Programming with Monadic CSP-Style Processes in Dependent Type Theory

Bashar Igried and Anton Setzer

Swansea University, Swansea, Wales, UK bashar.igried@yahoo.com , a.g.setzer@swansea.ac.uk

TyDe 2016 Type-driven Development, Japan, 18 Sep 2016

ション ふゆ アメリア メリア しょうくしゃ

- 1. Agda
- 2. Process Algebra CSP

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

- 3. CSP-Agda
- 4. Simulator
- 5. Conclusion

- Agda is a theorem prover and dependently typed programming language, which extends intensional Martin-Löf type theory.
- The current version of this language is Agda 2
- Agda has 3 components:
 - Termination checker
 - Coverage checker
 - Type checker
- The termination checker verifies that all programs terminate.
- The type checker which refuses incorrect proofs by detecting unmatched types.

(ロ) (型) (E) (E) (E) (O)

The coverage checker guarantees that the definition of a function covers all possible cases.

- ► There are several levels of types in Agda e.g. Set, Set₁, Set₂, ..., where
 Set ⊂ Set₁ ⊂ Set₂ ⊂ Set₃ ⊂ ...
- The lowest level for historic reasons called Set.
- Types in Agda are given as:
 - Dependent function types.
 - Inductive types.
 - Coinductive types.
 - Record types (which are in the newer approach used for defining coinductive types).

ション ふゆ く 山 マ チャット しょうくしゃ

Generalisation of inductive-recursive definitions.

Inductive Data Types

- The inductive data types are given as sets A together with constructors which are strictly positive in A.
- For instance the collection of finite sets is given as

data Fin : $\mathbb{N} \rightarrow \text{Set where}$ zeroFin : $\{n : \mathbb{N}\} \rightarrow \text{Fin (suc } n)$ sucFin : $\{n : \mathbb{N}\} (i : \text{Fin } n) \rightarrow \text{Fin (suc } n)$

- Implicit arguments can be omitted by writing zero instead of zero {n}.
- Can be made explicit by writing {n}

Therefore we can define functions by case distinction on these constructors using pattern matching, e.g.

 $\begin{array}{rll} \operatorname{to}\mathbb{N} : \forall \{n\} \to \operatorname{Fin} n \to \mathbb{N} \\ \operatorname{to}\mathbb{N} & \operatorname{zeroFin} &= 0 \\ \operatorname{to}\mathbb{N} & (\operatorname{sucFin} n) &= \operatorname{suc} (\operatorname{to}\mathbb{N} n) \end{array}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There are two approaches of defining coinductive types in Agda.

- The older approach is based on the notion of codata types.
- The newer one is based on coalgebras given by their observations or eliminators

We will follow the newer one, pioneered by Setzer, Abel, Pientka and Thibodeau.

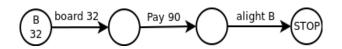
ション ふゆ く 山 マ チャット しょうくしゃ

- Agda supports induction-recursion. Induction-Recursion allows to define universes.
- Agda supports definition of coalgebras by elimination rules and defining their elements by combined pattern and copattern matching.
- Using of copattern matching allows to define code which looks close to normal mathematical proofs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Process Algebra CSP

- "Process algebras" were initiated in 1982 by Bergstra and Klop in order to provide a formal semantics to concurrent systems.
- Process algebra is the study of distributed or parallel systems by algebraic means.
- ► Three main process algebras theories were developed.
 - Calculus of Communicating Systems (CCS). Developed by Robin Milner in 1980.
 - Communicating Sequential Processes (CSP). Developed by Tony Hoare in 1978.
 - Algebra of Communicating Processes (ACP).
 Developed by Jan Bergstra and Jan Willem Klop, in 1982.
- Processes will be defined in Agda according to the operational behaviour of the corresponding CSP processes.



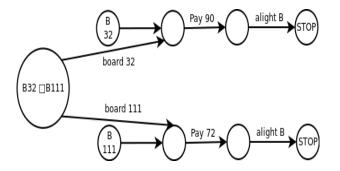
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Q

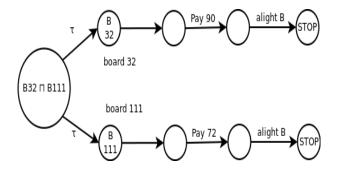
In the following table, we list the syntax of CSP processes:

::= STOP	STOP
SKIP	SKIP
prefix	a ightarrow Q
external choice	$Q \Box Q$
internal choice	$Q\sqcap Q$
hiding	$Q\setminus a$
renaming	Q[R]
parallel	$Q_X \parallel_Y Q$
interleaving	$Q \mid\mid \mid Q$
interrupt	$oldsymbol{Q} riangleq oldsymbol{Q}$
composition	Q; Q

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Q

In the following table, we list the syntax of CSP processes:

::= STOP	STOP
SKIP	SKIP
prefix	a ightarrow Q
external choice	$Q \Box Q$
internal choice	$Q\sqcap Q$
hiding	$Q\setminus a$
renaming	Q[R]
parallel	$Q_X \parallel_Y Q$
interleaving	$Q \mid\mid \mid Q$
interrupt	$oldsymbol{Q} riangleq oldsymbol{Q}$
composition	Q; Q

CSP-Agda

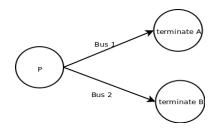
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- CSP represented coinductively in dependent type theory.
- Processes in CSP can proceed at any time with:
 - Labelled transitions (external choices).
 - Silent transitions (internal choices).
 - ► √-events (termination).
- ► Therefore, processes in CSP-Agda have as well this possibility.

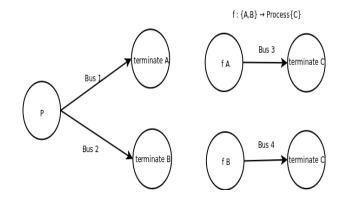
ション ふゆ く 山 マ チャット しょうくしゃ

- In CSP a terminated process does not return any information except for that it terminated.
- We want to define processes in a monadic way in order to combine them in a modular way.
- If processes terminate additional information to be returned.

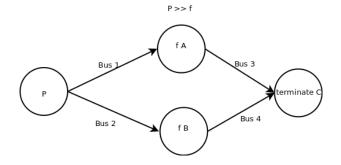
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

```
mutual

record Process\infty (i : Size) (c : Choice) : Set where

coinductive

field

forcep : {j : Size< i} \rightarrow Process j c

Str\infty : String

data Process (i : Size) (c : Choice) : Set where

terminate : ChoiceSet c \rightarrow Process i c

node : Process+ i c \rightarrow Process i c
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

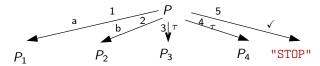
- Process∞ bundles processes as one coinductive type with one main one eliminator.
- So we have in case of a process progressing:
 - an index set E of external choices and for each external choice e the Label (Lab e) and the next process (PE e);
 - (2) an index set of internal choices I and for each internal choice *i* the next process (PI *i*); and
 - (3) an index set of termination choices T corresponding to \checkmark -events and for each termination choice t the return value PT t : A.
- In CSP termination is an event

- for compatibility reasons we allow in CSP-Agda termination events as well.

ション ふゆ く 山 マ チャット しょうくしゃ

Example

P = node (process+ E Lab PE I PI T PT "P"): Process String where $E = \text{ code for } \{1,2\} \qquad I = \text{ code for } \{3,4\}$ $T = \text{ code for } \{5\}$ $Lab 1 = a \qquad Lab 2 = b \qquad PE 1 = P_1$ $PE 2 = P_2 \qquad PI 3 = P_3 \qquad PI 4 = P_4$ PT 5 = "STOP"



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Choice sets are modelled by a universe.
- Universes go back to Martin-Löf in order to formulate the notion of a type consisting of types.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Universes are defined in Agda by an inductive-recursive definition.

We give here the code expressing that Choice is closed under fin, \uplus and subset'.

```
mutual

data Choice : Set where

fin : \mathbb{N} \rightarrow Choice

\_ \uplus'\_ : Choice \rightarrow Choice \rightarrow Choice

subset' : (E : Choice) \rightarrow (ChoiceSet E \rightarrow Bool)

\rightarrow Choice
```

ChoiceSet : Choice \rightarrow Set ChoiceSet (fin n) = Fin nChoiceSet ($s \uplus$ ' t) = ChoiceSet $s \uplus$ ChoiceSet tChoiceSet (subset' E f) = subset (ChoiceSet E) f

- In this process, the components P and Q execute completely independently of each other.
- Each event is performed by exactly one process.
- ► The operational semantics rules are straightforward:

$$\frac{P \xrightarrow{\checkmark} P' \quad Q \xrightarrow{\checkmark} Q'}{P \mid \mid\mid Q \xrightarrow{\checkmark} P' \mid\mid\mid Q'} \qquad \frac{P \xrightarrow{\mu} P'}{P \mid\mid\mid Q \xrightarrow{\mu} P' \mid\mid\mid Q} \mu \neq \checkmark$$
$$\frac{Q \xrightarrow{\mu} Q'}{P \mid\mid\mid Q \xrightarrow{\mu} P \mid\mid\mid Q'} \mu \neq \checkmark$$

ション ふゆ く 山 マ チャット しょうくしゃ

We represent interleaving operator in CSP-Agda as follows:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Interleaving operator

- ▶ When processes P and Q haven't terminated, then P ||| Q will not terminate.
 - ▶ The external choices are the external choices of *P* and *Q*.
 - ► The labels are the labels from the processes *P* and *Q*, and we continue recursively with the interleaving combination.

ション ふゆ アメリア メリア しょうくしゃ

The internal choices are defined similarly.

- A termination event can happen only if both processes have a termination event.
- If both processes terminate with results a and b, then the interleaving combination terminates with result (a, b).
- If one process terminates but the other not, the rules of CSP express that one continues as the other other process, until it has terminated.
 - We can therefore equate, if P has terminated, $P \parallel \mid Q$ with Q.
 - However, we record the result obtained by P, and therefore apply fmap to Q in order to add the result of P to the result of Q when it terminates.

ション ふゆ アメリア メリア しょうくしゃ

Simulator is programmed in Agda using compiled version of Agda.

- Simulator requires String
- It turned out to be more complicated than expected, since we needed to convert processes, which are infinite entities, into strings, which are finitary.

ション ふゆ く 山 マ チャット しょうくしゃ

- The solution was to add String components to Process
- Choice set need to be displayed, so we use a universes of choices with a ToString function

The simulator does the following:

- It will display to the user
 - The selected process.
 - The set of termination choices with their return value.
 - And allows the user to choose an external or internal choice as a string input.
- If the input is correct, then the program continues with the process which is obtained by following that transition.
- Otherwise an error message is returned and the program asks again for a choice.
- ► √-events are only displayed but one cannot follow them, because afterwards the system would stop.

An example run of the simulator is as follows:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- ▶ We would like to model complex systems in Agda.
- Model examples of processes occurring in the European Train Management System (ERTMS) in Agda.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Show correctness.

- A formalisation of CSP in Agda has been developed using coalgebra types and copattern matching.
- The other operations (external choice, internal choice, parallel operations, hiding, renaming, etc.) are defined in a similar way.
- Developed a simulator of CSP processes in Agda.
- Define approach using Sized types (Which allow us to apply function to CO-IH).

ション ふゆ く 山 マ チャット しょうくしゃ

The End

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?