Anton Setzer
Swansea University, Swansea UK
(Joint work with Andreas Abel and Stephan Adelsberger)
Agda Implementors’ Meeting XXV, Gothenburg, Sweden

12 May 2017

Interactive Programs in Agda

Objects

GUls

Conclusion

Bibliography

JFP 27, ¢8, 54 pages, 2017. (©) Cambridge University Press 2017 1
doi:10.1017/S0956796816000319

Interactive programming in Agda — Objects and
graphical user interfaces

ANDREAS ABEL
Department of Computer Science and Engineering, Gothenburg University, Sweden
(e-mail: andreas.abel@gu.se)

STEPHAN ADELSBERGER
P of . ion Systems and (i

Vienna University of Econamics, Austria
(e-mail: sadelsbeluu.ac.at)

ANTON SETZER

Department of Computer Science, Swansea University, Swansea SA2 8PP, UK
(e-mail: a.g.setzerGswan. ac.uk)

Abstract

+odall

We develop a gy for writing i ive and object-based programs (in the sense
of Wegner) in dependently typed functional ing I The thodology is

tilamantad i the andada Bhenmr acfada wemridas o mmtar dmilas ta the anae sead n

Library: https://github.com/agda/ooAgda
~ AntonSetzer Programming with GUIsin Agda 3/41

https://github.com/agda/ooAgda

Interactive Programs in Agda

Objects

GUIs

Conclusion

Bibliography

p" : 10 " C

An IOInterface is a record having fields Command and Response:

record |OInterface : Set; where
field Command : Set
Response : Command — Set

mutual
record 1000 (/: 10Interface) (A : Set) : Set where
coinductive

field force : 10 T A

data 1O (/: IOlnterface) (A : Set) : Set where
do : (c¢: Command /) (f: Response | ¢ — 1000 | A)
— 10 1A
return: A =10/ A

{4 NON_TERMINATING #-}
translatelO : V {A}
(tr: (c: C) — NativelO (R ¢))
(p: 100 I A)
— NativelO A
translatelO tr p = case (force p) of X
{ (do c f) — (tr ¢) native>>= X\ r — translatelO tr (f r)
; (return @) — nativeReturn a

}

Non termination is unproblematic since this function is only used as part of
the compilation process.

cat : 10Console Unit

force cat = do getLine \ line —
dooco (putStrLn line) X — —
cat

main : NativelO Unit
main = translatelOConsole cat

Interactive Programs in Agda

99 Bottles of Beer

» Andreas Abel
» wrote a version of 99 Bottles of Beer program
» based on the Haskell program,
» submitted it to http://www.99-bottles-of-beer.net/

s of Beer

in 1500 variations

START BROWSE LANGUAGES SEARCH LANGUAGES TOP LISTS GUESTBOOK SUBMIT NEW LANGUAGE
Team | Song Lyrics | History | Privacy

Welcome to 99 Bottles of Beer

This Website holds a collection of the Song 99 Bottles of Beer programmed in different programming languages.
Actually the song is represented in 1500 different programming languages and variations. For more detailed
information refer to historic inf tion.

All these little programs generate the Iyrics to the scng 99 Bottles of Beer as an output. In case you do not know
the song, you will find the lyrics to the song |

Anton Setzer Programming with GUls in Agda 10/ 47

http://www.99-bottles-of-beer.net/

Interactive Programs in Agda

Output of 99 Bottles of Beer Program
99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

Anton Setzer Programming with GUls in Agda 11/ 47

bottles : N — String

bottles 0 = "no more bottles"
bottles 1 = "1 bottle"

bottles n = show n ++ " bottles"

verse : N — String
verse 0 = "No more bottles of beer on the wall,"
4+ "no more bottles of beer.\n"
++ "Go to the store and buy some more,"
+- "99 bottles of beer on the wall."
verse (suc n) = bottles (suc n)
++ " of beer on the wall, "
+H- bottles (suc n)
4+ " of beer.\n"
++ "Take one down and pass it around, "
-+ bottles n

main : ConsoleProg
main = run (sequencelO (map (WriteString o verse) (downFrom 100)))

p’:10s" (s =ns'c'r) ——":Cs"

p:10s —— ¢:Cs

record 1OInterface® : Sety where
field
State®
Command® :
Response® :

next®

. Sety

(s: State®) — Sety
(s: State®)(c: Command® s) — Set

: (s: State®)(c: Command® s)

(r: Response® s c)
— State®

record 10° (A: S — Set) (s: S) : Set; where
coinductive
field
force® : 10%" A's

data 10%" (A: S — Set) : S — Sety where
do®" : {s:S}(c: Cs)
(f:(r: Rsc) —10°A(nextscr))
— 10" As
return® @ {s: S} (a: As) - 10% As

Interactive Programs in Agda

Objects

GUls

Conclusion

Bibliography

Objects

Objects

» An object is a server-side interactive program

» |t receives method calls, and depending on the method returns an
element of the return type.

» An interface for an object consist of methods and the result type:

record Interface : Set; where
field Method : Set
Result : Method — Set

» An Object of an interface | has a method which for every method
returns an element of the result type and the updated object:

record Object (/: Interface) : Set where
coinductive
field objectMethod : (m : Method /) — Result / m x Object /

Anton Setzer Programming with GUls in Agda 18/ 47

Objects

Example: Cell Interface

A cell contains one element.
The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where
get : CellMethod A
put : A — CellMethod A

CellResult . V{A} — CellMethod A — Set
CellResult {A} get = A
CellResult (put —) = Unit

celll (A : Set) — Interface

Method (celll A) = CellMethod A
Result (celll A) m = CellResult m

Anton Setzer Programming with GUls in Agda 19/ 47

The cell object is defined as follows:

Cell : Set — Set
Cell A = Object (celll A)

cell : {A:Set} - A— Cell A
objectMethod (cell a) get =(a ,cella)
objectMethod (cell a) (put b) = (unit, cell b)

IO Objects are like Objects, but methods execute an interactive program
before returning the result:

record 100bject (ko : |OInterface) (/ : Interface) : Set where
coinductive
field method : (m : Method /)
— 1000 ko (Result I m x 100bject k, /)

Interactive Programs in Agda
Objects

GUls

Conclusion

Bibliography

@ -0 Start Text
[click]

GUIs

WxHaskell

» The use of WxHaskell and MVar in Agda is work by Stephan
Adelsberger.

» Haskell library for writing GUIs which supports server side programs
» Examples:
» frame [text := “Frame Title"]

Will create a frame with title Frame Title.

» set myframe [on paint := prog]
sets for myframe the on paint method to execute prog, where
prog :: 10 ()

» Similar code allows to set action listeners to buttons.

Anton Setzer Programming with GUls in Agda 24/ 47

GUIs

MVar

v

We need to share values between the different action handlers.

v

Action listeners can be executed in parallel.

v

Use of MVar to communicate values between action handlers.

» MVar are a mutual location which can be empty or contain a value of
a given type.
There are commands for

v

» creating a new MVar
» putting a value into an MVar
» taking a value out of an MVar.

Anton Setzer Programming with GUls in Agda 25/ 47

postulate MVar : Set — Set
{-# COMPILE GHC MVar = type Control.Concurrent.MVar #-}

Var : Set — Set
Var = MVar

GUIs

|O programs for handling MVar

postulate
nativeNewVar : {A : Set} — A — NativelO (Var A)
nativeTakeVar : {A : Set} — Var A — NativelO A
nativePutVar : {A: Set} — Var A — A — NativelO Unit

{-# COMPILE GHC nativeNewVar = (\ _ -> Control.Concurrent.newM

{-# COMPILE GHC nativeTakeVar = (\ _ -> Control.Concurrent.takeM
{-# COMPILE GHC nativePutVar = (\ _ -> Control.Concurrent.putMV

Anton Setzer Programming with GUls in Agda 27/ 47

» A thread running nativePutVar
» blocks until the MVar is empty,
» then puts a value into that location.
» A thread running nativeTakeVar
» blocks until the variable is non-empty,
» then reads the value,
» leaving the location empty.

» We want to deal with multiple Variable Lists:

data VarList : Set; where
(] . VarList
addVar : (A : Set) — Var A — VarList — VarList

» We form the product of its elements:

prod : VarList — Set

prod | = Unit

prod (addVar Av[]) = A

prod (addVar Av/) = A x prod /

» We lift nativeTakeVar, nativePutVar to VarList:

takeVar : (/: VarList) — NativelO (prod /)

putVar : (/: VarList) — prod | — NativelO Unit

» An action handler will now

vV vyVvYyy

take the variables from our current varlist
execute some |O commands

modify those values

and put them back into the current varlist:

dispatch : (/: VarList)
(handler : prod | — NativelO (prod /))
— NativelO Unit
dispatch / handler = takeVar | native>=Xa —
handler a native>=\ a; —
putVar [a;

GUIs

Running Multiple Handlers in Sequence

» While an action handler is running, it is blocking the VarList and
therefore other action handlers.

» We want to trigger other action handlers from one action handlers,
and want to allow them to execute in between an action handler.

» Therefore we replace action handlers by a list of action handlers,
which are run in sequence.

dispatchList : (/: VarList)
(handler : List (prod / — NativelO (prod /)))
— NativelO Unit
dispatchList / [] = nativeReturn _
dispatchList / (p :: rest) = dispatch / p natives>= X\ _ —
dispatchList [rest

Anton Setzer Programming with GUls in Agda 32/ 47

GUIs

Two Levels of 10 programs

» We obtain two 10 interfaces.

» Level 1 is the 10 interface for writing action handlers.
We add to it all commands which don’'t make use of action handlers.
» Level 2 is in which the program is written which
> creates the GUI
> adds level 1 action handlers to events.
It contains all Level 1 commands.
For size reasons Level 2 will be in Set;.
It contains as well operations for creating variables.
It is a state dependent interface, depending on the created variables.

v vy VvYy

Anton Setzer Programming with GUls in Agda 33/ 47

data GuiLevlCommand : Set where
makeFrame : GuiLevlCommand
makeButton : Frame — GuiLevlCommand
addButton : Frame — Button — GuiLevlCommand
drawBitmap : DC — Bitmap — Point — Bool
— GuiLevlCommand
repaint : Frame — GuiLevlCommand

GuiLevlResponse : GuiLevlCommand — Set

GuilLevlResponse makeFrame = Frame
GuiLevlResponse (makeButton _) = Button
GuilLevlResponse _ = Unit

GuiLevlInterface : |OlInterface
Command GuilLevlInterface = GuiLevlCommand
Response GuiLevlinterface = GuiLevlResponse

GUIs

Graphics Level2 Commands

GuilLev2State : Set;

GuilLev2State = VarList

data GuiLev2Command (s : GuilLev2State) : Set; where

level1C
createVar
setButtonHandler :

setOnPaint

Anton Setzer

: GuiLevlCommand — GuiLev2Command s
. {A: Set} - A — GuiLev2Command s

Button
— List (prod s

— 10 Guilevlinterface oo (prod s))
— GuiLev2Command s

. Frame

— List (prod s - DC — Rect
— 10 Guilevlinterface oo (prod s))
— GuiLev2Command s

Programming with GUls in Agda 36/ 47

GUIs

Graphics Level2 Response 4+ Next

GuiLev2Response : (s: GuiLev2State) — GuiLev2Command s

— Set
GuiLev2Response _ (levellC ¢) = GuiLev1Response ¢
GuilLev2Response _ (createVar {A} a) = Var A
GuiLev2Response _ _ = Unit

GuiLev2Next : (s: GuiLev2State) — (c: GuiLev2Command s)
— GuilLev2Response s ¢
— Guilev2State
GuilLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s _ _ =5

Anton Setzer Programming with GUls in Agda 37/ 47

GuiLev2Interface : |OInterface®

State® GuilLev2Interface = GuilLev2State
Command® GuilLev2Interface = GuiLev2Command
Response® GuiLev2Interface = GuiLev2Response
next® GuilLev2Interface = GuiLev2Next

GUIs

Action Handling Object

data ActionHandlerMethod : Set where

onPaintM : DC — Rect — ActionHandlerMethod
moveSpaceShipM : Frame — ActionHandlerMethod
callRepaintM : Frame — ActionHandlerMethod

ActionHandlerResult : ActionHandlerMethod — Set
ActionHandlerResult _ = Unit

ActionHandlerInterface : Interface
Method ActionHandlerInterface = ActionHandlerMethod
Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set
ActionHandler = 100bject GuiLevlInterface ActionHandlerInterface

Anton Setzer Programming with GUls in Agda 39/ 47

actionHandler : Z — ActionHandler

method (actionHandler z) (onPaintM dc rect) =
dooo (drawBitmap dc ship (z, (+ 150)) true) X = —
returnoo (unit , actionHandler z)
method (actionHandler z) (moveSpaceShipM fra) =
returnoo (unit , actionHandler (z + (+ 20)))
method (actionHandler z) (callRepaintM fra) =
dooo (repaint fra) X _ —
returnoo (unit , actionHandler z)

actionHandlerlInit : ActionHandler
actionHandlerlnit = actionHandler (4 150)

onPaint : ActionHandler — DC — Rect
— 10 GuilevlInterface ActionHandler
onPaint obj dc rect = maplO proj, (method obj (onPaintM dc rect))

moveSpaceShip : Frame — ActionHandler
— 10 GuiLevlinterface ActionHandler
moveSpaceShip fra obj = maplO proj>
(method obj (moveSpaceShipM fra))

callRepaint : Frame — ActionHandler
— 10 GuilLevlinterface ActionHandler

callRepaint fra obj = maplO projo (method obj (callRepaintM fra))

buttonHandler : Frame — List (ActionHandler
— 10 GuilLevlinterface ActionHandler)
buttonHandler fra = moveSpaceShip fra :: [callRepaint fra |

program : 10° GuiLev2Interface (A _ — Unit)]
program = do® (level1C makeFrame) X\ fra —
do® (levellC (makeButton fra)) X\ bt —
do® (levellC (addButton fra bt)) X — —
do® (createVar actionHandlerlnit) X _ —
do® (setButtonHandler bt (moveSpaceShip fra
i [callRepaint fra])) A = —
do® (setOnPaint fra [onPaint])
return®

main : NativelO Unit
main = start (translateLev2 program)

Conclusion

Conclusion

v

Objects are essentially interactive programs.

v

Writing simple interactive programs is relatively easy.

» Challenge: write your little program in Agda instead of awk, sed, perl,
python, ...

v

State dependent interactive programs.
State dependent objects can be defined similarly.

\4

Anton Setzer Programming with GUls in Agda 44/ 47

Conclusion

Conclusion

v

WxHaskell as a suitable library for server side programs.

v

Use of MVar to communicate between threads.

v

2 levels of 10 interfaces needed for dealing with action handlers.

v

Handling of Graphical User Interfaces using action listeners similar
to what is done in Java.

v

Bundling of action listeners into one object.

v

Writing GUIs in Agda seems feasible.

Anton Setzer Programming with GUls in Agda 45/ 47

Bibliography

Bibliography |

[3 Andreas Abel, Stephan Adelsberger, and Anton Setzer.
ooAgda.
Agda Library. Available from https://github.com/agda/ooAgda,
2016.

[Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda — objects and graphical user
interfaces.

Journal of Functional Programming, 27, Jan 2017.

[3 Anton Setzer.
Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006.
Available from
http://www.cs.nott.ac.uk/~nhn/TFP2006/TFP2006-Programme.html
and http://www.cs.swan.ac.uk/~csetzer/index.html.

Anton Setzer Programming with GUls in Agda 46/ 47

https://github.com/agda/ooAgda

Anto Setzer.
How to reason coinductively informally.
In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors,
Advances in Proof Theory, pages 377-408. Springer, 2016.

	Interactive Programs in Agda
	Objects
	GUIs
	Conclusion
	Bibliography

