
Programming with Monadic CSP-Style Processes
in Dependent Type Theory

Bashar Igried and Anton Setzer

Swansea University, Swansea,Wales, UK

bashar.igried@yahoo.com , a.g.setzer@swansea.ac.uk

TyDe 2016 Type-driven Development, Japan, 18 Sep 2016

Overview

1. Agda
2. Process Algebra CSP
3. CSP-Agda
4. Simulator
5. Conclusion

Agda

I Agda is a theorem prover and dependently typed programming
language, which extends intensional Martin-Löf type theory.

I The current version of this language is Agda 2
I Agda has 3 components:

I Termination checker
I Coverage checker
I Type checker

I The termination checker verifies that all programs terminate.
I The type checker which refuses incorrect proofs by detecting

unmatched types.
I The coverage checker guarantees that the definition of a

function covers all possible cases.

Levels of Types

I There are several levels of types in Agda e.g.
Set, Set1, Set2, ..., where

Set
∈
⊂ Set1

∈
⊂ Set2

∈
⊂ Set3

∈
⊂ ...

I The lowest level for historic reasons called Set.
I Types in Agda are given as:

I Dependent function types.
I Inductive types.
I Coinductive types.
I Record types (which are in the newer approach used for defining coinductive types).

I Generalisation of inductive-recursive definitions.

Inductive Data Types

I The inductive data types are given as sets A together with
constructors which are strictly positive in A.

I For instance the collection of finite sets is given as

data Fin : N → Set where
zeroFin : {n : N} → Fin (suc n)
sucFin : {n : N} (i : Fin n) → Fin (suc n)

I Implicit arguments can be omitted by writing zero instead of
zero {n}.

I Can be made explicit by writing {n}

Define Functions

Therefore we can define functions by case distinction on these
constructors using pattern matching, e.g.

toN : ∀ {n} → Fin n → N
toN zeroFin = 0
toN (sucFin n) = suc (toN n)

Coinductive Types

There are two approaches of defining coinductive types in Agda.
I The older approach is based on the notion of codata types.
I The newer one is based on coalgebras given by their

observations or eliminators
We will follow the newer one, pioneered by Setzer, Abel, Pientka
and Thibodeau.

Why Agda?

I Agda supports induction-recursion.
Induction-Recursion allows to define universes.

I Agda supports definition of coalgebras by elimination rules and
defining their elements by combined pattern and copattern
matching.

I Using of copattern matching allows to define code which looks
close to normal mathematical proofs.

Process Algebra CSP

I “Process algebras” were initiated in 1982 by Bergstra and Klop
in order to provide a formal semantics to concurrent systems.

I Process algebra is the study of distributed or parallel systems
by algebraic means.

I Three main process algebras theories were developed.
I Calculus of Communicating Systems (CCS).

Developed by Robin Milner in 1980.
I Communicating Sequential Processes (CSP).

Developed by Tony Hoare in 1978.
I Algebra of Communicating Processes (ACP).

Developed by Jan Bergstra and Jan Willem Klop, in 1982.

I Processes will be defined in Agda according to the operational
behaviour of the corresponding CSP processes.

Example Of Processes

CSP Syntax

In the following table, we list the syntax of CSP processes:

Q ::= STOP STOP
| SKIP SKIP
| prefix a→ Q
| external choice Q 2 Q
| internal choice Q u Q
| hiding Q \ a
| renaming Q[R]
| parallel Q X‖Y Q
| interleaving Q ||| Q
| interrupt Q 4 Q
| composition Q ; Q

Example Of Processes

Example Of Processes

Example Of Processes

CSP Syntax

In the following table, we list the syntax of CSP processes:

Q ::= STOP STOP
| SKIP SKIP
| prefix a→ Q
| external choice Q 2 Q
| internal choice Q u Q
| hiding Q \ a
| renaming Q[R]
| parallel Q X‖Y Q
| interleaving Q ||| Q
| interrupt Q 4 Q
| composition Q ; Q

CSP-Agda

CSP-Agda

I CSP represented coinductively in dependent type theory.
I Processes in CSP can proceed at any time with:

I Labelled transitions (external choices).
I Silent transitions (internal choices).
I X-events (termination).

I Therefore, processes in CSP-Agda have as well this possibility.

CSP-Agda

I In CSP a terminated process does not return any information
except for that it terminated.

I We want to define processes in a monadic way in order to
combine them in a modular way.

I If processes terminate additional information to be returned.

CSP-Agda

CSP-Agda

CSP-Agda

CSP-Agda

mutual
record Process∞ (i : Size) (c : Choice) : Set where

coinductive
field

forcep : {j : Size< i} → Process j c
Str∞ : String

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

CSP-Agda

record Process+ (i : Size) (c : Choice) : Set where
constructor process+
coinductive
field

E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String

CSP-Agda

I Process∞ bundles processes as one coinductive type with one
main one eliminator.

I So we have in case of a process progressing:

(1) an index set E of external choices and for each external choice
e the Label (Lab e) and the next process (PE e);

(2) an index set of internal choices I and for each internal choice i
the next process (PI i); and

(3) an index set of termination choices T corresponding to
X-events and for each termination choice t the return value
PT t : A.

I In CSP termination is an event
– for compatibility reasons we allow in CSP-Agda termination
events as well.

Example

P = node (process+ E Lab PE I PI T PT "P")
: Process String where

E = code for {1, 2} I = code for {3, 4}
T = code for {5}
Lab 1 = a Lab 2 = b PE 1 = P1
PE 2 = P2 PI 3 = P3 PI 4 = P4
PT 5 = "STOP"

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

Choices Set

I Choice sets are modelled by a universe.
I Universes go back to Martin-Löf in order to formulate the

notion of a type consisting of types.
I Universes are defined in Agda by an inductive-recursive

definition.

Choice Sets

We give here the code expressing that Choice is closed under fin,]
and subset’.

mutual
data Choice : Set where

fin : N → Choice
]’ : Choice → Choice → Choice

subset’ : (E : Choice) → (ChoiceSet E → Bool)
→ Choice

ChoiceSet : Choice → Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s]’ t) = ChoiceSet s] ChoiceSet t
ChoiceSet (subset’ E f) = subset (ChoiceSet E) f

Interleaving operator

I In this process, the components P and Q execute completely
independently of each other.

I Each event is performed by exactly one process.
I The operational semantics rules are straightforward:

P X−→ P ′ Q X−→ Q ′

P ||| Q X−→ P ′ ||| Q ′

P
µ−→ P ′

µ 6= X
P ||| Q µ−→ P ′ ||| Q

Q
µ−→ Q ′

µ 6= X
P ||| Q µ−→ P ||| Q ′

Interleaving operator

We represent interleaving operator in CSP-Agda as follows:

||| : {i : Size} → {c0 c1 : Choice} → Process i c0
→ Process i c1 → Process i (c0 ×’ c1)

node P ||| node Q = node (P |||++ Q)
terminate a ||| Q = fmap (ń b → (a „ b)) Q
P ||| terminate b = fmap (ń a → (a „ b)) P

Interleaving operator

|||++ : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P |||++ Q) = E P]’ E Q
Lab (P |||++ Q) (inj1 c) = Lab P c
Lab (P |||++ Q) (inj2 c) = Lab Q c
PE (P |||++ Q) (inj1 c) = PE P c |||∞+ Q
PE (P |||++ Q) (inj2 c) = P |||+∞ PE Q c
I (P |||++ Q) = I P]’ I Q
PI (P |||++ Q) (inj1 c) = PI P c |||∞+ Q
PI (P |||++ Q) (inj2 c) = P |||+∞ PI Q c
T (P |||++ Q) = T P ×’ T Q
PT (P |||++ Q) (c „ c1) = PT P c „ PT Q c1
Str+ (P |||++ Q) = Str+ P |||Str Str+ Q

Interleaving operator

I When processes P and Q haven’t terminated, then P ||| Q will
not terminate.

I The external choices are the external choices of P and Q.
I The labels are the labels from the processes P and Q, and we

continue recursively with the interleaving combination.
I The internal choices are defined similarly.

Interleaving operator

I A termination event can happen only if both processes have a
termination event.

I If both processes terminate with results a and b, then the
interleaving combination terminates with result (a „ b).

I If one process terminates but the other not, the rules of CSP
express that one continues as the other other process, until it
has terminated.

I We can therefore equate, if P has terminated, P ||| Q with Q.
I However, we record the result obtained by P, and therefore

apply fmap to Q in order to add the result of P to the result of
Q when it terminates.

A Simulator of CSP-Agda

Simulator is programmed in Agda using compiled version of Agda.
I Simulator requires String
I It turned out to be more complicated than expected, since we

needed to convert processes, which are infinite entities, into
strings, which are finitary.

I The solution was to add String components to Process
I Choice set need to be displayed, so we use a universes of

choices with a ToString function

A Simulator of CSP-Agda

The simulator does the following:
I It will display to the user

I The selected process.
I The set of termination choices with their return value.
I And allows the user to choose an external or internal choice as

a string input.

I If the input is correct, then the program continues with the
process which is obtained by following that transition.

I Otherwise an error message is returned and the program asks
again for a choice.

I X-events are only displayed but one cannot follow them,
because afterwards the system would stop.

A Simulator of CSP-Agda

An example run of the simulator is as follows:

Future Work

I We would like to model complex systems in Agda.
I Model examples of processes occurring in the European Train

Management System (ERTMS) in Agda.
I Show correctness.

Conclusion

I A formalisation of CSP in Agda has been developed using
coalgebra types and copattern matching.

I The other operations (external choice, internal choice, parallel
operations, hiding, renaming, etc.) are defined in a similar way.

I Developed a simulator of CSP processes in Agda.
I Define approach using Sized types (Which allow us to apply

function to CO-IH).

The End

