
Programming with GUIs in Agda

Anton Setzer
Swansea University, Swansea UK

(Joint work with Andreas Abel and Stephan Adelsberger)
Agda Implementors’ Meeting XXV, Gothenburg, Sweden

12 May 2017

Interactive Programs in Agda

Objects

GUIs

Conclusion

Bibliography

ooAgda JFP-Paper [AAS17]

Library: https://github.com/agda/ooAgda
Anton Setzer Programming with GUIs in Agda 3/ 47

https://github.com/agda/ooAgda

Interactive Programs in Agda

Interactive Programs in Agda

Objects

GUIs

Conclusion

Bibliography

Anton Setzer Programming with GUIs in Agda 4/ 47

Interactive Programs in Agda

IO-Trees (Non-State Dependent)

�������� ����

�������� ����

p : IO

(r : R c)

(r ′ : R c′)

p′′ : IO

p′ : IO

c : C

c′′ : C

c′ : C

Anton Setzer Programming with GUIs in Agda 5/ 47

Interactive Programs in Agda

IOInterface

An IOInterface is a record having fields Command and Response:

record IOInterface : Set1 where
field Command : Set

Response : Command → Set

Anton Setzer Programming with GUIs in Agda 6/ 47

Interactive Programs in Agda

IO

mutual
record IO∞ (I : IOInterface) (A : Set) : Set where
coinductive
field force : IO I A

data IO (I : IOInterface) (A : Set) : Set where
do : (c : Command I) (f : Response I c → IO∞ I A)

→ IO I A
return : A → IO I A

Anton Setzer Programming with GUIs in Agda 7/ 47

Interactive Programs in Agda

Running Interactive Programs

{-# NON TERMINATING #-}
translateIO : ∀ {A}

(tr : (c : C) → NativeIO (R c))
(p : IO∞ I A)
→ NativeIO A

translateIO tr p = case (force p) of ń
{ (do c f) → (tr c) native>>= ń r → translateIO tr (f r)
; (return a) → nativeReturn a
}

Non termination is unproblematic since this function is only used as part of
the compilation process.

Anton Setzer Programming with GUIs in Agda 8/ 47

Interactive Programs in Agda

A First Interactive Program

cat : IOConsole Unit
force cat = do getLine ń line →

do∞ (putStrLn line) ń →
cat

main : NativeIO Unit
main = translateIOConsole cat

Anton Setzer Programming with GUIs in Agda 9/ 47

Interactive Programs in Agda

99 Bottles of Beer

I Andreas Abel
I wrote a version of 99 Bottles of Beer program
I based on the Haskell program,
I submitted it to http://www.99-bottles-of-beer.net/

Anton Setzer Programming with GUIs in Agda 10/ 47

http://www.99-bottles-of-beer.net/

Interactive Programs in Agda

Output of 99 Bottles of Beer Program

99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

· · ·

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

Anton Setzer Programming with GUIs in Agda 11/ 47

Interactive Programs in Agda

99 Bottles in ooAgda

bottles : N → String
bottles 0 = "no more bottles"
bottles 1 = "1 bottle"
bottles n = show n ++ " bottles"

verse : N → String
verse 0 = "No more bottles of beer on the wall,"

++ "no more bottles of beer.\n"
++ "Go to the store and buy some more,"
++ "99 bottles of beer on the wall."

verse (suc n) = bottles (suc n)
++ " of beer on the wall, "
++ bottles (suc n)
++ " of beer.\n"
++ "Take one down and pass it around, "
++ bottles n
++ " of beer on the wall.\n"Anton Setzer Programming with GUIs in Agda 12/ 47

Interactive Programs in Agda

99 Bottles in ooAgda

main : ConsoleProg
main = run (sequenceIO (map (WriteString ◦ verse) (downFrom 100)))

Anton Setzer Programming with GUIs in Agda 13/ 47

Interactive Programs in Agda

State Dependent IO-Trees

�������� ����

�������� ����

(r : R s c)

(r ′ : R s′ c′)

p : IO s

p′ : IO s′ (s′ = n s c r)

p′′ : IO s′′ (s′′ = n s′ c′ r ′)

c : C s

c′ : C s′

c′′ : C s′′

Anton Setzer Programming with GUIs in Agda 14/ 47

Interactive Programs in Agda

State Dependent IO – Interface

record IOInterfaces : Set2 where
field
States : Set1
Commands : (s : States) → Set1
Responses : (s : States)(c : Commands s) → Set
nexts : (s : States)(c : Commands s)

(r : Responses s c)
→ States

Anton Setzer Programming with GUIs in Agda 15/ 47

Interactive Programs in Agda

State Dependent IO

record IOs (A : S → Set) (s : S) : Set1 where
coinductive
field
forces : IOs’ A s

data IOs’ (A : S → Set) : S → Set1 where
dos’ : {s : S} (c : C s)

(f : (r : R s c) → IOs A (next s c r))
→ IOs’ A s

returns’ : {s : S} (a : A s) → IOs’ A s

Anton Setzer Programming with GUIs in Agda 16/ 47

Objects

Interactive Programs in Agda

Objects

GUIs

Conclusion

Bibliography

Anton Setzer Programming with GUIs in Agda 17/ 47

Objects

Objects

I An object is a server-side interactive program
I It receives method calls, and depending on the method returns an

element of the return type.
I An interface for an object consist of methods and the result type:

record Interface : Set1 where
field Method : Set

Result : Method → Set

I An Object of an interface I has a method which for every method
returns an element of the result type and the updated object:

record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I

Anton Setzer Programming with GUIs in Agda 18/ 47

Objects

Example: Cell Interface

A cell contains one element.
The methods allow to get its content and put a new value into the cell:

data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put) = Unit

cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m

Anton Setzer Programming with GUIs in Agda 19/ 47

Objects

Definition of Cell

The cell object is defined as follows:

Cell : Set → Set
Cell A = Object (cellI A)

cell : {A : Set} → A → Cell A
objectMethod (cell a) get = (a , cell a)
objectMethod (cell a) (put b) = (unit , cell b)

Anton Setzer Programming with GUIs in Agda 20/ 47

Objects

IO Objects

IO Objects are like Objects, but methods execute an interactive program
before returning the result:

record IOObject (Iio : IOInterface) (I : Interface) : Set where
coinductive
field method : (m : Method I)

→ IO∞ Iio (Result I m × IOObject Iio I)

Anton Setzer Programming with GUIs in Agda 21/ 47

GUIs

Interactive Programs in Agda

Objects

GUIs

Conclusion

Bibliography

Anton Setzer Programming with GUIs in Agda 22/ 47

SpaceShip Example

GUIs

WxHaskell

I The use of WxHaskell and MVar in Agda is work by Stephan
Adelsberger.

I Haskell library for writing GUIs which supports server side programs
I Examples:

I frame [text := “Frame Title”]

Will create a frame with title Frame Title.

I set myframe [on paint := prog]

sets for myframe the on paint method to execute prog, where

prog :: IO ()

I Similar code allows to set action listeners to buttons.

Anton Setzer Programming with GUIs in Agda 24/ 47

GUIs

MVar

I We need to share values between the different action handlers.
I Action listeners can be executed in parallel.
I Use of MVar to communicate values between action handlers.
I MVar are a mutual location which can be empty or contain a value of

a given type.
I There are commands for

I creating a new MVar
I putting a value into an MVar
I taking a value out of an MVar.

Anton Setzer Programming with GUIs in Agda 25/ 47

GUIs

Defining MVar

postulate MVar : Set → Set
{-# COMPILE GHC MVar = type Control.Concurrent.MVar #-}

Var : Set → Set
Var = MVar

Anton Setzer Programming with GUIs in Agda 26/ 47

GUIs

IO programs for handling MVar

postulate
nativeNewVar : {A : Set} → A → NativeIO (Var A)
nativeTakeVar : {A : Set} → Var A → NativeIO A
nativePutVar : {A : Set} → Var A → A → NativeIO Unit

{-# COMPILE GHC nativeNewVar = (\ -> Control.Concurrent.newMVar) #-}
{-# COMPILE GHC nativeTakeVar = (\ -> Control.Concurrent.takeMVar) #-}
{-# COMPILE GHC nativePutVar = (\ -> Control.Concurrent.putMVar) #-}

Anton Setzer Programming with GUIs in Agda 27/ 47

GUIs

Thread Safety of MVar

I A thread running nativePutVar
I blocks until the MVar is empty,
I then puts a value into that location.

I A thread running nativeTakeVar
I blocks until the variable is non-empty,
I then reads the value,
I leaving the location empty.

Anton Setzer Programming with GUIs in Agda 28/ 47

GUIs

Variable Lists

I We want to deal with multiple Variable Lists:

data VarList : Set1 where
[] : VarList
addVar : (A : Set) → Var A → VarList → VarList

I We form the product of its elements:

prod : VarList → Set
prod [] = Unit
prod (addVar A v []) = A
prod (addVar A v l) = A × prod l

Anton Setzer Programming with GUIs in Agda 29/ 47

GUIs

Variable Lists

I We lift nativeTakeVar, nativePutVar to VarList:

takeVar : (l : VarList) → NativeIO (prod l)

putVar : (l : VarList) → prod l → NativeIO Unit

Anton Setzer Programming with GUIs in Agda 30/ 47

GUIs

Dispatch

I An action handler will now
I take the variables from our current varlist
I execute some IO commands
I modify those values
I and put them back into the current varlist:

dispatch : (l : VarList)
(handler : prod l → NativeIO (prod l))
→ NativeIO Unit

dispatch l handler = takeVar l native>>= ń a →
handler a native>>= ń a1 →
putVar l a1

Anton Setzer Programming with GUIs in Agda 31/ 47

GUIs

Running Multiple Handlers in Sequence

I While an action handler is running, it is blocking the VarList and
therefore other action handlers.

I We want to trigger other action handlers from one action handlers,
and want to allow them to execute in between an action handler.

I Therefore we replace action handlers by a list of action handlers,
which are run in sequence.

dispatchList : (l : VarList)
(handler : List (prod l → NativeIO (prod l)))
→ NativeIO Unit

dispatchList l [] = nativeReturn
dispatchList l (p :: rest) = dispatch l p native>>= ń →

dispatchList l rest

Anton Setzer Programming with GUIs in Agda 32/ 47

GUIs

Two Levels of IO programs

I We obtain two IO interfaces.
I Level 1 is the IO interface for writing action handlers.

We add to it all commands which don’t make use of action handlers.
I Level 2 is in which the program is written which

I creates the GUI
I adds level 1 action handlers to events.

I It contains all Level 1 commands.
I For size reasons Level 2 will be in Set1.
I It contains as well operations for creating variables.
I It is a state dependent interface, depending on the created variables.

Anton Setzer Programming with GUIs in Agda 33/ 47

GUIs

Graphics Interface Level1

data GuiLev1Command : Set where
makeFrame : GuiLev1Command
makeButton : Frame → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool

→ GuiLev1Command
repaint : Frame → GuiLev1Command

GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton) = Button
GuiLev1Response = Unit

Anton Setzer Programming with GUIs in Agda 34/ 47

GUIs

Graphics Interface Level1

GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response

Anton Setzer Programming with GUIs in Agda 35/ 47

GUIs

Graphics Level2 Commands

GuiLev2State : Set1
GuiLev2State = VarList

data GuiLev2Command (s : GuiLev2State) : Set1 where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button

→ List (prod s
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s
setOnPaint : Frame

→ List (prod s → DC → Rect
→ IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s

Anton Setzer Programming with GUIs in Agda 36/ 47

GUIs

Graphics Level2 Response + Next

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s
→ Set

GuiLev2Response (level1C c) = GuiLev1Response c
GuiLev2Response (createVar {A} a) = Var A
GuiLev2Response = Unit

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s = s

Anton Setzer Programming with GUIs in Agda 37/ 47

GUIs

Graphics Level2 Interface

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State
Commands GuiLev2Interface = GuiLev2Command
Responses GuiLev2Interface = GuiLev2Response
nexts GuiLev2Interface = GuiLev2Next

Anton Setzer Programming with GUIs in Agda 38/ 47

GUIs

Action Handling Object

data ActionHandlerMethod : Set where
onPaintM : DC → Rect → ActionHandlerMethod
moveSpaceShipM : Frame → ActionHandlerMethod
callRepaintM : Frame → ActionHandlerMethod

ActionHandlerResult : ActionHandlerMethod → Set
ActionHandlerResult = Unit

ActionHandlerInterface : Interface
Method ActionHandlerInterface = ActionHandlerMethod
Result ActionHandlerInterface = ActionHandlerResult

ActionHandler : Set
ActionHandler = IOObject GuiLev1Interface ActionHandlerInterface

{-# TERMINATING #-}
Anton Setzer Programming with GUIs in Agda 39/ 47

GUIs

Action Handling Object

actionHandler : Z → ActionHandler
method (actionHandler z) (onPaintM dc rect) =

do∞ (drawBitmap dc ship (z , (+ 150)) true) ń →
return∞ (unit , actionHandler z)

method (actionHandler z) (moveSpaceShipM fra) =
return∞ (unit , actionHandler (z + (+ 20)))

method (actionHandler z) (callRepaintM fra) =
do∞ (repaint fra) ń →
return∞ (unit , actionHandler z)

actionHandlerInit : ActionHandler
actionHandlerInit = actionHandler (+ 150)

Anton Setzer Programming with GUIs in Agda 40/ 47

GUIs

Action Handlers

onPaint : ActionHandler → DC → Rect
→ IO GuiLev1Interface ActionHandler

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

moveSpaceShip fra obj = mapIO proj2
(method obj (moveSpaceShipM fra))

Anton Setzer Programming with GUIs in Agda 41/ 47

GUIs

Action Handlers

callRepaint : Frame → ActionHandler
→ IO GuiLev1Interface ActionHandler

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

buttonHandler : Frame → List (ActionHandler
→ IO GuiLev1Interface ActionHandler)

buttonHandler fra = moveSpaceShip fra :: [callRepaint fra]

Anton Setzer Programming with GUIs in Agda 42/ 47

GUIs

Spaceship Program

program : IOs GuiLev2Interface (ń → Unit) []
program = dos (level1C makeFrame) ń fra →

dos (level1C (makeButton fra)) ń bt →
dos (level1C (addButton fra bt)) ń →
dos (createVar actionHandlerInit) ń →
dos (setButtonHandler bt (moveSpaceShip fra

:: [callRepaint fra])) ń →
dos (setOnPaint fra [onPaint])
returns

main : NativeIO Unit
main = start (translateLev2 program)

Anton Setzer Programming with GUIs in Agda 43/ 47

Conclusion

Conclusion

I Objects are essentially interactive programs.
I Writing simple interactive programs is relatively easy.

I Challenge: write your little program in Agda instead of awk, sed, perl,
python, . . .

I State dependent interactive programs.
I State dependent objects can be defined similarly.

Anton Setzer Programming with GUIs in Agda 44/ 47

Conclusion

Conclusion

I WxHaskell as a suitable library for server side programs.
I Use of MVar to communicate between threads.
I 2 levels of IO interfaces needed for dealing with action handlers.
I Handling of Graphical User Interfaces using action listeners similar

to what is done in Java.
I Bundling of action listeners into one object.
I Writing GUIs in Agda seems feasible.

Anton Setzer Programming with GUIs in Agda 45/ 47

Bibliography

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
ooAgda.
Agda Library. Available from https://github.com/agda/ooAgda,
2016.

Andreas Abel, Stephan Adelsberger, and Anton Setzer.
Interactive programming in Agda – objects and graphical user
interfaces.
Journal of Functional Programming, 27, Jan 2017.

Anton Setzer.
Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006.
Available from
http://www.cs.nott.ac.uk/∼nhn/TFP2006/TFP2006-Programme.html
and http://www.cs.swan.ac.uk/∼csetzer/index.html.

Anton Setzer Programming with GUIs in Agda 46/ 47

https://github.com/agda/ooAgda

Bibliography

Bibliography II

Anto Setzer.
How to reason coinductively informally.
In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors,
Advances in Proof Theory, pages 377–408. Springer, 2016.

Anton Setzer Programming with GUIs in Agda 47/ 47

	Interactive Programs in Agda
	Objects
	GUIs
	Conclusion
	Bibliography

