
CSCM10 Research Methodology
Specification and Verification

Anton Setzer

http://www.cs.swan.ac.uk/∼csetzer/lectures/
computerScienceProjectResearchMethods/current/index.html

Monday 13 November 2017

http://www.cs.swan.ac.uk/~csetzer/lectures/computerScienceProjectResearchMethods/current/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/computerScienceProjectResearchMethods/current/index.html

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 2/ 58

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 3/ 58

Definition

Definition: A
:::::::
critical

::::::::
system is a

• computer, electronic or electromechanical system

• the failure of which may have serious consequences, such as
• substantial financial losses,
• substantial environmental damage,
• injuries or death of human beings.

CSCM10 Specification and Verification 4/ 58

Example 1: Nuclear Power

CSCM10 Specification and Verification 5/ 58

Example: Medical Devices

CSCM10 Specification and Verification 6/ 58

Example: Embedded Systems in Automobile Industry

CSCM10 Specification and Verification 7/ 58

Example: Railways

CSCM10 Specification and Verification 8/ 58

Failure of a Critical System

CSCM10 Specification and Verification 9/ 58

Failure of a Critical System

CSCM10 Specification and Verification 10/ 58

Industrial Partners of Swansea Group in Safe and Secure
Systems

CSCM10 Specification and Verification 11/ 58

Swansea Safe and Secure Systems Group

• The department of Computer Science has a big group working
on logic, theoretical computer science and applications to
verification of software and hardware.

• Long experience in working with verification of software and
hardware.

• Industrial connections with companies such as Rolls Royce,
Developers of Electronic Payment Systems, Siemens.

CSCM10 Specification and Verification 12/ 58

Swansea Safe and Secure Systems Group

• Well established collaboration with Siemens Rail Automation
(Chippenham, formerly Invensys Railsystems) on modelling
and verification of new generations of railway interlocking
systems.

• Currently working on radio controlled moving block systems
(ERTMS).

CSCM10 Specification and Verification 13/ 58

Expertise of Swansea Group on Safe and Secure Systems

• Verification in the Railway Domain
• Ulrich Berger
• Phil James
• Faron Moller
• Liam O’Reilly
• Markus Roggenbach
• Monika Seisenberger
• Anton Setzer

• Embedded Systems and Testing
• Arnold Beckmann,
• Markus Roggenbach.

CSCM10 Specification and Verification 14/ 58

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 15/ 58

Why Formal Specification?

• Natural language specification can be ambiguous.
• “The output is a red light or a green light”.

• Do you mean “either or” or “inclusive or”?

CSCM10 Specification and Verification 16/ 58

Why Formal Specification?

• Formal specification enforce precision.
• Example: If the level of the water in the tank is above a

certain level, the plug valve must be closed.
Do you mean

• maximum level,
• average,
• medium,
• or . . . (lots of other possibilities)?

CSCM10 Specification and Verification 17/ 58

Why Formal Specification?

• Natural language specifications don’t allow formal verification.

CSCM10 Specification and Verification 18/ 58

Challenges in Specification

• Finding a suitable language which is
• expressive
• and simple enough for the user to understand it.

• Describe the meaning of specification languages (semantics).

• For specifying a formal system, determine the right
• notions,
• level of abstraction

CSCM10 Specification and Verification 19/ 58

Example

• Distant signals and main signal in railways.
Is

• the main signal a function of the distant signal,
• or the distant signal a function of the main signal,
• or are main signal and distant signal in a relation.

• During specification, often need to switch between different
choices.

• General problem of modelling systems.

CSCM10 Specification and Verification 20/ 58

Expertise of Swansea Safe and Secure Systems Group

• Algebraic Specification.
• Markus Roggenbach (CASL)
• John Tucker (theory of algebraic specification)

• Process Algebras
• Faron Moller (CCS),
• Markus Roggenbach (CSP-CASL),
• Anton Setzer (CSP-Agda).

CSCM10 Specification and Verification 21/ 58

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 22/ 58

Verification

• Verification is the process of determining whether a software
product coincides with its specification.

• Many methods.

• Main method is testing.

• Testing usually not complete.

• In order to guarantee that a program is guaranteed to be
correct, one needs prove that the output of software coincides
with the specification.

• Necessary especially for critical systems.
• Increasingly used for general systems, e.g. by Microsoft, to

guarantee security of its software.

• Done using theorem proving techniques.

CSCM10 Specification and Verification 23/ 58

4 Ways of Proving Theorems

1. Theorem proving by hand.
• What mathematicians do all the time.
• Will remain in the near future the main way for proving

theorems.
• Problem: Errors.

• As in programs after a certain amount of lines there is a bug,
after a certain amount of lines a proof has a bug.

• The problem can only be reduced by careful proof checking,
but not eliminated completely.

• Unsuitable for verifying large software and hardware systems.
• Data usually too large.
• Likely that one makes the same mistakes as in the software.

CSCM10 Specification and Verification 24/ 58

4 Ways of Proving Theorems

2. Theorem proving with some machine support.
• Machine checks the syntax of the statements, creates a good

layout, translates it into different languages.
• Theorem proving still to be done by hand.
• Example: most systems for specification of software.
• Advantages:

• Less errors.
• User is forced to obey a certain syntax.
• Specifications can be exchanged more easily.

• Disadvantage: Similar to 1.

CSCM10 Specification and Verification 25/ 58

4 Ways of Proving Theorems

3. Interactive Theorem Proving.
• Proofs are fully checked by the system.
• Proof steps have to be carried out by the user.
• Advantages:

• Correctness guaranteed (provided the theorem prover is
correct).

• Everything which can be proved by hand, should be possible
to be proved in such systems.

CSCM10 Specification and Verification 26/ 58

4 Ways of Proving Theorems

• (Interactive theorem proving)
• Disadvantages:

• It takes much longer than proving by hand.
• Similar to programming:

To say in words what a program should do, doesn’t take long.
To write the actual program, can take a long time, since much
more details are involved than expected.

• Requires experts in theorem proving.

CSCM10 Specification and Verification 27/ 58

4 Ways of Proving Theorems

4. Automated Theorem Proving.
• The theorem is shown by the machine.
• It is the task of the user to

• state the theorem,
• bring it into a form so that it can be solved,
• usually adapt certain parameters so that the theorem proving

solves the problem within reasonable amount of time.

CSCM10 Specification and Verification 28/ 58

4 Ways of Proving Theorems

• (Automated theorem proving)
• Advantages

• Less complicated to “feed the theorem into the machine”
rather than actually proving it.
Might be done by non-specialists.

• Sometimes faster than interactive theorem proving.

CSCM10 Specification and Verification 29/ 58

4 Ways of Proving Theorems

• (Automated theorem proving)
• Disadvantages

• Many problems cannot be proved automatically.
• Can often deal only with finite problems.
• We can show the correctness of one particular processor.
• But we cannot show a theorem, stating the correctness of a

parametric unit (like a generic n-bit adder for arbitrary n.
• In some cases this can be overcome.
• Limits on what can be done (some hardware problems can be

verified as 32 bit versions, but not as 64 bit versions).

CSCM10 Specification and Verification 30/ 58

Verification in Industry

• Most verification done using testing.

• Some theorem proving by hand and with some machine
support done.

• Increasingly theorem proving using automated theorem
proving done.

• Investment of Microsoft in various automated theorem provers.
• Package management in Linux became much faster due to use

of SAT solvers (Automated Theorem Provers).

CSCM10 Specification and Verification 31/ 58

Verification in Industry

• Interactive theorem proving on its way into industry.
• Typical scenario:
• General properties of a system proved used interactive theorem

proving
• E.g. signalling principles formally expressed safety.

• That a concrete installation is in accordance with those general
principles done using automated theorem proving.

• E.g. show that a railway interlocking system fulfils signalling
principles.

CSCM10 Specification and Verification 32/ 58

Expertise of Verification

• Verification using automated theorem provers (ATP).
• Oliver Kullmann (SAT solvers, e.g. OK-Solver)

• Verification using interactive theorem provers (ITP).
• Markus Roggenbach (Isabelle),
• Ulrich Berger (Minlog, Coq),
• Monika Seisenberger (Minlog),
• Anton Setzer (Agda).

CSCM10 Specification and Verification 33/ 58

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 34/ 58

Agda

• Agda is a theorem prover which is as well a prototype of a
dependently typed programming language.

• In Agda proofs and programs are the same.

• A proof of a theorem A is a program p of type A written as

p : A

• Relatively easy for programmers, since they don’t need to
learn a different activity.

• Agda uses the novel concept of dependent types.

• In Swansea Anton Setzer is expert in Agda.

CSCM10 Specification and Verification 35/ 58

Example: Boolean Circuits

Component 1 Component 2

Component 3Memory

MemoryMemory

Memory

CSCM10 Specification and Verification 36/ 58

What is a Component?

...

... m Outputs

n Inputs

A Boolean Component can be represented by a

f : Booln → Boolm

CSCM10 Specification and Verification 37/ 58

What is the type Booln → Boolm?

• Booln → Boolm is a type depending on n,m : N.

• In most languages you don’t have any dependent type.
You need to replace this by List(Bool)→ List(Bool).

• In C++ you can define

Booln → Boolm

but only, if n, m are known at compile time.
• Disallows dynamic dependencies, e.g. depending on user input.

• In Agda we can directly use Booln → Boolm as a dependent
type.

CSCM10 Specification and Verification 38/ 58

Example 2: Grammars

• Assume you want to write programs which manipulate Java
programs.

• E.g. change a variable not using brute query replace.

• One way of doing this:
• Define a data type of Java programs.
• Translate strings into this data type and back again.
• Write programs which work on this data type of Java

programs.

CSCM10 Specification and Verification 39/ 58

Example 2: Grammars

• An oversimplified grammar for Java might start as follows:

JavaProg −→ “class”identifier“{”JavaProgBody “} ”
JavaProgBody −→ (VariableDecl)∗ (MethodDecl)∗

VariableDecl −→ TypeDecl VariableName “;”
· · ·

CSCM10 Specification and Verification 40/ 58

Transformers of Java Programs

• Let Grammarsymbol be the set of terminals and non-terminals
(JavaProg, JavaProgbody, . . .).

• For each Grammarsymbol S we define the type [[S]] of entities
of this type, e.g.

• [[TypeDecl]] = String.
• [[VariableName]] = String.
• [[VariableDecl]] = String × String.

• [[S]] is a dependent type depending on
S : GrammarSymbol.

CSCM10 Specification and Verification 41/ 58

Type of the Parser

Parser : (GrammarSymbol× String)→ Bool

Transformer : (S : GrammarSymbol)
→ (s : String)
→ Parser(S , s) == true
→ [[S]]

• Makes heavy use of the dependent type [[S]].

• Parser Libraries in C++, Haskell, Agda have been built based
on this idea.

CSCM10 Specification and Verification 42/ 58

Generative Programming

• These are examples of generative programming.

• In generative programming you want to build highly generic
programs, which generate and manipulate programs from
elements of data types.

CSCM10 Specification and Verification 43/ 58

Generative Programming

• So we have
• a base data type BaseType (like GrammarSymbol before),
• a type of programs Program(S) based on S : BaseType

(like [[S]] before),
• operations which manipulate Program(S), e.g.

transform1 : ((S : BaseType1)× Program1(S))
→ BaseType2

transform2 : ((S : BaseType1)× Program1(S))
→ Program2(transform1(S , s))

CSCM10 Specification and Verification 44/ 58

Generative Programming

• Now we can create factories for generating programs.

• Replace handcrafted programs by generated programs.

• Similar to step from pre-industrial to industrial age.

CSCM10 Specification and Verification 45/ 58

Dependent Types for Writing Verified Programs

• Assume we want to assign a type to a sorting function sort on
lists of natural numbers.

• In most programming language, the type of it is essentially

sort : NatList→ NatList

for the type of lists of natural numbers NatList.

• In dependent type theory, we can demand more correctness,
namely that its type is

sort : NatList→ SortedList .

• We assume some notion of NatList (list of natural numbers).

CSCM10 Specification and Verification 46/ 58

SortedList

• What is SortedList?
• An element of SortedList is a list which is sorted.
• It is a pair 〈l , p〉 s.t.

• l is a NatList.
• p is a proof or verification that l is sorted:
• p : Sorted(l).

CSCM10 Specification and Verification 47/ 58

Sorted Lists

• For the moment, ignore what is meant by Sorted(l) as a type.

• Only important: Sorted(l) depends on l .
• Sorted(l) is a predicate expressed as a type.

• Elements of SortedList are pairs 〈l , p〉 s.t.
• l : NatList.
• p : Sorted(l).

• Sorted(l) is a dependent type.

CSCM10 Specification and Verification 48/ 58

Sorted Lists (Cont.)

• An element of Sorted(l) will be a proof that l is sorted.

• If l is sorted, then Sorted(l) will be provable, and therefore
will have an element.

• It is possible to write a program which computes an element of
Sorted(l).

• If l is not sorted, then Sorted(l) will have no proof and it
will therefore no element.

• Then it is not possible to write a program which computes an
element of Sorted(l).

CSCM10 Specification and Verification 49/ 58

The Dependent Product

• Then the pair 〈l , p〉 will be an element of

SortedList := (l : NatList)× Sorted(l) .

• SortedList is the type of pairs 〈l , p〉 s.t.
• l : NatList,
• p : Sorted(l).

called the
:::::::::::
dependent

:::::::::
product

• sort : NatList→ ((l : NatList)× Sorted(l)) expresses:
• sort converts lists into sorted lists.

CSCM10 Specification and Verification 50/ 58

The Dependent Function Type

• From a sorting function we know more:
• It takes a list and converts it into a sorted list

with the same elements.

• Assume a type (or predicate) EqElements(l , l ′) standing for
• l and l ′ have the same elements.

CSCM10 Specification and Verification 51/ 58

The Dependent Function Type

• A refined version of sort has type

(l : NatList)→ ((l ′ : NatList)×Sorted(l ′)×EqElements(l , l ′))

• “sort(l) is a list, which is sorted and has the same elements”.

• “sort is a program, which takes a list and returns a sorted list
with the same elements.”

• The type of sort is an instance of the

:::::::::::
dependent

:::::::::
function

:::::
type:

• The result type depends on the arguments.

CSCM10 Specification and Verification 52/ 58

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 53/ 58

Topics in Security

• Cyberterrorism, General Security
• Monika Seisenberger, Anton Setzer.

• Cryptocurrencies (Bitcoins, Blockchain).
• Anton Setzer

CSCM10 Specification and Verification 54/ 58

1 Critical Systems

2 Specification

3 Verification

4 Dependent Type Theory

5 Security

6 Theoretical Topics

CSCM10 Specification and Verification 55/ 58

Theoretical Topics

• Computability Theory and Limits of Computation
• Ulrich Berger, Jens Blanck, Monika Seisenberger, John Tucker,

• Exact Real Number Computation
• Ulrich Berger, Jens Blanck, Monika Seisenberger.

• Program Extraction
• Ulrich Berger, Monika Seisenberger

• Proof Theory
• Arnold Beckmann, Ulrich Berger, Monika Seisenberger, Anton

Setzer, Jean Razafindrakoto.

CSCM10 Specification and Verification 56/ 58

Theoretical Topics

• Complexity Theory
• Arnold Beckmann, Oliver Kullmann, Faron Moller, Jean

Razafindrakoto.

• Formal Argumentation
• X. Fan.

CSCM10 Specification and Verification 57/ 58

Conclusion

• Critical Systems require more formal specification and
verification.

• Expertise in Swansea in specification and verification.

• Problems of natural language specification can be overcome
by formal specification.

• Verification techniques – from proving by hand to interactive
and automated theorem proving.

• Agda as an example of a programming language based on
dependent types.

• Use of dependent types for generative programming.

• Research related to Security.

• Wide range of theoretical topics covered in Swansea.

CSCM10 Specification and Verification 58/ 58

	Critical Systems
	Specification
	Verification
	Dependent Type Theory
	Security
	Theoretical Topics

