Coinductive Reasoning in Dependent Type Theory -Copatterns, Objects, Processes

Anton Setzer

http://www.cs.swan.ac.uk/~csetzer/index.html

Swansea University

http://www.swansea.ac.uk/compsci/

(Part on Processes presented by Bashar Igried on separate slides, Remaining parts with contributions by Peter Hancock, Andreas Abel, Brigitte Pientka, David Thibodeau) Talk given at JAIST, Japan

6 September 2016

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Objects

Conclusion

Bibliography

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Motivation

- (Co)Iteration (Co)Recursion (Co)Induction
- Generalisation (Petersson-Synek Trees)
- Schemata for Corecursive Definitions and Coinductive Proofs
- Objects
- Conclusion
- Bibliography

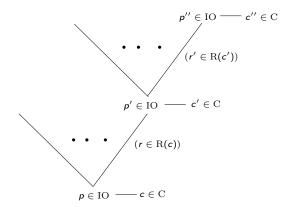
Э

Need for Coinductive Proofs

- In the beginning of computing, computer programs were batch programs.
 - One input one output
 - Correct programs correspond to well-founded structures (termination).
- Nowadays most programs are interactive;
 - ► A possibly infinite sequence of interactions, often concurrently.
 - Correspond to non-well-founded structures.
 - ► For instance non-concurrent computations can be represented as **IO-trees**.
 - A simple form of objects in object-oriented programs can be represented as non-well-founded trees.

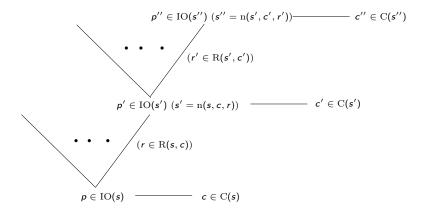
< □ > < @ > < 注 > < 注 > ... 注

IO-Trees (Non-State Dependent)



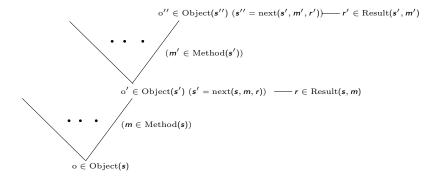
<ロト < 課 > < 理 > < 理 > … 理

IO-Trees State Dependent



イロト 不得下 イヨト イヨト 三日

Objects (State Dependent)



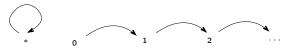
(日) (部) (王) (王) (王)

Need for Good Framework for Coinductive Structures

- Non-well-founded trees are defined coinductively.
- ► Relations between coinductive structures are coinductively defined
- ► Need suitable notion of reasoning coinductively.

Coinductive Proofs

 Reasoning about bisimulation is often very formalist. Consider an unlabelled Transition system:



- ▶ For showing * ~ *n* one defines
 - $R := \{(*, n) \mid n \in \mathbb{N}\}$
 - Shows that R is a bisimulation relation:
 - Let $(a, b) \in R$. Then $a = *, b = n \in \mathbb{N}$ for some n.
 - ► Assume $a = * \longrightarrow a'$. Then a' = *. We have $b = n \longrightarrow n+1$ and $(*, n+1) \in R$.
 - Assume $b = n \longrightarrow b'$. Then b' = n + 1. We have $a = * \longrightarrow *$ and $(*, n + 1) \in R$.
 - Therefore $x \sim y$ for $(x, y) \in R$.

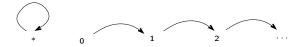
Comparison

$$A := \{k \mid (n+m) + k = n + (m+k)\}$$

and showing that A is closed under 0 and successor.

- Instead we prove φ by induction on k using in the successor case the IH.
- Both proofs amount the same, but the second one would be far more difficult to teach and cumbersome to use.

Desired Coinductive Proof



• We show $\forall n \in \mathbb{N} . * \sim n$ by coinduction on \sim .

- ► Assume $* \longrightarrow x$. We need to find y s.t. $n \longrightarrow y$ and $x \sim y$. Choose y = n + 1. By **co-IH** $* \sim n + 1$.
- Assume n → y. We need to find x s.t. * → x and x ~ y. Choose x = *. By co-IH * ~ n + 1.

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In essence same proof, but hopefully easier to teach and use.

Desired Coinductive Proof for Streams

 \blacktriangleright Consider $\operatorname{Stream}:\operatorname{Set}$ given coinductively by

• Consider 3 versions of the stream n, n + 1, n + 2, ...

イロト 不得下 イヨト イヨト 三日

Desired Coinductive Proof for Streams

We show

$$\forall n \in \mathbb{N}.\mathrm{inc}(n) = \mathrm{inc}'(n) \wedge \mathrm{inc}(n) = \mathrm{inc}''(n)$$

by coinduction on Stream.

- head(inc(n)) = n = head(inc'(n)) = head(inc''(n))
- ► $\operatorname{tail}(\operatorname{inc}(n)) = \operatorname{inc}(n+1) \stackrel{\operatorname{co-IH}}{=} \operatorname{inc}''(n+1) = \operatorname{tail}(\operatorname{inc}'(n))$
- ► $\operatorname{tail}(\operatorname{inc}(n)) = \operatorname{inc}(n+1) \stackrel{\operatorname{co-IH}}{=} \operatorname{inc}'(n+1) = \operatorname{tail}(\operatorname{inc}''(n))$

Goal

- ► Identify the precised dual of iteration, primitive recursion, induction.
- Identify the correct use of co-IH.
- Use of coalgebras as defined by their elimination rules.
- Generalise to indexed coinductively defined sets.

ㅋㅋ ㅋㅋㅋ

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Objects

Conclusion

Bibliography

イロト 不得下 イヨト イヨト

Introduction/Elimination of Inductive/Coinductive Sets

► Introduction rules for Natural numbers means that we have

 $\begin{array}{l} 0 \in \mathbb{N} \\ \mathrm{S} : \mathbb{N} \to \mathbb{N} \end{array}$

so we have an \mathbb{N} -algebra

 $(\mathbb{N},0,\mathrm{S})\in (X\in\mathrm{Set})\times X\times (X\to X)$

 Dually, coinductive sets are given by their elimination rules i.e. by observations or eliminators.

As an example we consider Stream:

We obtain a Stream-coalgebra

 $(\text{Stream, head, tail}) \in (X \in \text{Set}) \times (X \to \mathbb{N}) \times (X \to X)$

Problem of Defining Coalgebras by their Introduction Rules

 Commonly one defines coalgebras by their introduction rules: Stream is the largest set closed under

```
\mathrm{cons}:\mathrm{Stream}\times\mathbb{N}\to\mathrm{Stream}
```

- Problem:
 - In set theory cons cannot be defined as a constructor such as

$$cons(n, s) := \langle \lceil cons \rceil, n, s \rangle$$

as for inductively defined sets, since we would need **non-well-founded sets**.

We can define a set Stream closed under a function cons, but that's no longer the same operation one would use for defining a corresponding inductively defined set.

In a term model we obtain non-normalisation:

We get elements such as

 $\operatorname{zerostream} := \operatorname{cons}(0, \operatorname{cons}(0, \cdots))) \in \operatorname{Stream}$

Problem of Defining Coalgebras by their Introduction Rules

- ► If we define Stream by its elimination rules, problems vanish:
 - In set theory Stream is a set which allows operations head : Stream → N, tail : Stream → Set.
 For instance we can take

$$\begin{array}{rll} \text{Stream} & := & \mathbb{N} \to \mathbb{N} \\ \text{head}(f) & := & f(0) \\ \text{tail}(f) & := & f \circ \text{S} \end{array}$$

and obtain a largest set in the sense given below.

- In a term model we can define the streams as the largest set which allows to define head and tail.
 zerostream can be a term such that head(zerostream) → 0, tail(zerostream) → zerostream.
 zerostream itself is in normal form.
- ► In both cases cons can now be **defined** by the principle of coiteration.

Unique Iteration

- \blacktriangleright That ($\mathbb{N},0,\mathrm{S})$ are minimal can be given by:
 - Assume another \mathbb{N} -algebra (X, z, s), i.e.

$$z \in X$$
$$s: X \to X$$

► Then there exist a unique homomorphism g : (N,0,S) → (X,z,s), i.e.

$$egin{array}{rcl} g: \mathbb{N} o X \ g(0) &= z \ g(\mathrm{S}(n)) &= s(g(n)) \end{array}$$

- \blacktriangleright This is the same as saying $\mathbb N$ is an initial $F_{\mathbb N}\text{-algebra}.$
- This means we can define uniquely

$$\begin{array}{lll} g: \mathbb{N} \to X \\ g(0) &= x & \text{ for some } x \in X \\ g(\mathrm{S}(n)) &= x' & \text{ for some } x' \in X \text{ depending on } g(n) \end{array}$$

- This is the principle of **unique iteration**.
- Definition by pattern matching.

Anton Setzer

Coinductive Reasoning

Unique Coiteration

- \blacktriangleright Dually, that (Stream, head, tail) is maximal can be given by:
 - Assume another Stream-coalgebra (X, h, t):

$$\begin{array}{rrr} h & : & X \to \mathbb{N} \\ t & : & X \to X \end{array}$$

▶ Then there exist a **unique homomorphism** $g: (X, h, t) \rightarrow ($ Stream, head, tail), i.e.:

$$g: X \to \text{Stream}$$

head $(g(x)) = h(x)$
tail $(g(x)) = g(t(x))$

Means we can define uniquely

 $g: X \to \text{Stream}$ head(g(x)) = n for some $n \in \mathbb{N}$ depending on xtail(g(x)) = g(x') for some $x' \in X$ depending on x

20/65

This is the principle of **unique coiteration**.

Definition by copattern matching.
 Anton Setzer
 Coinductive Reasoning

Comparison

- ▶ When using iteration the instance of g we can use is restricted, but we can apply an arbitrary function to it.
- ▶ When using conteration we can choose any instance a of g, but cannot apply any function to g(a).

イロト 不得下 イヨト イヨト 三日

Duality

Inductive DefinitionCoinductive DefinitionDetermined by IntroductionDetermined by Observation/EliminationIterationCoiterationPattern matchingCopattern matchingPrimitive Recursion?Induction?Induction-Hypothesis?

¹Part of this table is due to Peter Hancock, see acknowledgements at the end. = -9 and = -9

(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Recursion

- From unique iteration for N we can derive principle of unique primitive recursion
 - We can define uniquely

$$egin{array}{rcl} g:\mathbb{N} o X \ g(0) &= x & ext{for some } x \in X \ g(\mathrm{S}(n)) &= x' & ext{for some } x' \in X ext{ depending on } n, \ g(n) \end{array}$$

3

(Co)Iteration – (Co)Recursion – (Co)Induction

Unique Primitive Corecursion

- From unique coiteration we can derive principle of unique primitive corecursion
 - We can define uniquely

3

Duality

► For primitive recursion we could make use of the pair (n, g(n)) consisting of n and the IH, i.e. an element of

$\mathbb{N}\times X$

For primitive corecursion we can make use of either s ∈ Stream or g(x'), i.e. of an element of

Stream + X

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \blacktriangleright + is the dual of \times .

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation/Elimination
Iteration	Coiteration
Pattern matching	Copattern matching
Primitive Recursion	Primitive Corecursion
Induction	?
Induction-Hypothesis	?

Example

 $s \in \text{Stream}$ head(s) = 0tail(s) = s

 $\begin{array}{lll} s':\mathbb{N}\to \mathrm{Stream}\\ \mathrm{head}(s'(n))&=&0\\ \mathrm{tail}(s'(n))&=&s'(n+1) \end{array}$

 $cons: (\mathbb{N} \times Stream) \rightarrow Stream$ head(cons(n, s)) = ntail(cons(n, s)) = s

Anton Setzer

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Induction

► From unique iteration one can derive principle of induction:

We can prove
$$\forall n \in \mathbb{N}.\varphi(n)$$
 by proving $\varphi(0)$
 $\forall n \in \mathbb{N}.\varphi(n) \rightarrow \varphi(\mathbf{S}(n))$

 Using induction we can prove (assuming extensionality of functions) uniqueness of iteration and primitive recursion.

Equivalence

Theorem

Let $(\mathbb{N}, 0, S)$ be an \mathbb{N} -algebra. The following is equivalent

- 1. The principle of unique iteration.
- 2. The principle of unique primitive recursion.
- 3. The principle of iteration + induction.
- 4. The principle of primitive recursion + induction.

Coinduction

- Uniqueness in coiteration is equivalent to the principle:
 Bisimulation implies equality
- \blacktriangleright Bisimulation on ${\rm Stream}$ is the largest relation \sim on ${\rm Stream}$ s.t.

$$s \sim s'
ightarrow \mathrm{head}(s) = \mathrm{head}(s') \wedge \mathrm{tail}(s) \sim \mathrm{tail}(s')$$

- \blacktriangleright Largest can be expressed as \sim being an indexed coinductively defined set.
- Primitive corecursion over ~ means:
 We can prove

$$\forall s, s'. X(s, s')
ightarrow s \sim s'$$

by showing

$$\begin{array}{rcl} X(s,s') & \to & \mathrm{head}(s) = \mathrm{head}(s') \\ X(s,s') & \to & X(\mathrm{tail}(s),\mathrm{tail}(s')) \lor \mathrm{tail}(s) \sim \mathrm{tail}(s') \end{array}$$

Coinduction

- Combining
 - bisimulation implies equality
 - bisimulation can be shown corecursively

we obtain the following principle of coinduction

Э

Schema of Coinduction

We can prove

$$\forall s, s'. X(s, s') \rightarrow s = s'$$

by showing

$$\begin{array}{rcl} \forall s, s'. X(s, s') & \rightarrow & \mathrm{head}(s) = \mathrm{head}(s') \\ \forall s, s'. X(s, s') & \rightarrow & \mathrm{tail}(s) = \mathrm{tail}(s') \end{array}$$

where tail(s) = tail(s') can be derived

- directly or
- from a proof of

X(tail(s), tail(s'))

invoking the co-induction-hypothesis

$$X(ext{tail}(s), ext{tail}(s')) o ext{tail}(s) = ext{tail}(s')$$

▶ Note: Only direct use of co-IH allowed.

Equivalence

Theorem

Let (Stream, head, tail) be a Stream-coalgebra. The following is equivalent

- 1. The principle of unique coiteration.
- 2. The principle of unique primitive corecursion.
- 3. The principle of coiteration + coinduction
- 4. The principle of primitive corecursion + coinduction

Duality

Inductive Definition	Coinductive Definition
Determined by Introduction	Determined by Observation/Elimination
Iteration	Coiteration
Pattern matching	Copattern matching
Primitive Recursion	Primitive Corecursion
Induction	Coinduction
Induction-Hypothesis	Coinduction-Hypothesis

Motivation

(Co)Iteration – (Co)Recursion – (Co)Induction

Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Objects

Conclusion

Bibliography

Э

General Strictly Positive Indexed Inductive Definitions

 \blacktriangleright Strictly positive indexed inductively defined sets over index set I are collection of sets $D:I \rightarrow Set$ closed under constructors

$$\begin{array}{l} \mathrm{C}_j: (x_1 \in \mathcal{A}_1) \times (x_2 \in \mathcal{A}_2(x_1)) \times \cdots \times (x_n \in \mathcal{A}_n(x_1, \ldots, x_{n-1})) \\ \rightarrow \mathrm{D}(\mathrm{i}(x_1, \ldots, x_n)) \end{array}$$

- Here $A_k(\vec{x})$ is
 - either a non-inductive argument, i.e. a set independent of A,
 - or it is an inductive argument, i.e.

$$A_k(\vec{x}) = (b \in B(\vec{x})) \rightarrow \mathrm{D}(\mathrm{i}'_k(\vec{x}, b))$$

 Later arguments cannot depend on inductive arguments, only on non-inductive arguments.

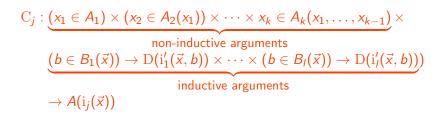
Simplification

► Therefore we can move the inductive arguments to the end (x̄ := x₁,..., x_k)

$$C_{j}: \underbrace{(x_{1} \in A_{1}) \times (x_{2} \in A_{2}(x_{1})) \times \cdots \times x_{k} \in A_{k}(x_{1}, \dots, x_{k-1})}_{\text{non-inductive arguments}} \times \underbrace{(b \in B_{1}(\vec{x})) \rightarrow D(i'_{1}(\vec{x}, b)) \times \cdots \times (b \in B_{l}(\vec{x})) \rightarrow D(i'_{l}(\vec{x}, b))}_{\text{inductive arguments}})_{\text{inductive arguments}}$$

イロト 不得下 イヨト イヨト 三日

Simplification



- We can form now the product of the non-inductive arguments and obtain a single non-inductive argument.
- We can replace the inductive arguments by one non-inductive argument

$$(b \in (B_1(\vec{x}) + \cdots + B_l(\vec{x}))) \rightarrow D(i''(\vec{x}, b))$$

for some i''.

Anton Setzer

(日) (得) (日) (日) (日)

Simplification

• We obtain for some new sets A_j , $B_j(x)$ and function j, i

 $C_j : ((a \in A_j) \times ((b \in B_j(a)) \rightarrow D(j(a, b)))) \rightarrow D(i(a))$

- ► We can replace all constructors C₁,..., C_n by one constructor C by adding an additional argument j ∈ {1,..., n} selecting the constructor, and then combine it with the non-inductive argument.
- So we have one constructor

$$\mathrm{C}: ((a \in A) \times ((b \in B(a)) \rightarrow \mathrm{D}(\mathrm{j}(a, b)))) \rightarrow \mathrm{D}(\mathrm{i}(a))$$

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくつ

Restricted Indexed (Co)Inductively Defined Sets

$\mathrm{C}: ((a \in A) \times ((b \in B(a)) \rightarrow \mathrm{D}(\mathrm{j}(a, b)))) \rightarrow \mathrm{D}(\mathrm{i}(a))$

- In order to obtain the corresponding observations/eliminators for the corresponding co-inductive definitions, we need to invert the arrows.
- The more natural dual is obtained if we use restricted indexed inductive definitions:

$$\mathrm{C}: (i \in \mathrm{I}) \to ((a \in \mathrm{A}(i)) \times ((b \in \mathrm{B}(i, a)) \to \mathrm{D}(\mathrm{j}(i, a, b)))) \to \mathrm{D}(i)$$

• The corresponding observations/eliminators are

$$\mathrm{E}: (i \in \mathrm{I}) \to \mathrm{D}(i) \to ((a \in \mathrm{A}(i)) \times ((b \in \mathrm{B}(i, a)) \to \mathrm{D}(\mathrm{j}(i, a, b))))$$

or

$$\mathrm{E}: ((i \in \mathrm{I}) \times \mathrm{D}(i)) \to ((a \in \mathrm{A}(i)) \times ((b \in \mathrm{B}(i, a)) \to \mathrm{D}(\mathrm{j}(i, a, b))))$$

Petersson-Synek Trees

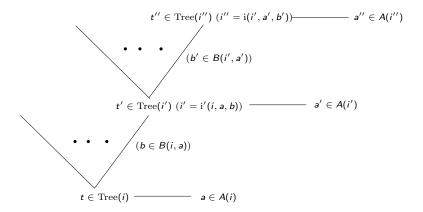
- D(i) form the Petersson-Synek trees (observation by Hancock), which correspond as well to the containers by Abbott, Altenkirch and Ghani.
- \blacktriangleright Replacing D by the more meaningful name ${\rm Tree}$ we obtain

$$\begin{array}{l} \text{data Tree : I} \rightarrow \text{Set where} \\ \text{C} : ((i \in \text{I}) \times \\ (a \in \text{A}(i)) \times ((b \in \text{B}(i, a)) \rightarrow \text{Tree}(\text{j}(i, a, b)))) \\ \rightarrow \text{Tree}(i) \end{array}$$

 \blacktriangleright For the corresponding coinductive defined set $Tree^\infty$ we divide E into its two components and obtain

$$\begin{array}{rcl} \text{coalg } \operatorname{Tree}^{\infty} : \mathrm{I} \to \operatorname{Set} \text{ where} \\ \mathrm{E}_{1} & : & ((i \in \mathrm{I}) \times \operatorname{Tree}^{\infty}(i)) \to \mathrm{A}(i) \\ \mathrm{E}_{2} & : & ((i \in \mathrm{I}) \times (t \in \operatorname{Tree}^{\infty}(i)) \times (b \in \mathrm{B}(i, \mathrm{E}_{1}(i, t)))) \\ & \to \operatorname{Tree}^{\infty}(\mathrm{j}(i, \mathrm{E}_{1}(i, t), b)) \end{array}$$

Petersson-Synek Trees



イロト 不得下 イヨト イヨト 三日

Equivalence of unique (Co)induction, (Co)recursion, (Co)induction

- The notions of (co)iteration, primitive (co)recursion, (co)induction can be generalised in a straightforward way to Petersson-Synek Trees and Co-Trees.
- One can show the equivalence of
 - unique iteration, unique primitive recursion, iteration + induction, primitive recursion + induction
 - unique coiteration, unique primitive corecursion, coiteration + coinduction, primitive corecursion + coinduction
- We call Petersson-Synek algebras fulfilling unique iteration initial Petersson-Synek algebras.
- We call Petersson-Synek coalgebras fulfilling unique coiteration final Petersson-Synek coalgebras.

(日) (得) (日) (日) (日)

Concrete Model of Tree^{∞}

- ► Tree can be modelled in a straightforward way set theoretically.
- ► A very concrete model of Tree[∞] can be defined by following the principle that a coalgebra is given by its observations.
 - The result of E_1 can be observed directly.
 - ► The result of E₂ is an element of Tree[∞](i') for some i' which can be observed by carrying out more observations.

イロト イポト イヨト イヨト

Concrete Model of Tree^{∞}

▶ Let for $i \in I$

$$\begin{aligned} \operatorname{Path}_{[\![Tree^{\infty}]\!]}(i) &:= \{ \langle i_0, a_0, b_0, i_1, a_1, b_1, \dots, i_n, a_n \rangle \mid \\ n \geq 0, i_0 = i, \\ (\forall k \in \{0, \dots, n-1\}.b_k \in \operatorname{B}(i_k, a_k) \land \\ i_{k+1} &= \operatorname{j}(i_k, a_k, b_k)), \\ \forall k \in \{0, \dots, n\}.a_k \in \operatorname{A}(i_k) \} \end{aligned}$$

- Let [[Tree[∞]]](i) be the set of t ⊆ Path_{[[Tree[∞]]}(i) which form the set of paths of a tree:
 - $\blacktriangleright \langle i_0, a_0, b_0, \dots, i_{n+1}, a_{n+1} \rangle \in t \rightarrow \langle i_0, a_0, b_0, \dots, i_n, a_n \rangle \in t$
 - ► $\exists !a.\langle i,a\rangle \in t$,
 - $\begin{array}{l} \blacktriangleright \quad \langle i_0, a_0, b_0, \dots, i_n, a_n \rangle \in t \land b_n \in \mathcal{B}(i_n, a_n) \land i_{n+1} = j(i_n, a_n, b_n) \\ \quad \rightarrow \exists ! a_{n+1}. \langle i_0, a_0, b_0, \dots, i_n, a_n, b_n, i_{n+1}, a_{n+1} \rangle \in t \end{array}$

(日) (得) (日) (日) (日)

Concrete Model of Tree^∞

Define

$$\begin{split} & \operatorname{E}_1 : (i \in \mathrm{I}) \to \llbracket \operatorname{Tree}^\infty \rrbracket(i) \to \mathrm{A}(i) \\ & \operatorname{E}_1(i,t) := a \quad \text{if } \langle i,a \rangle \in t \end{split}$$

Define

$$\begin{split} & \operatorname{E}_2 : ((i \in \operatorname{I}) \to (t \in \llbracket \operatorname{Tree}^{\infty} \rrbracket(i)) \to (b \in \operatorname{B}(i, \operatorname{E}_1(i, t))) \\ & \to \llbracket \operatorname{Tree}^{\infty} \rrbracket(j(i, \operatorname{E}_1(i, t), b)) \\ & \operatorname{E}_2(i, t, b) := \{ \langle i_1, a_1, b_1, \dots, i_{n+1}, a_{n+1} \rangle \\ & \quad \mid \langle i, \operatorname{E}_1(i, t), b, i_1, a_1, b_1, \dots, i_{n+1}, a_{n+1} \rangle \in t \} \end{split}$$

▲ロト ▲録 ト ▲ 語 ト ▲ 語 ト 二 語

Generalisation (Petersson-Synek Trees)

Concrete Model of $Tree^{\infty}$

Theorem

($\llbracket \operatorname{Tree}^{\infty} \rrbracket, \operatorname{E}_1, \operatorname{E}_2$) is a final $\operatorname{Tree}^{\infty}$ -coalgebra.

Anton Setzer

<ロト <部ト <きト <きト = 3

Motivation

- (Co)Iteration (Co)Recursion (Co)Induction
- Generalisation (Petersson-Synek Trees)

Schemata for Corecursive Definitions and Coinductive Proofs

Objects

Conclusion

Bibliography

Schema for Primitive Corecursion

▶ Assume $A : I \to Set$, [[$Tree^{\infty}$]], E_1, E_2 as before. We can define a function

$$f:(i\in \mathrm{I})\to X(i)\to [\![\operatorname{Tree}^\infty]\!](i)$$

corecursively by defining for $i \in I$, $x \in X(i)$

- a value $a' := \operatorname{E}_1(i, f(i, x)) \in \operatorname{A}(i)$
- ▶ and for b ∈ B(i, a) a value E₂(i, f(i, x), b) ∈ [[Tree[∞]]](i', b) where i' := j(i, a', b) and we can define E₂(i, f(i, x), b)
 - as an element of $\llbracket \operatorname{Tree}^{\infty} \rrbracket(i')$ defined before
 - or corecursively define $E_2(i, f(i, x), b) = f(i', x')$ for some $x' \in X(i')$.

Here f(i', x') will be called the corecursion hypothesis.

Example

▶ Define the set of increasing streams $IncStream : \mathbb{N} \to Set$ starting with at least *n* coinductively by

$$\begin{array}{ll} \mathrm{head} & : & (n:\mathbb{N}) \to \mathrm{IncStream}(n) \to \mathbb{N}_{\geq n} \\ \mathrm{tail} & : & (n:\mathbb{N}) \to (s:\mathrm{IncStream}(n)) \to \mathrm{IncStream}(\mathrm{head}(n,s)+1) \end{array}$$

where
$$\mathbb{N}_{\geq n} := \{m : \mathbb{N} \mid m \geq n\}$$
. Define

3

Schema for Indexed Corecursively Defined Functions

corecursively by determining for $x \in X$ with $i := \hat{i}(x)$.

•
$$a := \operatorname{E}_1(i, f(x)) \in \operatorname{A}(i)$$

▶ and for
$$b \in B(i, a)$$
 with $i' := j(i, a, b)$ the value $E_2(i, f(x), b) \in \llbracket \operatorname{Tree}^{\infty} \rrbracket(i')$ where we can define $E_2(i, f(x), b)$ as

- a previously defined value of $[Tree^{\infty}](i')$
- or corecursively define $E_2(i, f(x), b) = f(x')$ for some x' such that $\widehat{j}(x') = i'$.

f(x') will be called the corecursion hypothesis.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくつ

Example

 \blacktriangleright Define $\mathrm{Stack}:\mathbb{N}\rightarrow\mathrm{Set}$ coinductively with destructors

$$\begin{array}{rll} \mathrm{top} & : & ((n \in \mathbb{N}) \times (n > 0) \times \mathrm{Stack}(n)) \to \mathbb{N} \\ \mathrm{pop} & : & ((n \in \mathbb{N}) \times (n > 0) \times \mathrm{Stack}(n)) \to \mathrm{Stack}(n-1) \end{array}$$

- We can define empty : Stack(0), where we do not need to define anything since 0 > 0 = Ø.
- ► We can define

$$\begin{array}{ll} \text{push}: (n,m\in\mathbb{N})\to \text{Stack}(n)\to \text{Stack}(n+1) & \text{s.t.} \\ \text{top}(n+1,*,\text{push}(n,m,s)) & = & m \\ \text{pop}(n+1,*,\text{push}(n,m,s)) & = & s \end{array}$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わへで

Schema for Coinduction

Assume

$$\begin{array}{rcl} J & : & \mathrm{Set} \\ \widehat{i} & : & J \to \mathrm{I} \\ x_0, x_1 & : & (j \in J) \to \llbracket \mathrm{Tree}^{\infty} \rrbracket (\widehat{i}(j)) \end{array}$$

We can show $\forall j \in J.x_0(j) = x_0(j')$ coinductively by showing

- $E_0(\hat{i}(j), x_0(j))$ and $E_0(\hat{i}(j), x_1(j))$ are equal
- ▶ and for all b that E₁(i(j), x₀(j), b) and E₁(i(j), x₀(j), b) are equal, where we can use either the fact that
 - this was shown before,
 - or we can use the coinduction-hypothesis, which means using the fact $E_1(\hat{i}(j), x_0(j), b) = x_0(j')$ and $E_1(\hat{i}(j), x_1(j), b) = x_1(j')$ for some $j' \in J$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Example

Let

 $s \in \text{Stream}$ head(s) = 0tail(s) = s $s' : \mathbb{N} \to \text{Stream}$ head(s'(n)) = 0tail(s'(n)) = s'(n+1)

- $cons : \mathbb{N} \to Stream \to Stream$ head(cons(n, s)) = ntail(cons(n, s)) = s
- We show ∀n ∈ N.s = s'(n) by coinduction:
 Assume n ∈ N. head(s) = head(s'(n)) and
 tail(s) = s = s'(n + 1) = tail(s'(n)), where s = s'(n + 1) follows by
 the coinduction hypothesis.
- We show cons(0, s) = s by coinduction: head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s), where we did not use the coinduction hypothesis. → (=) → (

Anton Setzer

Schema for Bisimulation on Labelled Transition Systems

- Bisimulation is an indexed coinductively defined relation and therefore proofs of bisimulation can be shown by corecursion.
- \blacktriangleright Assume a labelled transition system with states S, labels L and a relation $\longrightarrow \subseteq S \times L \times S$

イロト 不得下 イヨト イヨト 三日

Schema for Bisimulation on Labelled Transition Systems

- Let $I \in \text{Set}$, $s, s' : I \to S$.
- We can prove ∀i ∈ I.Bisim(s(i), s'(i)) coinductively by defining for any i ∈ I
 - ▶ for any $l \in L$, $s_0 \in S$ s.t. $s(i) \xrightarrow{l} s_0$ an $s'_0 \in S$ s.t.

►
$$s'(i) \xrightarrow{l} s'_0$$

• and s.t. $\operatorname{Bisim}(s_0, s_0')$ where one can for prove the latter by invoking the Coinduction Hypothesis

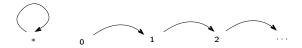
 $\operatorname{Bisim}(s(i'),s'(i'))$ for some i' such that $s(i')=s_0$, $s'(i')=s_0'$.

▶ for any $l \in L$, $s'_0 \in S$ s.t. $s'(i) \xrightarrow{l} s'_0$ an $s_0 \in S$ s.t.

•
$$s(i) \stackrel{i}{\longrightarrow} s_0$$

▶ and s.t. $\operatorname{Bisim}(s_0, s'_0)$ where one can prove the latter by invoking the Coinduction Hypothesis $\operatorname{Bisim}(s(i'), s'(i'))$ for some i' such that $s(i') = s_0, s'(i') = s'_0$.

Example from Introduction



• We show $\forall n \in \mathbb{N} . * \sim n$ by coinduction on \sim .

- Assume $* \longrightarrow x$. We need to find y s.t. $n \longrightarrow y$ and $x \sim y$. Choose y = n + 1. By **co-IH** $* \sim n + 1$.
- Assume n → y. We need to find x s.t. * → x and x ~ y. Choose x = *. By co-IH * ~ n + 1.

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

► In essence same proof, but hopefully easier to teach and use.

Generalisation

 The previous example can be generalised to arbitrary coinductively defined relations.

3

Motivation

- (Co)Iteration (Co)Recursion (Co)Induction
- Generalisation (Petersson-Synek Trees)
- Schemata for Corecursive Definitions and Coinductive Proofs

Objects

Conclusion

Bibliography

イロト イポト イヨト イヨト

Object-Oriented/Based Programming

- Object-oriented (OO) programming is currently main programming paradigm.
- OO programming has lots of components, we will here only look at the notion of an object.
- The component of OO programming dealing with objects only is called object-based programming.

イロト イポト イヨト イヨト

Example: cell in Java

class cell <A> {

```
/* Instance Variable */
A content;
```

```
/* Constructor */
cell (A s) { content = s; }
```

```
/* Method put */
public void put (A s) { content = s; }
```

```
/* Method get */
public A get () { return content; }
```

}

Modelling Methods as Objects

- ► The type of objects cell is modelled as
 - ► a coalgebra Cell
 - with observations being the methods.
- ► A method m with argument A and return type B is modelled as observation

 $\mathsf{m}:\,\mathsf{Cell}\to\mathsf{A}\to\mathsf{B}\times\mathsf{Cell}$

which for a cell and an argument A returns the return type and the updated cell.

- ► Return type void is modelled as the one element type Unit.
- Access to instant variables is not needed, since we can use get and put for it.
- ► A constructor with argument A is modelled as a function defined by guarded recursion

 $\mathsf{cell}:\,\mathsf{A}\to\mathsf{Cell}$

Object as a Coalgebra

We define the cell using the notation we would like to have:

coalg Cell (A : Set) where put : Cell A \rightarrow A \rightarrow (Unit \times Cell A) get : Cell A \rightarrow Unit \rightarrow (A \times Cell A) cell : {A : Set} \rightarrow A \rightarrow Cell A

- put (cell a) b = (unit , cell b) get (cell a) _ = (a , cell a)
- {A : Set} denotes a hidden argument which can be omitted and inferred by the system.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Objects

Object as a Coalgebra

- Official Agda code uses record instead of coalg
 - in the fields one needs to add as argument the record being defined.
 - there is a bit more generality which results in more beaurocracy.

```
record Cell (X : Set) : Set where
coinductive
field
put : X \rightarrow \text{Unit} \times \text{Cell } X
get : Unit \rightarrow X \times \text{Cell } X
```

More details see Kyoto Talk.
 Anton Setzer

Conclusion

- Coiteration, primitive corecursion, coinduction are the duals of iteration, primitive recursion, induction.
- In iteration/recursion/induction,
 - ► the instances of the IH used are restricted,
 - the result can be used in arbitrary functions and formulas.
- ► In coiteration/corecursion/coinduction,
 - ► the instances of the co-IH are unrestricted,
 - but the result can be only used only directly.
- General case of indexed coinductive definitions can be reduced to Petersson-Synek Cotrees.

Conclusion

- Schemata for primitive corecursion and coinduction.
- Schemata can be applied to indexed coinductively defined sets and relations.
- Relations on coinductively defined sets seem to be often coinductively defined indexed relations and can be shown by indexed corecursion which can be regarded as coinduction.
- Objects as in OOprogramming are naturally occurring coalgebras.
- Objects are determined by their observations and can be defined in a natural way in Agda

References

- Most of this talk (on coalgebras) was based on [Set16].
- Article on coalgebras in Martin-Löf Type Theory [Set12].
- ► Copatterns: [APTS13, SAPT14].
- Objects in Martin-Löf Type Theory:
 - ► First article [Set07],
 - Implementation in Agda [AAS16].
- Bashar's talk on processes in Agda [IS16].

Bibliography I

Andreas Abel, Stephan Adelsberger, and Anton Setzer. Interactive programming in Agda – objects and graphical user interfaces.

To appear in Journal of Functional Programming. Preprint available at http://www.cs.swan.ac.uk/~csetzer/articles/ooAgda.pdf, 2016.

 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
 Copatterns: Programming infinite structures by observations.
 In Roberto Giacobazzi and Radhia Cousot, editors, Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '13, pages 27–38, New York, NY, USA, 2013. ACM.

Bibliography II

Bashar Igried and Anton Setzer.

Programming with monadic CSP-style processes in dependent type theory.

To appear in proceedings of TyDe 2016, Type-driven Development, preprint available from

http://www.cs.swan.ac.uk/~csetzer/articles/TyDe2016.pdf, 2016.

Anton Setzer, Andreas Abel, Brigitte Pientka, and David Thibodeau. Unnesting of copatterns. In Gilles Dowek, editor, <u>Rewriting and Typed Lambda Calculi</u>. <u>Proceedings RTA-TLCA 2014</u>, volume 8560 of <u>Lecture Notes in</u> <u>Computer Science</u>, pages 31–45. Springer International Publishing, 2014.

Bibliography III

Anton Setzer.

Object-oriented programming in dependent type theory. In Henrik Nilsson, editor, <u>Trends in Functional Programming Volume 7</u>, pages 91 – 108, Bristol and Chicago, 2007. Intellect.

Anton Setzer.

Coalgebras as types determined by their elimination rules.

In P. Dybjer, Sten Lindström, Erik Palmgren, and G. Sundholm, editors, <u>Epistemology versus Ontology</u>, volume 27 of <u>Logic</u>, <u>Epistemology</u>, and the Unity of Science, pages 351–369. Springer, Dordrecht, Heidelberg, New York, 2012. 10.1007/978-94-007-4435-6 16.

Bibliography IV

Anton Setzer.

How to reason coinductively informally. In Reinhard Kahle, Thomas Strahm, and Thomas Studer, editors, Advances in Proof Theory, pages 377–408. Springer, 2016.

프 문 문 프 문 문 문

< □ > < 同 > <

Switch over to Talk by Bashar

<ロト < 団 > < 巨 > < 巨 > 三 巨