Combining Agda with External Tools

Stephan Adelsberger¹ and <u>Anton Setzer²</u>

Agda Implementors meeting XXXII Online

1 June 2020

¹WU Vienna, Austria, https://nm.wu.ac.at/nm/en:adelsberger
²Swansea University, UK, http://www.cs.swan.ac.uk/~csetzer/index.html

Stephan Adelsberger and Anton Setzer Con

Combining Agda with External Tools

Integrating External Tools via Builtins

Integrating λ -Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Integrating External Tools via Builtins

Integrating λ -Prolog into Agda

Connecting Agda with why3 and SPARK Ada

Karim Kanso (PhD thesis) Verification of Real World Railway Interlocking Systems using Agda

Example of Railway Interlocking System:

Approach

- We have a control program P which depending on commands and detected trains in segments sets the signals and sets of points.
- So we have vectors of Booleans expressing
 - the state of the system $\overrightarrow{\text{State}}$,
 - and the inputs $\overrightarrow{\text{Input}}$.
- P can be expressed as Boolean valued formulae

 $\varphi_{\mathcal{P}}(\overrightarrow{\text{State}_{in}}, \overrightarrow{\text{Input}}, \overrightarrow{\text{State}_{out}})$

Proof of Safety in Agda

- ► We can write a **simulator in Agda** for this programs, which moves trains, around, provided they obey signals and executes *P*.
- A state of the program is safe if
 - there are never two trains in the same train segment,
 - more conditions esp. regarding sets of points.
- P is safe if from specific allowed initial states when running the program and moving trains one never reaches an unsafe state.
- Difficult to do directly in Agda because φ_P is very complex.
- Instead separate tasks between interactive theorem proving (ITP) and automated theorem proving (ATP).
 - By ATP we mean here SAT solvers and model checkers
 - Later we discuss as well other ATP tools.

Distribution of Tasks between interactive and automated theorem proving

- Introduce safety conditions $\varphi_{safe}(\overrightarrow{State})$ and invariants $\varphi_{invariant}(\overrightarrow{State})$
- Prove using ATP certain signalling principles

$$(\varphi_{\text{safe}}(\overrightarrow{\text{State_{in}}}) \land \varphi_{\text{invariant}}(\overrightarrow{\text{State_{in}}}) \land \varphi_{P}(\overrightarrow{\text{State_{in}}}, \overrightarrow{\text{Input}}, \overrightarrow{\text{State_{out}}})) \rightarrow \varphi_{\text{safe}}(\overrightarrow{\text{State_{out}}}) \land \varphi_{\text{invariant}}(\overrightarrow{\text{State_{out}}})$$

- Prove using ITP that signalling principles imply that P is safe.
- In order to get a complete proof in Agda, we need
 - not only that ATP returns value true,
 - but as well that this implies that the checked formula is true.

Approach in Karim's Thesis [1, 2, 3, 4].

Develop a naive SAT solver or model checker in Agda, and show it is sound:

check : Formula \rightarrow Bool sound : (φ : Formula) \rightarrow T (check φ) \rightarrow (ξ : Env) \rightarrow [[φ]] ξ

- We override the check function by a Builtin, which calls an efficient SAT solver or model checker.
- Function sound links the result check from ATP to the validity of a formula which can be used in ITP.
- ► Now we get
 - Using ATP we check that signalling principles hold
 - Using the Builtin we translate the results into validity of the signalling principles in Agda.
 - Using ITP we prove that this implies that the system is safe.

Need for Flexible Builtins

- ▶ In order to get this machinery work we need two Builtins.
 - ► The function check.
 - ► The type of formulas Formula.
- For more complex logics (e.g. for model checking) one needs a cascade of Builtins.
- Approach relies on trusting the ATP tool giving correct result.

Using Builtins for Proof Search

- ► Karim linked as well tools for **proof search** to Agda using Builtins.
 - Karim used a SAT solver so the tool was total.
 - Here we show how to extend this to semi decision procedures.
- Assume you have an ATP tool which searches for proofs for certain formulas.

We have

Formula	:	Set
Proof	:	$\mathrm{Formula} \to \mathrm{Set}$

The ATP tool gives a function

```
poofsearch : (\varphi : Formula) \rightarrow Maybe (Proof \varphi)
```

In Agda we can postulate such a function

postulate poofsearch : (φ : Formula) \rightarrow Maybe (Proof φ)

and override it using a builtin by the ATP tool.

Using Builtins for Proof Search

► In Agda we prove soundness

```
sound : (\varphi : \text{Formula}) \to \text{Proof } \varphi \to (\xi : \text{Env}) \to \llbracket \varphi \rrbracket \xi
```

We define

extract : $\{X : \text{Set}\} \rightarrow (p : \text{Maybe } X) \rightarrow \text{IsJust } p \rightarrow X$

Therefore we get a proof

sound φ (extract (poofsearch φ) isJust) : (ξ : Env) \rightarrow [[φ]] ξ

provided poofsearch φ returns a just value (type checking will run the external tool when checking isJust : IsJust (poofsearch φ)).

Advantages/Disadvantages of Approach using Profs

Advantages

- ► No reliance on the soundness of the ATP tool.
- No need to write a naive implementation of the tool.
- Allows as well ATP tools for semi decidable logics or which for other reasons don't always give an answer.

Disadvantages

- Slower to use since ATP tool needs to create a proof.
- Restricts ATP tools available.
 - Especially model checkers usually don't provide proofs.
- Tedious to translate ATP proofs into Agda
 - lack of documentation,
 - scripts not intended to be converted into Agda proofs.

Flexible Builtin Mechanism

- Builtins can be used for other purposes as well
 - cryptographic functions,
 - any computational complex functions.
- ► Karim added a flexible mechanism for adding builtins to Agda.

Caveats

- Allowing to add new builtins in Agda code causes a security problem, because it allows to execute arbitrary programs during type checking.
 - Solution: require that adding new builtin mechanism requires recompilation of Agda.
- Builtins are only consistent if the output of the builtin tool coincides with the the output of Agda.
 - Requires checks in Agda.
 - In case of overridden postulates requires that the original function was indeed a postulate.
- Karim's approach is reasonably flexible but still requires some programming.
 - A too generic approach will probably become inefficient.
 - Karim wrote a domain specific language for this to make it easy to add Builtins.

Code Sprint

- Karim created a branch [3] of Agda with his implementation of Builtins.
- Documented esp. in Appendix D and Sect. 5 of his PhD Thesis [1].
- Agda code and other material available from [2] (linked as well from the AIM XXXII webpage, see Code Sprint on Builtins)
- Goal of code sprint is to update it and integrate it into main Agda.

Integrating External Tools via Builtins

Integrating $\lambda\text{-}\mathsf{Prolog}$ into Agda

Connecting Agda with why3 and SPARK Ada

Integrating λ -Prolog into Agda

Presented by Stephan Adelsberger

Integrating External Tools via Builtins

Integrating λ -Prolog into Agda

Connecting Agda with why3 and SPARK Ada

SPARK Ada

- SPARK Ada is a tool set used in industry for developing safety critical systems.
- It extends Ada programs by adding data/information flow analysis and Hoare logic.
- Hoare logic allows to add pre-, post conditions to a program plus intermediate conditions, especially loop invariants.

Example

procedure Correct_Increment(X : in out Integer)with Depends=>(X => X),Pre=>X >= 0,Post=>X = X'Old + 1 and X >= 1;

procedure body Correct_Increment(X : in out Integer) is
 begin

X := X + 1;end Correct_Increment;

Why3 Platform

- SPARK Ada uses the Why3 system from INRIA.
- Why3 is a tool which converts imperative code from the intermediate languages mlw and code from the language why3 into generated verification conditions which are then fed into various³
 - automated theorem provers Alt-ergo, Beagle, CVC3, CVC4, E prover, Gappa, Metis, Metitatrski, Princess, Psyche, Simplify, SPASS, Vampire, veriT, Yices, Ze.
 - interactive theorem provers Coq, PVC and Isabelle/HOL.
- SPARK Ada uses the why3 system to generate from a program and pre-/post-conditions and intermediate conditions verification conditions and feed them into the automated theorem prover alt-ergo.

³http://why3.lri.fr/

Architecture of Why3 Platform

⁽Source: http://why3.lri.fr/queens/queens.pdf)

Connecting Agda with why3 and SPARK Ada

Result of Applying Why3 to .mlw Files

😑 💷 Why3 Intera	ctive Proof Session						
e View Tools He	elp						
ntext	Theories/Goals	Status	Time	Source code Task Edit	ed proof Prover Output Counter-example		
) Unproved goals	Standard_long_integer_axiom	0	0.00	381			
All goals	Standard_long_long_integer_axiom	Ö	0.00	382 (* clone adamod	<pre>lel.Static_Discrete with type t19 = intege - us solit</pre>		
atogios	C Standard_natural_axiom	Ö	0.00	384 predicate dynam	mic_property3 = dynamic_property1,		
ategies	Standard_positive_axiom	0	0.00	385 predicate in_ra	nge3 = in_range1, constant last3 = last1		
Compute	Standard_short_float_axiom	0	0.00	386 constant first3	<pre>i = first1, constant dummy3 = dummy,</pre>		
Teller	Standard_float_axiom	0	0.00	388 function to rep	<pre>ids = dser_eq, function of_reps = of_rep; id = to rep.</pre>		
mine	Standard_long_float_axiom	0	0.00	389 function attrATTRIBUTE_VALUE4 = attrATTRIBUTE_VALUE3			
Split	Standard_long_long_float_axiom	0	0.00	390 predicate attr_	_ATTRIBUTE_VALUEpre_check4 = attrATT		
	Standard_character_axiom	0	0.00	391 function attr	ATTRIBUTE_IMAGE4 = attr_ATTRIBUTE_IMAGE: d5 = bool ed2, prop coerce axiom1 = coerc		
vers	Standard_wide_character_axiom	0	0.00	393 prop range_axio	m2 = range_axiom,		
CVC3 (2.4.1)	Standard_wide_wide_character_axiom	0	0.00	394 prop inversion	axiom2 = inversion_axiom *)		
	Standard_string_axiom	0	0.00	395	395		
CVC4 (1.4)	Standard_wide_string_axiom	0	0.00	396 (* use scandard_	(integer *)		
3/C4 (1.4 pop)0	Standard_wide_wide_string_axiom	0	0.00	398 constant attr_AT	TRIBUTE_ADDRESS : int		
vc4 (1.4 110BV)	Standard_duration_axiom	0	0.00	399			
Z3 (4.5.1)	Standard_integer_8_axiom	0	0.00	408 (* use Wrong_incr	ementx *)		
	Standard_integer_16_axiom	0	0.00	402 (* use Standard_	integeraxiom *)		
AS	Standard_integer_32_axiom	0	0.00	403			
Edit	Standard_integer_64_axiom	0	0.00	404 (* use Wrong_incr	rementxaxiom *)		
Replay	Standard_universal_integer_axiom	0	0.00	405 406 constant x : int			
	Standard_universal_real_axiom	0	0.00	407			
Remove	Wrong_increment_axiom	0	0.00	408 axiom H : dynamic	_propertyl firstl lastl x		
	▼ Wrong_increment_subprogram_def	?		419 419 axiom H1 : x >= 8			
Clean	VC for def	2		411			
>of monitoring		?		412 constant o : int	= x + x		
Waiting: 0	> _ 1. precondition	?		413	and the second of		
Scheduled: 0	> _ 2. precondition	?		414 goal WP_parameter	_oer : in_ranger o		
Running: 0	> 3. postcondition	2			>		

Need for Interactive Theorem Provers

- SPARK Ada works well when having verification conditions in propositional logic.
- As soon as one introduces quantifiers, one quickly reaches the limit of automated theorem provers.
- ► Workaround is to write verification conditions in propositional logic.
 - Instead of writing

$$\begin{split} \forall signal_1, signal_2 : Signal.oppose(signal_1, signal_2) \land IsGreen(signal_1) \\ & \rightarrow IsRed(signal_2) \end{split}$$

one writes instead for each concrete signals signal₁, signal₂ opposing each others

 $\operatorname{IsGreen(signal_1)} \to \operatorname{IsRed(signal_2)}$

- Specification becomes very long (lots and lots of conditions) and it is likely to overlook a condition.
- Instead of a program errors one is facing specification errors.

Incorporating Hoare Logic into Agda

- Therefore a good idea to link ITP tools such a Agda to why3.
- Linking Agda to why3 would provide an easy way of getting Hoare logic into Agda.
- It would allow to verify "real" programs in Agda.
- ► Will certainly depend on integration of ATP tools in Agda.

Bibliography I

K. Kanso.

Agda as a Platform for the Development of Verified Railway Interlocking Systems.

PhD thesis, Dept. of Computer Science, Swansea University, Swansea SA2 8PP, UK, August 2012.

Available from http:

//www.swan.ac.uk/~csetzer/articlesFromOthers/index.html
and http://cs.swan.ac.uk/~cskarim/files/.

K. Kanso.

Code of phd thesis, February 2013.

http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/ index.html. Main code

Bibliography II

http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/ kanso/codeKansoPhDThesis.zip; Agda fork https://github.com/kazkansouh/agda; material regarding the interlocking of the historic railway Gwili http: //www.cs.swan.ac.uk/~csetzer/articlesFromOthers/kanso/ karimKansoPhDThesisAgdaAsAPlatformForVerifiedRailwaysGwili tar.bz2.

K. Kanso.

Agda, 3 September 2017.

Github repository, fork of Agda installation, containing code from PhD thesis Karim Kanso.

Bibliography III

K. Kanso and A. Setzer.

A light-weight integration of automated and interactive theorem proving.

Mathematical Structures in Computer Science, FirstView:1–25, 12 November 2014.