CSCM10 Research Methodology
Specification and Verification @ Critical Systems
@® Specification
Anton Setzer
© Verification

http://www.cs.swan.ac.uk /~csetzer/lectures/
computerScienceProjectResearchMethods/current/index.html

@ Dependent Type Theory
Monday 13 November 2017 @ Security

@ Theoretical Topics

CSCM10 Specification and Verification 2/ 58

Definition

@ Critical Systems

e computer, electronic or electromechanical system

o the failure of which may have serious consequences, such as

e substantial financial losses,
e substantial environmental damage,
e injuries or death of human beings.

CSCM10 Specification and Verification 3/ 58 CSCM10 Specification and Verification 4/ 58

http://www.cs.swan.ac.uk/~csetzer/lectures/computerScienceProjectResearchMethods/current/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/computerScienceProjectResearchMethods/current/index.html

Example 1: Nuclear Power Example: Medical Devices

CSCM10 Specification and Verification 5/ 58 CSCM10 Specification and Verification 6/ 58

Example: Embedded Systems in Automobile Industry Example: Railways

o 4%
TRGES

CSCM10 Specification and Verification 7/ 58 CSCM10 Specification and Verification 8/ 58

Failure of a Critical System Failure of a Critical System

CSCM10 Specification and Verification 9/ 58 CSCM10 Specification and Verification 10/ 58
Industrial Partners of Swansea Group in Safe and Secure
Swansea Safe and Secure Systems Group
Systems

(rginvensys* SIEMENS

om group e The department of Computer Science has a big group working

on logic, theoretical computer science and applications to
verification of software and hardware.

e Long experience in working with verification of software and
hardware.

e Industrial connections with companies such as Rolls Royce,
Developers of Electronic Payment Systems, Siemens.

CSCM10 Specification and Verification 11/ 58 CSCM10 Specification and Verification 12/ 58

Swansea Safe and Secure Systems Group

e Well established collaboration with Siemens Rail Automation
(Chippenham, formerly Invensys Railsystems) on modelling
and verification of new generations of railway interlocking
systems.

o Currently working on radio controlled moving block systems
(ERTMS).

CSCM10 Specification and Verification

@® Specification

CSCM10 Specification and Verification

Expertise of Swansea Group on Safe and Secure Systems

e Verification in the Railway Domain
Ulrich Berger

Phil James

Faron Moller

Liam O'Reilly

Markus Roggenbach

Monika Seisenberger

Anton Setzer

e Embedded Systems and Testing

e Arnold Beckmann,
e Markus Roggenbach.

13/ 58 CSCM10 Specification and Verification

Why Formal Specification?

o Natural language specification can be ambiguous.

e “The output is a red light or a green light”.
e Do you mean “either or" or “inclusive or"?

15/ 58 CSCM10 Specification and Verification

14/ 58

16/ 58

Why Formal Specification?

e Formal specification enforce precision.

o Example: If the level of the water in the tank is above a
certain level, the plug valve must be closed.
Do you mean

maximum level,

average,

medium,

or ... (lots of other possibilities)?

CSCM10 Specification and Verification

Challenges in Specification

e Finding a suitable language which is

® expressive
e and simple enough for the user to understand it.

e Describe the meaning of specification languages (semantics).

e For specifying a formal system, determine the right

e notions,
e level of abstraction

CSCM10 Specification and Verification

Why Formal Specification?

e Natural language specifications don't allow formal verification.

17/ 58 CSCM10 Specification and Verification 18/ 58

Example

e Distant signals and main signal in railways.
Is

e the main signal a function of the distant signal,
e or the distant signal a function of the main signal,
e or are main signal and distant signal in a relation.

e During specification, often need to switch between different
choices.

e General problem of modelling systems.

19/ 58 CSCM10 Specification and Verification 20/ 58

Expertise of Swansea Safe and Secure Systems Group

e Algebraic Specification.

e Markus Roggenbach (CASL)
e John Tucker (theory of algebraic specification)

e Process Algebras

e Faron Moller (CCS),
e Markus Roggenbach (CSP-CASL),
e Anton Setzer (CSP-Agda).

CSCM10 Specification and Verification

Verification

e Verification is the process of determining whether a software
product coincides with its specification.

e Many methods.

e Main method is testing.

e Testing usually not complete.

e In order to guarantee that a program is guaranteed to be
correct, one needs prove that the output of software coincides
with the specification.

o Necessary especially for critical systems.
o Increasingly used for general systems, e.g. by Microsoft, to
guarantee security of its software.

e Done using theorem proving techniques.

CSCM10 Specification and Verification

© Verification

21/ 58 CSCM10 Specification and Verification

4 Ways of Proving Theorems

1. Theorem proving by hand.

e What mathematicians do all the time.
o Will remain in the near future the main way for proving
theorems.
e Problem: Errors.
e As in programs after a certain amount of lines there is a bug,
after a certain amount of lines a proof has a bug.
e The problem can only be reduced by careful proof checking,
but not eliminated completely.
e Unsuitable for verifying large software and hardware systems.

e Data usually too large.
e Likely that one makes the same mistakes as in the software.

23/ 58 CSCM10 Specification and Verification

22/ 58

24/ 58

4 Ways of Proving Theorems 4 Ways of Proving Theorems

2. Theorem proving with some machine support.

e Machine checks the syntax of the statements, creates a good 3. Interactive Theorem Proving.
layout, translates it into different languages. e Proofs are fully checked by the system.

e Theorem proving still to be done by hand. o Proof steps have to be carried out by the user.

o Example: most systems for specification of software. Advantages:

¢ Advantages: e Correctness guaranteed (provided the theorem prover is
® Less errors. correct).
e User is forced to obey a certain syntax. e Everything which can be proved by hand, should be possible
e Specifications can be exchanged more easily. to be proved in such systems.

¢ Disadvantage: Similar to 1.

CSCM10 Specification and Verification 25/ 58 CSCM10 Specification and Verification 26/ 58

4 Ways of Proving Theorems 4 Ways of Proving Theorems

e (Interactive theorem proving)
¢ Disadvantages:

e |t takes much longer than proving by hand.

e Similar to programming:
To say in words what a program should do, doesn’t take long.
To write the actual program, can take a long time, since much
more details are involved than expected.

e Requires experts in theorem proving.

4. Automated Theorem Proving.
e The theorem is shown by the machine.
o |t is the task of the user to
e state the theorem,
e bring it into a form so that it can be solved,
e usually adapt certain parameters so that the theorem proving
solves the problem within reasonable amount of time.

CSCM10 Specification and Verification 27/ 58 CSCM10 Specification and Verification 28/ 58

4 Ways of Proving Theorems

e (Automated theorem proving)
¢ Advantages

® |ess complicated to “feed the theorem into the machine”
rather than actually proving it.
Might be done by non-specialists.

e Sometimes faster than interactive theorem proving.

CSCM10 Specification and Verification

Verification in Industry

e Most verification done using testing.
e Some theorem proving by hand and with some machine
support done.

o Increasingly theorem proving using automated theorem
proving done.

e |nvestment of Microsoft in various automated theorem provers.

e Package management in Linux became much faster due to use
of SAT solvers (Automated Theorem Provers).

CSCM10 Specification and Verification

31/ 58

4 Ways of Proving Theorems

e (Automated theorem proving)
¢ Disadvantages

Many problems cannot be proved automatically.

Can often deal only with finite problems.

We can show the correctness of one particular processor.

But we cannot show a theorem, stating the correctness of a
parametric unit (like a generic n-bit adder for arbitrary n.

In some cases this can be overcome.

Limits on what can be done (some hardware problems can be
verified as 32 bit versions, but not as 64 bit versions).

29/ 58 CSCM10 Specification and Verification 30/ 58

Verification in Industry

e Interactive theorem proving on its way into industry.
e Typical scenario:
o General properties of a system proved used interactive theorem
proving
e E.g. signalling principles formally expressed safety.
e That a concrete installation is in accordance with those general
principles done using automated theorem proving.

e E.g. show that a railway interlocking system fulfils signalling
principles.

CSCM10 Specification and Verification 32/ 58

Expertise of Verification

e Verification using automated theorem provers (ATP).
¢ Oliver Kullmann (SAT solvers, e.g. OK-Solver)
e Verification using interactive theorem provers (ITP).

e Markus Roggenbach (Isabelle),
. UIrlc.h Berger (Minlog, C.oq), @ Dependent Type Theory
e Monika Seisenberger (Minlog),
e Anton Setzer (Agda).
CSCM10 Specification and Verification 33/ 58 CSCM10 Specification and Verification 34/ 58
Agda Example: Boolean Circuits

Memory

e Agda is a theorem prover which is as well a prototype of a
dependently typed programming language.

e In Agda proofs and programs are the same.

o A proof of a theorem A is a program p of type A written as Memory Component 3

piA r

o Relatively easy for programmers, since they don't need to
learn a different activity.

Component 1 Component 2

e Agda uses the novel concept of dependent types.

e In Swansea Anton Setzer is expert in Agda.

emory émory

CSCM10 Specification and Verification 35/ 58 CSCM10 Specification and Verification 36/ 58

What is a Component?

i i n Inputs
i i m Outputs

A Boolean Component can be represented by a

f : Bool” — Bool™

CSCM10 Specification and Verification 37/ 58

Example 2: Grammars

e Assume you want to write programs which manipulate Java
programs.
e E.g. change a variable not using brute query replace.
e One way of doing this:

o Define a data type of Java programs.

e Translate strings into this data type and back again.

o Write programs which work on this data type of Java
programs.

CSCM10 Specification and Verification 39/ 58

What is the type Bool” — Bool™?

Bool” — Bool™ is a type depending on n, m : N.

e In most languages you don't have any dependent type.

You need to replace this by List(Bool) — List(Bool).
e In C++ you can define

Bool” — Bool™
but only, if n, m are known at compile time.
o Disallows dynamic dependencies, e.g. depending on user input.

e In Agda we can directly use Bool” — Bool™ as a dependent

type.

CSCM10 Specification and Verification 38/ 58

Example 2: Grammars

e An oversimplified grammar for Java might start as follows:

JavaProg — “class"identifier “{" JavaProgBody "}
JavaProgBody — (VariableDecl)* (MethodDecl)*

VariableDecl = — TypeDecl VariableName “;"

CSCM10 Specification and Verification 40/ 58

Transformers of Java Programs

e Let Grammarsymbol be the set of terminals and non-terminals
(JavaProg, JavaProgbody, ...).
e For each Grammarsymbol S we define the type [S] of entities
of this type, e.g.
e [TypeDecl] = String.
e [VariableName || = String.
e [VariableDecl] = String x String.
e [S] is a dependent type depending on
S : GrammarSymbol.

CSCM10 Specification and Verification

Generative Programming

e These are examples of generative programming.

e In generative programming you want to build highly generic
programs, which generate and manipulate programs from
elements of data types.

CSCM10 Specification and Verification

Type of the Parser

Parser (GrammarSymbol x String) — Bool
Transformer (S : GrammarSymbol)

— (s : String)

— Parser(S, s) == true

—=[S]

e Makes heavy use of the dependent type [S].

e Parser Libraries in C++, Haskell, Agda have been built based
on this idea.

41/ 58 CSCM10 Specification and Verification 42/ 58

Generative Programming

e So we have
e a base data type BaseType (like GrammarSymbol before),
e a type of programs Program(S) based on S : BaseType
(like [S] before),
e operations which manipulate Program(S), e.g.

((S : BaseTypel) x Program1(S))
— BaseType2

((S : BaseTypel) x Program1(S))
— Program2(transform1(S, s))

transform1

transform?2

43/ 58 CSCM10 Specification and Verification 44/ 58

Generative Programming

e Now we can create factories for generating programs.

e Replace handcrafted programs by generated programs.

e Similar to step from pre-industrial to industrial age.

Generative
Programming

Methods,

”‘ Tools, and
§

} Applications

V4

Krzysztof Czarnecki V 4
Ulrich W. Eisenecker

CSCM10 Specification and Verification

SortedList

e What is SortedList?
e An element of SortedList is a list which is sorted.
e It is a pair (/,p) s.t.
e [is a NatList.

® pis a proof or verification that / is sorted:
e p: Sorted(/).

CSCM10 Specification and Verification

Dependent Types for Writing Verified Programs

e Assume we want to assign a type to a sorting function sort on
lists of natural numbers.

e In most programming language, the type of it is essentially
sort : NatList — NatList

for the type of lists of natural numbers NatList.

e In dependent type theory, we can demand more correctness,
namely that its type is

sort : NatList — SortedList .

e We assume some notion of NatList (list of natural numbers).

45/ 58 CSCM10

Sorted Lists

Specification and Verification 46/ 58

For the moment, ignore what is meant by Sorted(/) as a type.
Only important: Sorted(/) depends on /.
e Sorted(/) is a predicate expressed as a type.

Elements of SortedList are pairs (/, p) s.t.
e [: NatList.
e p: Sorted(/).

Sorted(/) is a dependent type.

47/ 58 CSCM10 Specification and Verification 48/ 58

Sorted Lists (Cont.)

e An element of Sorted(/) will be a proof that / is sorted.

o If | is sorted, then Sorted(/) will be provable, and therefore
will have an element.

e |t is possible to write a program which computes an element of
Sorted(/).

e If / is not sorted, then Sorted(/) will have no proof and it
will therefore no element.

e Then it is not possible to write a program which computes an
element of Sorted(/).

CSCM10 Specification and Verification 49/ 58

The Dependent Function Type

e From a sorting function we know more:

e |t takes a list and converts it into a sorted list
with the same elements.

e Assume a type (or predicate) EqElements(/, /") standing for
e [/ and /" have the same elements.

CSCM10 Specification and Verification 51/ 58

The Dependent Product

e Then the pair (/, p) will be an element of

e SortedList is the type of pairs (/, p) s.t.

e sort : NatList — ((/ : NatList) x Sorted(/)) expresses:

SortedList := (/ : NatList) x Sorted(/) .

e /: NatList,
e p: Sorted(/).

A~~~

AN

e sort converts lists into sorted lists.

CSCM10

Specification and Verification

The Dependent Function Type

A refined version of sort has type

(I : NatList) — ((/" : NatList) x Sorted(/") x EqElements(/, I'))

“sort(/) is a list, which is sorted and has the same elements”.

“sort is a program, which takes a list and returns a sorted list

with the same elements.”

The type of sort is an instance of the

dependent function type:

e The result type depends on the arguments.

CSCM10

Specification and Verification

50/ 58

52/ 58

Topics in Security

e Cyberterrorism, General Security
o Monika Seisenberger, Anton Setzer.

e Cryptocurrencies (Bitcoins, Blockchain).
e Anton Setzer

@ Security

CSCM10 Specification and Verification 53/ 58 CSCM10 Specification and Verification 54/ 58

Theoretical Topics

Computability Theory and Limits of Computation
e Ulrich Berger, Jens Blanck, Monika Seisenberger, John Tucker,

Exact Real Number Computation
o Ulrich Berger, Jens Blanck, Monika Seisenberger.

Program Extraction
o Ulrich Berger, Monika Seisenberger

Proof Theory

e Arnold Beckmann, Ulrich Berger, Monika Seisenberger, Anton
Setzer, Jean Razafindrakoto.

@ Theoretical Topics

CSCM10 Specification and Verification 55/ 58 CSCM10 Specification and Verification 56/ 58

Theoretical Topics

o Complexity Theory

e Arnold Beckmann, Oliver Kullmann, Faron Moller, Jean
Razafindrakoto.

e Formal Argumentation
o X. Fan.

CSCM10 Specification and Verification

Conclusion

Critical Systems require more formal specification and
verification.

Expertise in Swansea in specification and verification.

Problems of natural language specification can be overcome
by formal specification.

Verification techniques — from proving by hand to interactive
and automated theorem proving.

Agda as an example of a programming language based on
dependent types.

Use of dependent types for generative programming.
Research related to Security.

Wide range of theoretical topics covered in Swansea.

CSCM10 Specification and Verification 58/ 58

	Critical Systems
	Specification
	Verification
	Dependent Type Theory
	Security
	Theoretical Topics

