7. The Recursion Theorem

The S-m-n Theorem
. N . : Nmtn o artial rec.
Main result in this section: f I\L,, —Np
Kleene's Recursion Theorem. L NN” ~ N partial rec
. . . L — .
» Recursive functions are closed under a very general v = o P
form of recursion. 9(¥) = f(1, 7).
» For the proof we will use the S-m-n-theorem. # So there exists a primitive recursive function S’ s.t.,
» Used in many proofs in computability theory. s if f={e}mtn,
» However, both the S-m-n theorem and the proof of =
e : : . then g = {S™(e, 1) }".
the Recursion theorem will be omitted this year. * 9 =150}
Jump to Kleene’s Recursion Theorem.

® S0 {Sy(e.1)}"(7) = {e}" (1, 7).

26 Computability Theory, Michaelmas Term 2008, Sect. 7

7-1 CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7
The S-m-n Theorem Notation
® Assume f: N = N partial recursive. {S™ (e, DYM(Z) ~ {e}™ (I,).
Fix the first m arguments (say [:= lo, . . ., l;m_1). ® Assume t is an expression depending on n variables 7,
o Then we obtain a partial recursive function s.t. we can compute ¢ from 7 partial recursively.
P Then AZ.¢ is any natural number e s.t. {e}"(Z) ~ t.
g:N"SN, g@)~f(7) . » Then we will have

The S-m-n theorem expresses that we can compute a S™(e, 1) = AZ{e}™ ([7) .

Kleene index of ¢ "

s i.e.ane st g={}"

from a Kleene index of f and [primitive recursively.

26 Computability Theory, Michaelmas Term 2008, Sect. 7

7-2

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Theorem 7.1 (S-m-n Theorem)

® Assume m,n € N.

#® There exists a primitive recursive function
sm.N™ N
s.t. forall [e N, 7 € N*

{Si (e,)}"(7) = {e}" (1. 2) .

26 Computability Theory, Michaelmas Term 2008, Sect. 7

Proof of S-m-n Theorem

7-5

® Let T be aTM encoded as e.

A Turing machine T’ corresponding to S?(e,f) should be

S.t.
T/(") (Q_L") ~ T(n—i—m)(l_: f) ‘

26 Computability Theory, Michaelmas Term 2008, Sect. 7

7-6

Proof of S-m-n Theorem

T is TM for

€.

Want to define T’ s.t. T/ () ~ T(+m) ([7)

T’ can be defined as follows:

1. The initial configuration is:
s 7 written on the tape,
» head pointing to the left most bit:

La | La| bin(zg) | L La | bin(xp—1) [Lo |y
T
CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7
Proof of S-m-n Theorem
T is TM for e.
Want to define T' s.t. /" () ~ T(+m) (] 7)
Initial configuration:
La || bin(xg) | Lo La | bin(zp—1) | Lo | L
T

2. s T writes first binary representation of I = I, ..., [,_1

in front of this.

» terminates this step with the head pointing to the
most significant bit of bin(ly).
So configuration after this step is:

bin(lp) | L

L

bin(lm_l)

L

bin(a:o)

Ll

L

bii

T

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Proof of S-m-n Theorem

T is TM for e.
Want to define T’ s.t. T/ (z) ~ T(+m)([] 7).
Configuration after first step:

bin(l()) L= | Ld bin(lm,_l) L bin(ZIJ()) L= | Ld bin(:1’77,_1)

T

Then T’ runs T, starting in this configuration.
It terminates, if T terminates.
The result is

~ T)
and we get therefore
T/(n)(f) ~ T(m—l—n)a7 f)

as desired

AT COT T O

26 Computability Theory, Michaelmas Term 2008, Sect. 7 7-9

Proof of the S-m-n Theorem

T is TM for e.
T'is a TM s.t. T/ (2) ~ T+m) ([)

® From a code for T one can now obtain a code for T” in a
primitive recursive way.

S is the corresponding function.

#® The details will not be given in the lecture
Jump to Kleene’s Recursion Theorem

6 Computability Theory, Michaelmas Term 2008, Sect. 7 7-10

Proof of the S-m-n Theorem

o A codﬂe for T/ can be obtained from a code for T and
from [as follows:

s One takes a Turing machine T”, which writes the
binary representations of

[=1y,... ln1

in front of its initial position (separated by a blank
and with a blank at the end), and terminates at the
left most bit.

s It's a straightforward exercise to write a code for the
instructions of such a Turing machine, depending on

[, and show that the function defining it is primitive
recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Proof of the S-m-n Theorem

s Assume, the terminating state of T” has Godel

number (i.e. code) s, and that all other states have
Godel numbers < s.

s Then one appends to the instructions of T” the
instructions of T, but with the states shifted, so that
the new initial state of T is the final state s of T” (i.e.
we add s to all the Gédel numbers of states
occurring in T).

» This can be done as well primitive recursively.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Proof of the S-m-n Theorem

So acode for T” can be defined primitive recursively

depending on a code e for T and [, and Sy is the
primitive recursive function computing this. With this
function it follows now that, if e is a code for a TM, then

{Si (e,)} (%) = {e}"™(1.7) .

This equation holds, even if ¢ is not a code for a TM: In
this case {e¢}"*" interprets ¢ as if it were the code for a
valid TM T

26 Computability Theory, Michaelmas Term 2008, Sect. 7 7-13

Proof of the S-m-n Theorem

(A code for such a valid TM is obtained by

s deleting any instructions encode(q, a,q’,d’, D) in e
s.t. there exists an instruction encode(q, a, ¢”,a”, D)
occurring before it in the sequence e,

» and by replacing all directions > 1 by [R] = 1.)

6 Computability Theory, Michaelmas Term 2008, Sect. 7 7-14

Proof of the S-m-n Theorem

® = Sﬁ(e,f) will have the same deficiencies as e, but
when applying the Kleene-brackets, it will be interpretec
as a TM T’ obtained from ¢’ in the same way as we
obtained T from e, and therefore

{e}(@) = T (@) = TOT (I 7) ~ {e} (1 7)

So we obtain the desired result in this case as well.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Kleene's Recursion Theorem

® Assume f: N*t! 5 N partial recursive.
Then there exists an e € N s.t.

{e}"(@) = f(e, 7).

(Here ¥ = xg,...,xp_1).

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Example 1

Example 2
Kleene's Rec. Theorem: Je.VZ.{e}"(Z) ~ f(e, X). # The function computing the Fibonacci-numbers fib is
: recursive.
There exists an e s.t. s (This is a weaker result than what we obtained
feHa) e+ 1, apove - N |
» above we showed that it is even prim. rec.)
For showing this take in the Recursion Theorem
fle,n) :=e+1.
Then

{e}(z) ~ fle,x) ~e+1 .

26 Computability Theory, Michaelmas Term 2008, Sect. 7

7-17 CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7
Remark Fibonacci Numbers
Kleene’s Rec. Theorem: Jde.VZ.{e}"(Z) ~ f(e, Z). Remember the defining equations for fib:
Applications as Example 1 are usually not very useful. _ fib(0) ffb(l) =1,
_ fib(n + 2) fib(n) + fib(n + 1) .
» Usually, when using the Rec. Theorem, one
» doesn't use the index e directly, From these equations we obtain
s but only the application of {e} to arguments. _
fib(n) 1, ifn=00rn=1,
| = .
fib(n — 2) + fib(n — 1), otherwise.
We show that there exists a recursive function g : N — N,
s.t.
1, fn=00rn=1,
g(n) ~ . , .
gn=2)+g(n—=1), otherwise.
6 Computability Theory, Michaelmas Term 2008, Sect. 7 7-18

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Fibonacci Numbers

General Applic. of Rec. Theorem

Show: EXxists g rec.

s.t. g(n) 1, ifn=00rn=1,
t.og(n) ~ :
J g(n—2)+4+g(n—= 1), otherwise.

Shown as follows: Define a recursive f : N> — N s.t.

1, fn=00rn=1,
fle,n) = { {e}(n = 2)+ {e}(n = 1), otherwise.

Now let e be s.t.

{e}(n) = f(e,n) .
Then e fulfils the equations
1, ifn=00rn=1,
ted(n) = { {e}(n=2) + {e}(n = 1). otherwise.

Similarly, one can introduce arbitrary partial recursive
functions g, where

» g(n) refers to arbitrary other values g(m).
#® So, instead of arguing as before that fib is partial
recursive, it suffices to say the following
s By the recursion theorem, there exists a partial
recursive function fib : N = N, s.t.

fib(n) 1, ifn=00rn=1,
ID(N) =
fib(n — 2) + fib(n — 1), otherwise.

s We can prove by induction on n that Vn : N.fib(n)|
holds.

» Therefore fib is total and therefore recursive.

26 Computability Theory, Michaelmas Term 2008, Sect. 7

Fibonacci Numbers

7-21 CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

General Applic. of Rec. Theorem

fn=00rn=1,
otherwise.

L,
= { fe}n=2) +{e}n = 1),
Let g = {e}.
Then we get

1, ifn=00rn=1,
g9(n) ~ . , .
gn=2)+g(n—=1), otherwise.

These are the defining equations for fib.

One can show by induction on n that g(n) = fib(n) for all
n € N.

Therefore fib is recursive.

This use of the the recursion theorem corresponds to
the recursive definition of functions in programming.

E.g. in Java one defines

public static int fib(int n){

if (n==01]] n==1){
return 1;}
el se{
return fib(n-1) + fib(n-2);
}

}

26 Computability Theory, Michaelmas Term 2008, Sect. 7

7-22 CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Example 3

As in general programming, recursively defined functions
need not be total:

® There exists a partial recursive function g : N = N s.t.

gla) ~g(x)+1 .

°

We get g(z)7.

#® The definition of ¢ corresponds to the following Java
definition:
public static int g(int n){
return g(n) + 1;

#® When executing ¢(z), Java loops.

26 Computability Theory, Michaelmas Term 2008, Sect. 7 7-25

Example 4

® There exists a partial recursive function g : N = N s.t.
g(z) ~glz+1)+1 .
Note that that's a “black hole recursion”, which is not
solvable by a total function.
|tis solved by g(z)7.

Note that a recursion equation for a function f cannot
always be solved by setting f(x)1.

s E.g. the recursion equation for fib can’t be solved by
setting fib(n)7.

6 Computability Theory, Michaelmas Term 2008, Sect. 7 7-26

Ackermann Function

® The Ackermann function is recursive:
Remember the defining equations:

Ack(0,y) = y+1,
Ack(z +1,0) = Ack(z,1) ,
Ack(z + 1,y +1) = Ack(z,Ack(z +1,y)) .

® From this we obtain

y+ 1, if x =0,
Ack(z,y) = ¢ Ack(x — 1,1), ifz>0andy =
Ack(z — 1,Ack(z,y — 1)), otherwise.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Ackermann Function

y+1, if z =0,
Ack(z,y) = ¢ Ack(x - 1,1), ifz>0andy =0,
Ack(z — 1,Ack(z,y — 1)), otherwise.

Define g partial recursive s.t.

y+1, if z =0,
g(z,y) ~ ¢ gz = 1,1), ifz>0Ay=0,
glx = 1,9(x,y = 1)), ifz>0Ay>0.

¢ fulfils the defining equations of Ack.

Proof that g(x,y) ~ Ack(z,y) follows by main induction
on z, side-induction on y. The details will not be given
in the lecture. Jump over remaining slides.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

Proof of Correctness of Ack

We show by induction on x that g(x,y) is defined and
equal to Ack(z,y) for all x,y € N:

» Base case =z = 0.
9(0,y) =y +1=Ack(0,y) .
s Induction Step z — = + 1. Assume
9(@,y) = Ack(z,y) .

We show
g(x +1,y) = Ack(z + 1,y)

by side-induction on y:

26 Computability Theory, Michaelmas Term 2008, Sect. 7 7-29

Proof of Correctness of Ack

Show g(z + 1,y) = Ack(x + 1,v)
» Base case y =0:

Main-1H

g(x +1,0) ~ g(z,1) Ack(z,1) = Ack(z + 1,0) .

s Induction Step y — y + 1:

gz +1,y+1) ~ g(z,g9(x +1,9))

Main-IH
~ g(x, Ack(z +1,y))

SeH - ck(w, Ack(z + 1,9))

= Ack(z +1,y+1) .

Jump over remaining slides
(Proof of the Recursion Theorem)

6 Computability Theory, Michaelmas Term 2008, Sect. 7 7-30

ldea of Proof of the Rec. Theorern

Assume

NI E5N .
We have to find an e s.t.
V# € NAe}"(7) ~ f(e,T) .
® We sete = A7.{e1}""!(eq,) for some e; to be
determined.

Then the left and right hand side of the equation of the
recursion theorem reads

{e}"(@ = {Ad{er}" (e, 3)}"(2)

~ {e1}"(er, Z)

fle,?) ~ f(AZ{e1}" (e, %), T)

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

ldea Proof of Rec. Theorem
We need to satisfy Vi € N.{e}"(Z) ~ f(e, 7).
Let e = AZ.{e1}" (e, 2).
{e}"(@) =~ {e1}"" (e,)
fle,?) ~ fAZ{e1}" (e, %), %) .
#® So e; needs to fulfill the following equation:

{e}™(2)

fle,)
FOZ{e1} (e, 7), 7)

{e1}" (e, D)

1= I

12

This can be fulfilled if we define e; s.t.

{e1}" ez,) = f(AT{e2}"F (2, 7). 7)

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7

ldea of Proof of Rec. Theorem

{61 }n+1(62, 7) =~ f()\:f.{(ig}n+1(€2, 7) 7)

» By the S-m-n Theorem we can obtain this if we have ¢;
S.t.

{e1}" ez, @) ~ (S (e2,€2), T)

® There exists a partial recursive function g : N* +1 = N,
S.t.

9(627 f) = f(S111(62ﬂ 62)a f)
If e; is an index for g we obtain the desired equation.

{e1}" (e, B) = f(Sp(e2, €2), F)

26 Computability Theory, Michaelmas Term 2008, Sect. 7 7-33

Complete Proof of Rec. Theorem

Let e; be s.t.
{er}" My,) ~ f(Sp(y.y). T) .

Lete :=S.(e1,e1).
Then we have
no €= Sl(er,er) .
{e}" (@) ~ {Sp(e1,e1)}" (D)
S-m-n theorem .
~ {e1}" (er, T)

Def of
~ N f(Sk(er, en), B)

e=S
fle,) .

e1,e1)

152

6 Computability Theory, Michaelmas Term 2008, Sect. 7 7-34

	7. The Recursion Theorem
	The S-m-n Theorem
	The S-m-n Theorem
	Notation
	Theorem 7.1 (S-m-n Theorem)
	Proof of S-m-n Theorem
	Proof of S-m-n Theorem
	Proof of S-m-n Theorem
	Proof of S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Kleene's Recursion Theorem
	Example 1
	Remark
	Example 2
	Fibonacci Numbers
	Fibonacci Numbers
	Fibonacci Numbers
	General Applic. of Rec. Theorem
	General Applic. of Rec. Theorem
	Example 3
	Example 4
	Ackermann Function
	Ackermann Function
	Proof of Correctness of $Acksf $
	Proof of Correctness of $Acksf $
	Idea of Proof of the Rec. Theorem
	Idea Proof of Rec. Theorem
	Idea of Proof of Rec. Theorem
	Complete Proof of Rec. Theorem

