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1. A short introduction into Agda

Agda

I Agda is a theorem prover based on Martin-Löf’s intuitionistic type
theory.

I Proofs and programs are treated the same:

n : N
n = exp 5 20

p : A ∧ B
p = 〈· · · , · · ·〉

I Programs and proofs are defined recursively.
I In order to obtain soundness, elements of proofs need to be

terminating. Otherwise we could prove falsity:

p : ⊥
p = p

Termination of programs guaranteed by a termination checker based
on strongly extended primitive recursion.

Anton Setzer Postulated axioms in program extraction 4/ 60



1. A short introduction into Agda

Framework of Agda

I For historic reasons types denoted by keyword Set.
I 3 main constructs:

I dependent function types,
I algebraic data types,
I coalgebraic data types.
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1. A short introduction into Agda

Dependent Function Types and ∀-Quantifier

I Dependent function type

(x : A)→ B

is type of functions mapping a : A to an element of type B[x := a].

I E.g.

matmult : (n m k : N)→ Mat n m→ Mat m k → Mat n k
matmult n m k A B = · · ·

I Main example of dependent function type is ∀-quantifier:

(x : A)→ ϕ

is type of functions mapping x : A to a proof of ϕ,
i.e. type of proofs of ∀x .ϕ.
So (x : A)→ ϕ stands for ∀x .ϕ.
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1. A short introduction into Agda

Algebraic data types

data N : Set
0 : N
suc : N→ N

Functions defined by pattern matching

f : N→ N
f 0 = 5
f (suc 0) = 12
f (suc (suc n)) = (f n) ∗ n
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1. A short introduction into Agda

Equality

Equality type is algebraic type indexed over pairs of elements of set A
There is on proof refl : x == x .

data == {X : Set} : X → X → Set where
refl : {x : X} → x == x

transferEq : (X : Set)
→ (Y : X → Set)
→ (x : X )
→ (y : X )
→ (x == y)
→ Y x
→ Y y

transferEq X Y x x refl y = y
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1. A short introduction into Agda

Coalgebraic data types

Syntax as AS would like it to be:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)
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1. A short introduction into Agda

Syntax in Agda

I Agda allows hidden arguments

cons : {X : Set} → X → List X → List X

l : List N
l = cons 0 nil

No deep theory behind – anything is legal as long as the theorem
prover can determine a unique solution to hidden arguments.

I Agda has mixfix symbols.
Syntax example if then else
Again: anything is allowed as long as the parser can parse it uniquely.

I Postulated functions (functions without a definition)

postulate false : ⊥
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1. A short introduction into Agda

Dependent Product

One example of an algebraic data type:

data ∃ (A : Set) (ϕ : A→ Set) : Set
〈 , 〉 : (a : A)→ ϕ a→ ∃ A ϕ

Projections

π0 : {A : Set} → {ϕ : A→ Set} → ∃ A ϕ→ A
π0 〈a, b〉 = a

π1 : {A : Set} → {ϕ : A→ Set} → (x : ∃ A ϕ)→ ϕ (π0 x)
π1 〈a, b〉 = b
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2. Real Number Computations in Agda

Question by Ulrich Berger

I Can you extract programs from proofs in Agda?

I Obvious because of Axiom of Choice?
From

p : (x : A)→ ∃ B ϕ

we get of course

f = λx .π0 (p x) : A→ B
q = λx .π1 (p x) : (x : A)→ ϕ (f x)

I However what happens in the presence of axioms?
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2. Real Number Computations in Agda

Real Numbers as Ideal Objects

I Situation different in presence of axioms.

I Approach of Ulrich Berger transferred to Agda:
Axiomatice the real numbers abstractly. E.g.

postulate R : Set
postulate + : R→ R→ R
postulate commutative : (r s : R)→ r + s == s + r
· · ·
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2. Real Number Computations in Agda

Computational Numbers as Concrete Objects

I Formulate N, Z, Q as usual

data N : Set where
0 : N
suc : N→ N

+ : N→ N→ N
n + 0 = n
n + suc m = suc (n + m)

∗ : N→ N→ N
· · ·

data Z : Set where
· · ·

data Q : Set where
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2. Real Number Computations in Agda

Embedding of N, Z, Q into R

N2R : N→ R
N2R 0 = 0R
N2R (suc n) = N2R n +R 1R

Z2R : Z→ R
· · ·

Q2R : Q→ R
· · ·

I We obtain a link between computational types N,Z,Q and the
postulated type R.
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2. Real Number Computations in Agda

Cauchy Reals

data CauchyReal (r : R) : Set where
cauchyReal : (f : N→ Q)

→ (p : (n : N)→ |Q2R (f n)−R r |R <R 2−nR )
→ CauchyReal r
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2. Real Number Computations in Agda

Program Extraction for Cauchy Reals

I Show CauchyReal closed under +, ∗, other operations.

lemma : (r s : R)→ CauchyReal r → CauchyReal s
→ CauchyReal (r ∗ s)

I Using this show p : CauchyReal r for some r .
I E.g. for r = Q2R q.

I Define
f : (r : R)→ (p : CauchyReal r)→ N→ Q

which extracts the Cauchy sequence in p.

I If we have r : R; p : CauchyReal r ; n : N then

f r p n : Q

is an approximation of r up to 2−n. Can be computed in Agda.
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2. Real Number Computations in Agda

Problem of Program Extraction

I Problem is that definition of f was referring to postulated axioms.

I So we might obtain

f r p n = lemma35 (lemma16 3) 5

I We want that even though we use postulated axioms f r p n reduces
to a computational real number, i.e. (1/2).
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2. Real Number Computations in Agda

Signed Digit Representations

I We can consider as well the real numbers with signed digit
representations.

I Signed digit representable real numbers in [−1, 1] are of the form

0.111(−1)0(−1)01(−1) · · ·

In general
0.d0d1d2d3 · · ·

where di ∈ {−1, 0, 1}.
I Signed digit needed because even the first digit of an unsigned digit

representation can in general not be determined.
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2. Real Number Computations in Agda

Coalgebraic Definition of Signed Digit Real Numbers (SD)

data Digit : Set where
−1d 0d 1d : Digit

coalg SD : R→ Set where
∈[−1, 1] : {r : R} → SD r → r ∈R [−1, 1]
digit : {r : R} → SD r → Digit
tail : {r : R} → (p : SD r) → SD (2R ∗R r −R (digit p))
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2. Real Number Computations in Agda

Proof of “1R = 0.1d1d1d1d · · · ”

1SD : (r : R)→ (r ==R 1R)→ SD r
∈[−1, 1] (1SD r q) = · · ·
digit (1SD r q) = 1d
tail (1SD r q) = 1SD (2R ∗R r −R 1R) · · ·

Proofs of · · · can be

I inferred purely logically from axioms about R (using automated
theorem proving?)

I added as postulated axioms.
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2. Real Number Computations in Agda

Proof of “0R = 0.(−1d)1d1d1d · · · ”

0SD : (r : R)→ (r ==R 0R)→ SD r
∈[−1, 1] (0SD r q) = · · ·
digit (0SD r q) = −1d
tail (0SD r q)) = 1SD (2R ∗R r −R (−1R)) · · ·
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2. Real Number Computations in Agda

Extraction of Programs

I From
p : SD r

one can extract the first n digits of r .

I Show e.g. closure of SD under Q ∩ [−1, 1], + ∩ [−1, 1], ∗, π
10 · · ·

I Then we extract the first n digits of any real number formed using
these operations.

I Has been done (excluding π
10) in Agda.
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2. Real Number Computations in Agda

First 1000 Digits of 29
37 ∗

29
3998
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3. Theory of Program Extraction

Problem with Program Extraction

I Because of postulates it is not guaranteed that each program reduces
to canonical head normal form.

I Example 1

postulate ax : (x : A)→ B[x ] ∨ C [x ]

a : A
a = · · ·

f : B[a] ∨ C [a]→ B
f (inl x) = tt
f (inr x) = ff

f (ax a) in Normal form, doesn’t start with a constructor

I Axioms with computational content should not be allowed.
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3. Theory of Program Extraction

Example 2

postulate ax : A ∧ B

f : A→ B → B
f a b = · · ·

g : A ∧ B → B
g (p a b) = f a b

g ax in normal form doesn’t start with a constructor

I Problem actually occurred.

I Axioms with result type algebraic data types are not allowed.
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3. Theory of Program Extraction

Example 3

r0 : R
r0 = 1R

r1 : R
r1 = 1R +R 0R

postulate ax : r0 == r1
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postulate ax : r0 == r1

transfer : (r s : R)→ r == s → SD r → SD s
transfer r r refl p = p

f : (r : R)→ SD r → Digit
f r a = · · ·

p : SD r0
p = · · ·

q : SD r1
q = transfer r0 r1 ax p

q′ : Digit
q′ = f r1 q

NF of q′ doesn’t start with a constructor

Problem actually occurred.



3. Theory of Program Extraction

Work around Problem of Equality

I Instead of defining
p : SD r0

define
p : (r : R)→ (r == r0)→ SD r
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3. Theory of Program Extraction

Conditions for Correctness

I We will define conditions which guarantee that every closed term in
normal form which is an element of an algebraic data type is in
canonical normal form (starts with a constructor).
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3. Theory of Program Extraction

General Assumptions about Agda Code

I Agda code is strongly normalising.

I Agda code is confluent.
I No occurrence of record types, let- and where-expressions.

I Apart from the identity type, all algebraic data types are
non-indexed and we have no inductive-recursive definitions.

I No coalgebraic types (work in progress to include them).
I Functions defined in Agda by pattern matching have

I a coverage complete pattern matching (all cases provided)
I all patterns are disjoint.
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3. Theory of Program Extraction

General Assumptions about Agda Code

I Agda code is
:::::::::::
consistent, i.e.:

I If Agda proves A = B : Set then
I if one is algebraic data type the other one is algebraic data type with

same definition (up to equality)
I if one is of the form (x : B) → C so is the other with equal types

I If t : C t1 · · · tn : B where B is algebraic, then C is a constructor of B
and ti are of appropriate types.

I If C t1 · · · tn = C ′ t1 · · · t ′m then C = C ′, n = m, ti = t ′i .
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3. Theory of Program Extraction

Main Restriction on Agda Code

I If A is a postulated constant then either
I A : (x1 : B1)→ · · · → (xn : Bn)→ Set or
I A : (x1 : B1)→ · · · → (xn : Bn)→ A′ t1 · · · tn where A′ is a postulated

constant or an equality.

I The same applies to functions f defined by case distinction on
equalities.
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3. Theory of Program Extraction

Main Theorem

Theorem (Main Theorem)

I Assume the above conditions.

I Then every closed term in normal form which is an element of an
algebraic data type is in canonical normal form (starts with a
constructor).
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3. Theory of Program Extraction

Proof Assuming Simple Pattern Matching

I Assume t : A, t closed in normal form, A algebraic data type.
I Show by induction on length(t) that t starts with a constructor:

I We have
t = f t1 · · · tn

where f function symbol or constructor.
I f cannot be postulated or directly defined.
I f cannot be defined by case distinction on an equality.
I If f is defined by pattern matching on an algebraic data type say ti .

I By IH ti starts with a constructor.
I t has a reduction, wasn’t in NF.

I So f is a constructor.
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4. Reduction of Nested to Simple Pattern Matching

Properties of Agda Code

I Agda code has the
:::::::
normal

::::::
form

:::::::::
property if every closed normal

term which is an element of an algebraic data type starts with a
constructor.

I Agda code
:::
A′

::::::::
extends

::::::
Agda

::::::
code

:::
A (A ⊆ A′

::::::
)

if all judgements derivable in A are derivable in A′ as well.
I Assume A ⊆ A′.

:::
A′

::::::::
induces

::::
the

::::::
head

::::::::
normal

:::::
form

::::::::::
property

:::
on

:::
A if

I whenever B is an algebraic data type
I s.t. A ` t : B
I and t has in A′ a normal form starting with a constructor,
I then t has in A a normal form starting with the same constructor.
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4. Reduction of Nested to Simple Pattern Matching

Properties of Agda Code

I Assume A ⊆ A′.
I

::::::::
A ⊆ A′

::::::::
induces

:::
the

::::::::::
coverage

:::::::::::::
completeness

:::::::::
property, iff:

if A is coverage complete with disjoint patterns so is A′.
I

::::::::
A ⊆ A′

::::::::
induces

:::
the

:::::::
strong

::::::::::::::
normalisation

::::::::
property, iff:

if A is strongly normalising, so is A′.
I

::::::::
A ⊆ A′

::::::::
induces

:::
the

::::::::::::
consistency

:::::::::
property, iff:

if A is consistent, so is A′.
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4. Reduction of Nested to Simple Pattern Matching

Theorem (Unnesting of Pattern Matching)

Theorem (Unnesting of Pattern Matching)

I Assume A is Agda code fulfilling the above restrictions.
I Then there exists A ⊆ A′ s.t.

I A′ has simple pattern matching only,
I A ⊆ A′ induces the head normal form property,
I A ⊆ A′ induces coverage completeness, strong normalisation and

consistency properties.
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4. Reduction of Nested to Simple Pattern Matching

Example Reduction to Simple Pattern Matching

Original code:
− : N→ N→ N

m − 0 = m
0 − (suc n) = 0
(suc m) − (suc n) = m − n

Make sure lines make case distinction on first argument:

− : N→ N→ N
0 − 0 = 0
(suc n) − 0 = suc n
0 − (suc n) = 0
(suc m) − (suc n) = m − n
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4. Reduction of Nested to Simple Pattern Matching

Example Reduction to Simple Pattern Matching

− : N→ N→ N
0 − 0 = 0
(suc n) − 0 = suc n
0 − (suc n) = 0
(suc n) − (suc m) = n −m

Reorder lines:
− : N→ N→ N

0 − 0 = 0
0 − (suc n) = 0
(suc n) − 0 = suc n
(suc n) − (suc m) = n −m
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4. Reduction of Nested to Simple Pattern Matching

Example Reduction to Simple Pattern Matching

Make case distinction on first argument only and delegate it to auxiliary
functions e and f :

mutual
− : N→ N→ N

0 − m = e m
(suc n) − m = f n m

e : N→ N
e 0 = 0
e (suc n) = 0

f : N→ N→ N
f n 0 = suc n
f n (suc m) = n −m
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4. Reduction of Nested to Simple Pattern Matching

Example 2 Reduction to Simple Pattern Matching

Original code:
f : N→ N
f 0 = 5
f (suc 0) = 12
f (suc (suc n)) = (f n) ∗ n

Reduct:

mutual
f : N→ N
f 0 = 5
f (suc n) = g n

g : N→ N
g 0 = 12
g (suc n) = (f n) ∗ n
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4. Reduction of Nested to Simple Pattern Matching

Termination of the Reductions

I If A is Agda code, f a function of A with pattern matching terms

mA(f ) :=

{
0 if f has simple pattern matching
sum of length of all patterns of f otherwise

I Let for Agda code A

m(A) = {|mA(f ) | f function symbol defined by pattern matching in A |}

where {| · · · |} denotes a multiset.
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4. Reduction of Nested to Simple Pattern Matching

Main Difficulty

I Show that each reduction step induces the properties mentioned
before.
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4. Reduction of Nested to Simple Pattern Matching

Proof of Main Theorem

I First reduce Agda code to simple pattern matching using Theorem on
Unnesting of Pattern Matching.

I Then use the above proof for Agda code having simple pattern
matching.
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5. Extensions

Extensions

I Negated axioms such as ¬(0R == 1R) are currently forbidden
I Have form 0R == 1R → ⊥ where ⊥ is algebraic data type.
I Causes problems since they are needed (e.g. when using the reciprocal

function).
I Without negated axioms the theory is trivially consistent (interpret all

postulate sets as one element sets).
I With negated axioms it could be inconsistent.

I E.g. take axioms which have consequences 0R == 1R and
¬(0R == 1R).)

I In case of an inconsistency we would get a proof p : ⊥ and therefore

efq p : N

is non-canonical of N in NF.
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5. Extensions

Theorem (Negated Axioms)

I Assume conditions as before.

I Assume result type of axioms is always a postulated type or a negated
postulated type.

I Assume the Agda code doesn’t prove ⊥.

I Then every closed term which is an element of an algebraic data type
is in canonical normal form (starts with a constructor).
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5. Extensions

More Extensions

I We could separate our algebraic data types into those for which we
want to use their computational content and those for which we don’t
use their content.

I Assume we never derive using case distinction on a non-computational
data type an element of a computational data type.

I Then axioms with result type non-computational data types could be
allowed, e.g.

tertiumNonDatur : A ∨non−computational ¬A
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5. Extensions

Addition of Coalgebraic Types

I Original proof didn’t include coalgebraic types.

I With coalgebraic types additional complication:
t can be of the form

elim t1

for an eliminator elim of a coalgebraic type.
I Extend the theorem by proving simultaneously:

I If A algebraic, t closed term in NF, t : A, then t starts with a
constructor.

I If A coalgebraic, t closed term, t : A, and elim is an eliminator of A,
then elim t has a reduction.
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6. Applications

Easy Proofs

I Acclimatised theory allows to easily prove big theorems by postulating
them, as long as we are only interested in the computational content.

I In an experiment we introduced axioms such as

ax : (r : R)→ (q : Q)→ |Q2R q −R r | <R 2−2R → q ≤Q 1/4Q
→ r ≤R 1/2R

I In fact the more is postulated the faster the program (and the easier
one can see what is computed).
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6. Applications

Separation of Logic and Computation

I Postulates allow us to have a two-layered theory with
I computational part (using non-postulated types)
I an a logic part (using postulated types).
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6. Applications

Useful for Programming with Dependent Types

I This could be very useful for programming with dependent types.
I Postulate axioms with no computational content.
I Possibly prove them using automated theorem provers (approach by

Bove, Dybjer et. al.).
I Concentrate in programming on computational part.
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6. Applications

Experiments carried out

I In about 6 hours I developed a framework using Cauchy Reals, Signed
Digit Reals, conversion into streams and lists form scratch.

I Allowed the computation of the first 10 digits of rational numbers in
[−1, 1].

I Framework is easy to use since most proofs are replaced by postulates.

I Chi Ming Chuang showed closure of signed digit reals under average
and multiplication using more efficient direct calculations and full
proofs of most theorems needed.

I Was able to calculated fast the first 1000 digits of rational numbers.
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6. Applications

Idea: Type Theory with Partial and Total Objects

I One could postulate
I types of partial elements,
I constants operating on those types,
I equations for those constants .

I Then one can
I define predicates on those partial elements corresponding to the total

elements,
I and show that certain partial elements are total or have other

properties.
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6. Applications

Example

postulate Npartial : Set
postulate == : Npartial → Npartial → Set
postulate 0 : Npartial

postulate suc : Npartial → Npartial

postulate f : Npartial → Npartial

postulate lemf0 : f 0 == · · ·
postulate lemfs : (n : Npartial)→ f (suc n) == · · ·
data N : Npartial → Set where

zerop : N 0
succp : (n : Npartial)→ N n→ N (suc n)
eqp : (n m : Npartial)→ N n→ n == m→ N m

lemma : (n : Npartial)→ N n→ N (f n)
lemma n p = · · ·
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Conclusion

Conclusion

I If result types of postulated constants are postulated types, then
closed elements of algebraic types evaluate to constructor normal
form.

I Reduces the need burden of proofs while programming (by
postulating axioms or proving them using ATP).

I Axiomatic treatment of R.

I Program extraction for proofs with real number computations works
very well.

I Applications to programming with dependent types in general.

I Possible solution for type theory with partiality and totality.
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