Stephan Adelsberger! and Anton Setzer?

Agda Implementors meeting XXXII Online

1 June 2020

WU Vienna, Austria, https://nm.wu.ac.at/nm/en:adelsberger
2Swansea University, UK, http://www.cs.swan.ac.uk/~csetzer/index.html

https://wiki.portal.chalmers.se/agda/Main/AIMXXXII
https://nm.wu.ac.at/nm/en:adelsberger
http://www.cs.swan.ac.uk/~csetzer/index.html

Integrating External Tools via Builtins

Integrating A-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 2/ 28

Integrating External Tools via Builtins

Integrating A\-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Example of Railway Interlocking System:

sigd sigl0
1 s6 .
p p2
s2 s4
| | | Il
sig8 sl - sig? s3 sigh s5 sig5I
sig3 sigh

sigl sig2

Integrating External Tools via Builtins

Approach

» We have a control program P which depending on commands and
detected trains in segments sets the signals and sets of points.
» So we have vectors of Booleans expressing
—
P the state of the system State,
» and the inputs Input.

> P can be expressed as Boolean valued formulae

pp(Statein, Input, Stateoyt)

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 5/ 28

Integrating External Tools via Builtins

Proof of Safety in Agda

> We can write a simulator in Agda for this programs, which moves
trains, around, provided they obey signals and executes P.
> A state of the program is safe if
P there are never two trains in the same train segment,
» more conditions esp. regarding sets of points.
» P is safe if from specific allowed initial states when running the
program and moving trains one never reaches an unsafe state.
» Difficult to do directly in Agda because ¢p is very complex.

» Instead separate tasks between interactive theorem proving (ITP)
and automated theorem proving (ATP).

» By ATP we mean here SAT solvers and model checkers
» Later we discuss as well other ATP tools.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 6/ 28

Integrating External Tools via Builtins

Distribution of Tasks between interactive and automated
theorem proving

» Introduce safety conditions pgate(State) and invariants
Pinvariant (State)
> Prove using ATP certain signalling principles

e —
(@safe(Statein) A Yinvariant (Statein) A @p(Statein, Input, Stateoyt))
— (psafe(Stateout) A SOinvariant(Stateout)
» Prove using ITP that signalling principles imply that P is safe.

» In order to get a complete proof in Agda, we need

» not only that ATP returns value true,
P but as well that this implies that the checked formula is true.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 7/ 28

Integrating External Tools via Builtins

Approach in Karim's Thesis [1, 2, 3, 4].

» Develop a naive SAT solver or model checker in Agda, and show it is
sound:

check : Formula — Bool
sound : (¢ :Formula) — T (check ¢) — (£ : Env) — [¢]|¢

» We override the check function by a Builtin, which calls an efficient
SAT solver or model checker.

» Function sound links the result check from ATP to the validity of a
formula which can be used in ITP.

> Now we get

» Using ATP we check that signalling principles hold

» Using the Builtin we translate the results into validity of the signalling
principles in Agda.

» Using ITP we prove that this implies that the system is safe.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 8/ 28

Integrating External Tools via Builtins

Need for Flexible Builtins

» In order to get this machinery work we need two Builtins.

» The function check.
» The type of formulas Formula.

» For more complex logics (e.g. for model checking) one needs a
cascade of Builtins.

» Approach relies on trusting the ATP tool giving correct result.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 9/ 28

Integrating External Tools via Builtins

Using Builtins for Proof Search

» Karim linked as well tools for proof search to Agda using Builtins.
P> Karim used a SAT solver so the tool was total.
» Here we show how to extend this to semi decision procedures.

» Assume you have an ATP tool which searches for proofs for certain
formulas.
» We have
Formula : Set
Proof . Formula — Set

» The ATP tool gives a function

poofsearch : (¢ : Formula) — Maybe (Proof ¢)
» In Agda we can postulate such a function
postulate poofsearch : (¢ : Formula) — Maybe (Proof ¢)

and override it using a builtin by the ATP tool.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 10/ 28

Integrating External Tools via Builtins

Using Builtins for Proof Search

» In Agda we prove soundness
sound : (¢ : Formula) — Proof ¢ — (£ : Env) — [¢]l¢
» We define
extract : {X : Set} — (p: Maybe X) — IsJust p — X
» Therefore we get a proof
sound ¢ (extract (poofsearch) isJust) : (£ : Env) — [[|€

provided poofsearch ¢ returns a just value
(type checking will run the external tool when checking
isJust : IsJust (poofsearch ¢)).

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 11/ 28

Integrating External Tools via Builtins

Advantages/Disadvantages of Approach using Profs

» Advantages
» No reliance on the soundness of the ATP tool.
» No need to write a naive implementation of the tool.
» Allows as well ATP tools for semi decidable logics or which for other
reasons don't always give an answer.
» Disadvantages

P Slower to use since ATP tool needs to create a proof.
P Restricts ATP tools available.

» Especially model checkers usually don't provide proofs.
» Tedious to translate ATP proofs into Agda

» lack of documentation,
P scripts not intended to be converted into Agda proofs.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 12/ 28

» Builtins can be used for other purposes as well

» cryptographic functions,
» any computational complex functions.

» Karim added a flexible mechanism for adding builtins to Agda.

Integrating External Tools via Builtins

Caveats

» Allowing to add new builtins in Agda code causes a
security problem, because it allows to execute arbitrary programs
during type checking.
» Solution: require that adding new builtin mechanism requires
recompilation of Agda.

» Builtins are only consistent if the output of the builtin tool
coincides with the the output of Agda.
P> Requires checks in Agda.
P In case of overridden postulates requires that the original function
was indeed a postulate.
» Karim's approach is reasonably flexible but still requires some
programming.
» A too generic approach will probably become inefficient.

» Karim wrote a domain specific language for this to make it easy to
add Builtins.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 14/ 28

Integrating External Tools via Builtins

Code Sprint

» Karim created a branch [3] of Agda with his implementation of
Builtins.

» Documented esp. in Appendix D and Sect. 5 of his PhD Thesis [1].

» Agda code and other material available from [2]
(linked as well from the AIM XXXII webpage,
see Code Sprint on Builtins)

» Goal of code sprint is to update it and integrate it into main Agda.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 15/ 28

Integrating External Tools via Builtins

Integrating A-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Integrating External Tools via Builtins

Integrating A\-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Connecting Agda with why3 and SPARK Ada

SPARK Ada

» SPARK Ada is a tool set used in industry for developing safety critical
systems.

» It extends Ada programs by adding data/information flow analysis
and Hoare logic.

» Hoare logic allows to add pre-, post conditions to a program plus
intermediate conditions, especially loop invariants.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 19/ 28

procedure Correct_Increment(X : in out Integer)
with Depends => (X => X),

Pre => X>=0,
Post => X=X0Old+1land X >=1,
procedure body Correct_Increment(X : in out Integer) is
begin
X =X+1;

end Correct_Increment;

Connecting Agda with why3 and SPARK Ada

Why3 Platform

» SPARK Ada uses the Why3 system from INRIA.

» Why3 is a tool which converts imperative code from the intermediate
languages mlw and code from the language why3 into generated
verification conditions which are then fed into various®

P automated theorem provers
Alt-ergo, Beagle, CVC3, CVC4, E prover, Gappa, Metis, Metitatrski,
Princess, Psyche, Simplify, SPASS, Vampire, veriT, Yices, Ze.

P interactive theorem provers
Coq, PVC and Isabelle/HOL.

» SPARK Ada uses the why3 system to generate from a program and
pre-/post-conditions and intermediate conditions verification
conditions and feed them into the automated theorem prover alt-ergo.

*http://why3.1ri.fr/
Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 21/ 28

http://why3.lri.fr/

|
lWhyML
ety [‘;?g ‘
N/
transform /translate

¥
print /run

‘Coq [AltErgo [CVC3 Z3 etc.

(Source: http://why3.Iri.fr/queens/queens.pdf)

=0 Why3Interactive Proof Session

le View Tools Help

et Theores/Goals (staws ime 7 sourcecode Task | Edited proof | Prover Output | Counterexample
) Unproved goals 381 ~
' Standard_long_integer__axiom 000
e g lteoec o 382 (+ clone ada__model.Static_Discrete with type t19 = intege
)All goals [standard_long_long integer_axiom © ow 383 type us_split3 = us_split,
e [standard_natural _axiom @ oo 384 predicate dynamic_property3 = dynamic_propertyl,
9 [Standard_positwe_axom @ 385 predicate in_range3 - in_rangel, constant last2 = lastl,
‘ compute ‘ = 386 constant first3 = firstl, constant dummy3 = dummy,
5 standard_short_float_axiom © o 387 function user_eq3 = user_eq, function of_rep3 = of_rep,
‘ Inline ‘ [standard_flozt_axiom © ow 388 function to_rep3 = to_rep,
{7 standard_long_fleat_axiom @ om 389 function attr__ATTRIBUTE_VALUE4 = attr__ATTRIBUTE_VALUE]
390 predicate attr.
Standard_long_long float_axiom 000
‘ GEL ‘ “_2 —— © 391 function attr__
Lo [Standard_character_axiom @ ow 392 function bool_eq5 = bool_eq2, prop coerce_axioml = coerc
P | Standard_wide_character_axiom @ om 303 prop range_axiom2 = range_axiom,
QVC3 (2.4.1) ‘) Standard_wide_wide_character_axiom @ oo 394 prop inversion_axiom2 = inversion_axiom &)
] 305
acaes) | ___ SILGT Ca 396 (r use Standard__integer)
B [Standard_wide_string_axiom @ oo 207
— (14“5\”‘ [/ Standard_wide_wide_string_axiom @ o 398 constant attr__ATTRIBUTE_ADDRESS : int
e —— [Standard_duration_axiom @ oo e .
480 (x use Wrong_increment__x =)
73 (4.5.1) ‘ [/ Standard_integer_8_axiom @ o b
iE [standard_integer_16_axiom @ o 402 (+ use Standard__integer__axiom #)
|/ Standard_integer_32_axiom @ om 403
‘ Edit ‘ B9 standerd_integer_64_axiom © o 404 (x use Wrong_increment axion *)
405
‘ p— ‘ [standard_universal_integer_axiom @ ow P constant x : dnt
7 [0 Standard_universal_real_axiom @ om 407
408 axiom H : dynamic_propertyl firstl lastl x
‘ e ‘ [/ Wrong_increment_axiom @ om oo y _property.
—
v [Wreng_increment_subprogram_def (2] PR oiom 1 : x = 0
‘ Clean ‘ v L] vcfordef () 411
) 412 constant o : int = x + X
0f monitoring—— v i spligoalwp (] g
Waiting: 0 b L
goal WP_parameter_def : in_rangel o
Scheduled: 0 > L 2 precondition [] 415 end v
Running: 0 o > Ofa. (] Slll< >

23/ 28

Connecting Agda with why3 and SPARK Ada

Need for Interactive Theorem Provers

> SPARK Ada works well when having verification conditions in
propositional logic.
» As soon as one introduces quantifiers, one quickly reaches the limit of
automated theorem provers.
» Workaround is to write verification conditions in propositional logic.
» Instead of writing

Vsignaly, signal, : Signal.oppose(signal,, signal,) A IsGreen(signal;)
— IsRed(signal,)

P one writes instead for each concrete signals signal;, signal, opposing
each others
IsGreen(signal;) — IsRed(signal,)

> Specification becomes very long (lots and lots of conditions) and it is
likely to overlook a condition.
P Instead of a program errors one is facing specification errors.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 24/ 28

Connecting Agda with why3 and SPARK Ada

Incorporating Hoare Logic into Agda

» Therefore a good idea to link ITP tools such a Agda to why3.

» Linking Agda to why3 would provide an easy way of getting Hoare
logic into Agda.

» It would allow to verify “real” programs in Agda.

» Will certainly depend on integration of ATP tools in Agda.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 25/ 28

K. Kanso.
Agda as a Platform for the Development of Verified Railway

Interlocking Systems.

PhD thesis, Dept. of Computer Science, Swansea University, Swansea
SA2 8PP, UK, August 2012.

Available from http:
//www.swan.ac.uk/~csetzer/articlesFromOthers/index.html
and http://cs.swan.ac.uk/~cskarim/files/.

K. Kanso.
Code of phd thesis, February 2013.
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/
index.html.
Main code

http://www.swan.ac.uk/~csetzer/articlesFromOthers/index.html
http://www.swan.ac.uk/~csetzer/articlesFromOthers/index.html
http://cs.swan.ac.uk/~cskarim/files/
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/index.html
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/index.html

http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/
kanso/codeKansoPhDThesis.zip;

Agda fork

https://github.com/kazkansouh/agda;

material regarding the interlocking of the historic railway Gwili

http:
//www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/
karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili
tar.bz2.

K. Kanso.
Agda, 3 September 2017.

Github repository, fork of Agda installation, containing code from PhD
thesis Karim Kanso.

http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/codeKansoPhDThesis.zip
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/codeKansoPhDThesis.zip
https://github.com/kazkansouh/agda
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2

K. Kanso and A. Setzer.
A light-weight integration of automated and interactive theorem
proving.
Mathematical Structures in Computer Science, FirstView:1-25, 12

November 2014.

	Integrating External Tools via Builtins
	Integrating -Prolog into Agda
	Connecting Agda with why3 and SPARK Ada

