
Combining Agda with External Tools

Stephan Adelsberger1 and Anton Setzer2

Agda Implementors meeting XXXII Online

1 June 2020

1WU Vienna, Austria, https://nm.wu.ac.at/nm/en:adelsberger
2Swansea University, UK, http://www.cs.swan.ac.uk/~csetzer/index.html

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 1/ 28

https://wiki.portal.chalmers.se/agda/Main/AIMXXXII
https://nm.wu.ac.at/nm/en:adelsberger
http://www.cs.swan.ac.uk/~csetzer/index.html


Integrating External Tools via Builtins

Integrating λ-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 2/ 28



Integrating External Tools via Builtins

Integrating External Tools via Builtins

Integrating λ-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 3/ 28



Integrating External Tools via Builtins

Karim Kanso (PhD thesis) Verification of Real World
Railway Interlocking Systems using Agda

Example of Railway Interlocking System:

s1

s2

p1

s4

s5

p2

s6

s3

sig1 sig4

sig5sig6sig7sig8

sig9
sig10

sig3sig2

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 4/ 28



Integrating External Tools via Builtins

Approach

I We have a control program P which depending on commands and
detected trains in segments sets the signals and sets of points.

I So we have vectors of Booleans expressing

I the state of the system
−−−→
State,

I and the inputs
−−−→
Input.

I P can be expressed as Boolean valued formulae

ϕP(
−−−−→
Statein,

−−−→
Input,

−−−−−→
Stateout)

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 5/ 28



Integrating External Tools via Builtins

Proof of Safety in Agda

I We can write a simulator in Agda for this programs, which moves
trains, around, provided they obey signals and executes P.

I A
:::::
state

:::
of

::::
the

:::::::::
program

:::
is

:::::
safe if

I there are never two trains in the same train segment,
I more conditions esp. regarding sets of points.

I
::
P

::
is

:::::
safe if from specific allowed initial states when running the

program and moving trains one never reaches an unsafe state.

I Difficult to do directly in Agda because ϕP is very complex.
I Instead separate tasks between interactive theorem proving (

:::
ITP)

and automated theorem proving (
::::
ATP).

I By ATP we mean here SAT solvers and model checkers
I Later we discuss as well other ATP tools.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 6/ 28



Integrating External Tools via Builtins

Distribution of Tasks between interactive and automated
theorem proving

I Introduce safety conditions ϕsafe(
−−−→
State) and invariants

ϕinvariant(
−−−→
State)

I Prove using ATP certain
::::::::::
signalling

:::::::::::
principles

(ϕsafe(
−−−−→
Statein) ∧ ϕinvariant(

−−−−→
Statein) ∧ ϕP(

−−−−→
Statein,

−−−→
Input,

−−−−−→
Stateout))

→ ϕsafe(
−−−−−→
Stateout) ∧ ϕinvariant(

−−−−−→
Stateout)

I Prove using ITP that signalling principles imply that P is safe.
I In order to get a complete proof in Agda, we need

I not only that ATP returns value true,
I but as well that this implies that the checked formula is true.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 7/ 28



Integrating External Tools via Builtins

Approach in Karim’s Thesis [1, 2, 3, 4].

I Develop a naive SAT solver or model checker in Agda, and show it is
sound:

check : Formula→ Bool
sound : (ϕ : Formula)→ T (check ϕ)→ (ξ : Env)→ [[ϕ ]]ξ

I We override the check function by a Builtin, which calls an efficient
SAT solver or model checker.

I Function sound links the result check from ATP to the validity of a
formula which can be used in ITP.

I Now we get
I Using ATP we check that signalling principles hold
I Using the Builtin we translate the results into validity of the signalling

principles in Agda.
I Using ITP we prove that this implies that the system is safe.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 8/ 28



Integrating External Tools via Builtins

Need for Flexible Builtins

I In order to get this machinery work we need two Builtins.
I The function check.
I The type of formulas Formula.

I For more complex logics (e.g. for model checking) one needs a
cascade of Builtins.

I Approach relies on trusting the ATP tool giving correct result.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 9/ 28



Integrating External Tools via Builtins

Using Builtins for Proof Search

I Karim linked as well tools for proof search to Agda using Builtins.
I Karim used a SAT solver so the tool was total.
I Here we show how to extend this to semi decision procedures.

I Assume you have an ATP tool which searches for proofs for certain
formulas.
I We have

Formula : Set
Proof : Formula→ Set

I The ATP tool gives a function

poofsearch : (ϕ : Formula)→ Maybe (Proof ϕ)

I In Agda we can postulate such a function

postulate poofsearch : (ϕ : Formula)→ Maybe (Proof ϕ)

and override it using a builtin by the ATP tool.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 10/ 28



Integrating External Tools via Builtins

Using Builtins for Proof Search

I In Agda we prove soundness

sound : (ϕ : Formula)→ Proof ϕ→ (ξ : Env)→ [[ϕ ]]ξ

I We define

extract : {X : Set} → (p : Maybe X )→ IsJust p → X

I Therefore we get a proof

sound ϕ (extract (poofsearch ϕ) isJust) : (ξ : Env)→ [[ϕ ]]ξ

provided poofsearch ϕ returns a just value
(type checking will run the external tool when checking
isJust : IsJust (poofsearch ϕ)).

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 11/ 28



Integrating External Tools via Builtins

Advantages/Disadvantages of Approach using Profs

I Advantages
I No reliance on the soundness of the ATP tool.
I No need to write a naive implementation of the tool.
I Allows as well ATP tools for semi decidable logics or which for other

reasons don’t always give an answer.

I Disadvantages
I Slower to use since ATP tool needs to create a proof.
I Restricts ATP tools available.

I Especially model checkers usually don’t provide proofs.

I Tedious to translate ATP proofs into Agda
I lack of documentation,
I scripts not intended to be converted into Agda proofs.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 12/ 28



Integrating External Tools via Builtins

Flexible Builtin Mechanism

I Builtins can be used for other purposes as well
I cryptographic functions,
I any computational complex functions.

I Karim added a flexible mechanism for adding builtins to Agda.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 13/ 28



Integrating External Tools via Builtins

Caveats

I Allowing to add new builtins in Agda code causes a
security problem, because it allows to execute arbitrary programs
during type checking.
I Solution: require that adding new builtin mechanism requires

recompilation of Agda.

I Builtins are only consistent if the output of the builtin tool
coincides with the the output of Agda.
I Requires checks in Agda.
I In case of overridden postulates requires that the original function

was indeed a postulate.

I Karim’s approach is reasonably flexible but still requires some
programming.
I A too generic approach will probably become inefficient.
I Karim wrote a domain specific language for this to make it easy to

add Builtins.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 14/ 28



Integrating External Tools via Builtins

Code Sprint

I Karim created a branch [3] of Agda with his implementation of
Builtins.

I Documented esp. in Appendix D and Sect. 5 of his PhD Thesis [1].

I Agda code and other material available from [2]
(linked as well from the AIM XXXII webpage,
see Code Sprint on Builtins)

I Goal of code sprint is to update it and integrate it into main Agda.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 15/ 28



Integrating λ-Prolog into Agda

Integrating External Tools via Builtins

Integrating λ-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 16/ 28



Integrating λ-Prolog into Agda

Presented by Stephan Adelsberger

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 17/ 28



Connecting Agda with why3 and SPARK Ada

Integrating External Tools via Builtins

Integrating λ-Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 18/ 28



Connecting Agda with why3 and SPARK Ada

SPARK Ada

I SPARK Ada is a tool set used in industry for developing safety critical
systems.

I It extends Ada programs by adding data/information flow analysis
and Hoare logic.

I Hoare logic allows to add pre-, post conditions to a program plus
intermediate conditions, especially loop invariants.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 19/ 28



Connecting Agda with why3 and SPARK Ada

Example

procedure Correct Increment(X : in out Integer)
with Depends => (X => X),

Pre => X >= 0,
Post => X = X’Old + 1 and X >= 1;

procedure body Correct Increment(X : in out Integer) is
begin

X := X + 1;
end Correct Increment;

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 20/ 28



Connecting Agda with why3 and SPARK Ada

Why3 Platform

I SPARK Ada uses the Why3 system from INRIA.
I Why3 is a tool which converts imperative code from the intermediate

languages mlw and code from the language why3 into generated
verification conditions which are then fed into various3

I automated theorem provers
Alt-ergo, Beagle, CVC3, CVC4, E prover, Gappa, Metis, Metitatrski,
Princess, Psyche, Simplify, SPASS, Vampire, veriT, Yices, Ze.

I interactive theorem provers
Coq, PVC and Isabelle/HOL.

I SPARK Ada uses the why3 system to generate from a program and
pre-/post-conditions and intermediate conditions verification
conditions and feed them into the automated theorem prover alt-ergo.

3http://why3.lri.fr/
Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 21/ 28

http://why3.lri.fr/


Connecting Agda with why3 and SPARK Ada

Architecture of Why3 Platform

(Source: http://why3.lri.fr/queens/queens.pdf)

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 22/ 28



Connecting Agda with why3 and SPARK Ada

Result of Applying Why3 to .mlw Files

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 23/ 28



Connecting Agda with why3 and SPARK Ada

Need for Interactive Theorem Provers

I SPARK Ada works well when having verification conditions in
propositional logic.

I As soon as one introduces quantifiers, one quickly reaches the limit of
automated theorem provers.

I Workaround is to write verification conditions in propositional logic.
I Instead of writing

∀signal1, signal2 : Signal.oppose(signal1, signal2) ∧ IsGreen(signal1)
→ IsRed(signal2)

I one writes instead for each concrete signals signal1, signal2 opposing
each others

IsGreen(signal1)→ IsRed(signal2)

I Specification becomes very long (lots and lots of conditions) and it is
likely to overlook a condition.

I Instead of a program errors one is facing specification errors.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 24/ 28



Connecting Agda with why3 and SPARK Ada

Incorporating Hoare Logic into Agda

I Therefore a good idea to link ITP tools such a Agda to why3.

I Linking Agda to why3 would provide an easy way of getting Hoare
logic into Agda.

I It would allow to verify “real” programs in Agda.

I Will certainly depend on integration of ATP tools in Agda.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 25/ 28



Connecting Agda with why3 and SPARK Ada

Bibliography I

K. Kanso.
Agda as a Platform for the Development of Verified Railway
Interlocking Systems.
PhD thesis, Dept. of Computer Science, Swansea University, Swansea
SA2 8PP, UK, August 2012.
Available from http:

//www.swan.ac.uk/~csetzer/articlesFromOthers/index.html

and http://cs.swan.ac.uk/~cskarim/files/.

K. Kanso.
Code of phd thesis, February 2013.
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/

index.html.
Main code

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 26/ 28

http://www.swan.ac.uk/~csetzer/articlesFromOthers/index.html
http://www.swan.ac.uk/~csetzer/articlesFromOthers/index.html
http://cs.swan.ac.uk/~cskarim/files/
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/index.html
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/index.html


Connecting Agda with why3 and SPARK Ada

Bibliography II

http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/

kanso/codeKansoPhDThesis.zip;
Agda fork
https://github.com/kazkansouh/agda;
material regarding the interlocking of the historic railway Gwili
http:

//www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/

karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.

tar.bz2.

K. Kanso.
Agda, 3 September 2017.
Github repository, fork of Agda installation, containing code from PhD
thesis Karim Kanso.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 27/ 28

http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/codeKansoPhDThesis.zip
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/codeKansoPhDThesis.zip
https://github.com/kazkansouh/agda
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2
http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili.tar.bz2


Connecting Agda with why3 and SPARK Ada

Bibliography III

K. Kanso and A. Setzer.
A light-weight integration of automated and interactive theorem
proving.
Mathematical Structures in Computer Science, FirstView:1–25, 12
November 2014.

Stephan Adelsberger and Anton Setzer Combining Agda with External Tools 28/ 28


	Integrating External Tools via Builtins
	Integrating -Prolog into Agda
	Connecting Agda with why3 and SPARK Ada

