Coalgebras in Dependent Type Theory - The Saga Continues

Anton Setzer
Swansea University
Swanesa, UK

September 8, 2010

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects
3. Codata and \sim
4. ∞A
5. Understanding Nested Algebras and Coalgebras
6. Model

Algebraic Data Types

Algebraic data types one of the main ingredients of Agda.

```
data List (A : Set) : Set where
    [] : List A
    _ :: _ : A 
```


Notation:

$$
[]^{\prime}+A::^{\prime} X
$$

stands for the labelled disjoint union, i.e. the set B containing elements []' and $a::!x$ for $a: A$ and $x: X$.
Let

$$
\begin{aligned}
& F_{A}: \text { Set } \rightarrow \text { Set } \\
& F_{A} X=[]^{\prime}+A::^{\prime} X
\end{aligned}
$$

Algebraic Data Types

$F_{A} X=[]^{\prime}+A::^{\prime} X$
Then the following is essentially equivalent to the definition of List A :

$$
\begin{aligned}
& \text { data List }(A \text { : Set }): \text { Set where } \\
& \text { intro }: F(\text { List } A) \rightarrow \text { List } A
\end{aligned}
$$

where

$$
\begin{array}{ll}
{[]} & =\text { intro }[]^{\prime} \\
a:: I & =\text { intro }\left(a::^{\prime} l\right)
\end{array}
$$

Algebraic Data Types

The introduction elimination and equality rules for algebraic data types follow then from the diagram for initial F-algebras (denoted by $\mu \mathrm{F}$)

One writes $\mu X . t$ for $\mu(\lambda X . t)$ e.g.

$$
\text { List } A=\mu X \cdot[]^{\prime}+A::^{\prime} X
$$

Final Coalgebras

Final Coalgebras $\nu \mathrm{F}$ are obtained by reversing the arrows:

Again we write $\nu X . t$ for $\nu(\lambda X . t)$.
In weakly final coalgbras the uniqueness of g is omitted.
Coalgebras can be used to model interactive programs and objects from object-oriented programming in dependent type theory.

Suggested Notation

> coalg coList $(A$: Set) : Set where \quad unfold : coList $A \rightarrow[]+A::^{\prime}$ coList A

- To an element of coList A as above we can apply unfold as above.
- Furthermore from the finality we can derive the principle of guarded recursion:
We can define $f: B \rightarrow$ coList A by saying what unfold $(f b)$ is:
- []'
- $a::^{\prime} I$ for some $a: A, I:$ coList A
- $a::^{\prime} f b^{\prime}$ for some $a: A, b^{\prime}: B$.

Example

```
inclist : \mathbb{N }->\mathrm{ coList }\mathbb{N}
unfold (inclist n) = n::' (inclist (n+1))
```


1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects
3. Codata and \sim
4. ∞A
5. Understanding Nested Algebras and Coalgebras
6. Model

Using Several Destructors

When using data we had several constructors.
Similarly we can allow for coalg several destructors.
Example:

> coalg Stream $(A:$ Set $):$ Set where head $:$ Stream $A \rightarrow A$ tail $:$ Stream $A \rightarrow$ Stream A
> inc $: \mathbb{N} \rightarrow$ Stream \mathbb{N}
> head (inc $n)=n$
> tail $(\operatorname{inc} n)=\operatorname{inc}(n+1)$

Nested Destructor Patterns

We can even define nested destructor patterns (Andreas Abel):

```
inc'}:\mathbb{N}->\mathrm{ Stream }\mathbb{N
head (inc' n) = n
head (tail (inc}\mp@subsup{}{}{\prime}n))=n+
tail (tail (inc'}n))=\mp@subsup{\operatorname{inc}}{}{\prime}(n+2
```

2. Using Destructors: Destructor Patterns, Objects

Bisimulation

coalg $\approx^{\approx}\{A:$ Set $\}:$ Stream $A \rightarrow$ Stream $A \rightarrow$ Set where headeq : $\left\{I I^{\prime}: \operatorname{Stream} A\right\} \rightarrow I \approx I^{\prime} \rightarrow$ head $I==$ head I^{\prime}
taileq : $\left\{I I^{\prime}:\right.$ Stream $\left.A\right\} \rightarrow I \approx I^{\prime} \rightarrow$ tail $I \approx$ tail I^{\prime}

Example Proof

$$
\begin{aligned}
& \text { lemma : }(n: \mathbb{N}) \rightarrow \text { inc } n \approx \operatorname{inc}^{\prime} n \\
& \text { headeq (lemma } n \text {) } \quad=\text { refl } \\
& \text { headeq }(\text { taileq }(\operatorname{lemma} n))=\text { refl } \\
& \text { taileq (taileq (lemma } n))=\operatorname{lemma}(n+2)
\end{aligned}
$$

(Slide improved after some comments during the talk).

Fibonacci

fib: Stream \mathbb{N}

```
head fib =
head (tail fib) = 1
tail (tail fib) = addStream fib (tail fib)
```

Not guarded recursion but can be justified by sized types. Or (not very useful but the result of unfolding the sized version(?)):

```
fib : \(\mathbb{N} \rightarrow\) Stream \(\mathbb{N}\)
head (fib zero) \(=1\)
head (fib (suc zero)) \(=1\)
head \((\operatorname{fib}(\operatorname{suc}(\operatorname{suc} n)))=\) head \((\operatorname{fib} n)+\) head \((\operatorname{fib}(\operatorname{suc} n))\)
tail (fib \(n) \quad=\) fib \((n+1)\)
```


Combining Constructor and Destructor Patterns

We can combine constructor and destructor patterns:

$$
\begin{array}{ll}
\text { inc }^{\prime \prime}: \mathbb{N} \rightarrow \text { Stream } \mathbb{N} & \\
\text { head (inc" zero) } & =0 \\
\text { head (tail (inc }{ }^{\prime \prime} \text { zero)) } & =1 \\
\text { tail (tail (inc" zero)) } & =\operatorname{inc}^{\prime \prime} 2 \\
\text { head (inc" }(\operatorname{suc} n)) & =\operatorname{suc}^{\prime \prime} n \\
\text { tail }\left(\text { inc }^{\prime \prime}(\operatorname{suc} n)\right) & =\operatorname{inc}^{\prime \prime}(n+1)
\end{array}
$$

Objects

coalg Stack (A : Set) : $\mathbb{N} \rightarrow$ Set where top $:\{n: \mathbb{N}\} \rightarrow$ Stack $($ suc $n) \rightarrow A$
pop $:\{n: \mathbb{N}\} \rightarrow$ Stack $(\operatorname{suc} n) \rightarrow$ Stack n
push : $\{n: \mathbb{N}\} \rightarrow A \rightarrow$ Stack $A n \rightarrow$ Stack $A(n+1)$
top (push al) $=a$
pop (push a I) $=1$

Objects

$$
\begin{aligned}
& \text { coalg Stack }(A: \text { Set }): \mathbb{N} \rightarrow \text { Set where } \\
& \text { top }:\{n: \mathbb{N}\} \rightarrow \text { Stack }(\operatorname{suc} n) \rightarrow A \\
& \text { pop }:\{n: \mathbb{N}\} \rightarrow \text { Stack }(\text { suc } n) \rightarrow \text { Stack } n
\end{aligned}
$$

The empty stack is introduced as follows:

$$
\begin{aligned}
& \text { emptystack : }\{A: \text { Set }\} \rightarrow \text { Stack } A \text { zero } \\
& () \quad-\text { - no destructor applies }
\end{aligned}
$$

Note that the coalgebra Stack zero has no destructors and contains exactly one element up to bisimularity. (Slide improved after comments during the talk)

Question

- Can we get a good notion of a heap?
- Can we use this to define the class of queues efficiently?

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects
3. Codata and \sim
4. ∞A
5. Understanding Nested Algebras and Coalgebras
6. Model

Complications with Coalgebras

Several constructors for data corresponds to disjoint unions of the argument types.

$$
\begin{aligned}
& \text { data List }(A \text { : Set }): \text { Set where } \\
& {[] \quad: \operatorname{List} A} \\
& -: Z_{-} \quad: \quad A \rightarrow \operatorname{List} A \rightarrow \operatorname{List} A
\end{aligned}
$$

corresponds to

$$
\begin{aligned}
& \text { data List }(A \text { : Set }) \text { : Set where } \\
& \text { intro }: \mathbf{1}+(A \times \operatorname{List} A) \rightarrow \text { List } A
\end{aligned}
$$

Complications with Coalgebras

Several destructors for coalg corresponds to the product of the argument types:

```
data Stream (A : Set) : Set where
    head : Stream A}->
    tail : Stream A}->\mathrm{ Stream A
```

corresponds to

> data Stream $(A$: Set $)$: Set where unfold : Stream $A \rightarrow A \times$ Stream A

Complications with Coalgebras

If we dualise data types introduced by several constructors, we obtain types which are more complicated to describe:
List looks nice:

$$
\begin{aligned}
& \text { data List }(A: \text { Set }): \text { Set where } \\
& {[] \quad: \quad \text { List } A} \\
& \quad:: \quad: \quad A \rightarrow \operatorname{List} A \rightarrow \operatorname{List} A
\end{aligned}
$$

whereas colists don't look nice

$$
\begin{aligned}
& \text { coalg coList }(A \text { : Set) : Set where } \\
& \quad \text { unfold : coList } A \rightarrow[]+A::^{\prime} \text { coList } A
\end{aligned}
$$

Codata

Codata types seem to solve this problem:

```
codata coList (A : Set) : Set where
    [] : coList A
    _ :: _ : A -> coList A }->\mathrm{ coList }
```

So elements of coList are now introduced by introduction rules which allows to define the disjoint union nicely.

Idea is that elements of coList A are infinitary lists:

- $n_{1}:: n_{2}:: n_{3} \quad:: \cdots$
- $n_{1}:: n_{2}:: n_{3} \quad:: \cdots: n_{k}::[]$

Problem of codata

- No normalisation, e.g.

$$
\operatorname{inc} 0=0:: 1:: 2:: .
$$

- Undecidability of equality.

$$
f 0:: f 1:: \cdots=g 0:: g 1:: \cdots \Leftrightarrow \forall n . f n=g n
$$

In case of coalgebras

- Elements of coalgebras are not expanded indefinitely. They are only expanded if unfold is applied to them.
- In case of weakly final coalgebras equality of elements of the coalgebras is equality of the underlying algorithms.

Pseudo-Constructors

If we have
coalg coList (A : Set) : Set where unfold : coList $A \rightarrow[]^{\prime}+A::^{\prime}$ coList A
we can define by guarded recursion
[] : coList A
unfold []$=[]^{\prime}$
_ $::$ _ : $A:$ Set $\rightarrow A \rightarrow$ coList $A \rightarrow \operatorname{coList} A$
unfold (a::I)=a::!

Pseudo-Constructors

However we do not have

$$
\text { unfold } I=a:::^{\prime} I^{\prime} \text { implies } I=a:: I
$$

So elements of coList A are not of the form [] or a :: $/$. But behave like [] or a :: /.

~-Notation (Nils Danielsson)

> codata coList $(A:$ Set $):$ Set where
> []$\quad: \quad$ coList A
> $-: \quad: \quad A \rightarrow \operatorname{coList} A \rightarrow \operatorname{coList} A$
is an abbreviation for
coalg coList (A : Set) : Set where
unfold : coList $A \rightarrow[]^{\prime}+A::^{\prime}$ coList A
[] : A : Set $\rightarrow \operatorname{coList} A$
unfold []$=[]^{\prime}$
_ : _ : $A:$ Set $\rightarrow A \rightarrow$ coList $A \rightarrow \operatorname{coList} A$
unfold $(a:: I)=a::!$

~-Notation (Nils Danielsson)

Furthermore let

$$
s \sim t \Leftrightarrow \text { unfold } s=\text { unfold } t
$$

Then

$$
\begin{array}{lll}
\text { unfold } s=[]^{\prime} & \Leftrightarrow & s \sim[] \\
\text { unfold } s=a::^{\prime} । & \Leftrightarrow & s \sim a:: I
\end{array}
$$

so there is no need to write []$^{\prime}$ or _ $:^{\prime}$ _ or unfold. Unfortunaly \sim was replaced by $=$ which misled the users.

1. Coalgebras as Defined By Elimination Rules
2. Using Destructors: Destructor Patterns, Objects
3. Codata and \sim
4. ∞A
5. Understanding Nested Algebras and Coalgebras
6. Model

Nils Danielsson's ∞

Nils Danielsson and Thorsten Altenkirch suggested to have the following

$$
\begin{array}{ll}
\infty & : \text { Set } \rightarrow \text { Set } \\
b & :\{B: \operatorname{Set}\} \rightarrow B \rightarrow \infty B \\
\natural & :\{B: \operatorname{Set}\} \rightarrow \infty B \rightarrow B
\end{array}
$$

∞B denote coalgebraic arguments in a definition (which can be "expanded infinitely") and one defines coList A as

$$
\begin{aligned}
& \text { data coList }(A \text { : Set }) \text { : Set where } \\
& {[] \quad: \quad \operatorname{coList} A} \\
& -:: \quad: \quad A \rightarrow \infty(\operatorname{coList} A) \rightarrow \operatorname{coList} A
\end{aligned}
$$

What is ∞B ?

∞B cannot mean

$$
\nu X . B
$$

since $\nu X . B$ is as a (non-weakly) final coalgebra isomorphic to B : With $\mathrm{F} X=B$ we get

Underlying reason

ν gives something real only if applied to a functor. Applied to a set (or λX. A for a set A) it is essentially the identity. So ∞ must be something like (Set \rightarrow Set) \rightarrow Set.

What is ∞A ?

What is meant by it is, that if A is defined as an algebraic data type, ∞A is defined mutually coalgebraically:

```
data coList (A : Set) : Set where
    []: coList A
    _ : _ : A ->\infty (coList A) }->\mathrm{ coList A
```

stands for

$$
\begin{aligned}
& \text { data coList }(A: \text { Set }): \text { Set where } \\
& {[] \quad: \quad \operatorname{coList} A} \\
& -:: \quad A \rightarrow \infty(\operatorname{coList} A) \rightarrow \operatorname{coList} A \\
& \text { coalg } \infty(\text { coList_ })(A: \text { Set }): \text { Set where } \\
& \square: \infty(\text { coList } A) \rightarrow \operatorname{coList} A
\end{aligned}
$$

Order between data/codata

$$
\begin{aligned}
& \text { data coList }(A: \text { Set }): \text { Set where } \\
& {[] \quad: \quad \operatorname{coList} A} \\
& -:: \quad: A \rightarrow \infty(\operatorname{coList} A) \rightarrow \operatorname{coList} A \\
& \operatorname{coalg} \infty(\text { coList_ })(A: \text { Set }): \text { Set where } \\
& \square: \infty(\text { coList } A) \rightarrow \text { coList } A
\end{aligned}
$$

But there are two interpretations of the above:
1.

$$
\begin{aligned}
F(X, Y) & =[]+A:: Y \\
G(X, Y) & =X \\
F^{\prime}(Y) & =\mu X . F(X, Y)=\mu X .[]+A:: Y \\
& \cong[]+A:: Y \\
\infty(\operatorname{coList} A) & =\nu Y . G\left(F^{\prime}(Y), Y\right)=\nu Y . F^{\prime}(Y) \\
& \cong \nu Y .[]+A:: Y \\
\operatorname{coList} A & =F^{\prime}(\infty(\operatorname{coList} A)) \\
& =[]+A:(\infty(\operatorname{coList} A))
\end{aligned}
$$

Order between data/codata

$$
\begin{aligned}
& \text { data coList }(A: \text { Set }): \text { Set where } \\
& {[] \quad: \quad \text { coList } A} \\
& -:: \quad: A \rightarrow \infty(\operatorname{coList} A) \rightarrow \text { coList } A \\
& \text { coalg } \infty(\text { coList_ })(A: \text { Set }): \text { Set where } \\
& \square: \infty(\text { coList } A) \rightarrow \text { coList } A
\end{aligned}
$$

2.

$$
\begin{aligned}
G(X, Y) & =X \\
F(X, Y) & =[]+A:: Y \\
G^{\prime}(X) & =\nu Y \cdot G(X, Y)=\nu Y . X \\
& \cong X \\
\operatorname{coList} A & =\mu X \cdot F\left(X, G^{\prime}(X)\right) \cong \mu X . F(X, X) \\
& =\mu X \cdot[]+A:: X \\
\infty(\operatorname{coList} A) & =G^{\prime}(\operatorname{coList} A) \\
& \cong \operatorname{coList} A
\end{aligned}
$$

Order between data/codata

First solution gives the desired result.
Origin of problem:

- If we have two functors $F(X, Y)$, and $G(X, Y)$ and if we want to minimize X and maximize Y there are two solutions:
- Minimize X as a functor depending on Y. Then maximize Y.
- Maximize Y as a functor depending on X. Then minimize X.
- With mutual data types this problem didn't occur since if we minimize both X and Y, the order doesn't matter.

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects
3. Codata and \sim
4. ∞A
5. Understanding Nested Algebras and Coalgebras
6. Model

Generality

In general we want to be able to form arbitrary combinations of μ and ν. Idea: minimize and maximize in the order of occurrence.
data A : Set where introo: $F(A, B, C, D) \rightarrow A$
coalg B : Set where unfold $_{0}: B \rightarrow G(A, B, C, D)$
data C : Set where intro $_{1}: H(A, B, C, D) \rightarrow C$
coalg D : Set where

$$
\text { unfold }_{1}: D \rightarrow K(A, B, C, D)
$$

to be interpreted as:

$F_{0}\left(Y, Z, Z^{\prime}\right)$	$=\mu X \cdot F\left(X, Y, Z, Z^{\prime}\right)$	
$G_{1}\left(Z, Z^{\prime}\right)$	$=\nu$ in terms of Y, Z, Z^{\prime}	
$F_{1}\left(Z, Z^{\prime}\right)$	$=F_{0}\left(G_{1}\left(Z, Z^{\prime}\right), Z, Z^{\prime}\right)$	B in terms of Z, Z^{\prime}
$H_{2}\left(Z^{\prime}\right)$	$=\mu Z \cdot H\left(F_{1}\left(Z, Z^{\prime}\right), G_{1}\left(Z, Z^{\prime}\right), Z, Z^{\prime}\right)$	
$G_{2}\left(Z^{\prime}\right)$		C in terms of Z, Z^{\prime}
$F_{2}\left(Z^{\prime}\right)$		B in terms of Z^{\prime}
D	$=G_{1}\left(H_{2}\left(Z^{\prime}\right), Z^{\prime}\right)$	A in terms of Z^{\prime}
C	$\left.=\nu Z^{\prime}\left(Z^{\prime}\right), Z^{\prime}\right)$	
B	$=Z_{2}^{\prime}\left(D\left(F_{2}\left(Z^{\prime}\right), G_{2}\left(Z^{\prime}\right), H_{2}\left(Z^{\prime}\right), Z^{\prime}\right)\right.$	Final Value of D
B		Final Value of C
A	$=G_{2}(D)$	Final Value of B
	$=F_{2}(D)$	Final Value of A

Example: coList A

$$
\begin{aligned}
& \text { data coList }(A \text { : Set }) \text { : Set where } \\
& {[] \quad: \quad \operatorname{coList} A} \\
& -:: \quad: \quad A \rightarrow \infty(\operatorname{coList} A) \rightarrow \operatorname{coList} A
\end{aligned}
$$

stands for

$$
\begin{aligned}
& \text { data coList }(A \text { : Set }) \text { : Set where } \\
& {\left[\begin{array}{l}
{[} \\
\quad: \\
-: \quad \\
\quad
\end{array} \quad A \rightarrow \infty(\operatorname{coList} A) \rightarrow \operatorname{coList} A\right.}
\end{aligned}
$$

coalg ∞ (coList_) (A : Set) : Set where
দ: $\infty(\operatorname{coList} A) \rightarrow \operatorname{coList} A$

inclist

$$
\begin{aligned}
& \operatorname{inclist}: \mathbb{N} \rightarrow \infty(\operatorname{coList} \mathbb{N}) \\
& \natural(\operatorname{inclist} n)=n:: \operatorname{inclist}(n+1) \\
& \text { or } \\
& \text { inclist } n \sim b(n:: \operatorname{inclist}(n+1))
\end{aligned}
$$

With

$$
s \triangleright t: \Leftrightarrow দ s=t
$$

we get
inclist $n \triangleright n::$ inclist $(n+1)$

1. Coalgebras as Defined By Elimination Rules

2. Using Destructors: Destructor Patterns, Objects
3. Codata and \sim
4. ∞A
5. Understanding Nested Algebras and Coalgebras
6. Model

Model

Form a term model with reduction rules corresponding to the equalities stated.
E.g. inclist is a function symbol with equality rule

$$
\text { unfold }(\text { inclist } n)=n::(\operatorname{inclist}(n+1))
$$

Interpretation of $\mu X . F(X)$:

$$
\llbracket \mu X . F(X) \rrbracket=\bigcap\{X \subseteq \text { Term } \mid \operatorname{intro}[\llbracket F(X) \rrbracket] \subseteq X\}
$$

Interpretation of $\nu X . F(X)$:

$$
\llbracket \nu X . F(X) \rrbracket=\bigcup\{X \subseteq \operatorname{Term} \mid \operatorname{unfold}[X] \subseteq \llbracket F(X) \rrbracket\}
$$

Conclusion

- Design decisions should be done by referring to the notion of coalgebras.
- Coalgebras with constructor/destructor patterns looks very neat.
- Other solutions \sim, ∞ don't look very elegant at the moment and need a proper semantic treatment.
- ~ was a reasonable good abbreviation mechanism.
- If A is a data type referring to ∞A, then ∞A gets is meaning as a coalgebra defined implicitly mutually after the definition of A.
- Order of algebras coalgebras matters.
- Suggestion by Peter Hancock: Why not use μ and ν ?
- Not really necessary, since we can built up expressions of nested μ, ν using mutual algebras and coalgebras understood in our way.

