
Interactive Programs
in Agda

Anton Setzer
(Swansea)

1. Defining IO in Agda.

2. Execution of IO Programs.

3. Dealing with Complex Programs.

4. A Graphics Library for Agda

Anton Setzer: Interactive programs in dependent type theory 1

1. Defining IO in Agda
Critical Systems are interactive. We need to be able to
prove the correctness of interactive programs.

Programming with Dependent Types only convincing, if
we can write interactive programs.

Anton Setzer: Interactive programs in dependent type theory 2

1. Interfaces
We consider programs which interact with the real
world:

They issue a command . . .

(e.g.
(1) get last key pressed;
(2) write character to terminal;
(3) set traffic light to red)

. . . and obtain a response, depending on the
command . . .

(e.g.
in (1) the key pressed
in (2), (3) a trivial element indicating that this was
done, or a message indicating success or an error
element).

Anton Setzer: Interactive programs in dependent type theory 3

Interactive Programs

Program

Response Command

World

Anton Setzer: Interactive programs in dependent type theory 4

Interface in Agda
Interface for interactive program given by

A set of commands the program can issue

C : Set

A set of responses, depending on commands

R : C → Set

Anton Setzer: Interactive programs in dependent type theory 5

Interactive Programs in Agda
Interactive programs in Agda given by a sequence of
commands, and interactive programs depending on the
responses.

Additionally we want programs to terminate giving result
a : A for some A : Set.

We need to allow non-terminating programs. Therefore
the type needs to be defined coinductively.

Anton Setzer: Interactive programs in dependent type theory 6

IO Monad in Agda

codata IO (C : Set) (R : C → Set) (A : Set) : Set where

do : (c : C) → (f : R c → IO C R A) → IO C R A

return : (a : A) → IO C R A

Anton Setzer: Interactive programs in dependent type theory 7

Monad Operations
η := return.

>>= can be defined:

_ >>= _ : {C : Set} → {R : C → Set} → {A B : Set}

→ IO C R A

→ (A → IO C R B)

→ IO C R B

do c f >>= q = do c (λx → f x >>= q)

return a >>= q = q a

Anton Setzer: Interactive programs in dependent type theory 8

IO in Haskell
There is one uniform IO type in Haskell. We call its
translated version

nativeIO : Set → Set

We can import it together with the monad operations as
follows:

Anton Setzer: Interactive programs in dependent type theory 9

Importing nativeIO
postulate

nativeIO : Set -> Set

nativeReturn : { A : Set} -> A -> nativeIO A

native>>= : {A B : Set} -> nativeIO A

-> (A -> nativeIO B)

-> nativeIO B

{-# COMPILED_TYPE nativeIO IO #-}

{-# COMPILED _native>>=_

(_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}

{-# COMPILED nativeReturn

(_ -> return :: a -> IO a) #-}

Anton Setzer: Interactive programs in dependent type theory 10

Simple nativeIO Operations
Simple nativeIO Operations in Haskell have the form

operation : A1 → A2 → · · · → An → IOB

A collection of such operations can be represented in
the true IO type as follows:

We form an interface C,R for all operations relevant.
C is an inductive data type, with constructors for
each ioProg corresponding to the IO type, so we
have constructor

operationC : A1 → A2 → · · · → An → C

R : C → Set is defined by case distinction, e.g.

R (operationC a1 . . . an) = B

Anton Setzer: Interactive programs in dependent type theory 11

Example
postulate

nativePutStrLn : String -> nativeIO Unit

nativeGetLine : nativeIO String

{-# COMPILED nativePutStrLn putStrLn #-}

{-# COMPILED nativeGetLine getLine #-}

Anton Setzer: Interactive programs in dependent type theory 12

Example
data ConsoleCommands : Set where

putStrLn : String -> ConsoleCommands

getLine : ConsoleCommands

ConsoleResponses : ConsoleCommands -> Set

ConsoleResponses (putStrLn s) = Unit

ConsoleResponses getLine = String

IOConsole : Set -> Set

IOConsole = IO ConsoleCommands ConsoleResponses

Anton Setzer: Interactive programs in dependent type theory 13

2. Execution of IO Programs
In order to define a generic translation Function we
assume for our interface C, R a function

translateLocal : (c : C) → nativeIO (R c)

Anton Setzer: Interactive programs in dependent type theory 14

Example
translateIOConsoleLocal : (c : ConsoleCommands)

-> nativeIO (ConsoleResponses c)

translateIOConsoleLocal (putStrLn s) = nativePutStrLn s

translateIOConsoleLocal getLine = nativeGetLine

Anton Setzer: Interactive programs in dependent type theory 15

Generic Translation
translateGeneric :

forall {A C R}

-> (translateLocal : (c : C) -> nativeIO (R c))

-> IO C R A

-> nativeIO A

translateGeneric translateLocal (do c f) =

(translateLocal c) native>>=

(\ r

-> translateGeneric translateLocal (f r))

translateGeneric translateLocal (return a) =

nativeReturn a

Anton Setzer: Interactive programs in dependent type theory 16

Execution
An interactive program can now be executed by defining
an element main : nativeIO A

Anton Setzer: Interactive programs in dependent type theory 17

Example
myProgram : IOConsole Unit

myProgram = do getLine (\ line -> (

do (putStrLn line) (\ _ -> (

do (putStrLn line) (\ _ ->

myProgram)))))

main : nativeIO Unit

main = translateIOConsole myProgram

Anton Setzer: Interactive programs in dependent type theory 18

Termination Checker
The translation from IO to nativeIO doesn’t termination
check.

The definition of a specific element of IO C R
termination checks, if defined by guarded recursion.

IO, >>=, translateGeneric and specific C, R, together
with translateLocal can be defined in a library, where
termination checker is switched off.
User defined code can be termination checked.

Anton Setzer: Interactive programs in dependent type theory 19

3. Dealing with Complex Programs
When defining recursive programs in IO C R A we are
restricted to a sequence of constructors.

Especially we are not allowed to use
if_then_else_.
>>=.

Writing of modular programs difficult.

One solution: Improve the termination checker, or use
something like size types.

Anton Setzer: Interactive programs in dependent type theory 20

Direct Solution
data IO+ (C : Set) (R : C -> Set) (A : Set) : Set where

do : (c : C) -> (f : R c -> IO C R A) -> IO+ C R A

mutual

IOrec : {C : Set} -> {R : C -> Set} -> {A B : Set}

-> (A -> IO+ C R (A + B))

-> A -> IO C R B

...

IOrecaux’ : {C : Set} -> {R : C -> Set} -> {A B : Set}

-> (A -> IO+ C R (A + B))

-> IO C R (A + B) -> IO C R B

...

IOrecaux’’ : {C : Set} -> {R : C -> Set} -> {A B : Set}

-> (A -> IO+ C R (A + B))

-> IO+ C R (A + B) -> IO C R B

...Anton Setzer: Interactive programs in dependent type theory 21

Instead of defining
mutual

f : A -> IO C R D

f a = prog1 a’ >>= \ x -> if t then f a’’ else g b

g : B -> IO C R D

g b = prog2 b’ >>= if t’ then f a else return d

which doesn’t termination check

Anton Setzer: Interactive programs in dependent type theory 22

Define prog1, prog2 as returning elements of IO+ and
define

rec : A -> IO C R (A + D)

rec a = return (inl a)

finish: D -> IO C R (A + D)

finish d = return (inr d)

Anton Setzer: Interactive programs in dependent type theory 23

mutual

f’ : A -> IO+ C R (A + D)

f’ a = prog1 a’ +>>= \ x -> if t then rec a’’

else IO+toIO (g b)

g : B -> IO+ C R (A + D)

g b = prog2 b’ +>>= if t’ then rec a

else finish d

f : A -> IO C R D

f a = IORec f’ a

Anton Setzer: Interactive programs in dependent type theory 24

4. A Graphics Library for Agda
We use the SOE library from Hudak’s book “The
Haskell school of expression”.

Rather limited library.

We import various native Haskell types, e.g.
postulate Window : Set

{-# COMPILED_TYPE Window Window #-}

postulate Size : Set

{-# COMPILED_TYPE Size SOE.Size #-}

postulate size : Int -> Int -> Size

{-# COMPILED size (\ x y -> (x,y) :: SOE.Size) #-}

Anton Setzer: Interactive programs in dependent type theory 25

data Event : Set where

Key : Char -> Bool -> Event

Button : Point -> Bool -> Bool -> Event

MouseMove : Point -> Event

Resize : GLSize -> Event

Refresh : Event

Closed : Event

{-# COMPILED_DATA Event Event Key Button MouseMove Resize Refresh

Anton Setzer: Interactive programs in dependent type theory 26

postulate nativeMaybeGetWindowEvent : Window

-> nativeIO (Maybe Event)

{-# COMPILED nativeMaybeGetWindowEvent maybeGetWindowEvent #-}

postulate Graphic : Set

{-# COMPILED_TYPE Graphic SOE.Graphic #-}

postulate nativeDrawInWindow : Window -> Graphic

-> nativeIO Unit

{-# COMPILED nativeDrawInWindow drawInWindow #-}

postulate text : Point -> String -> Graphic

{-# COMPILED text text #-}

postulate nativeOpenWindow : String -> Size -> nativeIO Window

{-# COMPILED nativeOpenWindow openWindow #-}

Anton Setzer: Interactive programs in dependent type theory 27

data Color : Set where

black : Color

blue : Color

green : Color

...

{-# COMPILED_DATA Color SOE.Color SOE.Black SOE.Blue SOE.Green

postulate withColor : Color -> Graphic -> Graphic

{-# COMPILED withColor withColor #-}

postulate polygon : List Point -> Graphic

{-# COMPILED polygon polygon #-}

postulate text1 : Point -> String -> Graphic

{-# COMPILED text1 text #-}

Anton Setzer: Interactive programs in dependent type theory 28

data GraphicsCommands : Set where

maybeGetWindowEvent : Window -> GraphicsCommands

drawInWindow : Window -> Graphic -> GraphicsCommands

openWindow : String -> Size -> GraphicsCommands

timeGetTime : GraphicsCommands

GraphicsResponses : GraphicsCommands -> Set

GraphicsResponses (maybeGetWindowEvent w) = Maybe Event

GraphicsResponses (drawInWindow w g) = Unit

GraphicsResponses (openWindow s s’) = Window

GraphicsResponses timeGetTime = Word32

Anton Setzer: Interactive programs in dependent type theory 29

IOGraphics : Set -> Set

IOGraphics = IO GraphicsCommands GraphicsResponses

translateIOGraphicsLocal : (c : GraphicsCommands) -> nativeIO

translateIOGraphicsLocal (maybeGetWindowEvent w)

= nativeMaybeGetWindowEvent w

translateIOGraphicsLocal (drawInWindow w g)

= nativeDrawInWindow w g

...

translateIOGraphics : {A : Set} -> IOGraphics A -> nativeIO A

translateIOGraphics = translateGeneric

translateIOGraphicsLocal

Anton Setzer: Interactive programs in dependent type theory 30

More Code
Look at IOExperimentRecursion.agda.

Anton Setzer: Interactive programs in dependent type theory 31

Other Agda Work in Swansea
Combining SAT solver in Agda

Implementation of a simple SAT solver in Agda.
Proof

(ϕ : For)

→ Check ϕ

→ (b : Vec Bool (numberVars ϕ))

→ T (b |= ϕ)

Allows to proof formulas such as

T((s ∧Bool t) ∨Bool (¬Bool s) ∨Bool (¬Bool t))

for any s, t : Bool.
check : For → Bool replaced by a BUILTIN SAT solver
in Agda. (Plugin).

Anton Setzer: Interactive programs in dependent type theory 32

Other Agda Work in Swansea
Extraction of programs from proofs about real numbers
with axioms.

Experiments with specificying railways in Agda.

Anton Setzer: Interactive programs in dependent type theory 33

Conclusion
Writing proper interactive programs in Agda is feasible.

We gain that
programs are guaranteed to stay interactive
we ihave a flexible IO type which can be adapted to
different interactive scenarios
IO programs are elements of a proper Agda codata
type, which can be transformed and reasoned about.

Anton Setzer: Interactive programs in dependent type theory 34

Future Work
How to reason about interactive programs.

Theoretically clear. How to do it practically?

With GUIs one would like to associate server side
programs. How to do this?

Dealing with threads, pointers.

Dealing with Functional Reactive Programming.

Anton Setzer: Interactive programs in dependent type theory 35

	
	1. Defining IO in Agda
	1. Interfaces
	Interactive Programs
	Interface in Agda
	Interactive Programs in Agda
	IO Monad in Agda
	Monad Operations
	IO in Haskell
	Importing nativeIO
	Simple nativeIO Operations
	Example
	Example
	2. Execution of IO Programs
	Example
	Generic Translation
	Execution
	Example
	Termination Checker
	3. Dealing with Complex Programs
	Direct Solution
	
	
	
	4. A Graphics Library for Agda
	
	
	
	
	
	More Code
	Other Agda Work in Swansea
	Other Agda Work in Swansea
	Conclusion
	Future Work

