
Programming with Monadic CSP-Style Processes
in Dependent Type Theory

Bashar Igried and Anton Setzer

Swansea University, Swansea,Wales, UK

bashar.igried@yahoo.com , a.g.setzer@swansea.ac.uk

JAIST, Japan, 6 Sep 2016

Overview

1. Agda
2. Why Agda?
3. Process Algebra
4. CSP
5. CSP-Agda
6. Choice Sets
7. Simulator
8. Future Work
9. Conclusion

Agda

I Agda is a theorem prover and dependently typed programming
language, which extends intensional Martin-Löf type theory.

I The current version of this language is Agda 2 which has
beendesigned and implemented by Ulf Norell in his PhD in
2007.

I Agda has a termination and coverage checker. This makes
Agda a total language, so each Agda program terminates.

I The termination checker verifies that all programs terminate.
I Without the termination and coverage checker, Agda would be

inconsistent.
I Agda has a type checker which refuses incorrect proofs by

detecting unmatched types.
I The type checker in Agda shows the goals and the

environment information related to proof.
I The coverage checker guarantees that the definition of a

function covers all possible cases.

Agda

I The user interface of Agda is Emacs.
I This interface has been useful for interactively writing and

verifying proofs.
I Programs can be developed incrementally, since we can leave

parts of the program unfinished.

Agda

I There are several levels of types in Agda, the lowest is for
historic reasons called Set.

I Types in Agda are given as:
I dependent function types.
I inductive types.
I coinductive types.
I record types(which are in the newer approach used for defining coinductive types).

I generalisation of inductive-recursive definitions.

Agda

Inductive data types are given as sets A together with constructors
which are strictly positive in A.
For instance the collection of finite sets is given as

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} (i : Fin n) → Fin (suc n)

I Here {n : N} is an implicit argument.
I Implicit arguments are omitted, provided they can be uniquely

determined by the type checker.
I We can make a hidden argument explicit by writing for

instance zero {n}.

Agda

I The above definition introduces a new type Fin : N→ Set
where (Fin n) is a type with n elements.

I The elements of (Fin n) are those constructed from applying
these constructors.

Agda

Therefore we can define functions by case distinction on these
constructors using pattern matching, e.g.

toN : ∀ {n} → Fin n → N
toN zero = 0
toN (suc n) = suc (toN n)

Agda

There are two approaches of defining coinductive types in Agda.
I The older approach is based on the notion of codata types.
I The newer one is based on coalgebras given by their

observations or eliminators
We will follow the newer one, pioneered by Setzer, Abel, Pientka
and Thibodeau.

Why Agda?

Why Agda?

I Agda supports induction-recursion.
Induction-Recursion allows to define universes.

I Agda supports definition of coalgebras by elimination rules and
defining their elements by combined pattern and copattern
matching.

I Using of copattern matching allows to define code which looks
close to normal mathematical proofs.

Overview Of Process Algebras

Overview Of Process Algebras

I “Process algebra” was initiated in 1982 by Bergstra and Klop
[1], in order to provide a formal semantics to concurrent
systems.

I Baeten et. al. Process algebra is the study of distributed or
parallel systems by algebraic means.

I Three main process algebras theories were developed.
I Calculus of Communicating Systems (CCS).

Developed by Robin Milner in 1980.
I Communicating Sequential Processes (CSP).

Developed by Tony Hoare in 1978.
I Algebra of Communicating Processes (ACP).

Developed by Jan Bergstra and Jan Willem Klop, in 1982.

I Processes will be defined in Agda according to the operational
behaviour of the corresponding CSP processes.

Example Of Processes

CSP

I CSP considered as a formal specification language, developed
in order to describe concurrent systems.
By identifying their behaviour through their communications.

I CSP is a notation for studying processes which interact with
each other and their environment.

I In CSP we can describe a process by the way it can
communicate with its environment.

I A system contains one or more processes, which interact with
each other through their interfaces.

CSP Syntax

In the following table, we list the syntax of CSP processes:

Q ::= STOP STOP
| SKIP SKIP
| prefix a→ Q
| external choice Q 2 Q
| internal choice Q u Q
| hiding Q \ a
| renaming Q[R]
| parallel Q X‖Y Q
| interleaving Q ||| Q
| interrupt Q 4 Q
| composition Q ; Q

Example Of Processes

Example Of Processes

Example Of Processes

CSP-Agda

CSP-Agda

I We will represent the process algebra CSP in a coinductive
form in dependent type theory.

I Implement it in Agda.
I can proceed at any time with labelled transitions (external

choices), silent transitions (internal choices), or X-events
(termination).

I Therefore, processes in CSP-Agda have as well this possibility.

CSP-Agda

I In process algebras, if a process terminates, it does not return
any information except for that it terminated.

I We want to define processes in a monadic way in order to
combine them in a modular way.

I Therefore, if processes terminate, they should return some
additional information, namely the result returned by the
process.

CSP-Agda

In Agda the corresponding code is as follows:
mutual

record Process∞ (i : Size) (c : Choice) : Set where
coinductive
field

forcep : {j : Size< i} → Process j c
Str∞ : String

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

CSP-Agda

In Agda the corresponding code is as follows:

record Process+ (i : Size) (c : Choice) : Set where
constructor process+
coinductive
field

E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String

CSP-Agda

So we have in case of a process progressing:

(1) an index set E of external choices and for each external choice
e the Label (Lab e) and the next process (PE e);

(2) an index set of internal choices I and for each internal choice i
the next process (PI i); and

(3) an index set of termination choices T corresponding to
X-events and for each termination choice t the return value
PT t : A.

CSP-Agda

As an example the following Agda code describes the process
pictured below:

P = node (process+ E Lab PE I PI T PT "P")
: Process String where

E = code for {1, 2} I = code for {3, 4}
T = code for {5}
Lab 1 = a Lab 2 = b PE 1 = P1
PE 2 = P2 PI 3 = P3 PI 4 = P4
PT 5 = "STOP"

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

Choices Set

Choices Set

I Choice sets are modelled by a universe.
I Universes go back to Martin-Löf in order to formulate the

notion of a type consisting of types.
I Universes are defined in Agda by an inductive-recursive

definition.

Choice Sets

We give here the code expressing that Choice is closed under fin,]
and subset’.

mutual
data Choice : Set where

fin : N → Choice
]’ : Choice → Choice → Choice

subset’ : (E : Choice) → (ChoiceSet E → Bool)
→ Choice

ChoiceSet : Choice → Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s]’ t) = ChoiceSet s] ChoiceSet t
ChoiceSet (subset’ E f) = subset (ChoiceSet E) f

Interleaving operator

Interleaving operator

I In this process, the components P and Q execute completely
independently of each other.

I Each event is performed by exactly one process.
I The operational semantics rules are straightforward:

P X−→ P̄ Q X−→ Q̄

P ||| Q X−→ P̄ ||| Q̄

P
µ−→ P̄ µ 6= X

P ||| Q µ−→ P̄ ||| Q

Q ||| P µ−→ Q ||| P̄

Interleaving operator

We represent interleaving operator in CSP-Agda as follows
|||++ : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P |||++ Q) = E P]’ E Q
Lab (P |||++ Q) (inj1 c) = Lab P c
Lab (P |||++ Q) (inj2 c) = Lab Q c
PE (P |||++ Q) (inj1 c) = PE P c |||∞+ Q
PE (P |||++ Q) (inj2 c) = P |||+∞ PE Q c
I (P |||++ Q) = I P]’ I Q
PI (P |||++ Q) (inj1 c) = PI P c |||∞+ Q
PI (P |||++ Q) (inj2 c) = P |||+∞ PI Q c
T (P |||++ Q) = T P ×’ T Q
PT (P |||++ Q) (c „ c1) = PT P c „ PT Q c1
Str+ (P |||++ Q) = Str+ P |||Str Str+ Q

Interleaving operator

I When processes P and Q haven’t terminated, then P ||| Q will
not terminate.

I The external choices are the external choices of P and Q.
I The labels are the labels from the processes P and Q, and we

continue recursively with the interleaving combination.
I The internal choices are defined similarly.

Interleaving operator

I A termination event can happen only if both processes have a
termination event.

I If both processes terminate with results a and b, then the
interleaving combination terminates with result (a „ b).

I If one process terminates but the other not, the rules of CSP
express that one continues as the other other process, until it
has terminated.

I We can therefore equate, if P has terminated, P ||| Q with Q.
I However, we record the result obtained by P, and therefore

apply fmap to Q in order to add the result of P to the result of
Q when it terminates.

A Simulator of CSP-Agda

A Simulator of CSP-Agda

We have written a simulator in Agda.
I It turned out to be more complicated than expected, since we

needed to convert processes, which are infinite entities, into
strings, which are finitary.

I The solution was to add string components to Process

A Simulator of CSP-Agda

The simulator does the following:
I It will display to the user

I The selected process,
I The set of termination choices with their return value
I And allows the user to choose an external or internal choice as

a string input.

I If the input is correct, then the program continues with the
process which is obtained by following that transition,

I otherwise an error message is returned and the program asks
again for a choice.

I X-events are only displayed but one cannot follow them,
because afterwards the system would stop.

A Simulator of CSP-Agda

An example run of the simulator is as follows:

Future Work

I Looking to the future, we would like to model complex
systems in Agda.

I Model examples of processes occurring in the European Train
Management System (ERTMS) in Agda.

I Show correctness.

Conclusion

I A formalisation of CSP in Agda has been developed using
coalgebra types and copattern matching.

I The other operations (external choice, internal choice, parallel
operations, hiding, renaming, etc.) are defined in a similar way.

I A simulator of CSP processes in Agda has been developed.

Conclusion

I Define approach using Sized types.
I For complex examples (e.g recursion) sized types are used to

allow application of functions to the co-IH.

[1] J. A. Bergstra and J. W. Klop. Fixed point semantics in process
algebras. CWI technical report, Stichting Mathematisch
Centrum. Informatica-IW 206/82, 1982.

The End

