Coalgebras in Dependent Type Theory – The Saga Continues

Anton Setzer Swansea University Swanesa, UK

September 8, 2010

<ロト <部ト < 注ト < 注ト = 注

- 1. Coalgebras as Defined By Elimination Rules
- 2. Using Destructors: Destructor Patterns, Objects
- 3. Codata and \sim
- 4. ∞A
- 5. Understanding Nested Algebras and Coalgebras
- 5. Model

Algebraic Data Types

Algebraic data types one of the main ingredients of Agda.

data List
$$(A : Set)$$
 : Set where
[] : List A
_::__ : $A \rightarrow List A \rightarrow List A$

Notation:

$$[]' + A ::' X$$

stands for the labelled disjoint union, i.e. the set *B* containing elements []' and $a ::' \times for \ a : A$ and x : X. Let

$$F_A : \text{Set} \to \text{Set}$$

 $F_A X = []' + A ::' X$

3/44

Algebraic Data Types

$F_A X = []' + A ::' X$

Then the following is essentially equivalent to the definition of List A:

data List
$$(A : Set) : Set$$
 where
intro : $F(List A) \rightarrow List A$

where

$$\begin{bmatrix} I \\ a :: I \end{bmatrix} = \text{ intro } \begin{bmatrix} I' \\ a :: I' \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

Algebraic Data Types

The introduction elimination and equality rules for algebraic data types follow then from the diagram for initial *F*-algebras (denoted by μ F)

One writes $\mu X.t$ for $\mu (\lambda X.t)$ e.g.

List $A = \mu X \cdot []' + A :::' X$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣 …

Final Coalgebras

Final Coalgebras ν F are obtained by reversing the arrows:

Again we write $\nu X.t$ for $\nu (\lambda X.t)$.

In weakly final coalgbras the uniqueness of g is omitted.

Coalgebras can be used to model **interactive programs** and **objects** from **object-oriented programming** in dependent type theory.

・ロット 4 聞 > 4 通 > 4 画 > 一面

Suggested Notation

coalg coList (A : Set) : Set where unfold : coList $A \rightarrow [] + A ::'$ coList A

- ► To an element of coList *A* as above we can apply unfold as above.
- Furthermore from the finality we can derive the principle of guarded recursion:

We can define $f : B \to \text{coList } A$ by saying what unfold $(f \ b)$ is:

- ► []′
- *a* ::' *I* for some *a* : *A*, *I* : coList *A*
- ► *a* ::' *f b*' for some *a* : *A*, *b*' : *B*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

1. Coalgebras as Defined By Elimination Rules

$\begin{array}{l} \mathrm{inclist} : \mathbb{N} \to \mathrm{coList} \ \mathbb{N} \\ \mathrm{unfold} \ (\mathrm{inclist} \ n) = n ::' \ (\mathrm{inclist} \ (n+1)) \end{array}$

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects

- 3. Codata and \sim
- 4. ∞A
- 5. Understanding Nested Algebras and Coalgebras
- 5. Model

Using Several Destructors

When using data we had several constructors. Similarly we can allow for coalg several destructors. Example:

coalg Stream (A : Set): Set where head : Stream $A \rightarrow A$ tail : Stream $A \rightarrow$ Stream A

inc : $\mathbb{N} \to \text{Stream } \mathbb{N}$ head (inc n) = ntail (inc n) = inc (n + 1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Nested Destructor Patterns

We can even define nested destructor patterns (Andreas Abel):

$$inc' : \mathbb{N} \to \text{Stream } \mathbb{N}$$

head (inc' n) = n
head (tail (inc' n)) = n+1
tail (tail (inc' n)) = inc' (n+2)

<ロト <部ト < 注ト < 注ト = 注

2. Using Destructors: Destructor Patterns, Objects

Bisimulation

900

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣

Example Proof

(Slide improved after some comments during the talk).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fibonacci

Not guarded recursion but can be justified by sized types. Or (not very useful but the result of unfolding the sized version(?)):

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Combining Constructor and Destructor Patterns

We can combine constructor and destructor patterns:

 $inc'' : \mathbb{N} \to \text{Stream } \mathbb{N}$ head (inc'' zero) = 0 head (tail (inc'' zero)) = 1 tail (tail (inc'' zero)) = inc'' 2 head (inc'' (suc n)) = suc n tail (inc'' (suc n)) = inc'' (n+1)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Objects

coalg Stack
$$(A : Set) : \mathbb{N} \to Set$$
 where
top : $\{n : \mathbb{N}\} \to Stack (suc n) \to A$
pop : $\{n : \mathbb{N}\} \to Stack (suc n) \to Stack n$

16/44

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Objects

 $\begin{array}{ll} \text{coalg Stack } (A:\text{Set}):\mathbb{N} \to \text{Set where} \\ \text{top} & : & \{n:\mathbb{N}\} \to \text{Stack } (\text{suc } n) \to A \\ \text{pop} & : & \{n:\mathbb{N}\} \to \text{Stack } (\text{suc } n) \to \text{Stack } n \end{array}$

The empty stack is introduced as follows:

emptystack : $\{A : Set\} \rightarrow Stack \ A \ zero$ () - no destructor applies

Note that the coalgebra Stack zero has no destructors and contains exactly one element up to bisimularity. (Slide improved after comments during the talk)

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ● のへの

2. Using Destructors: Destructor Patterns, Objects

- Can we get a good notion of a heap?
- Can we use this to define the class of queues efficiently?

Э

ヘロト 人間ト ヘヨト ヘヨト

- 1. Coalgebras as Defined By Elimination Rules
- 2. Using Destructors: Destructor Patterns, Objects
- 3. Codata and \sim
- 4. ∞A
- 5. Understanding Nested Algebras and Coalgebras
- 5. Model

19/44

Complications with Coalgebras

Several constructors for **data** corresponds to disjoint unions of the argument types.

data List (A : Set) : Set where [] : List A_ :: _ : $A \rightarrow List A \rightarrow List A$

corresponds to

data List (A : Set): Set where intro : $\mathbf{1} + (A \times \text{List } A) \rightarrow \text{List } A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Complications with Coalgebras

Several destructors for **coalg** corresponds to the product of the argument types:

data Stream (A : Set) : Set where head : Stream $A \rightarrow A$ tail : Stream $A \rightarrow$ Stream A

corresponds to

data Stream (A : Set): Set where unfold : Stream $A \to A \times Stream A$

21/44

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Complications with Coalgebras

If we dualise data types introduced by several constructors, we obtain types which are more complicated to describe: List looks nice:

data List
$$(A : Set)$$
 : Set where
[] : List A
:: : $A \rightarrow List A \rightarrow List A$

whereas colists don't look nice

coalg coList
$$(A : Set)$$
 : Set where
unfold : coList $A \rightarrow [] + A ::'$ coList A

イロト 不得 トイヨト イヨト 二日

Codata

Codata types seem to solve this problem:

So elements of coList are now introduced by introduction rules which allows to define the disjoint union nicely.

Idea is that elements of coList A are infinitary lists:

$$\blacktriangleright \quad n_1 :: n_2 :: n_3 :: \cdots$$

•
$$n_1 :: n_2 :: n_3 :: \cdots :: n_k :: []$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

Problem of codata

► No normalisation, e.g.

```
\mathrm{inc}\; 0=0::1::2::\cdots
```

Undecidability of equality.

In case of coalgebras

- Elements of coalgebras are not expanded indefinitely. They are only expanded if unfold is applied to them.
- In case of weakly final coalgebras equality of elements of the coalgebras is equality of the underlying algorithms.

Pseudo-Constructors

If we have

coalg coList
$$(A : Set)$$
: Set where
unfold : coList $A \rightarrow []' + A ::'$ coList A

we can define by guarded recursion

[] : coList Aunfold [] = []' . :: _: A : Set $\rightarrow A \rightarrow$ coList $A \rightarrow$ coList Aunfold (a :: l) = a ::' l

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Pseudo-Constructors

However we do not have

unfold I = a ::' I' implies I = a :: I

So elements of coList A are not of the form [] or a :: I. But behave like [] or a :: I.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \sim -Notation (Nils Danielsson)

is an abbreviation for

coalg coList (A : Set): Set where unfold : coList $A \rightarrow []' + A ::'$ coList A

 $[]: A: Set \to coList A$ unfold [] = []'

 $::: _: A : Set \to A \to coList A \to coList A$ unfold (a :: l) = a ::' l

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - つへつ

\sim -Notation (Nils Danielsson)

Furthermore let

$$s \sim t \Leftrightarrow \text{unfold } s = \text{unfold } t$$

Then

unfold
$$s = []' \Leftrightarrow s \sim []$$

unfold $s = a ::' I \Leftrightarrow s \sim a :: I$

so there is no need to write []' or $_::'_-$ or unfold. Unfortunaly \sim was replaced by = which misled the users.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1. Coalgebras as Defined By Elimination Rules
- 2. Using Destructors: Destructor Patterns, Objects
- 3. Codata and \sim
- 4. ∞A
- 5. Understanding Nested Algebras and Coalgebras
- 5. Model

Nils Danielsson and Thorsten Altenkirch suggested to have the following

$$\infty : \text{Set} \to \text{Set}$$

$$\flat : \{B : \text{Set}\} \to B \to \infty B$$

$$\natural : \{B : \text{Set}\} \to \infty B \to B$$

 ∞ *B* denote coalgebraic arguments in a definition (which can be "expanded infinitely") and one defines coList *A* as

data coList (A : Set) : Set where [] : coList A_::__ : $A \to \infty$ (coList A) \to coList A

30/44

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

What is ∞B ?

 ∞B cannot mean

$\nu X.B$

since $\nu X.B$ is as a (non-weakly) final coalgebra isomorphic to B: With F X = B we get

<ロト <部ト < 注ト < 注ト = 注

 ν gives something real only if applied to a functor. Applied to a set (or $\lambda X.A$ for a set A) it is essentially the identity. So ∞ must be something like (Set \rightarrow Set) \rightarrow Set.

イロト 不得 トイヨト イヨト 二日

What is ∞A ?

What is meant by it is, that if A is defined as an algebraic data type, ∞A is defined mutually coalgebraically:

data coList (A : Set) : Set where [] : coList A_::__ : $A \to \infty$ (coList A) \to coList A

stands for

data coList (A : Set) : Set where [] : coList A_:: _ : $A \to \infty$ (coList A) \to coList A

coalg ∞ (coList_) (A : Set) : Set where $\natural : \infty$ (coList A) \rightarrow coList A

4. ∞A

Order between data/codata

data coList
$$(A : Set)$$
 : Set where
[] : coList A
:: : $A \to \infty$ (coList A) \to coList A
coalg ∞ (coList_) ($A : Set$) : Set where
 $\natural : \infty$ (coList A) \to coList A

But there are two interpretations of the above: 1.

$$F(X, Y) = [] + A :: Y$$

$$G(X, Y) = X$$

$$F'(Y) = \mu X.F(X, Y) = \mu X.[] + A :: Y$$

$$\cong [] + A :: Y$$

$$\infty \text{ (coList } A) = \nu Y.G(F'(Y), Y) = \nu Y.F'(Y)$$

$$\cong \nu Y.[] + A :: Y$$

$$\text{coList } A = F'(\infty \text{ (coList } A))$$

$$= [] + A :: (\infty \text{ (coList } A)) + \mathbb{R} + \mathbb{R} + \mathbb{R}$$

Order between data/codata

data coList
$$(A : Set)$$
 : Set where
[] : coList A
_::__ : $A \to \infty$ (coList A) \to coList A
coalg ∞ (coList_) ($A : Set$) : Set where
 $\natural : \infty$ (coList A) \to coList A

$$G(X, Y) = X$$

$$F(X, Y) = [] + A :: Y$$

$$G'(X) = \nu Y.G(X, Y) = \nu Y.X$$

$$\cong X$$

$$coList A = \mu X.F(X, G'(X)) \cong \mu X.F(X, X)$$

$$= \mu X.[] + A :: X$$

$$\infty (coList A) = G'(coList A)$$

$$\cong coList A$$

E

Order between data/codata

First solution gives the desired result.

Origin of problem:

- ► If we have two functors F(X, Y), and G(X, Y) and if we want to minimize X and maximize Y there are two solutions:
 - Minimize X as a functor depending on Y. Then maximize Y.
 - ► Maximize *Y* as a functor depending on *X*. Then minimize *X*.
- With mutual data types this problem didn't occur since if we minimize both X and Y, the order doesn't matter.

イロト 不得 トイヨト イヨト 二日

- 1. Coalgebras as Defined By Elimination Rules
- 2. Using Destructors: Destructor Patterns, Objects
- 3. Codata and \sim
- 4. ∞A
- 5. Understanding Nested Algebras and Coalgebras
- 5. Model

37/44

5. Understanding Nested Algebras and Coalgebras

In general we want to be able to form arbitrary combinations of μ and $\nu.$ Idea: minimize and maximize in the order of occurrence.

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

data A: Set where intro₀ : $F(A, B, C, D) \rightarrow A$ coalg B: Set where unfold₀ : $B \rightarrow G(A, B, C, D)$ data C: Set where intro₁ : $H(A, B, C, D) \rightarrow C$ coalg D: Set where unfold₁ : $D \rightarrow K(A, B, C, D)$

to be interpreted as:

$$\begin{array}{rcl} F_0(Y,Z,Z') &=& \mu X.F(X,Y,Z,Z') & A \text{ in terms of } Y,Z,Z' \\ G_1(Z,Z') &=& \nu Y.G(F'(Y,Z,Z'),Y,Z,Z') & B \text{ in terms of } Z,Z' \\ F_1(Z,Z') &=& F_0(G_1(Z,Z'),Z,Z') & A \text{ in terms of } Z,Z' \\ H_2(Z') &=& \mu Z.H(F_1(Z,Z'),G_1(Z,Z'),Z,Z') & C \text{ in terms of } Z' \\ G_2(Z') &=& G_1(H_2(Z'),Z') & B \text{ in terms of } Z' \\ F_2(Z') &=& F_1(H_2(Z'),Z') & A \text{ in terms of } Z' \\ D &=& \nu Z'.K(F_2(Z'),G_2(Z'),H_2(Z'),Z') & \text{Final Value of } D \\ C &=& H_2(D) & \text{Final Value of } C \\ B &=& G_2(D) & \text{Final Value of } B \\ A &=& F_2(D) & \text{Final Value of } A \end{array}$$

Example: coList A

data coList (
$$A$$
 : Set) : Set where
[] : coList A
_::__ : $A \to \infty$ (coList A) \to coList A

stands for

data coList (A : Set) : Set where [] : coList A_::__ : $A \to \infty$ (coList A) \to coList A

 $\begin{array}{l} \operatorname{coalg} \infty \left(\operatorname{coList}_{-} \right) \left(A : \operatorname{Set} \right) : \operatorname{Set} \, \operatorname{where} \\ \natural : \infty \left(\operatorname{coList} A \right) \to \operatorname{coList} A \end{array}$

<ロト <部ト < 注ト < 注ト = 注

inclist

With

$$inclist : \mathbb{N} \to \infty \text{ (coList } \mathbb{N})$$

$$\natural \text{ (inclist } n) = n :: inclist (n + 1)$$
or
$$inclist n \sim \flat (n :: inclist (n + 1))$$

$$s \triangleright t : \Leftrightarrow \natural s = t$$

we get

inclist $n \triangleright n$:: inclist (n + 1)

E

・ロト ・聞 ト ・ ヨト ・ ヨト

- 1. Coalgebras as Defined By Elimination Rules
- 2. Using Destructors: Destructor Patterns, Objects
- 3. Codata and \sim
- 4. ∞A
- 5. Understanding Nested Algebras and Coalgebras
- 5. Model

42/44

Model

Form a term model with reduction rules corresponding to the equalities stated.

E.g. inclist is a function symbol with equality rule

unfold (inclist
$$n$$
) = n :: (inclist $(n + 1)$)

Interpretation of $\mu X.F(X)$:

$$\llbracket \mu X.F(X) \rrbracket = \bigcap \{ X \subseteq \text{Term} \mid \text{intro}[\llbracket F(X) \rrbracket] \subseteq X \}$$

Interpretation of $\nu X.F(X)$:

 $\llbracket \nu X.F(X) \rrbracket = \bigcup \{ X \subseteq \operatorname{Term} \mid \operatorname{unfold}[X] \subseteq \llbracket F(X) \rrbracket \}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Conclusion

- Design decisions should be done by referring to the notion of coalgebras.
- ► Coalgebras with constructor/destructor patterns looks very neat.
- ► Other solutions ~, ∞ don't look very elegant at the moment and need a proper semantic treatment.
 - $\blacktriangleright~\sim$ was a reasonable good abbreviation mechanism.
- ► If A is a data type referring to ∞ A, then ∞ A gets is meaning as a coalgebra defined implicitly mutually after the definition of A.
- Order of algebras coalgebras matters.
- Suggestion by Peter Hancock: Why not use μ and ν ?
 - Not really necessary, since we can built up expressions of nested μ, ν using mutual algebras and coalgebras understood in our way.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □