
Extraction of Programs from Proofs using Postulated
Axioms

Anton Setzer
Swansea University, Swansea UK

(Joint work with Chi Ming Chuang)
Talk given at JAIST, Japan

22 January 2015

Anton Setzer Postulated axioms in program extraction 1/ 60



1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 2/ 60



1. A short introduction into Agda

1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 3/ 60



1. A short introduction into Agda

Agda

I Agda is a theorem prover based on Martin-Löf’s intuitionistic type
theory.

I Proofs and programs are treated the same:

n : N
n = exp 5 20

p : A ∧ B
p = 〈· · · , · · ·〉

I Programs and proofs are defined recursively.
I In order to obtain soundness, elements of proofs need to be

terminating. Otherwise we could prove falsity:

p : ⊥
p = p

Termination of programs guaranteed by a termination checker based
on strongly extended primitive recursion.

Anton Setzer Postulated axioms in program extraction 4/ 60



1. A short introduction into Agda

Framework of Agda

I For historic reasons types denoted by keyword Set.
I 3 main constructs:

I dependent function types,
I algebraic data types,
I coalgebraic data types.

Anton Setzer Postulated axioms in program extraction 5/ 60



1. A short introduction into Agda

Dependent Function Types and ∀-Quantifier

I Dependent function type

(x : A)→ B

is type of functions mapping a : A to an element of type B[x := a].

I E.g.

matmult : (n m k : N)→ Mat n m→ Mat m k → Mat n k
matmult n m k A B = · · ·

I Main example of dependent function type is ∀-quantifier:

(x : A)→ ϕ

is type of functions mapping x : A to a proof of ϕ,
i.e. type of proofs of ∀x .ϕ.
So (x : A)→ ϕ stands for ∀x .ϕ.

Anton Setzer Postulated axioms in program extraction 6/ 60



1. A short introduction into Agda

Algebraic data types

data N : Set
0 : N
suc : N→ N

Functions defined by pattern matching

f : N→ N
f 0 = 5
f (suc 0) = 12
f (suc (suc n)) = (f n) ∗ n

Anton Setzer Postulated axioms in program extraction 7/ 60



1. A short introduction into Agda

Equality

Equality type is algebraic type indexed over pairs of elements of set A
There is on proof refl : x == x .

data == {X : Set} : X → X → Set where
refl : {x : X} → x == x

transferEq : (X : Set)
→ (Y : X → Set)
→ (x : X )
→ (y : X )
→ (x == y)
→ Y x
→ Y y

transferEq X Y x x refl y = y

Anton Setzer Postulated axioms in program extraction 7a/ 60



1. A short introduction into Agda

Coalgebraic data types

Syntax as AS would like it to be:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

Anton Setzer Postulated axioms in program extraction 8/ 60



1. A short introduction into Agda

Syntax in Agda

I Agda allows hidden arguments

cons : {X : Set} → X → List X → List X

l : List N
l = cons 0 nil

No deep theory behind – anything is legal as long as the theorem
prover can determine a unique solution to hidden arguments.

I Agda has mixfix symbols.
Syntax example if then else
Again: anything is allowed as long as the parser can parse it uniquely.

I Postulated functions (functions without a definition)

postulate false : ⊥

Anton Setzer Postulated axioms in program extraction 9/ 60



1. A short introduction into Agda

Dependent Product

One example of an algebraic data type:

data ∃ (A : Set) (ϕ : A→ Set) : Set
〈 , 〉 : (a : A)→ ϕ a→ ∃ A ϕ

Projections

π0 : {A : Set} → {ϕ : A→ Set} → ∃ A ϕ→ A
π0 〈a, b〉 = a

π1 : {A : Set} → {ϕ : A→ Set} → (x : ∃ A ϕ)→ ϕ (π0 x)
π1 〈a, b〉 = b

Anton Setzer Postulated axioms in program extraction 10/ 60



2. Real Number Computations in Agda

1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 11/ 60



2. Real Number Computations in Agda

Question by Ulrich Berger

I Can you extract programs from proofs in Agda?

I Obvious because of Axiom of Choice?
From

p : (x : A)→ ∃ B ϕ

we get of course

f = λx .π0 (p x) : A→ B
q = λx .π1 (p x) : (x : A)→ ϕ (f x)

I However what happens in the presence of axioms?

Anton Setzer Postulated axioms in program extraction 12/ 60



2. Real Number Computations in Agda

Real Numbers as Ideal Objects

I Situation different in presence of axioms.

I Approach of Ulrich Berger transferred to Agda:
Axiomatice the real numbers abstractly. E.g.

postulate R : Set
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·

Anton Setzer Postulated axioms in program extraction 13/ 60



2. Real Number Computations in Agda

Computational Numbers as Concrete Objects

I Formulate N, Z, Q as usual

data N : Set where
0 : N
suc : N→ N

+ : N→ N→ N
n + 0 = n
n + suc m = suc (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
· · ·Anton Setzer Postulated axioms in program extraction 14/ 60



2. Real Number Computations in Agda

Embedding of N, Z, Q into R

N2R : N→ R
N2R 0 = 0R
N2R (suc n) = N2R n +R 1R

Z2R : Z→ R
· · ·

Q2R : Q→ R
· · ·

I We obtain a link between computational types N,Z,Q and the
postulated type R.

Anton Setzer Postulated axioms in program extraction 15/ 60



2. Real Number Computations in Agda

Cauchy Reals

data CauchyReal (r : R) : Set where
cauchyReal : (f : N→ Q)

→ (p : (n : N)→ |Q2R (f n)−R r |R <R 2−nR )
→ CauchyReal r

Anton Setzer Postulated axioms in program extraction 16/ 60



2. Real Number Computations in Agda

Program Extraction for Cauchy Reals

I Show CauchyReal closed under +, ∗, other operations.

lemma : (r s : R)→ CauchyReal r → CauchyReal s
→ CauchyReal (r ∗ s)

I Using this show p : CauchyReal r for some r .
I E.g. for r = Q2R q.

I Define
f : (r : R)→ (p : CauchyReal r)→ N→ Q

which extracts the Cauchy sequence in p.

I If we have r : R; p : CauchyReal r ; n : N then

f r p n : Q

is an approximation of r up to 2−n. Can be computed in Agda.

Anton Setzer Postulated axioms in program extraction 17/ 60



2. Real Number Computations in Agda

Problem of Program Extraction

I Problem is that definition of f was referring to postulated axioms.

I So we might obtain

f r p n = lemma35 (lemma16 3) 5

I We want that even though we use postulated axioms f r p n reduces
to a computational real number, i.e. (1/2).

Anton Setzer Postulated axioms in program extraction 18/ 60



2. Real Number Computations in Agda

Signed Digit Representations

I We can consider as well the real numbers with signed digit
representations.

I Signed digit representable real numbers in [−1, 1] are of the form

0.111(−1)0(−1)01(−1) · · ·

In general
0.d0d1d2d3 · · ·

where di ∈ {−1, 0, 1}.
I Signed digit needed because even the first digit of an unsigned digit

representation can in general not be determined.

Anton Setzer Postulated axioms in program extraction 19/ 60



2. Real Number Computations in Agda

Coalgebraic Definition of Signed Digit Real Numbers (SD)

data Digit : Set where
−1d 0d 1d : Digit

coalg SD : R→ Set where
∈[−1, 1] : {r : R} → SD r → r ∈R [−1, 1]
digit : {r : R} → SD r → Digit
tail : {r : R} → (p : SD r) → SD (2R ∗R r −R (digit p))

Anton Setzer Postulated axioms in program extraction 20/ 60



2. Real Number Computations in Agda

Proof of “1R = 0.1d1d1d1d · · · ”

1SD : (r : R)→ (r ==R 1R)→ SD r
∈[−1, 1] (1SD r q) = · · ·
digit (1SD r q) = 1d
tail (1SD r q) = 1SD (2R ∗R r −R 1R) · · ·

Proofs of · · · can be

I inferred purely logically from axioms about R (using automated
theorem proving?)

I added as postulated axioms.

Anton Setzer Postulated axioms in program extraction 21/ 60



2. Real Number Computations in Agda

Proof of “0R = 0.(−1d)1d1d1d · · · ”

0SD : (r : R)→ (r ==R 0R)→ SD r
∈[−1, 1] (0SD r q) = · · ·
digit (0SD r q) = −1d
tail (0SD r q)) = 1SD (2R ∗R r −R (−1R)) · · ·

Anton Setzer Postulated axioms in program extraction 22/ 60



2. Real Number Computations in Agda

Extraction of Programs

I From
p : SD r

one can extract the first n digits of r .

I Show e.g. closure of SD under Q ∩ [−1, 1], + ∩ [−1, 1], ∗, π
10 · · ·

I Then we extract the first n digits of any real number formed using
these operations.

I Has been done (excluding π
10) in Agda.

Anton Setzer Postulated axioms in program extraction 23/ 60



2. Real Number Computations in Agda

First 1000 Digits of 29
37 ∗

29
3998

Anton Setzer Postulated axioms in program extraction 24/ 60



3. Theory of Program Extraction

1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 25/ 60



3. Theory of Program Extraction

Problem with Program Extraction

I Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

I Example 1

postulate ax : (x : A)→ B[x ] ∨ C [x ]

a : A
a = · · ·

f : B[a] ∨ C [a]→ B
f (inl x) = tt
f (inr x) = ff

f (ax a) in Normal form, doesn’t start with a constructor

I Axioms with computational content should not be allowed.

Anton Setzer Postulated axioms in program extraction 26/ 60



3. Theory of Program Extraction

Example 2

postulate ax : A ∧ B

f : A→ B → B
f a b = · · ·

g : A ∧ B → B
g (p a b) = f a b

g ax in normal form doesn’t start with a constructor

I Problem actually occurred.

I Axioms with result type algebraic data types are not allowed.

Anton Setzer Postulated axioms in program extraction 27/ 60



3. Theory of Program Extraction

Example 3

r0 : R
r0 = 1R

r1 : R
r1 = 1R +R 0R

postulate ax : r0 == r1

Anton Setzer Postulated axioms in program extraction 28/ 60



postulate ax : r0 == r1

transfer : (r s : R)→ r == s → SD r → SD s
transfer r r refl p = p

f : (r : R)→ SD r → Digit
f r a = · · ·

p : SD r0
p = · · ·

q : SD r1
q = transfer r0 r1 ax p

q′ : Digit
q′ = f r1 q

NF of q′ doesn’t start with a constructor

Problem actually occurred.



3. Theory of Program Extraction

Work around Problem of Equality

I Instead of defining
p : SD r0

define
p : (r : R)→ (r == r0)→ SD r

Anton Setzer Postulated axioms in program extraction 30/ 60



3. Theory of Program Extraction

Conditions for Correctness

I We will define conditions which guarantee that every closed term in
normal form which is an element of an algebraic data type is in
canonical normal form (starts with a constructor).

Anton Setzer Postulated axioms in program extraction 31/ 60



3. Theory of Program Extraction

General Assumptions about Agda Code

I Agda code is strongly normalising.

I Agda code is confluent.
I No occurrence of record types, let- and where-expressions.

I Apart from the identity type, all algebraic data types are
non-indexed and we have no inductive-recursive definitions.

I No coalgebraic types (work in progress to include them).
I Functions defined in Agda by pattern matching have

I a coverage complete pattern matching (all cases provided)
I all patterns are disjoint.

Anton Setzer Postulated axioms in program extraction 32/ 60



3. Theory of Program Extraction

General Assumptions about Agda Code

I Agda code is
:::::::::::
consistent, i.e.:

I If Agda proves A = B : Set then
I if one is algebraic data type the other one is algebraic data type with

same definition (up to equality)
I if one is of the form (x : B) → C so is the other with equal types

I If t : C t1 · · · tn : B where B is algebraic, then C is a constructor of B
and ti are of appropriate types.

I If C t1 · · · tn = C ′ t1 · · · t ′m then C = C ′, n = m, ti = t ′i .

Anton Setzer Postulated axioms in program extraction 33/ 60



3. Theory of Program Extraction

Main Restriction on Agda Code

I If A is a postulated constant then either
I A : (x1 : B1)→ · · · → (xn : Bn)→ Set or
I A : (x1 : B1)→ · · · → (xn : Bn)→ A′ t1 · · · tn where A′ is a postulated

constant or an equality.

I The same applies to functions f defined by case distinction on
equalities.

Anton Setzer Postulated axioms in program extraction 34/ 60



3. Theory of Program Extraction

Main Theorem

Theorem (Main Theorem)

I Assume the above conditions.

I Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).

Anton Setzer Postulated axioms in program extraction 35/ 60



3. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed in normal form, A algebraic data type.
I Show by induction on length(t) that t starts with a constructor:

I We have
t = f t1 · · · tn

where f function symbol or constructor.
I f cannot be postulated or directly defined.
I f cannot be defined by case distinction on an equality.
I If f is defined by pattern matching on an algebraic data type say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF.

I So f is a constructor.

Anton Setzer Postulated axioms in program extraction 36/ 60



4. Reduction of Nested to Simple Pattern Matching

Properties of Agda Code

I Agda code has the
:::::::
normal

::::::
form

:::::::::
property if every closed normal

term which is an element of an algebraic data type starts with a
constructor.

I Agda code
:::
A′

::::::::
extends

::::::
Agda

::::::
code

:::
A (A ⊆ A′

::::::
)

if all judgements derivable in A are derivable in A′ as well.
I Assume A ⊆ A′.

:::
A′

::::::::
induces

::::
the

::::::
head

::::::::
normal

:::::
form

::::::::::
property

:::
on

:::
A if

I whenever B is an algebraic data type
I s.t. A ` t : B
I and t has in A′ a normal form starting with a constructor,
I then t has in A a normal form starting with the same constructor.

Anton Setzer Postulated axioms in program extraction 37/ 60



4. Reduction of Nested to Simple Pattern Matching

Properties of Agda Code

I Assume A ⊆ A′.
I

::::::::
A ⊆ A′

::::::::
induces

:::
the

::::::::::
coverage

:::::::::::::
completeness

:::::::::
property, iff:

if A is coverage complete with disjoint patterns so is A′.
I

::::::::
A ⊆ A′

::::::::
induces

:::
the

:::::::
strong

::::::::::::::
normalisation

::::::::
property, iff:

if A is strongly normalising, so is A′.
I

::::::::
A ⊆ A′

::::::::
induces

:::
the

::::::::::::
consistency

:::::::::
property, iff:

if A is consistent, so is A′.

Anton Setzer Postulated axioms in program extraction 38/ 60



4. Reduction of Nested to Simple Pattern Matching

Theorem (Unnesting of Pattern Matching)

Theorem (Unnesting of Pattern Matching)

I Assume A is Agda code fulfilling the above restrictions.
I Then there exists A ⊆ A′ s.t.

I A′ has simple pattern matching only,
I A ⊆ A′ induces the head normal form property,
I A ⊆ A′ induces coverage completeness, strong normalisation and

consistency properties.

Anton Setzer Postulated axioms in program extraction 39/ 60



4. Reduction of Nested to Simple Pattern Matching

Example Reduction to Simple Pattern Matching

Original code:
− : N→ N→ N

m − 0 = m
0 − (suc n) = 0
(suc m) − (suc n) = m − n

Make sure lines make case distinction on first argument:

− : N→ N→ N
0 − 0 = 0
(suc n) − 0 = suc n
0 − (suc n) = 0
(suc m) − (suc n) = m − n

Anton Setzer Postulated axioms in program extraction 40/ 60



4. Reduction of Nested to Simple Pattern Matching

Example Reduction to Simple Pattern Matching

− : N→ N→ N
0 − 0 = 0
(suc n) − 0 = suc n
0 − (suc n) = 0
(suc n) − (suc m) = n −m

Reorder lines:
− : N→ N→ N

0 − 0 = 0
0 − (suc n) = 0
(suc n) − 0 = suc n
(suc n) − (suc m) = n −m

Anton Setzer Postulated axioms in program extraction 41/ 60



4. Reduction of Nested to Simple Pattern Matching

Example Reduction to Simple Pattern Matching

Make case distinction on first argument only and delegate it to auxiliary
functions e and f :

mutual
− : N→ N→ N

0 − m = e m
(suc n) − m = f n m

e : N→ N
e 0 = 0
e (suc n) = 0

f : N→ N→ N
f n 0 = suc n
f n (suc m) = n −m

Anton Setzer Postulated axioms in program extraction 42/ 60



4. Reduction of Nested to Simple Pattern Matching

Example 2 Reduction to Simple Pattern Matching

Original code:
f : N→ N
f 0 = 5
f (suc 0) = 12
f (suc (suc n)) = (f n) ∗ n

Reduct:

mutual
f : N→ N
f 0 = 5
f (suc n) = g n

g : N→ N
g 0 = 12
g (suc n) = (f n) ∗ n

Anton Setzer Postulated axioms in program extraction 43/ 60



4. Reduction of Nested to Simple Pattern Matching

Termination of the Reductions

I If A is Agda code, f a function of A with pattern matching terms

mA(f ) :=

{
0 if f has simple pattern matching
sum of length of all patterns of f otherwise

I Let for Agda code A

m(A) = {|mA(f ) | f function symbol defined by pattern matching in A |}

where {| · · · |} denotes a multiset.

Anton Setzer Postulated axioms in program extraction 44/ 60



4. Reduction of Nested to Simple Pattern Matching

Main Difficulty

I Show that each reduction step induces the properties mentioned
before.

Anton Setzer Postulated axioms in program extraction 45/ 60



4. Reduction of Nested to Simple Pattern Matching

Proof of Main Theorem

I First reduce Agda code to simple pattern matching using Theorem on
Unnesting of Pattern Matching.

I Then use the above proof for Agda code having simple pattern
matching.

Anton Setzer Postulated axioms in program extraction 46/ 60



5. Extensions

1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 47/ 60



5. Extensions

Extensions

I Negated axioms such as ¬(0R == 1R) are currently forbidden
I Have form 0R == 1R → ⊥ where ⊥ is algebraic data type.
I Causes problems since they are needed (e.g. when using the reciprocal

function).
I Without negated axioms the theory is trivially consistent (interpret all

postulate sets as one element sets).
I With negated axioms it could be inconsistent.

I E.g. take axioms which have consequences 0R == 1R and
¬(0R == 1R).)

I In case of an inconsistency we would get a proof p : ⊥ and therefore

efq p : N

is non-canonical of N in NF.

Anton Setzer Postulated axioms in program extraction 48/ 60



5. Extensions

Theorem (Negated Axioms)

I Assume conditions as before.

I Assume result type of axioms is always a postulated type or a negated
postulated type.

I Assume the Agda code doesn’t prove ⊥.

I Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).

Anton Setzer Postulated axioms in program extraction 49/ 60



5. Extensions

More Extensions

I We could separate our algebraic data types into those for which we
want to use their computational content and those for which we don’t
use their content.

I Assume we never derive using case distinction on a non-computational
data type an element of a computational data type.

I Then axioms with result type non-computational data types could be
allowed, e.g.

tertiumNonDatur : A ∨non−computational ¬A

Anton Setzer Postulated axioms in program extraction 50/ 60



5. Extensions

Addition of Coalgebraic Types

I Original proof didn’t include coalgebraic types.

I With coalgebraic types additional complication:
t can be of the form

elim t1

for an eliminator elim of a coalgebraic type.
I Extend the theorem by proving simultaneously:

I If A algebraic, t closed term in NF, t : A, then t starts with a
constructor.

I If A coalgebraic, t closed term, t : A, and elim is an eliminator of A,
then elim t has a reduction.

Anton Setzer Postulated axioms in program extraction 51/ 60



6. Applications

1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 52/ 60



6. Applications

Easy Proofs

I Acclimatised theory allows to easily prove big theorems by postulating
them, as long as we are only interested in the computational content.

I In an experiment we introduced axioms such as

ax : (r : R)→ (q : Q)→ |Q2R q −R r | <R 2−2R → q ≤Q 1/4Q
→ r ≤R 1/2R

I In fact the more is postulated the faster the program (and the easier
one can see what is computed).

Anton Setzer Postulated axioms in program extraction 53/ 60



6. Applications

Separation of Logic and Computation

I Postulates allow us to have a two-layered theory with
I computational part (using non-postulated types)
I an a logic part (using postulated types).

Anton Setzer Postulated axioms in program extraction 54/ 60



6. Applications

Useful for Programming with Dependent Types

I This could be very useful for programming with dependent types.
I Postulate axioms with no computational content.
I Possibly prove them using automated theorem provers (approach by

Bove, Dybjer et. al.).
I Concentrate in programming on computational part.

Anton Setzer Postulated axioms in program extraction 55/ 60



6. Applications

Experiments carried out

I In about 6 hours I developed a framework using Cauchy Reals, Signed
Digit Reals, conversion into streams and lists form scratch.

I Allowed the computation of the first 10 digits of rational numbers in
[−1, 1].

I Framework is easy to use since most proofs are replaced by postulates.

I Chi Ming Chuang showed closure of signed digit reals under average
and multiplication using more efficient direct calculations and full
proofs of most theorems needed.

I Was able to calculated fast the first 1000 digits of rational numbers.

Anton Setzer Postulated axioms in program extraction 56/ 60



6. Applications

Idea: Type Theory with Partial and Total Objects

I One could postulate
I types of partial elements,
I constants operating on those types,
I equations for those constants .

I Then one can
I define predicates on those partial elements corresponding to the total

elements,
I and show that certain partial elements are total or have other

properties.

Anton Setzer Postulated axioms in program extraction 57/ 60



6. Applications

Example

postulate Npartial : Set
postulate == : Npartial → Npartial → Set
postulate 0 : Npartial

postulate suc : Npartial → Npartial

postulate f : Npartial → Npartial

postulate lemf0 : f 0 == · · ·
postulate lemfs : (n : Npartial)→ f (suc n) == · · ·
data N : Npartial → Set where

zerop : N 0
succp : (n : Npartial)→ N n→ N (suc n)
eqp : (n m : Npartial)→ N n→ n == m→ N m

lemma : (n : Npartial)→ N n→ N (f n)
lemma n p = · · ·

Anton Setzer Postulated axioms in program extraction 58/ 60



Conclusion

1. A short introduction into Agda

2. Real Number Computations in Agda

3. Theory of Program Extraction

4. Reduction of Nested to Simple Pattern Matching

5. Extensions

6. Applications

Conclusion

Anton Setzer Postulated axioms in program extraction 59/ 60



Conclusion

Conclusion

I If result types of postulated constants are postulated types, then
closed elements of algebraic types evaluate to constructor normal
form.

I Reduces the need burden of proofs while programming (by
postulating axioms or proving them using ATP).

I Axiomatic treatment of R.

I Program extraction for proofs with real number computations works
very well.

I Applications to programming with dependent types in general.

I Possible solution for type theory with partiality and totality.

Anton Setzer Postulated axioms in program extraction 60/ 60


	1. A short introduction into Agda
	2. Real Number Computations in Agda
	3. Theory of Program Extraction
	4. Reduction of Nested to Simple Pattern Matching
	5. Extensions
	6. Applications
	Conclusion

