ̂Context represents

Γ⇒ Context.

I Ŝet : Ĉontext→ Set.
I A : Ŝet Γ represents

Γ⇒ A : Set.

I T̂erm : (Γ : Ĉontext)→ (A : Ŝet Γ)→ Set.

I r : T̂erm Γ A represents
Γ⇒ r : A.

I ŜynSet= : (Γ : Ĉontext)→ (A,B : Ŝet Γ)→ Set.

I p : ŜynSet= Γ A B represents a derivation of
Γ→ A = B : Set.

I etc.

Anton Setzer Inductive-Inductive Definitions 11/ 38

Introduction

Representation of Rules

I Rule
∅ : Context

represented as
∅̂ : Ĉontext

I Rule
Γ⇒ A : Set

Γ, x : A⇒ Context

represented (variable-free)

:̂: : (Γ : Ĉontext)→ (A : Ŝet Γ)→ Ĉontext

where we write Γ :̂: A for :̂: Γ A.

Anton Setzer Inductive-Inductive Definitions 12/ 38

Introduction

Representation of Rules

I Rule
Γ, x : A⇒ B : Set

Γ⇒ Σx : A.B : Set

which in full reads

Γ : Context Γ⇒ A : Set Γ, x : A⇒ B : Set

Γ⇒ Σx : A.B : Set

is represented as
Σ̂ : (Γ : Ĉontext)

→ (A : Ŝet Γ)

→ (B : Ŝet (Γ :̂: A))

→ Ŝet Γ

Anton Setzer Inductive-Inductive Definitions 13/ 38

Introduction

Observation

I We define simultaneously

I Ĉontext : Set inductively,
I Ŝet : Ĉontext→ Set inductively,
I T̂erm : (Γ : Ĉontext)→ Ŝet Γ→ Set inductively.
I · · ·

I Here restriction to only 2 levels, we define
I A : Set
I B : A→ Set

inductive-inductively.

Anton Setzer Inductive-Inductive Definitions 14/ 38

Introduction

Observation

I In
I A : Set
I B : A→ Set

the constructor of B x might refer to the constructor of A.

I For instance in
Σ̂ : (Γ : Ĉontext)

→ (A : Ŝet Γ)

→ (B : Ŝet (Γ :̂: A))

→ Ŝet Γ

the second argument refers to the constructor :̂: for Ŝet.

Anton Setzer Inductive-Inductive Definitions 15/ 38

Introduction

Induction-Induction is not Indexed Induction

I In indexed inductive definitions

I we have a given I : Set
I and define sets A : I → Set inductively simultaneously.

I In induction-induction
I the index set A : Set is defined simultaneously inductively with

B : A→ Set.

Anton Setzer Inductive-Inductive Definitions 16/ 38

Introduction

Induction-Induction is not Induction-Recursion

I For a constructor
C a b : A

we have no recursive equation:

B (C a b) = · · ·

I In fact constructors for A and constructors for B are not necessarily
connected.

I However constructors of B might refer to constructors of A.

I B : A→ Set is defined inductively not recursively.

I Constructors of A,B can refer to B only strictly positively.

Anton Setzer Inductive-Inductive Definitions 17/ 38

Examples

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Anton Setzer Inductive-Inductive Definitions 18/ 38

Examples

Ordinal Notation System

I Typical definition:
I The set of pre ordinals T is defined inductively by:

I If a1, . . . , ak ∈ T and n1, . . . , nk ∈ N \ {0} then

ωa1n1 + · · ·+ ωaknk ∈ T

I We define ≺ on T recursively by

ωa1n1 + · · ·+ ωaknk ≺ ωb1m1 + · · ·+ ωblml

iff
(a1, n1, . . . , ak , nk) ≺lex (b1,m1, . . . , bl ,ml)

I We define OT ⊆ T inductively:
I If a1, . . . , ak ∈ OT and ak ≺ · · · ≺ a1 and n1, . . . , nk ∈ N \ {0} then

ωa1n1 + · · ·+ ωaknk ∈ OT

Anton Setzer Inductive-Inductive Definitions 19/ 38

Examples

Definition of OT Inductive-Inductively

I Define OT : Set and ≺: OT→ OT→ Set inductive-inductively:
I If a1, . . . , ak ∈ OT and ak ≺ · · · ≺ a1 and n1, . . . , nk ∈ N \ {0} then

ωa1n1 + · · ·+ ωaknk ∈ OT

I If
ωa1n1 + · · ·+ ωaknk
ωb1m1 + · · ·+ ωblml ∈ OT

and
(a1, n1, . . . , ak , nk) ≺lex (b1,m1, . . . , bl ,ml)

then
ωa1n1 + · · ·+ ωaknk ≺ ωb1m1 + · · ·+ ωblml

Anton Setzer Inductive-Inductive Definitions 20/ 38

Examples

Conway’s Surreal Numbers

I Like Dedekind cuts, but replacing rationals by previously defined
surreal numbers.

I Surreal numbers contain all ordered fields.

I Definition in set theory.
I Definition of the class of surreal numbers Surreal together with an

ordering ≤:
I If XL,XR ∈ P(Surreal) such that

¬∃xL ∈ XL.∃xR ∈ XR .xR ≤ xL

then (XL,XR) ∈ Surreal
I X = (XL,XR) ≤ (YL,YR) = Y iff

I ¬∃xL ∈ XL.Y ≤ xL
I ¬∃yR ∈ YR .yR ≤ X

Anton Setzer Inductive-Inductive Definitions 21/ 38

Examples

Surreal Numbers as an Inductive-Inductive Definition

I Define simultaneously inductively

Surreal : Set
≤ : Surreal→ Surreal→ Set
6≤ : Surreal→ Surreal→ Set

I P(Surreal) replaced by Σa : U.T a→ Surreal for some universe U.

I We refer to this and x ∈ XL informally.

Anton Setzer Inductive-Inductive Definitions 22/ 38

Examples

Inductive-Inductive Definition of Surreal

I If XL,XR ∈ P(Surreal), and

p : ∀xL ∈ XL.∀xR ∈ XR .xR 6≤ xL

then (XL,XR)p : Surreal.

I Assume X = (XL,XR)p,Y = (YL,YR)q : Surreal.
Assume

∀xL ∈ XL.Y 6≤ xL
∀yR ∈ YR .yR 6≤ X

then X ≤ Y .

Anton Setzer Inductive-Inductive Definitions 23/ 38

Examples

Inductive-Inductive Definition of Surreal

I Assume X = (XL,XR)p,Y = (YL,YR)q : Surreal.

I If
∃xL ∈ XL.Y ≤ xL

then X 6≤ Y .
I If

∃yR ∈ YR .yR ≤ X

then X 6≤ Y .

Anton Setzer Inductive-Inductive Definitions 24/ 38

Examples

Inductive-Inductive Definitions in Mathematics

I Inductive-inductive definitions seem to be very frequent in
mathematics.

I Usually reduced to inductive definitions by
I first defining simultanteously inductively Apre : Set, Bpre : Set by

ignoring dependencies of B on A.
I then selecting A ⊆ Apre, B ⊆ Bpre by selecting those elements which

fulfil the correct rules.

I Seems to be a general method of reducing inductive-inductive
definitions to inductive definitions (work in progress).

Anton Setzer Inductive-Inductive Definitions 25/ 38

Closed Formalisation of Inductive-Inductive Definitions

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Anton Setzer Inductive-Inductive Definitions 26/ 38

Closed Formalisation of Inductive-Inductive Definitions

Plan

I We define as for inductive-inductive definitions a closed formalisation.

I Complicated since it will define not just examples but all
inductive-inductive definitions in one set of rules.

Anton Setzer Inductive-Inductive Definitions 27/ 38

Closed Formalisation of Inductive-Inductive Definitions

Main Idea

I We define
I a set

SP0
A : Set

of codes for inductive definitions for A,
I a set

SP0
B : SP0

A → Set

of codes for inductive definitions for B.
I the set of arguments for the constructor of A:

Arg0
A : SP0

A → (X : Set)→ (Y : X → Set)→ Set

Anton Setzer Inductive-Inductive Definitions 28/ 38

Closed Formalisation of Inductive-Inductive Definitions

Main Idea

I the set of arguments and indices for the constructor of B:

Arg0B : (γA : SP0
A)

→ (X : Set)
→ (Y : X → Set)
→ (introA : Arg0A γA X Y → X)
→ (γB : SP0

B)
→ Set

Index0
B : · · · same arguments as for Arg0B · · ·

→ Arg0B γA X Y introA γB
→ X

Anton Setzer Inductive-Inductive Definitions 29/ 38

Closed Formalisation of Inductive-Inductive Definitions

Rules for the Inductive-Inductively Defined Set

I Assume γA : SP0
A, γB : SP0

B γA.
Let γ := (γA, γB).

I Formation rules
Aγ : Set Bγ : Aγ → Set

I Introduction rule for Aγ :

introAγ : Arg0A γA Aγ Bγ → Aγ

I Introduction rule for Bγ :

introBγ : (arg : Arg0B γA Aγ Bγ introγ γB)
→ Bγ (Index0

B γA Aγ Bγ introγ γB arg)

Anton Setzer Inductive-Inductive Definitions 30/ 38

Closed Formalisation of Inductive-Inductive Definitions

Definition of SPA

I Instead of defining SP0
A we define a more general set

SPA : (Aref : Set)→ Type

which refers to elements Aref of the set to be defined already referred
to in inductive arguments.

I Then
SP0

A := SPA ∅

Anton Setzer Inductive-Inductive Definitions 31/ 38

Closed Formalisation of Inductive-Inductive Definitions

Constructors for SPA

I Initial case: constructor with no arguments:

nil : SPA Aref

I One non-inductive argument of type K followed by other arguments
given by γ:

non− ind : (K : Set)→ (γ : K → SPA Aref)→ SPA Aref

I Inductive arguments of type A indexed over a set K followed by
arguments (which can refer to these arguments) given by γ:

A−ind : (K : Set)→ (γ : SPA (Aref + K))→ SPA Aref

Anton Setzer Inductive-Inductive Definitions 32/ 38

Closed Formalisation of Inductive-Inductive Definitions

Constructors for SPA

I Inductive arguments of type B indexed over a set K ;
we need to have the indices for B, for which we use a function
index : K → Aref ;
later arguments are given by γ:

B−ind : (K : Set)
→ (index : K → Aref)
→ (γ : SPA Aref)
→ SPA Aref

Anton Setzer Inductive-Inductive Definitions 33/ 38

Closed Formalisation of Inductive-Inductive Definitions

Remaining Steps

I Define ArgA recursively (straightforward).

I For defining ArgB we need to define the set of terms ATerm of type
A we can form from given elements of type A and the later defined
constructor introA.

I Then define SPB and ArgB, IndexB.

I Requires some functorality problems.

I Main problems arise due to intensional equality.

Anton Setzer Inductive-Inductive Definitions 34/ 38

Conclusion

Introduction

Examples

Closed Formalisation of Inductive-Inductive Definitions

Conclusion

Anton Setzer Inductive-Inductive Definitions 35/ 38

Conclusion

Summary

I Induction-induction is a natural way of defining the syntax of type
theory inside type theory.

I Induction-induction occur naturally in mathematics.
I Seem to be more common than induction-recursion.
I Maybe, because they are more easily reduced to well-understood

inductive definitions.
I Usage of inductive-recursive definitions without having the concept is

much more difficult.

I Having them as first-class citizens reduces some of the complexity.

Anton Setzer Inductive-Inductive Definitions 36/ 38

Conclusion

Summary

I Examples can be formulated easily.

I Closed formalisation more complicated.

Anton Setzer Inductive-Inductive Definitions 37/ 38

Conclusion

Open Problems

I Elimination Rules (induction over an induction-inductive definitions).
I Elimination rules for concrete examples can be written down easily.
I An abstract general elimination rule has been defined.
I A general concrete elimination rule complicated (due to intensional

equality).

I Formulation in ordinary mathematics (first order).
I Generalisations

I More levels.
I More complex structures such as B : A→ A→ Set.
I Combination with induction-recursion.

Anton Setzer Inductive-Inductive Definitions 38/ 38

	Introduction
	Examples
	Closed Formalisation of Inductive-Inductive Definitions
	Conclusion

