Sec. 8: Semi-Computable Predicates

- We study $P\subseteq\mathbb{N}^n,$ which are
	- **not decidable**,
	- but "**half decidable**".
- **Official name is**
	- **semi-decidable**,
	- or **semi-computable**.
	- or **recursively enumerable (r.e.)**.

Rec.enum. vs. semi-decidable

Recursively enumerable stands for the definition based on the notion of partial recursive functions.

Semi-decidable or **semi-computable** stand for the definition based on an intuitive notion of "(partial)

Assuming the **Church-Turing thesis**, the two notions

Rec. Sets

Remember:

- A predicate A is recursive, iff χ_A is recursive.
- So we have a "full" decision procedure:

 $P(\vec{x}) \Leftrightarrow \chi_P(\vec{x}) = 1$, i.e. answer yes, $\neg P(\vec{x}) \Leftrightarrow \chi_P(\vec{x}) = 0$, i.e. answer no.

 26 Computability Theory, Michaelmas Term 2008, Sect. 8 8 \sim 8 \sim 10

computable function"

coincide.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Semi-Decidable Sets

 $P\subseteq\mathbb{N}^n$ will be semi-decidable, if there exists a partial recursive recursive function f s.t.

 $P(\vec{x}) \Leftrightarrow f(\vec{x}) \downarrow .$

- If $P(\vec{x})$ holds, we will eventually know it: the algorithm for computing f will finally terminate, and then we know that $P(\vec{x})$ holds.
- If $P(\vec{x})$ doesn't hold, then the algorithm computing f will loop for ever, and we never get an answer.

26 Computability Theory, Michaelmas Term 2008, Sect. 8 8 -2

Semi-Decidable Sets

So we have:

 $P(\vec{x}) \Leftrightarrow f(\vec{x}) \downarrow$ i.e. answer yes, $\neg P(\vec{x}) \Leftrightarrow f(\vec{x})\uparrow$ i.e. no answer returned by f .

Applications

Examples (Cont.)

- Type checking in Agda (used in the module interactive theorem proving) is semi-decidable.
	- Does in most applications not cause any problems.

[Jump](#page-2-0) over next example

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-5$

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}7$

Applications

- One might think that semi-computable sets don't occurin computing.
- **But they occur in many applications.**

Examples are

- Checking whether ^a program terminates issemi-decidable.
- Checking whether a program in C++ is type correct is because of the template mechanism semi-decidable.
	- In C++ compilers this problem is usually prevented by having ^a flag which limits the number of timestemplates are unfolded.

Applications

- Whether ^a statement is provable in many logical systems is semi-decidable.
	- But even so this is semi-decidable, many search algorithm succeed in most practical cases.
	- Often one can predict ^a certain time, after whichnormally the search algorithm should havereturned an answer.
		- $\,\cdot\,$ If the search algorithm hasn't returned an answer after this time it is likely (but not guaranteed) that the statement is unprovable.

Def. 8.1 (Recursively Enumerable)

A predicate $A ⊆ ℕ^n$ is <u>recursively enumerable</u>, in short **r.e.**,✿✿✿✿✿✿✿✿✿✿✿✿✿✿

if there exists a partial recursive function $f:\mathbb{N}^n\stackrel{\sim}{\rightarrow}\mathbb{N}$ s.t.

 $A = \text{dom}(f)$.

- Sometimes recursive predicates are as well called
	- **semi-decidable** or
	- **semi-computable** or ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
	- ✿✿✿✿✿✿✿✿✿✿**partially**✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ **computable**.

Proof of Lemma 8.3

- (a) S Assume $A\subseteq\mathbb{N}^k$ is decidable.
	- **C** Then

 $\mathbb{N}^k\setminus A$

is recursive, therefore its characteristic function

 $\chi_{\mathbb{N}^k\setminus A}$

is recursive as well.

Define

$$
f: \mathbb{N}^k \stackrel{\sim}{\to} \mathbb{N}, f(\vec{x}) : \simeq (\mu y. \chi_{\mathbb{N}^k \setminus A}(\vec{x}) \simeq 0) .
$$

Note that \overline{y} doesn't occur in the body of the μ -expression.

 $\texttt{CS_228}$ Computability Theory, Michaelmas Term 2008, Sect. 8 \texttt{S}

Proof of Lemma 8.3

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 8 -9

Lemma 8.3

- (a) Every recursive predicate is r.e.
- (b) The **halting problem**, i.e.

$$
\mathsf{Halt}^n(e, \vec{x}) :\Leftrightarrow \{e\}^n(\vec{x}) \downarrow ,
$$

is r.e., but not recursive.

The proof of Lemma 8.3 and the statement andproof of Theorem 8.4 will be omitted in this lectureJump over proof of [Lemma](#page-5-0) 8.3 and Theorem 8.4.

Proof of Lemma 8.3

If $({\mathbb{N}}^k\setminus A)({\vec{x}})$, then

 $\chi_{\mathbb{N}^k\setminus A}(\vec{x}) \simeq 1$,

so there exists no y s.t.

 $\chi_{\mathbb{N}^k\setminus A}(\vec{x}) \simeq 0$.

therefore

$$
f(\vec{x}) \simeq (\mu y . \chi_{\mathbb{N}^k \setminus A}(\vec{x}) \simeq 0) \simeq \bot ,
$$

especially

 $f(\vec{x})\,\uparrow$.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-13$

Proof of Lemma 8.3

■ So we get

$$
A(\vec{x}) \Leftrightarrow f(\vec{x}) \downarrow \Leftrightarrow \vec{x} \in \text{dom}(f) ,
$$

$$
A = \text{dom}(f) \text{ is r.e. } .
$$

Proof of Lemma 8.3

(b) \bullet We have

$$
\mathsf{Halt}^n(e, \vec{x}) :\Leftrightarrow f_n(e, \vec{x}) \downarrow ,
$$

where f_n is partial recursive as in Sect. 5 s.t. $\,$

 ${e}^n(\vec{x}) \simeq f_n(e, \vec{x})$.

 \bullet So

- $\mathsf{Halt}^n = \mathsf{dom}(f_n)$ is r.e...
- \bullet We have seen above that Haltⁿ is non-computable, i.e. not [recurs](#page-5-0)ive. Jump over Theorem 8.4.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-15$

Theorem 8.4

There exist r.e. predicates

 $\mathsf{W}^n \subseteq \mathbb{N}^{n+1}$

s.t., with

$$
\mathsf{W}_e^n := \{ \vec{x} \in \mathbb{N}^n \mid \mathsf{W}^n(e, \vec{x}) \},
$$

we have the following:

- Each of the predicates $\mathsf{W}^n_e\subseteq \mathbb{N}^n$ is r.e.
- For each r.e. predicate $P \subseteq \mathbb{N}^n$ there exists an $e \in \mathbb{N}$ s.t. $P = \mathsf{W}_e^n$, i.e.

 $\forall \vec{x} \in \mathbb{N}.P(\vec{x}) \Leftrightarrow \mathsf{W}_{e}^{n}(\vec{x})$.

Theorem 8.4

Therefore, the r.e. sets $P \subseteq \mathbb{N}^n$ are exactly the sets W_e^n for $e \in \mathbb{N}$.

 $\mathsf{W}_{e}^{n}:=\mathsf{dom}(\{e\}^{n})$.

If A is r.e., then $A = \textsf{dom}(f)$ for some partial rec. f . Let $f = \{e\}^n$.
Then $A = M^n$ Then $A = W_e^n$.

The details given in the following will be omitted in the lec-

ture. [J](#page-5-0)ump over Details

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-17$

Remark on Theorem 8.4

- W_{e}^{n} is therefore a **universal recursively enumerable sets**, whichencodes all other recursively enumerable sets.
- The theorem means that that we can assign to every recursively enumerable predicate A a natural number, namely the e s.t. $A = \mathsf{W}_{e}^{n}.$
	- Each code denotes one predicate.
	- **However, several numbers denote the same** predicate:
		- there are e, e' s.t. $e \neq e'$, but $W_e^n = W_e^n$. (Since there are $e \neq e'$ s.t. $\{e\}^n = \{e'\}^n$).

Proof of Theorem 8.4

- Let f_n s.t.
	- $\forall e, \vec{n} \in \mathbb{N}. f_n(e, \vec{x}) \simeq \{e\}(\vec{x})$.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-19$

 \bullet Define

$$
\mathsf{W}^n:=\mathsf{dom}(f_n)\ .
$$

- W^n is r.e.
- We have

$$
\vec{x} \in \mathsf{W}_{e}^{n} \Leftrightarrow (e, \vec{x}) \in \mathsf{W}^{n}
$$
\n
$$
\Leftrightarrow f_{n}(e, \vec{x}) \downarrow
$$
\n
$$
\Leftrightarrow \{e\}(\vec{x}) \downarrow
$$
\n
$$
\Leftrightarrow \vec{x} \in \text{dom}(\{e\}^{n}) .
$$

• Therefore

 $\mathsf{W}_{e}^{n}=\mathsf{dom}(\{e\}^{n})$.

- W \real^n is r.e., since f_n is partial recursive.
- Furthermore, we have for any set $A\subseteq \mathbb{N}^n$

A is r.e. iff $A = \text{dom}(f)$ for some partial recursive f iff $A = \mathsf{dom}(\{e\}^n)$ for some $e \in \mathbb{N}$ iff $A = W_e^n$ for some $e \in \mathbb{N}$.

This shows the assertion.

Theorem 8.5

(i) A is r.e.

(v) $A = \emptyset$ or

$$
A = \{ (f_0(x), \dots, f_{n-1}(x)) \mid x \in \mathbb{N} \}
$$

for some primitive recursive functions

 $f_i : \mathbb{N} \to \mathbb{N}$.

(vi) $A = \emptyset$ or

$$
A = \{ (f_0(x), \dots, f_{n-1}(x)) \mid x \in \mathbb{N} \}
$$

for some recursive functions

 $f_i : \mathbb{N} \to \mathbb{N}$.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Theorem 8.5

- Let $A\subseteq \mathbb{N}^n$. The following is equivalent:
- (i) A is r.e.

(ii)

 $A = \{\vec{x} \mid \exists y. R(\vec{x}, y)\}\$

26 Computability Theory, Michaelmas Term 2008, Sect. 8 8 -21 $\,$

for some primitive recursive predicate $R.$

(iii)

$$
A = \{ \vec{x} \mid \exists y. R(\vec{x}, y) \}
$$

for some recursive predicate R_\cdot

(iv)

$$
A = \{ \vec{x} \mid \exists y. R(\vec{x}, y) \}
$$

for some recursively enumerable predicate R_{\cdot}

Remark

- We can summarise Theorem 8.5 as follows: There are 3 equivalent ways of defining that $A\subseteq \mathbb{N}^n$ is r.e.:
	- $A = \textsf{dom}(f)$ for some partial recursive f ;
	- $A = \emptyset$ or A is the image of primitive recursive/recursive functions $f_0,\ldots,f_{n-1};$
	- $A = \{\vec{x} \mid \exists y . R(\vec{x}, y)\}$ for some primitive recursive/recursive/r.e. R_{\cdot}

Remark, Case $n = 1$

- For $A\subseteq\mathbb{N}$ the following is equivalent:
	- \bullet A is r.e.
	- $A = \emptyset$ or
		- $A = \emptyset$ or
 $A = \text{ran}(f)$ for some primitive recursive $f : \mathbb{N} \to$ $A = \mathsf{ran}(f)$ for some primitive recursive $f : \mathbb{N} \to \mathbb{N}$.
 $A = \emptyset$ or $A = \mathsf{ran}(f)$ for some recursive $f : \mathbb{N} \to \mathbb{N}$.
	- $A = \emptyset$ or $A = \text{ran}(f)$ for some recursive $f : \mathbb{N} \to \mathbb{N}$.
Therefore $A \subseteq \mathbb{N}$ is r.e., if
- e $A \subseteq \mathbb{N}$ is r.e., if
	- $A = \emptyset$
	- or there exists a (prim.-)rec. function f , which enumerates all its elements.
- This explains the name "recursively enumerable[pred](#page-11-0)icate".Skip Proof.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}25$

Proof

[Ski](#page-11-0)p proof idea. **Proof Idea for Theorem 8.5:**

- (i) → (ii):
Assume Assume A is r.e., $A = \text{dom}(f)$, for f partial recursive.
	- $A(\vec{x}) \Leftrightarrow f(\vec{x}) \downarrow$
		- \Leftrightarrow $\exists y$ the TM for computing $f(\vec{x})$ terminates after y steps
		- $\Leftrightarrow \exists y.R(\vec{x},y)$

Proof Idea for Theorem 8.5:

- $\text{(i)} \rightarrow \text{(ii)}, \text{Cont)}$
	- **s** where

 $R(\vec{x}, y) \Leftrightarrow$ the TM for comp. $f(\vec{x})$ termin. after y steps.

 R is primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}27$

Proof Ideas

- **(ii)** [→] **(v), special case** ⁿ ⁼ ¹**:** Assume
	- $A = \{x \in \mathbb{N} \mid \exists y . R(x, y)\}$ where R is prim. rec.
	- $A \neq \emptyset$,
	- $y \in A$ fixed.
	- Define $f : \mathbb{N} \to \mathbb{N}$ recursive,

$$
f(x) = \begin{cases} \pi_0(x), & \text{if } R(\pi_0(x), \pi_1(x)), \\ y & \text{otherwise.} \end{cases}
$$

Then $A = \text{ran}(f)$.

Proof Ideas

(v), (vi) [→] **(i), special case** ⁿ ⁼ ¹**:** Assume

 $A = \text{ran}(f)$,

where f is (prim.-)recursive.
... Then

 $A = \textsf{dom}(g)$,

where

$$
g(x) \simeq (\mu y.f(y) = x) .
$$

 \overline{g} is partial recursive.

[The](#page-11-0) full details will be omitted in the lecture. Skip Details

Proof of Theorem 8.5

(i) \rightarrow (ii) (Cont.) **C** Therefore $A(\vec{x})$ [⇔] \Leftrightarrow $\vec{x} \in \text{dom}(f)$ ⇔ $\vec{x} \in \text{dom}(\{e\}^n)$ ⇔ $U(\mu y.\mathsf{T}_n(e,\vec{x},y))$ U prim. rec., therefore total $\stackrel{\displaystyle\leftrightarrow}{\Leftrightarrow}$ $\Leftrightarrow \qquad \qquad \mu y. \mathsf{T}_n(e, \vec{x}, y) \downarrow$ $\Leftrightarrow \qquad \exists u. \mathsf{T}_n(e, \vec{x}, u)$ \Leftrightarrow $\exists y.\mathsf{T}_n(e,\vec{x},y)$
 \Leftrightarrow $\exists u.R(\vec{x},u)$. $\exists y. R(\vec{x}, y)$. where $R(\vec{x}, y) \Leftrightarrow \mathsf{T}_n(e, \vec{x}, y)$.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-31$

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}29$

Proof of Theorem 8.5

- **(i)** [→] **(ii):**
	- (The actual predicate R we will take will be slightly
differently from that in the preaf idea ... it is differently from that in the proof idea – it istechnically easier to prove the theorem this way.)
	- If A is r.e., then for some partial recursive function $f:\mathbb{N}^n \stackrel{\sim}{\rightarrow} \mathbb{N}$ we have

$$
A=\text{dom}(f) .
$$

- Let $f = \{e\}^n$.
- By Kleene's Normal Form Theorem there exist ^aprimitive recursive function U : $\mathbb{N} \to \mathbb{N}$ and a primitive
recursive predicate \top \subset \mathbb{N}^{n+1} s t recursive predicate $\mathsf{T}_n\subseteq \mathbb{N}^{n+1}$ s.t.

 ${e}^n(\vec{x}) \simeq \mathsf{U}(\mu y.\mathsf{T}_n(e,\vec{x},y))$.

Proof of Theorem 8.5

- $\mathsf{(i)} \to \mathsf{(ii)}$ (Cont.)
	- Now R is primitive recursive, and

 $A = \{\vec{x} \mid \exists y. R(\vec{x}, y)\}\enspace.$

- **(ii)** [→] **(iii)**: Trivial.
- **(iii)** [→] **(iv)**: By Lemma 8.3.

Proof of Theorem 8.5

- $\left(\mathsf{(iv)}\rightarrow\mathsf{(ii)},\, \mathsf{Cont}.\right)$
	- **A** Here

 $R'(\vec{x}, y) :\Leftrightarrow S(\vec{x}, \pi_0(y), \pi_1(y))$ is primitive recursive.

26 Computability Theory, Michaelmas Term 2008, Sect. 8 8 -33 $\,$

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Proof of Theorem 8.5

- **(iv)** [→] **(ii)**:
	- **Assume**

 $A = {\mathbf{\vec{x}} \mid \exists y. R(\vec{x}, y)}$,

where R is r.e. \blacksquare

By "(i) → (ii)" there exists a primitive recursive
predicate *S* s t predicate S s.t.

$$
R(\vec{x}, y) \Leftrightarrow \exists z . S(\vec{x}, y, z) .
$$

C Therefore

$$
A = \{\vec{x} \mid \exists y. \exists z. S(\vec{x}, y, z)\}= \{\vec{x} \mid \exists y. S(\vec{x}, \pi_0(y), \pi_1(y))\}= \{\vec{x} \mid \exists y. R'(\vec{x}, y)\}\,
$$

Proof of Theorem 8.5

- **(ii)** [→] **(v)**:
	- Assume A is not empty and R is primitive recursive s.t.

 $A = {\mathbf{\vec{x}} \mid \exists y. R(\vec{x}, y)}$.

- Let $\vec{z} = z_0, \ldots, z_{n-1}$ be some fixed elements s.t. $A(\vec{z})$ holds.
- Define for $i = 0, \ldots, n 1$

 $f_i(x) :=$ $\begin{cases} \pi_i^{n+1}(x), & \text{if } R(\pi_0^{n+1}(x), \pi_1^{n+1}(x), \ldots, \pi_{n-1}^{n+1}(x), \pi_n^{n+1}(x)) \\ z_i, & \text{otherwise.} \end{cases}$

 \mathcal{f}_i are primitive recursive.

- $\text{(iii)} \rightarrow \text{(v)}, \text{Cont.}$)
	- We show

$$
A = \{ (f_0(x), \ldots, f_{n-1}(x)) \mid x \in \mathbb{N} \} .
$$

Proof of Theorem 8.5

- $\text{(}(\mathsf{ii}) \rightarrow \text{(v)}, \, \text{Cont.} \text{)}$
	- ("⊇", Cont.):
		- If $(\mathbb{N}^k \setminus R)(\pi_0^{n+1}(x), \pi_1^{n+1}(x), \ldots, \pi_{n-1}^{n+1}(x), \pi_n^{n+1}(x)),$ then

$$
f_i(x)=z_i ,
$$

therefore by $A(\vec{z})$

$$
A(f_0(x),\ldots,f_{n-1}(x))\enspace.
$$

So in both cases we get that

$$
A(f_0(x),\ldots,f_{n-1}(x)) ,
$$

so

26 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}37$

 $\text{(iii)} \rightarrow \text{(v)}, \text{Cont.}$)

"⊇":

Proof of Theorem 8.5

Assume $x \in \mathbb{N}$, and show

 $\{(f_0(x),..., f_{n-1}(x)) \mid x \in \mathbb{N}\} \subseteq A$. CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Proof of Theorem 8.5

$$
\bullet \ \ ((ii) \rightarrow (v), \text{Cont.})
$$

"⊆":**Assume**

 $A(x_0, \ldots, x_{n-1})$,

and show

$$
\exists z. (f_0(z) = x_0 \wedge \cdots \wedge f_{n-1}(z) = x_{n-1}) \ .
$$

We have for some \it{y}

$$
R(x_0,\ldots,x_{n-1},y) \ .
$$

Let

$$
z = \pi^{n+1}(x_0, \ldots, x_{n-1}, y) \; .
$$

26 Computability Theory, Michaelmas Term 2008, Sect. 8 8 -38 8 -38 $\,$

 $\exists z.R(\pi_0^{n+1}(x), \pi_1^{n+1}(x), \ldots, \pi_{n-1}^{n+1}(x), z)$,

therefore

$$
(\pi_0^{n+1}(x), \pi_1^{n+1}(x), \ldots, \pi_{n-1}^{n+1}(x)) \in A ,
$$

therefore

$A(f_0(x), \ldots, f_{n-1}(x))$.

 $A(f_0(x),...,f_{n-1}(x))$.

If $R(\pi_0^{n+1}(x), \pi_1^{n+1}(x), \ldots, \pi_{n-1}^{n+1}(x), \pi_n^{n+1}(x))$, then

- ((ii) [→] (v), Cont.); ("⊆", Cont)
	- **C** Then we have

$$
x_i = \pi_i^{n+1}(z)
$$
, $y = \pi_n^{n+1}(z)$,

therefore

$$
R(\pi_0^{n+1}(z), \pi_1^{n+1}(z), \ldots, \pi_{n-1}^{n+1}(z), \pi_n^{n+1}(z)) ,
$$

therefore for $i = 0, \ldots, n - 1$

$$
f_i(z) = \pi_i^{n+1}(z) = x_i ,
$$

Proof of Theorem 8.5

- **(v)** [→] **(vi)**: Trivial.
- **(vi)** [→] **(i)**:
	- If A is empty, then A is recursive, therefore r.e. $\,$
	- **Assume**

$$
A = \{ (f_0(x), \ldots, f_{n-1}(x)) \mid x \in \mathbb{N} \} .
$$

for some recursive functions $f_i.$

Define

$$
f:\mathbb{N}^n\stackrel{\sim}{\to}\mathbb{N} ,
$$

s.t.

$$
f(x_0,\ldots,x_{n-1}): \simeq \mu x.(f_0(x) \simeq x_0 \wedge \cdots \wedge f_{n-1}(x) \simeq x_{n-1})
$$

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Proof of Theorem 8.5

- $((vi) \rightarrow (i),$ Cont.)
	- \emph{f} can be written as

$$
f(x_0,...,x_{n-1}) := \mu x.(((f_0(x) - x_0) + (x_0 - f_0(x))) +
$$

\n
$$
((f_1(x) - x_1) + (x_1 - f_1(x))) +
$$

\n... +
\n
$$
((f_{n-1}(x) - x_{n-1}) + (x_{n-1} - f_n
$$

\n
$$
\simeq 0),
$$

therefore f is partial recursive.

 26 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-41$

Proof of Theorem 8.5

- $\textsf{(}\textsf{(}\textsf{ii}\textsf{)} \rightarrow \textsf{(}\textsf{v}\textsf{)}, \textsf{Cont}\textsf{)}.$ $\textsf{(``}\subseteq\textsf{''}, \textsf{Cont}\textsf{)}$
	- **c** therefore

$$
(x_0, \ldots, x_{n-1}) = (f_0(z), \ldots, f_{n-1}(z))
$$

$$
\in \{ (f_0(x), \ldots, f_{n-1}(x)) \mid x \in \mathbb{N} \},
$$

c and we have

$$
A \subseteq \{ (f_0(x), \ldots, f_{n-1}(x)) \mid x \in \mathbb{N} \} .
$$

C Therefore we have shown

$$
A = \{ (f_0(x), \dots, f_{n-1}(x)) \mid x \in \mathbb{N} \},
$$

and the assertion follows.

 $\mathsf{(}\mathsf{(vi)} \rightarrow \mathsf{(i)}, \mathsf{Cont}.)$

Furthermore, we have

$$
A(x_0,...,x_{n-1}) \Leftrightarrow \exists x \in \mathbb{N}.x_0 = f_0(x) \wedge \cdots \wedge x_{n-1} = f_{n-1}(x)
$$

$$
\Leftrightarrow f(x_0,...,x_{n-1}) \downarrow ,
$$

therefore

$$
A = \text{dom}(f) \text{ is r.e. } .
$$

Proof of Theorem 8.6, "⇒**"**

If A is recursive, then both A and $\mathbb{N}^k\setminus A$ are recursive, therefore as well r.e.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-45$

Theorem 8.6

 $A \subseteq \mathbb{N}^k$ is recursive iff both A and $\mathbb{N}^k \setminus A$ are r.e.

Proof idea:

 "⇒" is easy. For "⇐": Assume

> $A(\vec{x}) \Leftrightarrow \exists y. R(\vec{x}, y)$ $(\mathbb{N}^k\setminus A)(\vec{x}) \Leftrightarrow \exists y. S(\vec{x}, y)$

In order to decide A , search simultaneously for a y s.t. $R(\vec{x}, y)$ and for a y s.t. $S(\vec{x}, y)$ holds. If we find a y s.t. $R(\vec{x}, y)$ holds, then $A(\vec{x})$ holds. If we find a y s.t. $S(\vec{x}, y)$ holds, then $\neg A(\vec{x})$ holds

The details of the proof will be omitted in this lecture.

[Jump](#page-13-0) over detailsCS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-46$ CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-47$

Proof of Theorem 8.6, "⇐**"**

- Assume $A, \mathbb{N}^k \setminus A$ are r.e.
- Then there exist primitive recursive predicates R and S s.t.

 $A = {\{\vec{x} | \exists y.R(\vec{x},y)\}\,}$ $\mathbb{N}^k \setminus A = \{\vec{x} \mid \exists y . S(\vec{x}, y)\}.$

Proof of Theorem 8.6, "⇐**"**

 $A = \{\vec{x} \mid \exists y. R(\vec{x}, y)\},\,$ $\mathbb{N}^k \setminus A = \{ \vec{x} \mid \exists y . S(\vec{x}, y) \}$.

 \bullet By

 $A\cup(\mathbb{N}^k\setminus A)=\mathbb{N}^k$,

it follows

 $\forall \vec{x}.((\exists y.R(\vec{x},y)) \vee (\exists y.S(\vec{x},y)))$,

therefore as well

$$
\forall \vec{x}.\exists y. (R(\vec{x}, y) \lor S(\vec{x}, y)) . \tag{*}
$$

Proof of Theorem 8.6, "⇐**"**

 $A = \{\vec{x} \mid \exists y. R(\vec{x}, y)\}\;,\; \mathbb{N}^k \setminus A = \{\vec{x} \mid \exists y. S(\vec{x}, y)\}\;\; ,$ $A =$
 \overline{A} $h(\vec{x}) := \mu y. (R(\vec{x}, y) \vee S(\vec{x}, y))$, Show $A(\vec{x}) \Leftrightarrow R(\vec{x}, h(\vec{x}))$.
● If $A(\vec{x})$ then

f $A(\vec{x})$ then

 $\exists y. R(\vec{x}, y)$

and

$$
\vec{x} \notin (\mathbb{N}^k \setminus A) ,
$$

therefore

$$
\neg \exists y . S(\vec{x},y) \ .
$$

Therefore we have for the y found by $h(\vec{x})$ that $R(\vec{x}, y)$ holds, i.e.

 $R(\vec{x}, h(\vec{x}))$.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Proof of Theorem 8.6, "⇐**"**

 $A = \{\vec{x} \mid \exists y. R(\vec{x}, y)\},\;$ $\mathbb{N}^k \setminus A = \{\vec{x} \mid \exists y . S(\vec{x}, y)\},$ $h(\vec{x}) := \mu y. (R(\vec{x}, y) \vee S(\vec{x}, y))$, Show $A(\vec{x}) \Leftrightarrow$

 $\begin{split} &\mathbf{w}~ A(\vec{x}) \Leftrightarrow R(\vec{x}, h(\vec{x})) \ \end{split}.$ On the other hand, if $R(\vec{x}, h(\vec{x}))$ holds then

 $\exists y.R(\vec{x},y)$,

therefore

 $A(\vec{x})$.

Therefore

$$
A = \{ \vec{x} \mid R(\vec{x}, h(\vec{x})) \}
$$
 is recursive.

 26 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-49$

Proof of Theorem 8.6, "⇐**"**

 $A = \{\vec{x} \mid \exists y. R(\vec{x}, y)\},$ $\mathbb{N}^k \setminus A = \{\vec{x} \mid \exists y . S(\vec{x}, y)\}\; ,$ $\forall \vec{x}.\exists y. (R(\vec{x}, y) \lor S(\vec{x}, y))$. (*)

Define

 $h : \mathbb{N}^n \to \mathbb{N}$, $h(\vec{x}) := \mu y. (R(\vec{x}, y) \vee S(\vec{x}, y))$.

- \hbar is partial recursive.
- By (\ast) we have h is total, so h is recursive.
- **•** We show

$$
A(\vec{x}) \Leftrightarrow R(\vec{x}, h(\vec{x})) .
$$

Theorem 8.7

Let $f:\mathbb{N}^n\stackrel{\sim}{\rightarrow} \mathbb{N}.$ Then Then f is partial recursive $\Leftrightarrow \mathsf{G}_f$ is r.e. $% \mathsf{G}_f$.

Proof idea for "⇐**":**

Assume R primitive recursive s.t.

$$
\mathsf{G}_f(\vec{x}, y) \Leftrightarrow \exists z. R(\vec{x}, y, z) .
$$

In order to compute $f(\vec{x})$, search for a y s.t. $R(\vec{x},\pi_0(y),\pi_1(y))$ holds.

 $f(\vec{x})$ will be the first projection of this y .

The details of the proof will be omitted in this lecture.

[J](#page-14-0)ump over details

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}53$

Proof of Theorem 8.7, "⇒**"**

- Assume f is partial recursive.
- Then $f = \{e\}^n$ for some $e \in \mathbb{N}$.
- By Kleene's Normal Form Theorem we have

 $f(\vec{x}) \simeq \mathsf{U}(\mu y.\mathsf{T}_n(\vec{x}, y))$,

for some primitive recursive relation

 $\mathsf{T}_n\subseteq\mathbb{N}^{n+1}$

and some primitive recursive function

 $U : \mathbb{N} \to \mathbb{N}$.

Proof of Theorem 8.7, "⇒**"**

$f(\vec{x}) \simeq \mathsf{U}(\mu y.\mathsf{T}_n(\vec{x}, y))$.

 (\vec{x})

C Therefore

$$
(y) \in \mathsf{G}_f \Leftrightarrow (f(\vec{x}) \simeq y)
$$

\n
$$
\Leftrightarrow \exists z. (\mathsf{T}_n(\vec{x}, z) \wedge
$$

\n
$$
(\forall z' < z. \neg \mathsf{T}_n(\vec{x}, z'))
$$

\n
$$
\wedge \mathsf{U}(z) = y) ,
$$

Therefore G_f is r.e.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-55$

Proof of Theorem 8.7, "⇐**"**

If G $_f$ is r.e., then there exists a primitive recursive predicate R s.t.

 $f(\vec{x}) \simeq y \Leftrightarrow (\vec{x}, y) \in \mathsf{G}_f \Leftrightarrow \exists z. R(\vec{x}, y, z)$.

Therefore for any z s.t. $R(\vec{x},\pi_0(z),\pi_1(z))$ holds we have that

 $f(\vec{x}) \simeq \pi_0(z)$.

C Therefore

 $f(\vec{x}) \simeq \pi_0(\mu u.R(\vec{x}, \pi_0(u), \pi_1(u)))$,

 \overline{f} is partial recursive.

Lemma 8.8

The recursively enumerable sets are closed under:

- (a) **Union** (and therefore [∨]): If $A, B \subseteq \mathbb{N}^n$ are r.e., so is $A \cup B$.
- (b) **Intersection** (and therefore [∧]): If $A, B \subseteq \mathbb{N}^n$ are r.e., so is $A \cap B$.
- (c) **Substitution by recursive functions:** If $A \subseteq \mathbb{N}^n$ is r.e., $f_i : \mathbb{N}^k \to \mathbb{N}$ are recursive for $i = 0, \ldots, n$ so is $i=0,\ldots,n$, so is

 $C := \{\vec{y} \in \mathbb{N}^k \mid A(f_0(\vec{y}), \dots, f_{n-1}(\vec{y}))\}$.

Proof of Lemma 8.8

- Let $A, B \subseteq \mathbb{N}^n$ be r.e.
- Then there exist primitive recursive relations R,S s.t.

 $A = {\mathbf{\vec{x}} \in \mathbb{N}^n | \exists y. R(\vec{x}, y)}$, $B = \{\vec{x} \in \mathbb{N}^n \mid \exists y . S(\vec{x}, y)\}.$

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8\text{-}57$

Lemma 8.8

(d) **(Unbounded) existential quantification:** If $D \subseteq \mathbb{N}^{n+1}$ is r.e., so is

 $E := \{\vec{x} \in \mathbb{N}^n \mid \exists y.D(\vec{x},y)\}\enspace.$

(e) **Bounded universal quantification:** If $D \subseteq \mathbb{N}^{n+1}$ is r.e., so is

 $F := \{(\vec{x}, z) \in \mathbb{N}^{n+1} \mid \forall y < z \ldotp D(\vec{x}, z)\}\.$

The details of the proof will be omitted in this lecture. [J](#page-15-0)ump over details

Proof of Lemma 8.8 (a), (b)

 $A = \{\vec{x} \in \mathbb{N}^n \mid \exists y. R(\vec{x}, y)\}\; ,$
 $B = \{\vec{x} \in \mathbb{N}^n \mid \exists y. R(\vec{x}, y)\}\; ,$ $A = \{x \in \mathbb{N}^n \mid \exists y. K(x, y) \}$
 $B = \{\vec{x} \in \mathbb{N}^n \mid \exists y. S(\vec{x}, y) \}$.

• One can easily see that

 $A \cup B = \{\vec{x} \in \mathbb{N}^n \mid \exists y . (R(\vec{x}, y) \vee S(\vec{x}, y))\},$ $A \cap B = \{\vec{x} \in \mathbb{N}^n \mid \exists y . (R(\vec{x}, \pi_0(y)))\}$ $\wedge S(\vec{x}, \pi_1(y)))\}$.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-59$

therefore $A\cup B$ and $A\cap B$ are r.e.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-58$

Proof of Lemma 8.8 (c)

- $A = \{\vec{x} \in \mathbb{N}^n \mid \exists y. R(\vec{x}, y)\}\; ,$
 $B = \{\vec{x} \in \mathbb{N}^n \mid \exists y. R(\vec{x}, y)\}\; ,$ $B = \{\vec{x} \in \mathbb{N}^n \mid \exists y . S(\vec{x}, y)\}\enspace.$
- Assume $A\subseteq \mathbb{N}^n$ is r.e., $f_i:\mathbb{N}^k\to \mathbb{N}$ are recursive for
 $i=0,\ldots,n$ $i=0,\ldots,n.$
- Need to show that

$$
C := \{ (\vec{y} \in \mathbb{N}^k \mid A(f_0(\vec{y}), \dots, f_{n-1}(\vec{y})) \} .
$$

is r.e.

• Follows by

$$
C = \{\vec{y} \mid A(f_0(\vec{y}), \dots, f_{n-1}(\vec{y}))\}
$$

= $\{\vec{y} \mid \exists z.R(f_0(\vec{y}), \dots, f_{n-1}(\vec{y}), z)\}$ is r.e.

 26 Computability Theory, Michaelmas Term 2008, Sect. 8 $8-61$

Lemma 8.9

The r.e. predicates are **not** closed under **complement**: There exists an r.e. predicate $A\subseteq \mathbb{N}^n$ s.t. $\mathbb{N}^n\setminus A$ is not r.e.

Proof:

- Halt n is r.e.
- $\mathbb{N}^n\setminus\mathsf{Halt}^n$ is not r.e.
	- Otherwise by Theorem 8.6 Halt \real^n would be recursive.
	- But by Lemma 8.3. (b) Halt \real^n is not recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8

Proof of Lemma 8.8 (d), (e)

- **(d)** follows from Theorem 8.5.
- **(e):**
	- Assume T is a primitive recursive predicate s.t.

$$
D = \{ (\vec{x}, y) \in \mathbb{N}^{n+1} \mid \exists z \, T(\vec{x}, y, z) \} .
$$

C Then we get

$$
F = \{(\vec{x}, y) \mid \forall y' < y.D(\vec{x}, y')\}
$$
\n
$$
= \{(\vec{x}, y) \mid \forall y' < y.\exists z.T(\vec{x}, y', z)\}
$$
\n
$$
= \{(\vec{x}, y) \mid \exists z.\forall y' < y.T(\vec{x}, y', (z)_{y'})\} \text{ is r.e.},
$$

where in the last line we used that

 $\{(\vec{x}, z) \mid \forall y' < y. T(\vec{x}, y', (z)_{y'})\}$ is primitive recursive.