Programming with Monadic CSP-Style Processes
in Dependent Type Theory

Bashar Igried and Anton Setzer

Swansea University, Swansea,Wales, UK

bashar.igried@yahoo.com , a.g.setzer@swansea.ac.uk

JAIST, Japan, 6 Sep 2016

Overview

© 0N R W

Agda

Why Agda?
Process Algebra
CSP

CSP-Agda
Choice Sets
Simulator
Future Work

Conclusion

Agda

Agda is a theorem prover and dependently typed programming
language, which extends intensional Martin-L&f type theory.
The current version of this language is Agda 2 which has
beendesigned and implemented by UIf Norell in his PhD in
2007.

Agda has a termination and coverage checker. This makes
Agda a total language, so each Agda program terminates.
The termination checker verifies that all programs terminate.

» Without the termination and coverage checker, Agda would be

inconsistent.

Agda has a type checker which refuses incorrect proofs by
detecting unmatched types.

The type checker in Agda shows the goals and the
environment information related to proof.

The coverage checker guarantees that the definition of a
function covers all possible cases.

Agda

» The user interface of Agda is Emacs.

» This interface has been useful for interactively writing and
verifying proofs.

» Programs can be developed incrementally, since we can leave
parts of the program unfinished.

Agda

» There are several levels of types in Agda, the lowest is for
historic reasons called Set.

» Types in Agda are given as:

| 4

vV vy vy

dependent function types.

inductive types.

coinductive types.

record typeS(which are in the newer approach used for defining coinductive types).
generalisation of inductive-recursive definitions.

Agda

Inductive data types are given as sets A together with constructors

which are strictly positive in A.
For instance the collection of finite sets is given as

data Fin : N — Set where
zero : {n: N} — Fin (suc n)
suc : {n: N} (i: Fin n) — Fin (suc n)

» Here {n: N} is an implicit argument.

» Implicit arguments are omitted, provided they can be uniquely
determined by the type checker.

» We can make a hidden argument explicit by writing for
instance zero {n}.

Agda

» The above definition introduces a new type Fin : N — Set
where (Fin n) is a type with n elements.

» The elements of (Fin n) are those constructed from applying
these constructors.

Agda

Therefore we can define functions by case distinction on these
constructors using pattern matching, e.g.

toN: V {n} - Finn— N
toN zero =0
toN (suc n) = suc (toN n)

Agda

There are two approaches of defining coinductive types in Agda.
» The older approach is based on the notion of codata types.

» The newer one is based on coalgebras given by their
observations or eliminators

We will follow the newer one, pioneered by Setzer, Abel, Pientka
and Thibodeau.

Why Agda?

Why Agda?

» Agda supports induction-recursion.
Induction-Recursion allows to define universes.

» Agda supports definition of coalgebras by elimination rules and
defining their elements by combined pattern and copattern
matching.

» Using of copattern matching allows to define code which looks
close to normal mathematical proofs.

Overview Of Process Algebras

Overview Of Process Algebras

> “Process algebra” was initiated in 1982 by Bergstra and Klop
[1], in order to provide a formal semantics to concurrent
systems.

» Baeten et. al. Process algebra is the study of distributed or
parallel systems by algebraic means.

» Three main process algebras theories were developed.

» Calculus of Communicating Systems (CCS).
Developed by Robin Milner in 1980.

» Communicating Sequential Processes (CSP).
Developed by Tony Hoare in 1978.

» Algebra of Communicating Processes (ACP).
Developed by Jan Bergstra and Jan Willem Klop, in 1982.

» Processes will be defined in Agda according to the operational
behaviour of the corresponding CSP processes.

Example Of Processes

@board 32)@ Pay 90 . alight B .
32

CSP

CSP considered as a formal specification language, developed
in order to describe concurrent systems.

By identifying their behaviour through their communications.

CSP is a notation for studying processes which interact with
each other and their environment.

In CSP we can describe a process by the way it can
communicate with its environment.

A system contains one or more processes, which interact with
each other through their interfaces.

CSP Syntax

In the following table, we list the syntax of CSP processes:

Q ::=STOP STOP
| SKIP SKIP
| prefix a— Q
| external choice RUQ
| internal choice RN
| hiding Q\a
| renaming Q[R]
| parallel Qxlly @
| interleaving Qlll @
| interrupt QAR

| composition Q;Q

Example Of Processes

Example Of Processes

alight B

board 32

B32 OB111
board 111

alight B

Example Of Processes

alight B

board 32

B3z nB111
board 111

alight B

CSP-Agda

CSP-Agda

» We will represent the process algebra CSP in a coinductive
form in dependent type theory.

» Implement it in Agda.

» can proceed at any time with labelled transitions (external
choices), silent transitions (internal choices), or v -events
(termination).

» Therefore, processes in CSP-Agda have as well this possibility.

CSP-Agda

» In process algebras, if a process terminates, it does not return
any information except for that it terminated.

» We want to define processes in a monadic way in order to
combine them in a modular way.

» Therefore, if processes terminate, they should return some
additional information, namely the result returned by the
process.

CSP-Agda

In Agda the corresponding code is as follows:

mutual
record Processoo (i : Size) (c: Choice) : Set where
coinductive
field
forcep : {j : Size< i} — Process j ¢
Stroo : String

data Process (i : Size) (c: Choice) : Set where
terminate : ChoiceSet ¢ — Process i ¢
node : Process+ ic¢ — Processic

CSP-Agda

In Agda the corresponding code is as follows:

record Process+ (i: Size) (c: Choice) : Set where
constructor process+

coinductive

field
E . Choice
Lab : ChoiceSet E — Label
PE : ChoiceSet E — Processco i ¢
I . Choice
Pl : ChoiceSet | — Processoo i ¢
T : Choice

PT : ChoiceSet T — ChoiceSet ¢
Str+ : String

CSP-Agda

So we have in case of a process progressing:

(1) an index set E of external choices and for each external choice
e the Label (Lab e) and the next process (PE e);

(2) an index set of internal choices | and for each internal choice i
the next process (P! i); and

(3) an index set of termination choices T corresponding to

v -events and for each termination choice t the return value
PTt: A

CSP-Agda

As an example the following Agda code describes the process
pictured below:

P = node (process+ E Lab PEIPI T PT "P")
: Process String where

E= code for {1,2} | = code for {3,4}
T = code for {5}
Labl = a Lab2 = b PE1 = P
PE2 = P, PI3 = Py Pl4 = P,
PT5 = n"STOP"

4/1/2?\@;

3
P, P, P P, "STOP"

Choices Set

Choices Set

» Choice sets are modelled by a universe.

» Universes go back to Martin-L&f in order to formulate the
notion of a type consisting of types.

» Universes are defined in Agda by an inductive-recursive
definition.

Choice Sets

We give here the code expressing that Choice is closed under fin, W
and subset’.

mutual
data Choice : Set where
fin : N — Choice

W' : Choice — Choice — Choice
subset’ : (E : Choice) — (ChoiceSet E — Bool)
— Choice

ChoiceSet : Choice — Set

ChoiceSet (finn) = Finn

ChoiceSet (sw't) = ChoiceSet s & ChoiceSet t
ChoiceSet (subset’ E f) = subset (ChoiceSet E) f

Interleaving operator

Interleaving operator

> In this process, the components P and Q execute completely
independently of each other.

» Each event is performed by exactly one process.

» The operational semantics rules are straightforward:

-
P— P WtV

PP Q-5Q N
PIlQ-SPQ

PIIQ-SPIIQ

QP QP

Interleaving operator

We represent interleaving operator in CSP-Agda as follows
_|+H—: {i: Size} — {co c1 : Choice}

— Process+ i cg — Process+ i ¢
— Process+ i (¢p %' ¢1)

E (Pll[+H+ Q = EPWERQR

Lab (P |||+ Q) (inj1 ¢) = Lab Pc

Lab (P |||+ Q) (inj ¢) = Lab Q¢

PE (P|||[4++ Q) (inj1 ¢) = PEPc||loc+ Q
PE (P|ll++ @) (in2) = P|ll+o0 PE Qc
| (PllIl++ Q) = 1P IQ

Pl (P|l[++ Q) (injt ¢) = PIPcl|loct+ Q
PL(P[Il++ Q) (i = Pll+o0 Pl Qc

T (Pll+ Q) —TPXTQ

PT (P||[++ Q) (¢, 1) = PTPc,PTQa

Str+ (P |||+ Q)

Str+ P |||Str Str+ @Q

Interleaving operator

» When processes P and @ haven't terminated, then P ||| Q will
not terminate.

» The external choices are the external choices of P and Q.

» The labels are the labels from the processes P and Q, and we
continue recursively with the interleaving combination.

» The internal choices are defined similarly.

Interleaving operator

» A termination event can happen only if both processes have a
termination event.

> |If both processes terminate with results a and b, then the
interleaving combination terminates with result (a,, b).

> |f one process terminates but the other not, the rules of CSP
express that one continues as the other other process, until it
has terminated.

» We can therefore equate, if P has terminated, P ||| @ with Q.
» However, we record the result obtained by P, and therefore

apply fmap to @ in order to add the result of P to the result of
Q@ when it terminates.

A Simulator of CSP-Agda

A Simulator of CSP-Agda

We have written a simulator in Agda.

» |t turned out to be more complicated than expected, since we
needed to convert processes, which are infinite entities, into
strings, which are finitary.

» The solution was to add string components to Process

A Simulator of CSP-Agda

The

simulator does the following:
It will display to the user
» The selected process,
» The set of termination choices with their return value
» And allows the user to choose an external or internal choice as
a string input.
If the input is correct, then the program continues with the
process which is obtained by following that transition,

otherwise an error message is returned and the program asks
again for a choice.

v'-events are only displayed but one cannot follow them,
because afterwards the system would stop.

A Simulator of CSP-Agda

An example run of the simulator is as follows:

((b - (a — sSTOP)) o ({((c — STOP) n (a — STOP)) o SKIP(STOP)))
Termination-Events: (inr (inr 8)):(inr (inr STOP))
Events: e-(inl @):b i1-(inr (inl @)):t i-(inr (inl 1)):t
Choose Event

i-(inr (inl 0))

((b — (a — STOP)) o ({c — STOP) o SKIP(STOP)))
Termination-Events: (inr (inr ®)):(inr (inr STOP))
Events: e-(inl @):b e-(inr (inl 8)):c

Choose Event

e-(inl @)

(fmap inl (a — STOP))

Termination-Events:

Events: e-0:a

Choose Event

Future Work

» Looking to the future, we would like to model complex
systems in Agda.

» Model examples of processes occurring in the European Train
Management System (ERTMS) in Agda.

» Show correctness.

Conclusion

» A formalisation of CSP in Agda has been developed using
coalgebra types and copattern matching.

» The other operations (external choice, internal choice, parallel
operations, hiding, renaming, etc.) are defined in a similar way.

» A simulator of CSP processes in Agda has been developed.

Conclusion

» Define approach using Sized types.

» For complex examples (e.g recursion) sized types are used to
allow application of functions to the co-IH.

[1] J. A. Bergstra and J. W. Klop. Fixed point semantics in process
algebras. CWI technical report, Stichting Mathematisch
Centrum. Informatica-IW 206/82, 1982.

The End

