
6. The Recursive Functions and
the Equivalence Theorem

This Sect. has three parts:

(a) Introduction of the partial recursive functions .
Third model of computation.
Partial rec. functions is the main model used for
proving theorems in computability theory.
It extends the primitive-recursive functions so that
we obtain a full model of computation.

(b) Equivalence of the models of computation.
Proof that sets of URM-computable functions, of
TM-computable functions and of partial recursive
functions coincide.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 6-1

(c) The Church Turing Thesis.
Evidence why these models of computation define
the computable functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 6-2

(a) The Part. Rec. Functions

Ackermann Function

At the end of Subsection 5 (a) we have started to
introduce a series of functions

add −→ mult −→ exp −→ superexp −→ supersuperexp −→ · · ·

where each function in this sequence is defined by
primitive recursion using the previous function.

Such a sequence will eventually exhaust the primitive
recursive function.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-3

The Ackermann Function
Traditionally, instead of defining a sequence of binary
functions one defines a sequence of unary functions
with similar growth rate, the Ackermann function .

The Ackermann function exhausts all primitive recursive
functions.

The uniform version of the Ackermann function will
therefore no longer be primitive recursive.

In order to obtain a complete model of computation, we
will need to extend the primitive recursive function by
closure under µ.

The resulting functions will be called the partial
recursive functions .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-4

The Ackermann Function
Let n ∈ N.
The

:::::

n-th
::::::::::

branch
:::

of
:::::

the
:::::::::::::::

Ackermann
::::::::::::

function
Ackn : N → N, is defined by

Ack0(y) = y + 1 ,

Ackn+1(y) = (Ackn)y+1(1) := Ackn(Ackn(· · ·Ackn(
︸ ︷︷ ︸

y + 1 times

1))) .

Ackn is prim. rec. for fixed n.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-5

Examples

Ack0(n) = n + 1 .

Ack1(n) = Ackn+1
0 (1)

= 1 +1 + · · · + 1
︸ ︷︷ ︸

n + 1 times
= 1 + n + 1 = n + 2 .

Ack2(n) = Ackn+1
1 (1)

= 1 +2 + · · · + 2
︸ ︷︷ ︸

n + 1 times
= 1 + 2(n + 1)

= 2n + 3 > 2n .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-6

Examples

Ack2(n) > 2n .

Ack3(n) = Ackn+1
2 (1)

> 2 · 2 · · · · · 2
︸ ︷︷ ︸

n + 1 times

·1

= 2n+1 > 2n .

Ack4(n) = Ackn+1
3 (1)

> 2··
·21

︸ ︷︷ ︸

n + 1 times

.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-7

Examples

Ack4(n) > 2··
·21

︸ ︷︷ ︸

n + 1 times

.

Ack5(n) will iterate Ack4 n + 1 times, etc.

So even for very small n, Ack5(n) will exceed the
number of particles in the universe, and Ack5 is
therefore not realistically computable.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-8

The Ackerm. Funct. is Prim. Rec.

Ack0(y) = y + 1 ,

Ackn+1(y) = (Ackn)y+1(1) .

Proof that Ackn is prim. rec. by Induction(n):

Base-case:
Ack0 = succ is prim. rec.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-9

The Ackerm. Funct. is Prim. Rec.

Ack0(y) = y + 1 ,

Ackn+1(y) = (Ackn)y+1(1) .

Induction step:
Assume Ackn is primitive recursive.
Show Ackn+1 is primitive recursive. We have:

Ackn+1(0) = (Ackn)1(1)

= Ackn(1) ,

Ackn+1(y + 1) = (Ackn)y+2(1)

= Ackn(Acky+1
n (1))

= Ackn(Ackn+1(y)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-10

The Ackerm. Funct. is Prim. Rec.
So:

Ackn+1(0) = Ackn(1) ,

Ackn+1(y + 1) = Ackn(Ackn+1(y)) .

which shows that Ackn+1 is primitive recursive, using the
assumption (induction hypothesis) that Ackn is primitive
recursive.

Therefore Ackn is primitive recursive for all n ∈ N.
End of proof.

Remark:
Ackn for fixed n is primitive recursive .
However a uniform version of the Ackermann
function is not primitive recursive .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-11

The Uniform Ackermann Function
The uniform version of the

:::::::::::::::

Ackermann
:::::::::::

function
Ack : N

2 → N is defined as

Ack(n,m) := Ackn(m) .

Therefore we have the equations

Ack(0, y) = y + 1 ,

Ack(x + 1, 0) = Ack(x, 1) ,

Ack(x + 1, y + 1) = Ack(x,Ack(x + 1, y)) .

In order to show that Ack is not prim. rec., we show first the

following technical lemma:

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-12

Lemma 6.1
For each n, m, the following holds:

(a) Ack(m,n) > n.

(b) Ackm is strictly monotone,
i.e. Ack(m,n + 1) > Ack(m,n).

(c) Ack(m + 1, n) > Ack(m,n).

(d) Ack(m,Ack(m,n)) < Ack(m + 2, n).

(e) Ack(m, 2n) < Ack(m + 2, n).

(f) Ack(m, 2k · n) < Ack(m + 2k, n).

The proof will be omitted in the lecture.

Jump over proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-13

Proof of Lemma 6.1 (a)
Induction on m.
m = 0:

Ack(0, n) = n + 1 > n .

m → m + 1: Side-induction on n

n = 0:

Ack(m + 1, 0) = Ack(m, 1)
IH
> 1 > 0 .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-14

Proof of Lemma 6.1 (a)
n → n + 1:

Ack(m + 1, n + 1) = Ack(m,Ack(m + 1, n))

Main IH
> Ack(m + 1, n)

Side IH
> n ,

therefore
Ack(m + 1, n + 1) > n + 1 .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-15

Proof of Lemma 6.1 (b)
Case m = 0:

Ack(0, n + 1) = n + 2 > n + 1 = Ack(0, n) .

Case m = m′ + 1:

Ack(m′ + 1, n + 1) = Ack(m′,Ack(m′ + 1, n))

(a)
> Ack(m′ + 1, n) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-16

Proof of Lemma 6.1 (c)
Induction on m.
m = 0:

Ack(1, n) = n + 2 > n + 1 = Ack(0, n)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-17

Proof of Lemma 6.1 (c)
m → m + 1: Side-induction on n:
n = 0:

Ack(m + 2, 0) = Ack(m + 1, 1)
(b)
> Ack(m + 1, 0) .

n → n + 1:

Ack(m + 2, n + 1)

= Ack(m + 1,Ack(m + 2, n))
main-IH

> Ack(m,Ack(m + 2, n))

side-IH + (b)
> Ack(m,Ack(m + 1, n)) = Ack(m + 1, n + 1) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-18

Proof of Lemma 6.1 (d)
Case m = 0:

Ack(0,Ack(0, n)) = n + 2 < 2n + 3 = Ack(2, n) .

Assume now m > 0.
Proof of the assertion by induction on n:
n = 0:

Ack(m + 2, 0) = Ack(m + 1, 1)

= Ack(m, (Ack(m + 1, 0))

> Ack(m,Ack(m, 0)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-19

Proof of Lemma 6.1 (d)
n → n + 1:

Ack(m + 2, n + 1) = Ack(m + 1,Ack(m + 2, n))

IH,(b)
> Ack(m + 1,Ack(m,Ack(m,n)))

(b),(c)
> Ack(m,Ack(m − 1,Ack(m,n)))

= Ack(m,Ack(m,n + 1)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-20

Proof of Lemma 6.1 (e)
Case m = 0:

Ack(m, 2n) = Ack(0, 2n)

= 2n + 1

< 2n + 3

= Ack(2, n) = Ack(m + 2, n) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-21

Proof of Lemma 6.1 (e)
Case m = m′ + 1:
Induction on n:
n = 0:

Ack(m′+1, 2n) = Ack(m′+1, 0) < Ack(m′+3, 0) = Ack(m′+3, n) .

n → n + 1:

Ack(m′ + 1, 2n + 2) = Ack(m′,Ack(m′,Ack(m′ + 1, 2n))

(d)
< Ack(m′ + 2,Ack(m′ + 1, 2n))

IH
< Ack(m′ + 2,Ack(m′ + 3, n))

= Ack(m′ + 3, n + 1)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-22

Proof of Lemma 6.1 (f)
Induction on k:
k = 0: trivial.
k → k + 1:

Ack(m, 2k+1 · n) = Ack(m, 2 · 2k · n)

(e)
< Ack(m + 2, 2k · n)

IH
< Ack(m + 2 + 2k, n)

= Ack(m + 2(k + 1), n) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-23

Lemma 6.2
Every primitive recursive function f : N

n → N can be
majorised by one branch of the Ackermann function:

There exists N s.t.

f(x0, . . . , xn−1) < AckN (x0 + · · · + xn−1)

for all x0, . . . , xn−1 ∈ N.

Especially, if f : N → N is prim. rec., then there exists an N

s.t.
∀x ∈ N.f(x) < AckN (x)

The proof will be omitted in the lecture.

Jump over proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-24

Proof of Lemma 6.2
We write, if ~x = x0, . . . , xn−1

∑

(~x) := x0 + · · · xn−1 .

We proof the assertion by induction on the definition of
primitive recursive functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-25

Proof of Lemma 6.2
Basic functions:
zero:

zero(x) = 0 < x + 1 = Ack0(x) .

succ:
succ(x) = Ack(0, x) < Ack(1, x) = Ack1(x) .

projni :

proj(x0, . . . , xn−1) = xi

< x0 + · · · + xn−1 + 1

= Ack0(x0 + · · · + xn−1) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-26

Proof of Lemma 6.2
Composition: Assume assertion holds for f : N

k → N and
gi : N

n → N. Show assertion for h := f ◦ (g0, . . . , gk−1).
Assume

f(~y) < Ackl(
∑

(~y)) ,

and
gi(~x) < Ackmi

(
∑

(~x)) .

Let N := max{l,m0, . . . ,mk−1}. By Lemma 6.1 (c) it follows

f(~y) < AckN (
∑

(~y)) ,

gi(~x) < AckN (
∑

(~x)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-27

Proof of Lemma 6.2
Then, with M s.t. l < 2M , we have

h(~x) = f(g0(~x), . . . , gk−1(~x))

< AckN (g0(~x) + · · · + gk−1(~x))

(b)
< AckN (AckN (

∑

(~x)) + · · · + AckN (
∑

(~x)))

= AckN (AckN (
∑

(~x)) · k)

< AckN (AckN (
∑

(~x)) · 2M)

< AckN+2M (AckN (
∑

(~x)))

≤ AckN+2M (AckN+2M (
∑

(~x)))

< AckN+2M+2(
∑

(~x)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-28

Proof of Lemma 6.2
Primitive recursion, n > 1:
Assume assertion holds for f : N

n → N and g : N
n+2 → N.

Show assertion for h := primrec(f, g) : N
n+1 → N.

Assume

f(~x) < Ackl(
∑

(~x)) ,

g(~x, y, z) < Ackr(
∑

(~x) + y + z) .

Let N := max{l, r}, k < 2M . Then

f(~x) < AckN (
∑

(~x)) ,

g(~x, y, z) < AckN (
∑

(~x) + y + z) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-29

Proof of Lemma 6.2
We show

h(~x, y) < AckN+3(
∑

(~x) + y)

by induction on y:
y = 0:

h(~x, 0) = g(~x)

< AckN (
∑

(~x))

< AckN+3(
∑

(~x) + 0) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-30

Proof of Lemma 6.2
y → y + 1:

h(~x, y + 1) = g(~x, y, h(~x, y))

< AckN (
∑

(~x) + y + h(~x, y))

IH
< AckN (

∑

(~x) + y + AckN+3(
∑

(~x) + y))

< AckN (AckN+3(
∑

(~x) + y) + AckN+3(
∑

(~x) + y))

= AckN (2 · AckN+3(
∑

(~x) + y))

< AckN+2(AckN+3(
∑

(~x) + y))

= AckN+3(
∑

(~x) + y + 1)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-31

Proof of Lemma 6.2
Primitive recursion n = 0:
Assume l ∈ N, g : N

2 → N. Show assertion for
h := primrec(l, g) : N

1 → N.
Define

f ′ : N → N, f ′(x) = l ,

g′ : N
3 → N, g′(x, y, z) = g(y, z) ,

h′ : N
2 → N, h := primrec(f ′, g′) .

Using the constructions already shown and IH it follows that

h′(x, y) < AckN (x + y)

for some N . Therefore

h(y) = h′(0, y) < AckN (y) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-32

Theorem 6.3
The Ackermann function is not primitive recursive .

Proof:
Assume Ack were primitive recursive.
Then

f : N → N, f(n) := Ack(n, n)

is prim. rec.
Then there exists an N ∈ N, s.t. f(n) < Ack(N,n) for all n.
Especially

Ack(N,N) = f(N) < Ack(N,N) ,

a contradiction.

Omit direct argument for existence of computable
but not primitive recursive functions

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-33

Remark
Direct argument for the existence of non-primitive recursive
computable functions:
Assume all computable functions are prim. rec..
Define h : N

2 → N,

h(e, n) =

f(n), if e encodes a string in ASCII
which is a term denoting a unary
primitive recursive function f ,

0, otherwise.

Remark: h(e, n) is similar to {e}(n) as defined in Section 4
(c), but referring to primitive recursive functions instead of
TM computable functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-34

Remark
If e code for f , then h(e, n) = f(n).
h is computable, therefore primitive recursive.

h can be considered as an interpreter for the language of

primitive recursive functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-35

Remark
If e code for f , then h(e, n) = f(n).
h is prim. rec.
For every primitive recursive function f there exists a code e

of f , therefore
∀n.h(e, n) = f(n) ,

f = λn.h(e, n) .

Define
f : N → N, f(n) := h(n, n) + 1 .

f is defined in such a way, that it cannot be of the form
λn.h(e, n): If it were, we would get

h(e, e) + 1 = f(e) = (λn.h(e, n))(e) = h(e, e) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-36

Remark
If e code for f , then h(e, n) = f(n).
h is prim. rec.
f(n) := h(n, n) + 1.
f 6= λn.h(e, n).
h is primitive recursive, therefore as well f .
Therefore h = λn.h(e, n) for some e, which cannot be the
case.
Therefore we obtain a contradiction.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-37

Need for Partial Functions
The argument generalises to the following:

Remark 6.4 If we have any collection of computable
functions such that

all functions can be encoded as natural numbers
(this means that all functions computable have a
finite description)

and the equivalent of the function h as defined above
is computable,

then this collection of functions does not contain all
computable functions.

This remark has the same proof as the direct argument
for existence of computable functions which are not
primitive recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-38

Extension of the above
By Remark 6.4 it follows that by adding the Ackermann
function as basic function to the definition of primitive
recursive functions, or any other computable functions,
we still won’t obtain all computable functions

Proof: If we add any such function, we obtain a
collection of functions, for which we can define an
encoding of all functions computed by it as natural
numbers, s.t. the conditions of the remark are fulfilled.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-39

Extension of the above
We can read Remark 6.4 as follows:

There is no programming language, which computes
all computable functions and such that all functions
definable in this language are total.
Argument: If we had such a language, then we
could define codes e for programs in this language,
and therefore we could define a computable
h : N

2 → N, s.t.

h(e, n) =

f(n), if e is a program in this language
for a unary function f ,

0, otherwise.

By Remark 6.4 not all computable functions are of the
form λn.h(e, n) for some e.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-40

Limitations of Prim. Rec. Functs.
We can define prim. rec. functions which

compute the result of running n steps of a URM or TM,

check whether a URM or TM has stopped,

obtain, depending on n arguments the initial
configuration for computing U(n) for a URM U or T(n) for
a TM T,

extract from a configuration of U and T, in which this
machine has stopped, the result obtained by U(n), T(n).

Will be done formally for TMs in Subsection 6 (b).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-41

Limitations of Prim. Rec. Functs.
However, TMs and URMs don’t allow to compute an n,
s.t. after n steps the URM or TM has stopped.

That’s the Turing halting problem.

Extension of prim. rec. functions by adding to the
principles of forming functions closure under µ.

Resulting set called the set of
::::::::

partial
:::::::::::::

recursive

:::::::::::::

functions.
See Remark 6.4above (omitted in this lecture) for an
argument, why partial functions cannot be avoided.

Using the µ-operator, we will be able to find the least n

s.t. a TM or URM stops (and return ⊥, if no such n

exists.)
Using this fact we will be able to show that all TM-
and URM-computable functions are partial recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-42

Limitations of Prim. Rec. Functs.
µ(f) might be partial, even if f is total.
⇒ Resulting set is set of partial functions, therefore
name partial recursive functions.

The
::::::::::::

recursive functions will be the partial recursive
functions, which are total.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-43

Partial Rec. Functions
Inductive definition of the set of

::::::::

partial
:::::::::::::

recursive

::::::::::::

functions f

together with their
::::::

arity ,
i.e. together with the k s.t. f : N

k ∼

→ N.
We write “f : N

k ∼

→ N is partial recursive” for “f is partial
recursive with arity k”, and N for N

1.

The following
:::::::

basic
:::::::::::::

functions are partial recursive:

zero : N
∼

→ N,

succ : N
∼

→ N,

projki : N
k ∼

→ N (0 ≤ i ≤ k).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-44

Partial Rec. Functions
If

g : N
k ∼

→ N is partial recursive,

for i = 0, . . . , k − 1 we have hi : N
n ∼

→ N is partial
recursive,

then g ◦ (h0, . . . , hk−1) : N
n ∼

→ N is partial recursive as
well.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-45

Partial Rec. Functions
If

g : N
n ∼

→ N,

h : N
n+2 ∼

→ N are partial recursive,

then primrec(g, h) : N
n+1 ∼

→ N is partial recursive as well.

If
k ∈ N,

h : N
2 ∼

→ N is partial recursive,

then primrec(k, h) : N
∼

→ N is partial recursive as well.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-46

Partial Rec. Functions
If g : N

k+2 ∼

→ N is partial recursive,
then µ(g) : N

k+1 ∼

→ N is partial recursive as well.
(Remember that f := µ(g) has defining equation

f(~x) ' µy.(g(~x, y) ' 0)

'

min{k ∈ N |

g(~x, k) ' 0

∧ ∀l < k.g(~x, l) ↓}, if such a k exists,
⊥, otherwise.)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-47

Remark
One can see that if we omit the closure of the partial
recursive functions under primrec, but add closure under
addition, multiplication, and the characteristic function
of equality χ= we obtain the set of partial recursive
functions. Here

χ= : N
2 → N

χ=(m,n) =

{

1 if m = n

0 if m 6= n

So the partial recursive functions can be defined as the
least set of partial functions containing those basic
functions, which is closed under composition and µ.

The proof that this is the case is however rather
complicated, see for instance Daniel E. Cohen’s book,
Sect. 9.5.2, p. 124.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-47a

Comparison with Prim. Rec. Functs.
Note that the partial recursive definitions are defined as
the primitive recursive functions, but

we close them as well under µ;
partial recursive functions can be (because of the
closure under µ) be partial; therefore all operations
under which the partial recursive functions are
closed refer to operations on partial functions rather
than total functions.

Remember that the primitive recursive functions
are total .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-48

Recursive Functions
(a) A

::::::::::::

recursive
:::::::::::

function is a partial recursive function,
which is total.

(b) A
::::::::::::

recursive
:::::::::::

relation is a relation R ⊆ N
n s.t. χR is

recursive.

Example:
Ack is recursive, but not primitive recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-49

Closure of Part. Rec. Func.
Every prim. rec. function (relation) is recursive.

The recursive functions and relations have the same
closure properties as those discussed for the prim. rec.
functions and relations.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-50

Closure of Part. Rec. Func.
Let for a predicate U ⊆ N

n+1

µz.U(~n, z) :=

{

min{z | U(~n, z)}, if such a z exists,
⊥, otherwise.

Then we have that, if U is recursive, then the function

f(~n) :' µz.U(~n, z)

is partial recursive as well.

Proof:
f(~n) ' µz.(χ¬U (~n, z) ' 0) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (a) 6-51

(b) Equivalence of the Models of Computation
We are going to show Theorem 6.9 (which will be
stated below) which expresses that

the set of URM-computable functions,
the set of TM-computable functions, and
the set of partial recursive functions

coincide.

The proof will use the round robin method:
We will show that

URM-computable functions are TM-computable,
TM-computable functions are partial recursive,
partial recursive functions are URM-computable.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-52

Equivalence Models of Computation
Show

URM-computable functions are TM-computable,
TM-computable functions are partial recursive,
partial recursive functions are URM-computable.

Two directions have already been shown:

By Theorem 4.3 all URM-computable functions are
TM-computable .

Furthermore, by Lemma 3.3 we obtain immediately
Lemma 6.5 All partial recursive functions are
URM computable .

Therefore, all we need to show that all TM-computable
functions are partial recursive (will be Corollary 6.8).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-53

TM-computable Implies Part. Rec.
We will define for TMs T a code encode(T) ∈ N

This will be a more explicit encoding than the one
given in Sect. 4 (c).
Reason for giving the more explicit encoding is that
we want to show exlicitly that we can compute from a
code for a Turing machine T the function Tn partial
recursively.

Most auxiliary functions will be defined primitive
recursively.

We could have used the more complex encoding
used here in Sect. 4 (c) as well.

Essentially we will encode each instruction of a TM
(which is a 5 tuple) as a natural number and encode a
TM by the code for the sequence of the codes for its
instructions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-54

TM-Computable Implies Part. Rec.
The functions encode(T), {·}n will be redefined in this
Subsection (and the rest of the lecture) referring to this
more explicit encoding.

This will be done in such a way that every natural
number can be interpreted as a code for a Turing
machine.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-55

TM-Computable Implies Part. Rec.
So,we will define for TMs T a (new) code encode(T) ∈ N

and show:
For n ∈ N there exist partial rec. func.

fn : N
n+1 ∼

→ N

s.t. for every TM T we have

∀~m ∈ N
n.fn(encode(T), ~m) ' T(n)(~m) .

fn will be called
::::::::::::

universal
:::::::::

partial
:::::::::::::

recursive
::::::::::::

functions .
fn can be seen as an interpreter for TM.

We will later write {e}n(~m) for fn(e, ~m).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-56

Encoding of TMs
The definition of fn will be done using the following
steps:

We define an encoding of configurations of TMs as
natural numbers c.

The configuration will determine the content of the
tape, the position of the head, and the state of the
head, at a given time.

We define a primitive recursive function

next
::::

: N
2 → N

such that,
if e is a code for a TM, c a configuration,
then next(e, c) is the configuration obtained after
one step of the TM is carried out.
If the TM has stopped then next(e, c) = c.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-57

Encoding of TMs
We define a function

initn
::::

: N
n → N ,

such that initn(~m) is the configuration of the TM, at
the beginning when it is started with arguments ~m

initially written on the tape and the head in initial
state on the left most bit.
We define a function

extract
:::::::

: N → N ,

such that
if c is a configuration in which the TM stops,
extract(c) is the natural number corresponding to
the result returned by the TM.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-58

Encoding of TMs
We define a function

iterate
::::::

: N
3 → N ,

s.t. iterate(e, c, n) is the result of iterating TM e with
initial configuration c for n steps.
We define a predicate

terminate
::::::::::

⊆ N
2

s.t. terminate(e, c) holds, iff the TM e with
configuration c stops.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-59

Encoding of TMs
We define a predicate

Terminaten
::::::::::::

(e, ~m, k)

s.t. Terminaten(e, ~m, k) holds, iff the TM with code e

started with initial arguments ~m terminates after
exactly k steps.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-59a

Encoding of TMs
We obtain

T(n)(~m)

' extract(iterate(e, initn(~m)), µk.Terminaten(e, ~m, k))

' U′(e, ~m, µk.Terminaten(e, ~m, k))

for some primitive recursive U′.

We jump over most of the definitions, and give directly
the definition of iterate, Terminaten.
Jump to Definition of iterate

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-60

Encoding of TMs
Several Steps needed for this.

Use of
::::::::::::::::::::

Gödel-brackets in order to denote the code of
an object:

E.g. dxe for the code of x.
Then dxe is called the

::::::::::::::::::

Gödel-number of x.

Assume encoding dxe for symbols x of the alphabet of a
TM s.t.

d0e = 0,
d1e = 1,
dxye = 2.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-61

Kurt Gödel
Kurt Gödel (1906 – 1978)
Most important logician of the
20th century.
The use of Gödel numbers in order
to encode complex data structures
into natural numbers was one of his
techniques for proving the famous
Gödel’s Incompleteness Theorems.
Introduced the recursive functions in
his Princeton 1933 – 34 lectures.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-62

Encoding of TM
We assume an encoding dse for states s s.t. ds0e = 0 for
the initial state s0 of the TM.

We encode the directions in the instructions by
dLe = 0,
dRe = 1.

We assume the alphabet consists of {0, 1, xy} and
symbols occurring in the instructions.

⇒ no need to explicitly mention the alphabet in the
code for a TM.

We assume the states consists of {s0} and the states
occurring in the instructions.

⇒ no need to explicitly mention the set of states in
the code for a TM.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-63

Encoding of TM
No need to mention s0, xy.
⇒ TM can be identified with its instructions.

An instruction I = (s, a, s′, a′, D) will be encoded as

encode(I) = π5(dse, dae, ds′e, da′e, dDe) .

A set of instructions {I0, . . . , Ik−1} will be encoded as

〈encode(I0), . . . , encode(Ik−1)〉 .

This is as well encode(T) of the corresponding TM.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-64

Encoding of a Configuration
Configuration of a TM given by:

The code dse of its state s.

A segment (i.e. a consecutive sequence of cells) of the
tape, which includes

the cell at head position,
all cells which are not blank.

A segment a0, . . . , an−1 is encoded as

encode(a0, . . . , an−1) := 〈da0e, . . . , dan−1e〉 .

The position of the head on this tape.
Given as a number i s.t. 0 ≤ i < n, if the segment
represented is a0, . . . , an−1.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-65

Encoding of a Configuration
A configuration of a TM, given by

a state s,
a segment a0, . . . , an−1,
head position i,

will be encoded as

π3(dse, encode(a0, . . . , an−1), i) .

As we have seen in Sect. 4, at any time during the
computation of a TM, only finitely many cells of the tape
are not blank.

Therefore at any intermediate step the state of a TM
can be encoded as a configuration.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-66

Simulation of TM – symbol, state
a = π3(dse, 〈da0e, . . . , dan−1e〉, i).

We define primitive recursive functions symbol, tapeseg,
position, state : N → N,
which extract

the state of the TM state(a),
the segment of the tape tapeseg(a),
the position of the head in that segment position(a),
and the symbol at the head symbol(a),

from the current configuration a:

state(a) := π3
0(a)

tapeseg(a) := π3
1(a)

position(a) := π3
2(a)

symbol(a) := (tapeseg(a))position(a)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-67

Simulation of TM – lookup
We define a prim. rec. function

lookup : N
3 → N ,

s.t. if
e is the code for a TM,
s state,
a a symbol,

then lookup(e, s, a) is defined as

π3(ds′e, da′e, dDe)

where s′, a′, D are s.t. (s, a, s′, a′, D) is the first
instruction e of the TM corresponding to state s and
symbol a.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-68

Simulation of TM – lookup
If no such instruction exists, the result will be
0(= π3(0, 0, 0)).
lookup is defined as follows:

First find using bounded search the index of the first
instruction starting with dse, da′e.
Then extract the corresponding values from this
instruction.

The details will be omitted in the lecture.
Jump over details.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-69

Definition of lookup

Formally the definition is as follows:

Define an auxiliary primitive recursive function
g : N

3 → N,

g(e, q, a) = µi ≤ lh(e).π5
0((e)i) = q ∧ π5

1((e)i) = a ,

which finds the index of the first instruction starting with
q, a.

Now define

lookup(e, q, a) := π3(π5
2((e)g(e,q,a)), π

5
3((e)g(e,q,a)), π

5
4((e)g(e,q,a))) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-70

Simulation of TM – hasinstruction

There exists a primitive recursive relation
hasinstruction ⊆ N

3, s.t.
hasinstruction(e, dse, dae) holds, iff the TM
corresponding to e has a instruction (s, a, s′, a′, D) for
some s′, a′, D.
hasinstruction is defined as a byproduct of defining
lookup.
The details will be omitted in the lecture.
Jump over details.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-71

Definition of hasinstruction

hasinstruction is defined, using the function g from the
previous item, as

χhasinstruction(e, q, a) = sig(lh(e) −· g(e, q, a)) .

If there is such an instruction,

g(e, q, a) < lh(e) ,

therefore
lh(e) −· g(e, q, a) > 0 .

Otherwise
g(e, q, a) = lh(e) ,

lh(e) −· g(e, q, a) = 0 .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-72

Simulation of TM – next
There exists prim rec. function

next : N
2 → N

s.t.
if e encodes a TM
and c is a code for a configuration,

then
next(e, c) is a code for the configuration after one step
of the TM is executed,
or equal to c, if the TM has halted.

Jump over details.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-73

Simulation of TM – next
Informal description of next:

Assume the configuration is

c = π3(s, 〈a0, . . . , an−1〉, i) .

Check using hasinstruction, whether the TM has
stopped.
If it has stopped, return c.
Otherwise, use lookup to obtain the codes for

the next state s′,
next symbol a′,
direction D.

Replace in 〈a0, . . . , an−1〉, the ith element by a′.
Let the result be x.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-74

Simulation of TM – next
Next state is s′, next Symbol is a′, direction is D.
x = result of substituting the symbol in original segment.

Might be that head will leave segment.
Then extend segment.

Case D = dLe and i = 0:
Extend the segment to the left by one blank.
Result of next is

π3(s′, 〈dxye〉 ∗ x, 0) .

Case D 6= dLe, i ≥ n − 1.
Result of next is

π3(s′, x ∗ 〈dxye〉, n) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-75

Simulation of TM – next
Next state is s′, next Symbol is a′, direction is D.
x = result of substituting the symbol in original segment.

Otherwise let
i′ := i − 1, if D = dLe,
i′ := i + 1, if D 6= dLe.

Result of next is
π3(s′, x, i′) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-76

Simulation of TM – terminate
There exists a prim. rec. predicate terminate ⊆ N

2, s.t.
terminate(e, c) holds, iff the TM e with configuration c

stops:

terminate(e, c) :⇔ ¬hasinstruction(e, state(c), symbol(c)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-77

Simulation of TM – init
There exists a primitive recursive function
initn : N

n → N,
s.t. for any TM T containing alphabet {0, 1, xy}
initn(~m) is the initial configuration for computing T(n)(~m)
for any TM T, the alphabet of which contains {0, 1, xy}:

initn(m0, . . . ,mn−1)

= π3(ds0e, bin(m0) ∗ 〈dxye〉 ∗ bin(m1) ∗ 〈dxye〉 ∗ · · ·

∗ 〈dxye〉 ∗ bin(mn−1), 0) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-78

Simulation of TM – extract
There exists a primitive recursive function
extract : N → N, s.t.

if c is a configuration in which the TM stops,
extract(c) is the natural number corresponding to the
result returned by the TM.

Assume c = π3(s, x, i).

extract(c) obtained by applying bin−1 to the largest
subsequence of x starting at i consisting of 0 and 1 only.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-79

Simulation of TM – iterate

There exists a primitive recursive function
iterate : N

3 → N,
s.t. iterate(e, c, n) is the result of iterating TM e with initial
configuration c for n steps.
The definition is as follows

iterate(e, c, 0) = c ,

iterate(e, c, n + 1) = next(e, iterate(e, c, n)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-80

Simulation of TM – Terminate
Let

Terminaten(e, ~m, k) :

⇔ terminate(e, iterate(e, initn(~m), k))∧

∀k′ < k.¬terminate(e, iterate(e, initn(~m), k′))

which is primitive recursive.

Then, if e encodes a TM T,
then Terminaten(e, ~m, k) holds if the computation of
T(n)(~m) stops for the first time after k steps.
Note that there exists at most one k

s.t. Terminaten(e, ~m, k) holds.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-81

Simulation of TM – Terminate
As mentioned before, we obtain

T(n)(~m)

' extract(iterate(e, initn(~m)), µk.Terminaten(e, ~m, k))

' U′(e, ~m, µk.Terminaten(e, ~m, k))

for some primitive recursive U′.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-82

Definition of Tn
Kleene

T(n)(~m) ' U′(e, ~m, µk.Terminaten(e, ~m, k))

Kleene wanted to replace U′ by some primitive
recursive UKleene which has only one argument.

This can be achieved by searching instead of for the
minimal k s.t.

Terminaten(e, ~m, k)

for the minimal k s.t. the following predicate holds:

Tn
Kleene(e, ~m, k)

:= Terminaten(e, ~m, π0(k))

∧extract(iterate(e, initn(~m)), π0(k)) = π1(k)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-83

Definition of Tn
Kleene

Tn
Kleene(e, ~m, k)

:= Terminaten(e, ~m, π0(k))

∧extract(iterate(e, initn(~m)), π0(k)) = π1(k)

We obtain that if encode(T) = e, then

T(n)(~m) ' π1(µk.Tn(e, ~m, k))

' UKleene(µk.Tn(e, ~m, k))

where
UKleene(k) := π1(k)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-84

Kleene’s NF Theorem
Kleene’s Normal Form Theorem 6.6:

(a) There exists partial recursive functions fn : N
n+1 ∼

→ N

s.t.
if e is the code of TM T then

fn(e, ~n) ' T(n)(~n) .

(b) There exist
a primitive recursive function UKleene : N → N,
primitive recursive predicate Tn

Kleene ⊆ N
n+2,

s.t. for the function fn introduced in (a) we have

fn(e, ~n) ' UKleene(µz.Tn
Kleene(e, ~m, z)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-85

Stephen Cole Kleene

Stephen Cole Kleene
(1909 – 1994)
Probably the most influential
computability theorist up to now.
Introduced the partial recursive
functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-86

Definition 6.7

Let UKleene, Tn
Kleene as in Kleene’s Normal Form Theorem

6.6.
Then we define

{e}n(~m) ' UKleene(µy.Tn
Kleene(e, ~m, y)) .

(This defines essentially the same function as the one
defined in Section 4 (b), except that we refer now to the
new encoding of Turing Machines.)

So by Kleene’s NF theorem, if encode(T) = e,then

T(n)(~m) ' {e}n(~m) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-87

Notation
We will often omit the superscript n in
{e}n(m0, . . . ,mn−1)

i.e. write {e}(m0, . . . ,mn−1) instead of
{e}n(m0, . . . ,mn−1).

Further {e} not applied to arguments and without
superscript means usually {e}1.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-88

Remark
The operations for extracting instructions from a TM
above were primitive recursive and therefore total.

Therefore, even if e is not a code for a TM, e will be
treated as if were a code for a TM, namely the one with
the instructions computed by the above operations.

Omit details

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-89

Details of the Prev. Remark
A code for such a valid TM is obtained by

treating e as a sequence of instructions,
deleting from it any encode(q, a, q′, a′, D) s.t. there
exists an instruction encode(q, a, q′′, a′′, D′) occurring
before it,
and by replacing all directions > 1 by dRe = 1.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-90

Corollary 6.8

(a) For every TM-computable function f : N
n ∼

→ N there
exists e ∈ N s.t.

f = {e}n .

(b) Especially, all TM-computable functions are partial
recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-91

Theorem 6.9
The following sets coincide:

the set of URM-computable functions,

the set of Turing-computable functions,

the set of partial recursive functions.

Proof:

URM-computable implies TM-computable by Theorem
4.3.

TM-computable implies partial recursive by Corollary
6.8.

Partial recursive implies URM computable by Lemma
6.5.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-92

Theorem 6.10

The partial recursive functions g : N
n ∼

→ N are ex-
actly the functions {e}n for e ∈ N.

Proof:

By Kleene’s Normal Form Theorem every
TM-computable function g : N

n ∼

→ N is of the form {e}n.

The TM-computable functions are the partial rec.
functions.

Therefore the assertion follows.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-93

Remark
Theorem 6.10 means:

{e}n is partial recursive for every e ∈ N.

For every partial recursive function g : N
n ∼

→ N there
exists an e s.t. g = {e}n.

The e s.t. g = {e}n for g : N
n ∼

→ N is called the

:::::::::::::::::

Kleene-index of g.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-94

Remark
Therefore

fn : N
n+1 ∼

→ N , fn(e, ~x) ' {e}n(~x)

forms a universal n-ary partial recursive function :
It encodes all n-ary partial recursive function.

So we can assign to each partial recursive function g a
number, namely an e s.t. g = {e}n.

Each number e denotes one partial recursive
function {e}n.
However, several numbers denote the same partial
recursive function:
There are e, e′ s.t. e 6= e′ but {e}n = {e′}n.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-95

Proof of Last Fact
Proof, that different e compute the same function:

There are several algorithms for computing the same
function.

Therefore there are several Turing machines which
compute the same function.

These Turing machines have different codes e.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-96

Lemma 6.11
The set F of partial recursive functions

(and therefore as well of Turing-computable and of
URM-computable functions),

i.e.

F := {f : N
k ∼

→ N | k ∈ N ∧ f partial recursive}

is countable.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-97

Proof of Lemma 6.11
Every partial recursive function is of the form {e}n for some
e, n ∈ N.

Therefore

f : N
2 → F , f(e, n) := {e}n

is surjective.

N
2 is countable.

Therefore by Corollary 2.15 (a), F is countable as well.
In fact

F = {{e}k | e, k ∈ N}

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (b) 6-98

(c) The Church-Turing Thesis
We have introduced three models of computations:

The URM-computable functions.

The Turing-computable functions.

The partial recursive functions.

Further we have shown that all three models compute the
same partial functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-99

The Church-Turing Thesis
Lots of other models of computation have been studied:

The while programs.

Symbol manipulation systems by Post and by Markov.

Equational calculi by Kleene and by Gödel.

The λ-definable functions.

Any of the programming languages Pascal, C, C++,
Java, Prolog, Haskell, ML (and many more).

Lots of other models of computation.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-100

The Church-Turing Thesis
One can show that the partial functions computable in
these models of computation are again exactly the
partial recursive functions.

So all these attempts to define a complete model of
computation result in the same set of partial recursive
functions.

Therefore we arrive at the Church Turing Thesis

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-101

The Church-Turing Thesis

Church-Turing Thesis: The (in an intu-
itive sense) computable partial functions are
exactly the partial recursive functions (or
equivalently the URM-computable or Turing-
computable functions).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-102

Philosophical Thesis
This thesis is not a mathematical theorem .

It is a philosophical thesis .

Therefore the Church-Turing thesis cannot be proven .

We can only provide philosophical evidence for it.

This evidence comes from the following
considerations and empirical facts :

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-103

Empirical Facts
All complete models of computation suggested by
researchers define the same set of partial functions.

Many of these models were carefully designed in order
to capture intuitive notions of computability:

The Turing machine model captures the intuitive
notion of computation on a piece of paper in a
general sense.
The URM machine model captures the general
notion of computability by a computer .
Symbolic manipulation systems capture the general
notion of computability by
manipulation of symbolic strings .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-104

Empirical Facts
No intuitively computable partial function, which is not
partial recursive, has been found, despite lots of
researchers trying it.

A strong intuition has been developed that in principal
programs in any programming language can be
simulated by Turing machines and URMs.

Because of this, only few researchers doubt the correctness
of the Church-Turing thesis.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-105

Decidable Sets
A predicate A is URM-/Turing-decidable iff χA is
URM-/Turing-computable.

A predicate A is decidable iff χA is computable.

By Church’s thesis to be computable is the same as to
be URM-computable or to be Turing-computable.

So the decidable predicates are exactly the
URM-decidable and exactly the Turing-decidable
predicates.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-106

Halting Problem
Because of the equivalence of the 3 models of
computation, the halting problem for any of the above
mentioned models of computation is undecidable.

Especially it is undecidable, whether a program in one
of the programming languages mentioned terminates:

Assume we had a decision procedure for deciding
whether or not say a Pascal program terminates for
given input.
Then we could, using a translation of URMs into
Pascal programs, decide the halting problem for
URMs, which is impossible.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 6 (c) 6-107

	
	
	(a) The
Part. Rec. Functions
	The Ackermann Function
	The Ackermann Function
	Examples
	Examples
	Examples
	The Ackerm. Funct. is Prim. Rec.
	The Ackerm. Funct. is Prim. Rec.
	The Ackerm. Funct. is Prim. Rec.
	The Uniform Ackermann Function
	Lemma lemackermannprop {}
	Proof of Lemma lemackermannprop {} (a)
	Proof of Lemma lemackermannprop {} (a)
	Proof of Lemma lemackermannprop {} (b)
	Proof of Lemma lemackermannprop {} (c)
	Proof of Lemma lemackermannprop {} (c)
	Proof of Lemma lemackermannprop {} (d)
	Proof of Lemma lemackermannprop {} (d)
	Proof of Lemma lemackermannprop {} (e)
	Proof of Lemma lemackermannprop {} (e)
	Proof of Lemma lemackermannprop {} (f)
	Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Proof of Lemma lemprimrecmajorisedbyackermann {}
	Theorem lemackermannnotprimrec {}
	Remark
	Remark
	Remark
	Remark
	Need for Partial Functions
	Extension of the above
	Extension of the above
	Limitations of Prim. Rec. Functs.
	Limitations of Prim. Rec. Functs.
	Limitations of Prim. Rec. Functs.
	Partial Rec. Functions
	Partial Rec. Functions
	Partial Rec. Functions
	Partial Rec. Functions
	Remark
	Comparison with Prim. Rec. Functs.
	Recursive Functions
	Closure of Part. Rec. Func.
	Closure of Part. Rec. Func.
	
	Equivalence Models of Computation
	TM-computable Implies Part.~Rec.
	TM-Computable Implies Part. Rec.
	TM-Computable Implies Part. Rec.
	Encoding of TMs
	Encoding of TMs
	Encoding of TMs
	Encoding of TMs
	Encoding of TMs
	Encoding of TMs
	Kurt G{"o}del
	Encoding of TM
	Encoding of TM
	Encoding of a Configuration
	Encoding of a Configuration
	Simulation of TM -- symbol, state
	Simulation of TM -- lookup
	Simulation of TM -- lookup
	Definition of $lookupsf $
	Simulation of TM -- hasinstruction
	Definition of $hasinstructionsf $
	Simulation of TM -- next
	Simulation of TM -- next
	Simulation of TM -- next
	Simulation of TM -- next
	Simulation of TM -- terminate
	Simulation of TM -- init
	Simulation of TM -- extract
	Simulation of TM -- iterate
	Simulation of TM -- Terminate
	Simulation of TM -- Terminate
	Definition of $Tsf _Kleene ^n$
	Definition of $Tsf _Kleene ^n$
	Kleene's NF Theorem
	Stephen Cole Kleene
	Definition defkleeneoperations {}
	Notation
	Remark
	Details of the Prev. Remark
	Corollary corollarytmcomputableindex {}
	Theorem 	heoequivalencemodelscomputation {}
	Theorem 	heopartialrecfunkleeneindex {}
	Remark
	Remark
	Proof of Last Fact
	Lemma lemparrecfuncountable {}
	Proof of Lemma lemparrecfuncountable {}
	(c) The
Church-Turing Thesis
	The Church-Turing Thesis
	The Church-Turing Thesis
	The Church-Turing Thesis
	Philosophical Thesis
	Empirical Facts
	Empirical Facts
	Decidable Sets
	Halting Problem

