
Interactive Programs in Agda

Anton Setzer
Swansea University, Swansea UK

10th Agda Implementors Meeting 2009
Gothenburg

15 September 2009

Anton Setzer Interactive Programs in Agda 1/ 39

Defining IO in Agda

Execution of IO Programs

Dealing with Complex Programs

A Graphics Library for Agda

Anton Setzer Interactive Programs in Agda 2/ 39

Defining IO in Agda

The Need for Interactive Programs

I Critical Systems are interactive. We need to be able to prove the
correctness of interactive programs.

I Programming with Dependent Types only convincing, if we can write
interactive programs.

Anton Setzer Interactive Programs in Agda 3/ 39

Defining IO in Agda

Interfaces

I We consider programs which interact with the real world:
I They issue a command . . .

(e.g.

(1) get last key pressed;
(2) write character to terminal;
(3) set traffic light to red)

I . . . and obtain a response, depending on the command . . .
(e.g.

I in (1) the key pressed
I in (2), (3) a trivial element indicating that this was done, or a message

indicating success or an error element).

Anton Setzer Interactive Programs in Agda 4/ 39

Defining IO in Agda

Interactive Programs

Program

Response Command

World

Anton Setzer Interactive Programs in Agda 5/ 39

Defining IO in Agda

Interface in Agda

I Interface for interactive program given by
I A set of commands the program can issue

C : Set

I A set of responses, depending on commands

R : C→ Set

Anton Setzer Interactive Programs in Agda 6/ 39

Defining IO in Agda

Interactive Programs in Agda

I Interactive programs in Agda given by a sequence of commands, and
interactive programs depending on the responses.

I Additionally we want programs to terminate giving result a : A for
some A : Set.

I We need to allow non-terminating programs. Therefore the type
needs to be defined coinductively.

Anton Setzer Interactive Programs in Agda 7/ 39

Defining IO in Agda

IO Monad in Agda

codata IO (C : Set) (R : C → Set) (A : Set) : Set where
do : (c : C)→ (f : R c → IO C R A)→ IO C R A
return : (a : A)→ IO C R A

Anton Setzer Interactive Programs in Agda 8/ 39

Defining IO in Agda

Monad Operations

I η := return.

I >>= can be defined:

>>= : {C : Set} → {R : C → Set} → {A B : Set}
→ IO C R A
→ (A→ IO C R B)
→ IO C R B

do c f >>= q = do c (λx → f x >>= q)
return a>>= q = q a

Anton Setzer Interactive Programs in Agda 9/ 39

Defining IO in Agda

IO in Haskell

I There is one uniform IO type in Haskell. We call its translated version

nativeIO : Set→ Set

I We can import it together with the monad operations as follows:

Anton Setzer Interactive Programs in Agda 10/ 39

Defining IO in Agda

Importing nativeIO

postulate

nativeIO : Set -> Set

nativeReturn : { A : Set} -> A -> nativeIO A

native>>= : {A B : Set} -> nativeIO A

-> (A -> nativeIO B)

-> nativeIO B

{-# COMPILED_TYPE nativeIO IO #-}

{-# COMPILED _native>>=_

(_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}

{-# COMPILED nativeReturn

(_ -> return :: a -> IO a) #-}

Anton Setzer Interactive Programs in Agda 11/ 39

Defining IO in Agda

Simple nativeIO Operations

I Simple nativeIO Operations in Haskell have the form

operation : A1 → A2 → · · · → An → IOB

I A collection of such operations can be represented in the true IO type
as follows:

I We form an interface C,R for all operations relevant.
I C is an inductive data type, with constructors for each ioProg

corresponding to the IO type, so we have constructor

operationC : A1 → A2 → · · · → An → C

I R : C→ Set is defined by case distinction, e.g.

R (operationC a1 . . . an) = B

Anton Setzer Interactive Programs in Agda 12/ 39

Defining IO in Agda

Example

postulate

nativePutStrLn : String -> nativeIO Unit

nativeGetLine : nativeIO String

{-# COMPILED nativePutStrLn putStrLn #-}

{-# COMPILED nativeGetLine getLine #-}

Anton Setzer Interactive Programs in Agda 13/ 39

Defining IO in Agda

Example

data ConsoleCommands : Set where

putStrLn : String -> ConsoleCommands

getLine : ConsoleCommands

ConsoleResponses : ConsoleCommands -> Set

ConsoleResponses (putStrLn s) = Unit

ConsoleResponses getLine = String

IOConsole : Set -> Set

IOConsole = IO ConsoleCommands ConsoleResponses

Anton Setzer Interactive Programs in Agda 14/ 39

Execution of IO Programs

Defining IO in Agda

Execution of IO Programs

Dealing with Complex Programs

A Graphics Library for Agda

Anton Setzer Interactive Programs in Agda 15/ 39

Execution of IO Programs

Translation of IO Programs into Native IO

I In order to define a generic translation Function we assume for our
interface C, R a function

translateLocal : (c : C)→ nativeIO (R c)

Anton Setzer Interactive Programs in Agda 16/ 39

Execution of IO Programs

Example

translateIOConsoleLocal : (c : ConsoleCommands)

-> nativeIO (ConsoleResponses c)

translateIOConsoleLocal (putStrLn s) = nativePutStrLn s

translateIOConsoleLocal getLine = nativeGetLine

Anton Setzer Interactive Programs in Agda 17/ 39

Execution of IO Programs

Generic Translation

translateGeneric :

forall {A C R}

-> (translateLocal : (c : C) -> nativeIO (R c))

-> IO C R A

-> nativeIO A

translateGeneric translateLocal (do c f) =

(translateLocal c) native>>=

(\ r

-> translateGeneric translateLocal (f r))

translateGeneric translateLocal (return a) =

nativeReturn a

Anton Setzer Interactive Programs in Agda 18/ 39

Execution of IO Programs

Execution

I An interactive program can now be executed by defining an element
main : nativeIO A

Anton Setzer Interactive Programs in Agda 19/ 39

Execution of IO Programs

Example

myProgram : IOConsole Unit

myProgram = do getLine (\ line -> (

do (putStrLn line) (\ _ -> (

do (putStrLn line) (\ _ ->

myProgram)))))

main : nativeIO Unit

main = translateIOConsole myProgram

Anton Setzer Interactive Programs in Agda 20/ 39

Execution of IO Programs

Termination Checker

I The translation from IO to nativeIO doesn’t termination check.
I The definition of a specific element of IO C R termination checks, if

defined by guarded recursion.
I IO, >>=, translateGeneric and specific C, R, together with

translateLocal can be defined in a library, where termination checker is
switched off.

I User defined code can be termination checked.

Anton Setzer Interactive Programs in Agda 21/ 39

Dealing with Complex Programs

Defining IO in Agda

Execution of IO Programs

Dealing with Complex Programs

A Graphics Library for Agda

Anton Setzer Interactive Programs in Agda 22/ 39

Dealing with Complex Programs

Problem of Modularity

I When defining recursive programs in IO C R A we are restricted to a
sequence of constructors.

I Especially we are not allowed to use
I if then else .
I >>=.

I Writing of modular programs difficult.

I One solution: Improve the termination checker, or use something like
size types.

Anton Setzer Interactive Programs in Agda 23/ 39

Dealing with Complex Programs

Direct Solution

data IO+ (C : Set) (R : C -> Set) (A : Set) : Set where

do : (c : C) -> (f : R c -> IO C R A) -> IO+ C R A

mutual

IOrec : {C : Set} -> {R : C -> Set} -> {A B : Set}

-> (A -> IO+ C R (A + B))

-> A -> IO C R B

...

IOrecaux’ : {C : Set} -> {R : C -> Set} -> {A B : Set}

-> (A -> IO+ C R (A + B))

-> IO C R (A + B) -> IO C R B

...

IOrecaux’’ : {C : Set} -> {R : C -> Set} -> {A B : Set}

-> (A -> IO+ C R (A + B))

-> IO+ C R (A + B) -> IO C R B

...

Anton Setzer Interactive Programs in Agda 24/ 39

Dealing with Complex Programs

Direct Solution (Cont)

I Instead of defining
mutual

f : A -> IO C R D

f a = prog1 a’ >>= \ x -> if t then f a’’ else g b

g : B -> IO C R D

g b = prog2 b’ >>= if t’ then f a else return d

which doesn’t termination check

Anton Setzer Interactive Programs in Agda 25/ 39

I Define prog1, prog2 as returning elements of IO+ and define

rec : A -> IO C R (A + D)

rec a = return (inl a)

finish: D -> IO C R (A + D)

finish d = return (inr d)

Dealing with Complex Programs

Direct Solution (Cont)

mutual

f’ : A -> IO+ C R (A + D)

f’ a = prog1 a’ +>>= \ x -> if t then rec a’’

else IO+toIO (g b)

g : B -> IO+ C R (A + D)

g b = prog2 b’ +>>= if t’ then rec a

else finish d

f : A -> IO C R D

f a = IORec f’ a

Anton Setzer Interactive Programs in Agda 27/ 39

A Graphics Library for Agda

Defining IO in Agda

Execution of IO Programs

Dealing with Complex Programs

A Graphics Library for Agda

Anton Setzer Interactive Programs in Agda 28/ 39

A Graphics Library for Agda

Importing the SOE Library

I We use the SOE library from Hudak’s book “The Haskell school of
expression”.

I Rather limited library.

I We import various native Haskell types, e.g.
postulate Window : Set

{-# COMPILED_TYPE Window Window #-}

postulate Size : Set

{-# COMPILED_TYPE Size SOE.Size #-}

postulate size : Int -> Int -> Size

{-# COMPILED size (\ x y -> (x,y) :: SOE.Size) #-}

Anton Setzer Interactive Programs in Agda 29/ 39

data Event : Set where

Key : Char -> Bool -> Event

Button : Point -> Bool -> Bool -> Event

MouseMove : Point -> Event

Resize : GLSize -> Event

Refresh : Event

Closed : Event

{-# COMPILED_DATA Event Event Key Button MouseMove Resize Refresh Closed #-}

postulate nativeMaybeGetWindowEvent : Window

-> nativeIO (Maybe Event)

{-# COMPILED nativeMaybeGetWindowEvent maybeGetWindowEvent #-}

postulate Graphic : Set

{-# COMPILED_TYPE Graphic SOE.Graphic #-}

postulate nativeDrawInWindow : Window -> Graphic

-> nativeIO Unit

{-# COMPILED nativeDrawInWindow drawInWindow #-}

postulate text : Point -> String -> Graphic

{-# COMPILED text text #-}

postulate nativeOpenWindow : String -> Size -> nativeIO Window

{-# COMPILED nativeOpenWindow openWindow #-}

data Color : Set where

black : Color

blue : Color

green : Color

...

{-# COMPILED_DATA Color SOE.Color SOE.Black SOE.Blue SOE.Green SOE.Cyan

SOE.Red SOE.Magenta SOE.Yellow SOE.White #-}

postulate withColor : Color -> Graphic -> Graphic

{-# COMPILED withColor withColor #-}

postulate polygon : List Point -> Graphic

{-# COMPILED polygon polygon #-}

postulate text1 : Point -> String -> Graphic

{-# COMPILED text1 text #-}

data GraphicsCommands : Set where

maybeGetWindowEvent : Window -> GraphicsCommands

drawInWindow : Window -> Graphic -> GraphicsCommands

openWindow : String -> Size -> GraphicsCommands

timeGetTime : GraphicsCommands

GraphicsResponses : GraphicsCommands -> Set

GraphicsResponses (maybeGetWindowEvent w) = Maybe Event

GraphicsResponses (drawInWindow w g) = Unit

GraphicsResponses (openWindow s s’) = Window

GraphicsResponses timeGetTime = Word32

IOGraphics : Set -> Set

IOGraphics = IO GraphicsCommands GraphicsResponses

translateIOGraphicsLocal : (c : GraphicsCommands)

-> nativeIO (GraphicsResponses c)

translateIOGraphicsLocal (maybeGetWindowEvent w)

= nativeMaybeGetWindowEvent w

translateIOGraphicsLocal (drawInWindow w g)

= nativeDrawInWindow w g

...

translateIOGraphics : {A : Set} -> IOGraphics A -> nativeIO A

translateIOGraphics = translateGeneric

translateIOGraphicsLocal

A Graphics Library for Agda

More Code

I Look at IOExperimentRecursion.agda.

Anton Setzer Interactive Programs in Agda 35/ 39

A Graphics Library for Agda

Other Agda Work in Swansea

I Combining SAT solver in Agda (PhD project Karim Kanso).
I Implementation of a simple SAT solver in Agda.
I Proof

(ϕ : For)
→ Check ϕ
→ (b : Vec Bool (numberVars ϕ))
→ T (b |= ϕ)

I Allows to proof formulas such as

T((s ∧Bool t) ∨Bool (¬Bool s) ∨Bool (¬Bool t))

for any s, t : Bool.
I check : For→ Bool replaced by a BUILTIN SAT solver in Agda.

(Plugin).

Anton Setzer Interactive Programs in Agda 36/ 39

A Graphics Library for Agda

Other Agda Work in Swansea

I Extraction of programs from proofs about real numbers with axioms
(PhD project Chi Ming Chuang).

I Experiments with specificying railways in Agda (PhD project Karim
Kanso).

Anton Setzer Interactive Programs in Agda 37/ 39

A Graphics Library for Agda

Conclusion

I Writing proper interactive programs in Agda is feasible.
I We gain that

I programs are guaranteed to stay interactive
I we ihave a flexible IO type which can be adapted to different

interactive scenarios
I IO programs are elements of a proper Agda codata type, which can be

transformed and reasoned about.

Anton Setzer Interactive Programs in Agda 38/ 39

A Graphics Library for Agda

Future Work

I How to reason about interactive programs.
I Theoretically clear. How to do it practically?

I With GUIs one would like to associate server side programs. How to
do this?

I Dealing with threads, pointers.

I Dealing with Functional Reactive Programming.

Anton Setzer Interactive Programs in Agda 39/ 39

	Defining IO in Agda
	Execution of IO Programs
	Dealing with Complex Programs
	A Graphics Library for Agda

