
How to Reason Informally Coinductively

Anton Setzer

Swansea University

Agda Intensive Meeting XXI, Göteborg, Sweden, 3 June 2015

With contributions from Peter Hancock, Thorsten Altenkirch, Andreas
Abel, Brigitte Pientka and David Thibodeau.

Anton Setzer (Swansea) How to Reason Informally Coinductively 1/ 30

Goal

Inductive Definition Coinductive Definition

Determined by Introduction ?

Iteration ?

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

1

1Part of this table is due to Peter Hancock, see acknowledgements at the
end.

Anton Setzer (Swansea) How to Reason Informally Coinductively 2/ 30

Introduction/Elimination of Inductive/Coinductive Sets

I Introduction rules for Natural numbers means that we have

0 ∈ N
S : N→ N

I Dually, coinductive sets are given by their elimination rules i.e. by
observations.
As an example we consider Stream:

head : Stream→ N
tail : Stream→ Stream

Anton Setzer (Swansea) How to Reason Informally Coinductively 3/ 30

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration ?

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) How to Reason Informally Coinductively 4/ 30

http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/
http://wiki.portal.chalmers.se/agda/%5C?n=Main.AIMXXI
http://www.chalmers.se/en/departments/cse/organisation/CS/Pages/default.aspx


Unique Iteration

I That (N, 0, S) are minimal can be given by:
I Assume another N-structure (X , z , s), i.e.

z ∈ X
s : X → X

I Then there exist a
unique homomorphism g : (N, 0, S)→ (X , z , s):

g : N→ X
g(0) = z
g(S(n)) = s(g(n))

I This means we can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on g(n)

Anton Setzer (Swansea) How to Reason Informally Coinductively 5/ 30

Unique Coiteration

I Dually, that (Stream, head, tail) is maximal can be given by:
I Assume another Stream-structure (X , h, t):

h : X → N
t : X → X

I Then there exist a
unique homomorphism g : (X , h, t)→ (Stream, head, tail):

g : X → Stream
head(g(x)) = h(x)
tail(g(x)) = g(t(x))

I Means we can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x)) = g(x ′) for some x ′ ∈ X depending on x

Anton Setzer (Swansea) How to Reason Informally Coinductively 6/ 30

Comparison

I When using iteration the instance of g we can use is restricted, but
we can apply an arbitrary function to it.

I When using coiteration we can choose which instance of g we want,
but can use it only directly.

Anton Setzer (Swansea) How to Reason Informally Coinductively 7/ 30

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion ?

Pattern matching ?

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) How to Reason Informally Coinductively 8/ 30



Unique Primitive Recursion

I From unique iteration we can derive principle of
unique primitive recursion

I We can define uniquely

g : N→ X
g(0) = x for some x ∈ X
g(S(n)) = x ′ for some x ′ ∈ X depending on n, g(n)

I Primitive pattern matching.

Anton Setzer (Swansea) How to Reason Informally Coinductively 9/ 30

Unique Primitive Corecursion

I From unique coiteration we can derive principle of
unique primitive corecursion

I We can define uniquely

g : X → Stream
head(g(x)) = n for some n ∈ N depending on x
tail(g(x))) = g(x ′) for some x ′ ∈ X depending on x

or
= s for some s ∈ Stream depending on x

I Note: No application of a function to g(x ′) allowed.
I Primitive copattern matching.

Anton Setzer (Swansea) How to Reason Informally Coinductively 10/ 30

Example

s ∈ Stream
head(s) = 0
tail(s) = s

s ′ : N→ Stream
head(s ′(n)) = 0
tail(s ′(n)) = s ′(n + 1)

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = s

Anton Setzer (Swansea) How to Reason Informally Coinductively 11/ 30

Duality

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion Primitive Corecursion

Pattern matching Copattern matching

Induction ?

Induction-Hypothesis ?

Anton Setzer (Swansea) How to Reason Informally Coinductively 12/ 30



Induction

I From unique iteration one can derive principle of induction:

We can prove ∀n ∈ N.ϕ(n) by proving
ϕ(0)
∀n ∈ N.ϕ(n)→ ϕ(S(n))

I Using induction we can prove (assuming extensionality of functions)
uniqueness of iteration and primitive recursion.

Anton Setzer (Swansea) How to Reason Informally Coinductively 13/ 30

Equivalence

Theorem

Let (N, 0,S) be an N-algebra. The following is equivalent

1. The principle of unique iteration.

2. The principle of unique primitive recursion.

3. The principle of iteration + induction.

4. The principle of primitive recursion + induction.

Anton Setzer (Swansea) How to Reason Informally Coinductively 14/ 30

Coinduction

I Uniqueness in coiteration is equivalent to the principle:
Bisimulation implies equality

I Bisimulation on Stream is the largest relation ∼ on Stream s.t.

s ∼ s ′ → head(s) = head(s ′) ∧ tail(s) ∼ tail(s ′)

I Largest can be expressed as ∼ being an indexed coinductively defined
set.

I Primitive corecursion over ∼ means:
We can prove

∀s, s ′.X (s, s ′)→ s ∼ s ′

by showing

X (s, s ′) → head(s) = head(s ′)
X (s, s ′) → X (tail(s), tail(s ′)) ∨ tail(s) ∼ tail(s ′)

Anton Setzer (Swansea) How to Reason Informally Coinductively 15/ 30

Coinduction

I Combining
I bisimulation implies equality
I bisimulation can be shown corecursively

we obtain the following principle of coinduction

Anton Setzer (Swansea) How to Reason Informally Coinductively 16/ 30



Schema of Coinduction

I We can prove
∀s, s ′.X (s, s ′)→ s = s ′

by showing

∀s, s ′.X (s, s ′) → head(s) = head(s ′)
∀s, s ′.X (s, s ′) → tail(s) = tail(s ′)

where tail(s) = tail(s ′) can be derived
I directly or
I from a proof of

X (tail(s), tail(s ′))

invoking the co-induction-hypothesis

X (tail(s), tail(s ′))→ tail(s) = tail(s ′)

I Note: Only direct use of co-IH allowed.

Anton Setzer (Swansea) How to Reason Informally Coinductively 17/ 30

Indexed Coinduction

I For using coinduction, one typically wants to show for some
f , g : X → Stream

∀x ∈ X .f (x) = g(x)

I Using X (s, s ′) = {x | f (x) = s ∧ g(x) = s ′} we obtain the principle of
indexed coinduction

Anton Setzer (Swansea) How to Reason Informally Coinductively 18/ 30

Schema Indexed Coinduction

I We can prove
∀x ∈ X .f (x) = g(x)

by showing
∀x ∈ X .head(f (x)) = head(g(x))
∀x ∈ X .tail(f (x)) = tail(g(x))

where tail(f (x)) = tail(g(x)) can be derived
I directly or
I by

tail(f (x)) = f (x ′) tail(g(x)) = g(x ′)

and using the co-induction-hypothesis

f (x ′) = g(x ′)

I Again only direct use of co-IH allowed
(otherwise you can derive tail(f (x)) = tail(g(x)) from f (x) = g(x)).

I In fact the above is the same as uniqueness of corecursion.

Anton Setzer (Swansea) How to Reason Informally Coinductively 19/ 30

Equivalence

Theorem

Let (Stream,head, tail) be a Stream-coalgebra. The following is
equivalent

1. The principle of unique coiteration.

2. The principle of unique primitive corecursion.

3. The principle of coiteration + coinduction

4. The principle of primitive corecursion + coinduction

5. The principle of coiteration + indexed coinduction.

6. The principle of primitive corecursion + indexed coinduction.

Anton Setzer (Swansea) How to Reason Informally Coinductively 20/ 30



Example

I Remember

head(s) = 0 head(s ′(n)) = 0
tail (s) = s tail (s ′(n)) = s ′(n + 1)

I We show ∀n ∈ N.s = s ′(n) by indexed coinduction:

I head(s) = 0 = head(s ′(n)).

I tail(s) = s
co-IH

= s ′(n + 1) = tail(s ′(n)).

Anton Setzer (Swansea) How to Reason Informally Coinductively 21/ 30

Example

head(s) = 0
tail (s) = s

I We show s = cons(0, s) by indexed coinduction:

I head(s) = 0 = head(cons(0, s)).
I tail(s) = s = tail(cons(0, s))

(no use of co-IH).

Anton Setzer (Swansea) How to Reason Informally Coinductively 22/ 30

Proofs of Other Bisimilarity Relations

I The above can be used as well for proving other bisimilarity relations.

I Consider the following (unlabelled) transition system:

x x x

p q r

I Bisimilarity is the final coalgebra

p ∼ q → (∀p′.p −→ p′

→ ∃q′.q −→ q′ ∧ p′ ∼ q′)
∧ · · · symmetric case · · · }

Anton Setzer (Swansea) How to Reason Informally Coinductively 23/ 30

Proof using the Definition of ∼

x x x

p q r

I We show p ∼ q ∧ p ∼ r by indexed coinduction:
I Coinduction step for p ∼ q:

I Assume p −→ p′. Then p′ = p.
We have q −→ r and by co-IH p ∼ r .

I Assume q −→ q′. Then q′ = r .
We have p −→ p and by co-IH p ∼ r .

I Coinduction step for p ∼ r :
I Assume p −→ p′. Then p′ = p.

We have r −→ q and by co-IH p ∼ q.
I Assume r −→ r ′. Then r ′ = q.

We have p −→ p and by co-IH p ∼ q.

Anton Setzer (Swansea) How to Reason Informally Coinductively 24/ 30



Conclusion

Inductive Definition Coinductive Definition

Determined by Introduction Determined by Observation

Iteration Coiteration

Primitive Recursion Primitive Corecursion

Pattern matching Copattern matching

Induction Coinduction (?)

Induction-Hypothesis Coinduction-Hypothesis

Anton Setzer (Swansea) How to Reason Informally Coinductively 25/ 30

Acknowledgements

I To look at iteration, recursion, induction in parallel with coiteration,
corecursion, coinduction I learned from Peter Hancock, although we
didn’t resolve in our discussions what coinduction is and what the
precise formulation of corecursion would be.

I How to derive from iteration recursion I learned from Thorsten
Altenkirch, however that seems to be a well-known fact.

Anton Setzer (Swansea) How to Reason Informally Coinductively 26/ 30

Bibliography

I Anton Setzer, Andreas Abel, Brigitte Pientka and David Thibodeau:
Unnesting of Copatterns. In Gilles Dowek (Ed): Rewriting and Typed
Lambda Calculi. Proceedings RTA-TLCA 2014. LNCS 8560, 2014,
pp. 31 - 45. Doi 10.1007/978-3-319-08918-8 3. Bibtex.

I Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer:
Copatterns: programming infinite structures by observations.
Proceedings of POPL 2013, 2013, pp. 27 - 38. Doi
10.1145/2429069.2429075. Bibtex.

I Anton Setzer: Coalgebras as Types determined by their Elimination
Rules. In: Peter Dybjer, Sten Lindström, Erik Palmgren, Göran
Sundholm: Epistemology versus ontology: Essays on the foundations
of mathematics in honour of Per Martin-Löf. Springer, 2012, pp. 351
– 369, Doi: 10.1007/978-94-007-4435-6 16. Bibtex

Anton Setzer (Swansea) How to Reason Informally Coinductively 27/ 30

Appendix

Anton Setzer (Swansea) How to Reason Informally Coinductively 28/ 30

http://www.cs.swan.ac.uk/~csetzer/articles/setzerEtAlRTATLCA2014.pdf
http://dx.doi.org/10.1007/978-3-319-08918-8_3
http://www.cs.swan.ac.uk/~csetzer/articles/setzerEtAlRTATLCA2014.bib
http://www.cs.swan.ac.uk/~csetzer/articles/popl13Draft.pdf
http://dx.doi.org/10.1145/2429069.2429075
http://dx.doi.org/10.1145/2429069.2429075
http://www.cs.swan.ac.uk/~csetzer/articles/popl2013.bib
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.pdf
http://dx.doi.org/10.1007/978-94-007-4435-6_16
http://www.cs.swan.ac.uk/~csetzer/articles/setzerMartinLoefFestschrift.bib


Difficulty defining Pred Using Iteration

I Using iteration pred, the inverse of 0,S is inefficient:

pred : N→ {−1} ∪ N
pred(0) = −1
pred(S(n)) = S′(pred(n))

where
S′ : {−1} ∪ N→ N
S′(−1) = 0
S(n) = S(n) if n ∈ N

pred(2) = S′(pred(1)) = S′(S′(pred(0)))
= S′(S′(−1)) = S′(0) = S(0) = 1

Anton Setzer (Swansea) How to Reason Informally Coinductively 29/ 30

Difficulty defining Cons Using Coiteration

I Using coiteration cons, the inverse of head, tail is difficult to define

cons : (N× Stream)→ Stream
head(cons(n, s)) = n
tail(cons(n, s)) = cons(head(s), tail(s))

e.g .tail(tail(cons(n, s))) = cons(head(tail(s)), tail(tail(s)))

Anton Setzer (Swansea) How to Reason Informally Coinductively 30/ 30


