
Undecidability of Equality for Codata Types

Ulrich Berger and Anton Setzer

Swansea University
CMCS’18 Thessaloniki, Greece

15 April 2018

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 1/ 29

http://www-compsci.swan.ac.uk/~csulrich/
http://www.cs.swan.ac.uk/~csetzer/index.html
http://www.swansea.ac.uk/compsci/

The Need for Decidable Equality

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Conclusion

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 2/ 29

The Need for Decidable Equality

The Need for Decidable Equality

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Conclusion

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 3/ 29

The Need for Decidable Equality

Goal Directed Theorem Prover (Here Coq)

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 4/ 29

The Need for Decidable Equality

Theorems as Functional Programs with Holes (Agda)

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 5/ 29

The Need for Decidable Equality

Need for Decidability of Equality

I Agda’s approach requires decidability of type checking.

I Type checking for dependently typed programs relies on a decidable
equality:

λX .λx .x : ΠX :A→Set(X a→ X b)⇔ a and b are equal elements of A

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 6/ 29

The Need for Decidable Equality

Three Equalities in Agda

I Definitional equality - decidable equality used during type
checking.

f = g : N→ N⇔ f , g are “equivalent” programs.

I User-defined equalities.
I Can be undecidable.
I Can be used to prove correctness of programs.
I For coalgebras the standard choice is bisimilarity defined

coinductively.

I Propositional equality.
I Generic equality type based on definitional equality.
I Not relevant for this talk.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 7/ 29

Codata Types and Coalgebras

The Need for Decidable Equality

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Conclusion

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 8/ 29

Codata Types and Coalgebras

Codata Types

I Algebraic data types introduce least fixed points:

data N : Set where
0 : N
suc : N→ N

I Codata types introduce largest fixed point:

codata Stream : Set where
:: : N→ Stream→ Stream

fun2Stream : (N→ N)→ Stream
fun2Stream f = f 0 :: fun2Stream (f ◦ suc)

I Infinite terms + non normalisation unless we restrict expansion:

fun2Stream f = f 0 :: fun2Stream (f ◦ suc)
= f 0 :: f 1 :: fun2Stream (f ◦ suc2)
= f 0 :: f 1 :: f 2 :: fun2Stream (f ◦ suc3)
= · · ·Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 9/ 29

Codata Types and Coalgebras

Problems of Codata Types

I This implies that if for some n

∀k < n . f k = g k
f ◦ sucn = g ◦ sucn

then

fun2Stream f = f 0 :: f 1 :: · · · :: f (n − 1) :: fun2Stream (f ◦ sucn)
= g 0 :: g 1 :: · · · :: g (n − 1) :: fun2Stream (g ◦ sucn)
= fun2Stream g

I But this makes the equality undecidable.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 10/ 29

Codata Types and Coalgebras

Problems of Codata Types

I Definition of functions by pattern matching:

inc : Stream→ Stream
inc (n :: s) = (n + 1) :: inc s

I Assumes every s : Stream is of the form s = n :: s ′ for some t.
I We will see that this results in undecidability of equality.

I Problem was fixed in Coq and early versions of Agda by applying
special restrictions on when to expand the defining equations for
fun2Stream. Resulted in subject-reduction problem

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 11/ 29

Codata Types and Coalgebras

Coalgebras as Observations + Copattern Matching

I New approach (Abel, Pientka, Setzer, Thibodeau, POPL’13):

I Coinductive Types defined by observations:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

I Elements of Stream defined by copattern matching:

fun2Stream : (N→ N)→ Stream
head (fun2Stream f) = f 0
tail (fun2Stream f) = fun2Stream (f ◦ suc)

I (fun2Stream f) is in normal form, if f in normal form.
I Reductions are only carried out after applying head or tail to it.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 12/ 29

Codata Types and Coalgebras

Constructor as Defined Operation

I :: is not a constructor but defined by copattern matching:

:: : N→ Stream→ Stream
head (n :: s) = n
tail (n :: s) = s

I We don’t have
s = head s :: tail s

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 13/ 29

Codata Types and Coalgebras

Applications of the Copattern Approach

Examples of projects of using copattern matching for proving theorems in
Agda

I With Chuang: Representation of constructive reals using
coalgebras. (PhD thesis Chi Ming Chuang).

I With Bashar Igried: CSP-Agda.
I Representation of the process algebra CSP in Agda in a coalgebraic

way.
I Proof of algebraic laws using trace semantics, stable failures semantics,

failures divergences infinite traces semantics, bisimilarity, and
divergence respecting weak bisimilarity.

I With Peter Hancock IO monad as coalgebra.

I With Andreas Abel and Stephan Adelsberger: Representations of
objects and GUIs as coalgebras. (Abel, Adelsberger, Setzer, J
Functional Programming 2017)

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 14/ 29

Undecidability of Weak Forms of Equality

The Need for Decidable Equality

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Conclusion

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 15/ 29

Undecidability of Weak Forms of Equality

Encoding of Streams

Definition

(a) An encoding of streams (Stream, head, tail,==) is given by:

1. A subset Stream ⊆ N.
2. An equivalence relation == ⊆ Stream× Stream written infix.
3. Functions head : Stream→ N, tail : Stream→ Stream that are

congruences.

(b) An encoding of streams is injective if 〈head, tail〉 is injective i.e.

∀s, s ′ : Stream .head(s) = head(s ′) ∧ tail(s) == tail(s ′)→ s == s ′

(c) An encoding of streams is universal if it allows to define functions by
primitive corecursion.

(c) An encoding of streams is coiteratively universal if it allows to define
functions by primitive coiteration.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 16/ 29

Undecidability of Weak Forms of Equality

Equalities Extending ==

Definition

Assume an encoding of streams.

s ==<ω t ⇔ ∃n.(∀i < n.(s)i = (t)i) ∧ tailn(s) == tailn(t)

s ∼ t ⇔ ∀i ∈ N . (s)i = (t)i

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 17/ 29

Undecidability of Weak Forms of Equality

Injectivity does not imply Bisimilarity

Lemma

(a) ==<ω is the least injective equivalence relation containing == and
respecting head, tail.

(b) == ⊆ ==<ω ⊆ ∼.
(c) For the standard model of streams in Agda we have that

== 6= ==<ω 6= ∼.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 18/ 29

Undecidability of Weak Forms of Equality

Decidable Streams Not Determined by head, tail

Theorem

(a) Every injective universal encoding of streams has an undecidable
equality.

(b) The same applies to injective coiteratively universal encodings.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 19/ 29

Undecidability of Weak Forms of Equality

Decidable Streams Not Always of Form cons(n, s)

Corollary

(a) Assume a universal or coiteratively universal encoding of streams
together with a cons function respecting equalities. If

∀s : Stream . s == cons(head(s), tail(s))

then == is undecidable.

(b) Assume cons as in (a). Assume

∀s : Stream, n : N . head(cons(n, s)) = n ∧ tail(cons(n, s)) == s
∀s : Stream .∃n, s ′ . s == cons(n, s ′)

Then == is undecidable.

(c) ==<ω and ∼ are both undecidable.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 20/ 29

Undecidability of Weak Forms of Equality

Proof of Main Theorem

I A proof of undecidability of ∼ is easy since extensional equality on
N→ N is undecidable by undecidability of Turing halting problem.

I We cannot use this fact, since in general ==<ω 6=∼.

I Instead we use the following theorem from computability theory,
where {e} is the partial function defined by the eth Turing Machine:

Theorem

(Rosser, Kleene, Novikov, Trakhtenbrot)
Let A := {e | {e} ' 0} and B := {e | {e} ' 1}.
Then A and B are recursively inseparable:
There is no (total) computable function f : N→ {0, 1} such that
∀e ∈ A . f (e) = 0 and ∀e ∈ B . f (e) = 1

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 21/ 29

Undecidability of Weak Forms of Equality

Proof of Main Theorem

I Assume a universal injective encoding of streams.

I We define f : N→ Stream mapping Turing Machines with code e to
streams as follows.
If we had codata types the definition would be:

I If e terminates after k steps with result r

f (e) = 0 :: 0 :: · · · :: 0︸ ︷︷ ︸
k

:: r :: r :: r :: · · ·

I If e never terminates then

f (e) = 0 :: 0 :: · · ·

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 22/ 29

Undecidability of Weak Forms of Equality

Proof of Main Theorem

I f (e) = g(e, 0) where

head(g(e, n)) = 0

tail(g(e, n)) =


g(e, n + 1) if e has not terminated

after k steps
const(r) if e has terminated

after k steps with result r

where const(r) is a fixed constant stream returning always r .

I g defined by primitive corecursion.
It can be defined with some extra effort by primitive coiteration.

I It is crucial that after having terminated we give back the same
stream const(r), not only a stream bisimilar to const(r).

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 23/ 29

Undecidability of Weak Forms of Equality

Proof of Main Theorem

I Assume that the encoding of streams is injective.

I If {e} ' 0, then f (e) == const(0).

I If {e} ' 1 then ¬(f (e) == const(0)).

I So if == were decidable, the function

λe.f (e) == const(0)

would separate {e | {e} ' 0} from {e | {e} ' 1},
a contradiction.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 24/ 29

Conclusion

The Need for Decidable Equality

Codata Types and Coalgebras

Undecidability of Weak Forms of Equality

Conclusion

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 25/ 29

Conclusion

Conclusion

I Decidable type checking requires decidable definitional equality.
I With decidable equality we cannot assume for weakly final

coalgebras that
I streams are determined by head and tail
I or that every stream is of the form cons(n,s).

I Proof using advanced result from computability theorem, not just
undecidability of halting problem for Turing Machines.

I Codata approach implicitly assumes that every stream is of the
form cons(n, s), resulting in an undecidable equality.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 26/ 29

Conclusion

Conclusion

I Problem of codata types can be fixed by defining coinductive types by
observations and copattern matching.

I However streams are not always of the form cons(n, s).

I Defining coalgebras by observations and copattern matching has been
used in Agda successfully for large scale implementation and
verification of processes, IO programs, objects and GUIs.

I In Agda there exist a musical approach to codata types, which can
be considered as syntactic sugar for coalgebras while behaving as
close as possible to codata types.

I Currently not much used.
I See discussion in CMCS’18 paper.

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 27/ 29

Conclusion

One Referee: Is the paper nothing but another nail in the
coffin of the co-data approach?

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 28/ 29

Conclusion

Coalgebras to the Rescue

Ulrich Berger and Anton Setzer (Swansea) Undecidability of Equality for Codata Types 29/ 29

	The Need for Decidable Equality
	Codata Types and Coalgebras
	Undecidability of Weak Forms of Equality
	Conclusion

