
Coalgebras in Dependent Type Theory – The Saga
Continues

Anton Setzer
Swansea University

Swanesa, UK

September 8, 2010

1/ 44

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

3. Codata and ∼

4. ∞ A

5. Understanding Nested Algebras and Coalgebras

5. Model

2/ 44

1. Coalgebras as Defined By Elimination Rules

Algebraic Data Types

Algebraic data types one of the main ingredients of Agda.

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

Notation:
[]′ + A ::′ X

stands for the labelled disjoint union, i.e. the set B containing elements []′

and a ::′ x for a : A and x : X .
Let

FA : Set → Set
FA X = []′ + A ::′ X

3/ 44

1. Coalgebras as Defined By Elimination Rules

Algebraic Data Types

FA X = []′ + A ::′ X

Then the following is essentially equivalent to the definition of List A:

data List (A : Set) : Set where
intro : F (List A) → List A

where
[] = intro []′

a :: l = intro (a ::′ l)

4/ 44

1. Coalgebras as Defined By Elimination Rules

Algebraic Data Types

The introduction elimination and equality rules for algebraic data types
follow then from the diagram for initial F -algebras (denoted by µ F)

F (µ F)
intro

- µ F

F A

F g

? f
- A

∃! g

?

One writes µX .t for µ (λX .t) e.g.

List A = µX .[]′ + A ::′ X

5/ 44

1. Coalgebras as Defined By Elimination Rules

Final Coalgebras

Final Coalgebras ν F are obtained by reversing the arrows:

A
f

- F A

ν F

∃!g

? unfold
- F (ν F)

F g

?

Again we write νX .t for ν (λX .t).
In weakly final coalgbras the uniqueness of g is omitted.

Coalgebras can be used to model interactive programs and objects
from object-oriented programming in dependent type theory.

6/ 44

1. Coalgebras as Defined By Elimination Rules

Suggested Notation

coalg coList (A : Set) : Set where
unfold : coList A → [] + A ::′ coList A

I To an element of coList A as above we can apply unfold as above.

I Furthermore from the finality we can derive the principle of guarded
recursion:
We can define f : B → coList A by saying what unfold (f b) is:

I []′

I a ::′ l for some a : A, l : coList A
I a ::′ f b′ for some a : A, b′ : B.

7/ 44

1. Coalgebras as Defined By Elimination Rules

Example

inclist : N → coList N
unfold (inclist n) = n ::′ (inclist (n + 1))

8/ 44

2. Using Destructors: Destructor Patterns, Objects

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

3. Codata and ∼

4. ∞ A

5. Understanding Nested Algebras and Coalgebras

5. Model

9/ 44

2. Using Destructors: Destructor Patterns, Objects

Using Several Destructors

When using data we had several constructors.
Similarly we can allow for coalg several destructors.
Example:

coalg Stream (A : Set) : Set where
head : Stream A → A
tail : Stream A → Stream A

inc : N → Stream N
head (inc n) = n
tail (inc n) = inc (n + 1)

10/ 44

2. Using Destructors: Destructor Patterns, Objects

Nested Destructor Patterns

We can even define nested destructor patterns (Andreas Abel):

inc′ : N → Stream N
head (inc′ n) = n
head (tail (inc′ n)) = n + 1
tail (tail (inc′ n)) = inc′ (n + 2)

11/ 44

2. Using Destructors: Destructor Patterns, Objects

Bisimulation

coalg ≈ {A : Set} : Stream A → Stream A → Set where
headeq : {l l ′ : Stream A} → l ≈ l ′ → head l == head l ′

taileq : {l l ′ : Stream A} → l ≈ l ′ → tail l ≈ tail l ′

12/ 44

2. Using Destructors: Destructor Patterns, Objects

Example Proof

lemma : (n : N) → inc n ≈ inc′ n
headeq (lemma n) = refl
headeq (taileq (lemma n)) = refl
taileq (taileq (lemma n)) = lemma (n + 2)

(Slide improved after some comments during the talk).

13/ 44

2. Using Destructors: Destructor Patterns, Objects

Fibonacci

fib : Stream N
head fib = 1
head (tail fib) = 1
tail (tail fib) = addStream fib (tail fib)

Not guarded recursion but can be justified by sized types.
Or (not very useful but the result of unfolding the sized version(?)):

fib : N → Stream N
head (fib zero) = 1
head (fib (suc zero)) = 1
head (fib (suc (suc n))) = head (fib n) + head (fib (suc n))
tail (fib n) = fib (n + 1)

14/ 44

2. Using Destructors: Destructor Patterns, Objects

Combining Constructor and Destructor Patterns

We can combine constructor and destructor patterns:

inc′′ : N → Stream N
head (inc′′ zero) = 0
head (tail (inc′′ zero)) = 1
tail (tail (inc′′ zero)) = inc′′ 2
head (inc′′ (suc n)) = suc n
tail (inc′′ (suc n)) = inc′′ (n + 1)

15/ 44

2. Using Destructors: Destructor Patterns, Objects

Objects

coalg Stack (A : Set) : N → Set where
top : {n : N} → Stack (suc n) → A
pop : {n : N} → Stack (suc n) → Stack n

push : {n : N} → A → Stack A n → Stack A (n + 1)
top (push a l) = a
pop (push a l) = l

16/ 44

2. Using Destructors: Destructor Patterns, Objects

Objects

coalg Stack (A : Set) : N → Set where
top : {n : N} → Stack (suc n) → A
pop : {n : N} → Stack (suc n) → Stack n

The empty stack is introduced as follows:

emptystack : {A : Set} → Stack A zero
() - - no destructor applies

Note that the coalgebra Stack zero has no destructors and contains
exactly one element up to bisimularity.
(Slide improved after comments during the talk)

17/ 44

2. Using Destructors: Destructor Patterns, Objects

Question

I Can we get a good notion of a heap?

I Can we use this to define the class of queues efficiently?

18/ 44

3. Codata and ∼

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

3. Codata and ∼

4. ∞ A

5. Understanding Nested Algebras and Coalgebras

5. Model

19/ 44

3. Codata and ∼

Complications with Coalgebras

Several constructors for data corresponds to disjoint unions of the
argument types.

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

corresponds to

data List (A : Set) : Set where
intro : 1 + (A× List A) → List A

20/ 44

3. Codata and ∼

Complications with Coalgebras

Several destructors for coalg corresponds to the product of the argument
types:

data Stream (A : Set) : Set where
head : Stream A → A
tail : Stream A → Stream A

:

corresponds to

data Stream (A : Set) : Set where
unfold : Stream A → A× Stream A

21/ 44

3. Codata and ∼

Complications with Coalgebras

If we dualise data types introduced by several constructors, we obtain
types which are more complicated to describe:
List looks nice:

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

whereas colists don’t look nice

coalg coList (A : Set) : Set where
unfold : coList A → [] + A ::′ coList A

22/ 44

3. Codata and ∼

Codata

Codata types seem to solve this problem:

codata coList (A : Set) : Set where
[] : coList A
:: : A → coList A → coList A

So elements of coList are now introduced by introduction rules which
allows to define the disjoint union nicely.

Idea is that elements of coList A are infinitary lists:

I n1 :: n2 :: n3 :: · · ·
I n1 :: n2 :: n3 :: · · · :: nk :: []

23/ 44

3. Codata and ∼

Problem of codata

I No normalisation, e.g.

inc 0 = 0 :: 1 :: 2 :: · · ·

I Undecidability of equality.

f 0 :: f 1 :: · · · = g 0 :: g 1 :: · · · ⇔ ∀n.f n = g n

In case of coalgebras

I Elements of coalgebras are not expanded indefinitely. They are only
expanded if unfold is applied to them.

I In case of weakly final coalgebras equality of elements of the
coalgebras is equality of the underlying algorithms.

24/ 44

3. Codata and ∼

Pseudo-Constructors

If we have
coalg coList (A : Set) : Set where

unfold : coList A → []′ + A ::′ coList A

we can define by guarded recursion

[] : coList A
unfold [] = []′

:: : A : Set → A → coList A → coList A
unfold (a :: l) = a ::′ l

25/ 44

3. Codata and ∼

Pseudo-Constructors

However we do not have

unfold l = a ::′ l ′ implies l = a :: l

So elements of coList A are not of the form [] or a :: l .

But behave like [] or a :: l .

26/ 44

3. Codata and ∼

∼-Notation (Nils Danielsson)

codata coList (A : Set) : Set where
[] : coList A
:: : A → coList A → coList A

is an abbreviation for

coalg coList (A : Set) : Set where
unfold : coList A → []′ + A ::′ coList A

[] : A : Set → coList A
unfold [] = []′

:: : A : Set → A → coList A → coList A
unfold (a :: l) = a ::′ l

27/ 44

3. Codata and ∼

∼-Notation (Nils Danielsson)

Furthermore let
s ∼ t ⇔ unfold s = unfold t

Then
unfold s = []′ ⇔ s ∼ []
unfold s = a ::′ l ⇔ s ∼ a :: l

so there is no need to write []′ or ::′ or unfold.
Unfortunaly ∼ was replaced by = which misled the users.

28/ 44

4. ∞ A

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

3. Codata and ∼

4. ∞ A

5. Understanding Nested Algebras and Coalgebras

5. Model

29/ 44

4. ∞ A

Nils Danielsson’s ∞

Nils Danielsson and Thorsten Altenkirch suggested to have the following

∞ : Set → Set
[: {B : Set} → B →∞ B
\ : {B : Set} → ∞ B → B

∞ B denote coalgebraic arguments in a definition (which can be
“expanded infinitely”) and one defines coList A as

data coList (A : Set) : Set where
[] : coList A
:: : A →∞ (coList A) → coList A

30/ 44

4. ∞ A

What is ∞ B?

∞ B cannot mean
νX .B

since νX .B is as a (non-weakly) final coalgebra isomorphic to B: With
F X = B we get

X
f
- F X = B

B

∃!g

? id
- F B = B

F g = id

?

31/ 44

4. ∞ A

Underlying reason

ν gives something real only if applied to a functor. Applied to a set (or
λX .A for a set A) it is essentially the identity.
So ∞ must be something like (Set → Set) → Set.

32/ 44

4. ∞ A

What is ∞ A?

What is meant by it is, that if A is defined as an algebraic data type, ∞ A
is defined mutually coalgebraically:

data coList (A : Set) : Set where
[] : coList A
:: : A →∞ (coList A) → coList A

stands for
data coList (A : Set) : Set where

[] : coList A
:: : A →∞ (coList A) → coList A

coalg ∞ (coList) (A : Set) : Set where
\ : ∞ (coList A) → coList A

33/ 44

4. ∞ A

Order between data/codata

data coList (A : Set) : Set where
[] : coList A
:: : A →∞ (coList A) → coList A

coalg ∞ (coList) (A : Set) : Set where
\ : ∞ (coList A) → coList A

But there are two interpretations of the above:

1.
F (X , Y) = [] + A :: Y
G (X , Y) = X
F ′(Y) = µX .F (X , Y) = µX .[] + A :: Y

∼= [] + A :: Y
∞ (coList A) = νY .G (F ′(Y), Y) = νY .F ′(Y)

∼= νY .[] + A :: Y
coList A = F ′(∞ (coList A))

= [] + A :: (∞ (coList A))
34/ 44

4. ∞ A

Order between data/codata

data coList (A : Set) : Set where
[] : coList A
:: : A →∞ (coList A) → coList A

coalg ∞ (coList) (A : Set) : Set where
\ : ∞ (coList A) → coList A

2.
G (X , Y) = X
F (X , Y) = [] + A :: Y
G ′(X) = νY .G (X , Y) = νY .X

∼= X
coList A = µX .F (X , G ′(X)) ∼= µX .F (X , X)

= µX .[] + A :: X
∞ (coList A) = G ′(coList A)

∼= coList A

35/ 44

4. ∞ A

Order between data/codata

First solution gives the desired result.
Origin of problem:

I If we have two functors F (X , Y), and G (X , Y) and if we want to
minimize X and maximize Y there are two solutions:

I Minimize X as a functor depending on Y .
Then maximize Y .

I Maximize Y as a functor depending on X .
Then minimize X .

I With mutual data types this problem didn’t occur since if we
minimize both X and Y , the order doesn’t matter.

36/ 44

5. Understanding Nested Algebras and Coalgebras

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

3. Codata and ∼

4. ∞ A

5. Understanding Nested Algebras and Coalgebras

5. Model

37/ 44

5. Understanding Nested Algebras and Coalgebras

Generality

In general we want to be able to form arbitrary combinations of µ and ν.
Idea: minimize and maximize in the order of occurrence.

38/ 44

data A : Set where
intro0 : F (A, B, C , D) → A

coalg B : Set where
unfold0 : B → G (A, B, C , D)

data C : Set where
intro1 : H(A, B, C , D) → C

coalg D : Set where
unfold1 : D → K (A, B, C , D)

to be interpreted as:

F0(Y , Z , Z ′) = µX .F (X , Y , Z , Z ′) A in terms of Y , Z , Z ′

G1(Z , Z ′) = νY .G (F ′(Y , Z , Z ′), Y , Z , Z ′) B in terms of Z , Z ′

F1(Z , Z ′) = F0(G1(Z , Z ′), Z , Z ′) A in terms of Z , Z ′

H2(Z
′) = µZ .H(F1(Z , Z ′), G1(Z , Z ′), Z , Z ′) C in terms of Z ′

G2(Z
′) = G1(H2(Z

′), Z ′) B in terms of Z ′

F2(Z
′) = F1(H2(Z

′), Z ′) A in terms of Z ′

D = νZ ′.K (F2(Z
′), G2(Z

′), H2(Z
′), Z ′) Final Value of D

C = H2(D) Final Value of C
B = G2(D) Final Value of B
A = F2(D) Final Value of A

5. Understanding Nested Algebras and Coalgebras

Example: coList A

data coList (A : Set) : Set where
[] : coList A
:: : A →∞ (coList A) → coList A

stands for
data coList (A : Set) : Set where

[] : coList A
:: : A →∞ (coList A) → coList A

coalg ∞ (coList) (A : Set) : Set where
\ : ∞ (coList A) → coList A

40/ 44

5. Understanding Nested Algebras and Coalgebras

inclist

inclist : N →∞ (coList N)
\ (inclist n) = n :: inclist (n + 1)
or
inclist n ∼ [(n :: inclist (n + 1))

With
s . t :⇔ \s = t

we get
inclist n . n :: inclist (n + 1)

41/ 44

5. Model

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

3. Codata and ∼

4. ∞ A

5. Understanding Nested Algebras and Coalgebras

5. Model

42/ 44

5. Model

Model

Form a term model with reduction rules corresponding to the equalities
stated.
E.g. inclist is a function symbol with equality rule

unfold (inclist n) = n :: (inclist (n + 1))

Interpretation of µX .F (X):

[[µX .F (X)]] =
⋂
{X ⊆ Term | intro[[[F (X)]]] ⊆ X}

Interpretation of νX .F (X):

[[νX .F (X)]] =
⋃
{X ⊆ Term | unfold[X] ⊆ [[F (X)]]}

43/ 44

5. Model

Conclusion

I Design decisions should be done by referring to the notion of
coalgebras.

I Coalgebras with constructor/destructor patterns looks very neat.
I Other solutions ∼, ∞ don’t look very elegant at the moment and

need a proper semantic treatment.
I ∼ was a reasonable good abbreviation mechanism.

I If A is a data type referring to ∞ A,
then ∞ A gets is meaning as a coalgebra defined implicitly mutually
after the definition of A.

I Order of algebras coalgebras matters.
I Suggestion by Peter Hancock: Why not use µ and ν?

I Not really necessary, since we can built up expressions of nested µ, ν
using mutual algebras and coalgebras understood in our way.

44/ 44

	1. Coalgebras as Defined By Elimination Rules
	2. Using Destructors: Destructor Patterns, Objects
	3. Codata and
	4. A
	5. Understanding Nested Algebras and Coalgebras
	5. Model

