
Sec. 4: Turing Machines

(a) Definition of the Turing Machine.

(b) URM computable functions are Turing computable.

(c) Undecidability of the Turing Halting Problem

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 4 4-1

(a) Definition of TMs

There are two problems with the model of a URM:

Execution of a single URM instruction might take
arbitrarily long:

Consider succ(n).
If Rn contains in binary 111 · · · 111︸ ︷︷ ︸

k times

, this instruction

replaces it by 1 000 · · · 000︸ ︷︷ ︸
k times

.

We have to replace k symbols 1 by 0.
k is arbitrary
→ this single step might take arbitrarily long time.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 4 (a) 4-2

First Problem of URMs
That incrementing a number by one takes arbitrarily
many steps happens on a real computer as well:

If we want to represent arbitrary big numbers on the
computer, we have to represent them by multiple
machine integers

Then incrementing a number by one will
correspond to arbitrarily many machine
instructions (although usually only a few).

However, often in complexity theory this problem is
ignored because the effect is marginal in real
applications.

The exception are applications in which very big
integers occur, e.g. tests for primality. There this
effect cannot be ignored any more.
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First Problem of URMs
If one takes this effect into account, one needs in
many examples to multiply the running time by a
factor of ln(n), where n is the largest number
occurring.

Therefore URMs unsuitable as a basis for defining the
precise complexity of algorithms.

However, there are theorems linking complexity of
URMs to actual complexities of algorithms.
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Second Problem of URMs
We aim at a notion of computability, which covers all
possible ways of computing something, independently
of any concrete machine.

URMs are a model of computation which covers current
standard computers.

However, there might be completely different notions of
computability, based on symbolic manipulations of a
sequence of characters, where it might be more
complicated to see directly that all such computations
can be simulated by a URM.

It is more easy to see that such notions are covered by
the Turing machine model of computation.
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Idea of a Turing Machine
Idea of a Turing machine (

::::

TM):
Analysis of a computation carried out by a human being
(
:::::::

agent ) on a piece of paper.

15 . 16=

15

90

240
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Idea of a Turing Machine
Steps in this formulation:

Algorithm should be deterministic.
→ The agent will use only finitely many symbols, put
at discrete positions on the paper.

1 5 . 1 6 =

1 5

9 0

− − −

2 4 0
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Idea of a Turing Machine
We can replace a two-dimensional piece of paper by
one potentially infinite tape, by using a special
symbol for a line break.
Each entry on this tape is called a

:::::

cell :

· · · 1 5 . 1 6 = CR 1 5 CR · · ·
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Steps in Formalising TMs
In the real situation, agent can look at several cells at
the same time,
but bounded by his physical capability.
Can be simulated by looking at one cell only at any
time, and moving around in order to get information
about neighbouring cells.

· · · 1 5 . 1 6 = CR 1 5 CR · · ·

↑

Head
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Steps in Formalising TMs
In the real situation, an agent can make arbitrary
jumps, but bounded by the physical ability of the
agent.
Each such jump can be simulated by finitely many
one-step jumps.
→ Restriction to one-step movements.
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Steps in Formalising TMs
Agent operates purely mechanistically:
Reads a symbol, and depending on it changes it and
makes a movement.
Agent himself will have only finite memory.
→ There is a finite state of the agent, and, depending
on the state and the symbol at the head, a next
state, a new symbol, and a movement is chosen.
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Steps in Formalising TMs
Agent operates purely mechanistically:
Reads a symbol, and depending on it changes it and
makes a movement.
Agent himself will have only finite memory.
→ There is a finite state of the agent, and, depending
on the state and the symbol at the head, a next
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Definition of TMs
· · · 1 5 . 1 6 = CR 1 5 CR · · ·

↑

s0

A
::::::::

Turing
::::::::::::

machine is a five tuple (or quintuple)
(Σ, S, I, xy, s0), where

Σ is a finite set of symbols, called the
:::::::::::

alphabet of
the Turing machine. On the tape, the symbols in Σ
will be written.
S is a finite set of states.
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Definition of TMs
· · · 1 5 . 1 6 = CR 1 5 CR · · ·

↑

s0

I is a finite sets of quintuples (s, a, s′, a′, D), where
s, s′ ∈ S,
a, a′ ∈ Σ
D ∈ {L,R},

s.t. for every s ∈ S, a ∈ Σ there is at most one
s′, a′, D s.t. (s, a, s′, a′, D) ∈ I.
The elements of I are called

:::::::::::::::

instructions .

xy ∈ Σ (a symbol for blank).

s0 ∈ S (the initial state).
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Meaning of Instructions
A instruction (s, a, s′, a′, D) ∈ I means the following:

If the Turing machine is in state s, and the symbol at
position of the head is a, then

the state is changed to s′,
the symbol at this position is changed to a′,
if D = L, the head moves left,
if D = R, the head moves right.
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Meaning of Instructions
Note that for the above it is important that for every
s ∈ S, a ∈ Σ there is at most one s′, a′, D s.t.
(s, a, s′, a′, D) ∈ S.

Without this condition, there might be more than one
choice of selecting a new tape symbol, next state
and direction.
If we omit this definition, we obtain a
:::::::::::::::::::::::

non-deterministic
::::

TM. In this case the machine
selects in each step one of the possible choices
(provided there exist one) at random.

If the Turing machine is in a state s and reads symbol a
at his head, and there are no s′, a′, D s.t.
(s, a, s′, a′, D) ∈ I, then the Turing machine stops.
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TM Architecture vs. TM Program
As for URMs a TM means both the TM architecture and
the TM program.

The TM architecture describes that a TM has a tape,
a head, a state, and how it is executed.
The TM program consists of the alphabet on the
tape, the set of states, the instructions, the symbol
for blank and the initial state.

When asked to define a TM which has a certain
behaviour oen usually actually asks for a TM program,
such that a TM with this program has this behaviour.
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Visualisation of TMs
A TM

(Σ, S, I, xy, s0)

can be visualised by a labelled graph as follows:
Vertices: states (i.e. S).
Edges: If (s, a, t, b,D) ∈ I, then there is an edge

s
a/b, D

t

Furthermore we write an arrow to the initial state
coming from nowhere.

If there are several vertices from s to s′, one draws only
one arrow with one label for each vertex.
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Example
The Turing machine with initial state s0 and instructions

{(s0, 0, s0, 0,R),

(s0, 1, s0, 0,R),

(s0, xy, s1, xy, L),

(s1, 0, s1, 0, L),

(s1, xy, s2, xy,R)}

is visualised as follows (we write B instead of xy):

s2s1s0

0/0, R 0/0, L

1/0, R

B/B, L B/B, R
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Example
The TM on the previous slide sets the binary number
the head is pointing to to zero, provided to the left of the
head there are is a blank.

Exercise :
This example assumes that the TM points to the left
most digit of a binary number.
Modify this TM, so that it works as well if the TM
points initially to any digit of a binary number.
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Example of a TM
Development of a TM with Σ = {0, 1, xy},

where xy is the symbol for the blank entry.

Functionality of the TM:
Assume initially the following:

The tape contains binary number,
The rest of the tape contains xy.
The head points to any digit of the number.
The TM in state s0.

Then the TM stops after finitely many steps and then
the tape contains the original number incremented
by one,
the rest of tape contains xy,
the head points to most significant bit.
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Equivalent Representations
The pictorial representation is equivalent to the set of
instructions plus an initial state.

Therefore a TM can both be given by listing its
instructions and by the pictorial representation.

Furthermore the only relevant sets of instructions are
those occurring in the picturial representation. Similarly
for the set of symbols on the tape.

Therefore, assuming that the blank symbol is canonical,
we can take the picturial representation as the complete
definition of a TM (with states being the set of states
occurring in the diagram, and alphabet consisting of the
canonical blank symbol and the states occurring in the
diagram).
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Example
Initially

· · · 1 0 1 0 0 1 0 0 1 1 1 · · ·

↑

s0
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Example
Initially

· · · 1 0 1 0 0 1 0 0 1 1 1 · · ·

↑

s0

Finally

· · · 1 0 1 0 0 1 0 1 0 0 0 · · ·

↑

s3
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Construction of the TM
TM is ({0, 1, xy}, S, I, xy, s0).

States S and instructions I developed in the following.
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Step 1
Initially, move head to least significant bit.

I.e. as long as symbol at head is 0 or 1, move right,
leave symbol as it is.
If symbol is xy, move head left, leave symbol again
as it is.

Achieved by the following instructions:

(s0, 0, s0, 0,R)

(s0, 1, s0, 1,R)

(s0, xy, s1, xy, L)

s1s0

0/0, R

B/B, L

1/1, R
At the end TM is in state s1.
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Step 2
Increasing a binary number b done as follows:

Case number consists of 1 only:
I.e. b = (111 · · · 111︸ ︷︷ ︸

k times

)2.

b + 1 = (1 000 · · · 000︸ ︷︷ ︸
k times

)2.

Obtained by replacing all ones by zeros and then
replacing the first blank symbol by 1.
That’s what happens when we add by hand:

1 0 0 1 1 1 1

+ 1
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Increasing a binary number b done as follows:

Case number consists of 1 only:
I.e. b = (111 · · · 111︸ ︷︷ ︸

k times

)2.

b + 1 = (1 000 · · · 000︸ ︷︷ ︸
k times

)2.

Obtained by replacing all ones by zeros and then
replacing the first blank symbol by 1.
That’s what happens when we add by hand:

1 0 0 1 1 1 1

+ 1

1 1 1 1

0 1 0 0 0 0
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Step 2
Increasing a binary number b done as follows:

Case number consists of 1 only:
I.e. b = (111 · · · 111︸ ︷︷ ︸

k times

)2.

b + 1 = (1 000 · · · 000︸ ︷︷ ︸
k times

)2.

Obtained by replacing all ones by zeros and then
replacing the first blank symbol by 1.
That’s what happens when we add by hand:

1 0 0 1 1 1 1

+ 1

1 1 1 1

1 0 1 0 0 0 0
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Step 2
Otherwise :

Then the representation of the number contains at
the end one 0 followed by ones only.
Includes case where the least significant digit is 0.

Example 1: b = (0100010111)2, one 0 followed by 3
ones.
Example 2: b = (0100010010)2, least significant
digit is 0.

Let b = (b0b1 · · · bk0 111 · · · 111︸ ︷︷ ︸
l times

)2.

b + 1 obtained by replacing the final block of ones by
0 and the 0 by 1:
b + 1 = (b0b1 · · · bk1 000 · · · 000︸ ︷︷ ︸

l times

)2.
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Step 2 – General Situation
We have to replace, as long as we find ones, the ones
by zeros, and move left, until we encounter a 0 or a xy,
which is replaced by a 1.

So we need a new state s2, and the following
instructions

(s1, 1, s1, 0, L)

(s1, 0, s2, 1, L)

(s1, xy, s2, 1, L)

s1

1/0, L

B/1, L
0/1, L

s2

At the end the head will be one field to the left of the 1
written, and the state will be s2.
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Step 3
Finally, we have to move the most significant bit, which is
done as follows

(s2, 0, s2, 0, L)

(s2, 1, s2, 1, L)

(s2, xy, s3, xy,R)

s2 s3

0/0, L
1/1, L

B/B, R

The program terminates in state s3.
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Step 3
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Complete TM
The complete TM is as follows:

({0, 1, xy},

{s0, s1, s2, s3},

{(s0, 0, s0, 0,R),

(s0, 1, s0, 1,R),

(s0, xy, s1, xy, L),

(s1, 1, s1, 0, L),

(s1, 0, s2, 1, L),

(s1, xy, s2, 1, L),

(s2, 0, s2, 0, L),

(s2, 1, s2, 1, L),

(s2, xy, s3, xy,R)}, xy, s0)
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Complete TM

s2s1s0

0/0, R
1/1, R

1/0, L

0/1, LB/B, L

B/1, L

0/0, L
1/1, L

s3
B/B, R
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Notation: bin

TMs usually operate on binary numbers.

Therefore we define for a natural number bin(n)
::::::

as the

sequence of digits representing the unique standard
binary representation of n.

So bin(n) has no leading zeros, except for
bin(0) := ”0”.

Examples:
bin(0) = ”0”,
bin(1) = ”1”,
bin(2) = ”10”,
bin(3) = ”11”,
bin(4) = ”100”, etc.
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Notation: b̃in

In order to read off the final result, we need to interpret
an arbitrary finite sequence of 0, 1 as a binary number,
even if it has leading zeros.

We define b̃in(n) as one of the possible binary
representations of n, allowing leading 0.

So b̃in(1) can be ”1”, ”01”, ”001”, etc.
In the special case 0 we treat the empty string as
one of the possible representations, so b̃in(0) can be
””, ”0”, ”00”, ”000”, etc.
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Notation: b̃in

When carrying out intermediate calculations, it is easier
to refer to b̃in(n) rather than bin(n)

E.g. we can set a number on the tape easily to an
element of b̃in(0) by overwriting it with 0s.
In order to set it to bin(0) one would need to make
sure that exactly one 0 remains. Then one usually
has to shift left the content of the tape to the right of
the original number.
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(b0, . . . , bk−1)2, (d0, . . . , dk−1)10

We write as well
(b0, . . . , bk−1)2 for the natural number having binary
representation b0, . . . , bk−1), e.g.

(01010)2 = 12

(d0, . . . , dk−1)10 for the natural number with decimal
representation d0, . . . , dk−1 e.g.

(101)10 = 101
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Definition 4.1
Let T = (Σ, S, I, xy, s0) be a Turing machine with {0, 1} ⊆ Σ.
Define for every k ∈ N T(k)

::::
: N

k ∼
→ N, where

T(k)(a0, . . . , ak−1) is computed as follows:

Initialisation:
We write on the tape
bin(a0)xybin(a1)xy · · · xybin(ak−1).

E.g. if k = 3, a0 = 0, a1 = 3, a2 = 2 then we write
0xy11xy10.

All other cells contain xy.
The head is at the left most bit of the arguments
written on the tape.
The state is set to s0.

Iteration: Run the TM, until it stops.
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Definition 4.1
Output:

Case 1: The TM stops.
Only finitely many cells are non-blank.
Let tape, starting from the head-position, contain
b0b1 · · · bk−1c where bi ∈ {0, 1} and c 6∈ {0, 1}.
(k might be 0).
Let

a = (b0, . . . , bk−1)2 .

(in case k = 0, a = 0).
This means ”b0 · · · bk−1” is one of the choices for
b̃in(a).
Then

T(k)(a0, . . . , ak−1) ' a .
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Definition 4.1
Example: Let Σ = {0, 1, a, b, xy} where 0, 1, a, b, xy are
different.

If the tape starting with the head is as follows:
· 01001xy0101xy
· or 01001axy,
output is (01001)2 = 9.
If tape starting with the head is as follows:
· abxy
· or a,
· or xy,
the output is 0.

Case 2: Otherwise.
Then T(k)(a0, . . . , ak−1)↑.
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Remark
If the TM terminates with the head in the middle of a
binary number, only the portion of this number starting
with the head counts.

Example: Assume the TM ends as follows

1 0 1 1 xy

↑

q0

Then the output is (011)2 which is 3.
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Definition 4.2
f : N

k ∼
→ N is

::::::::::::::::::::::::

Turing-computable , in short

::::::::::::::::::::

TM-computable , if f = T(k) for some TM T, the alphabet of
which contains {0, 1}.

Example: That succ : N
∼
→ N and zero : N

∼
→ N are Turing-

computable was shown above.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 4 (a) 4-35



Simpler Solution for zero

zero can be defined in a simpler way by defining a TM
which writes a blank and moves right, then moves back
(left) and stops with the head pointing to this blank:

0/xy,R
1/xy,R

0/0, L

1/1, L
xy/xy,R

xy/xy, L

q0
q1 q2

The final state of this TM, run with input some binary
number, is as follows (x is 0, 1 or xy):

xy x

↑

q2
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Simpler Solution for zero

The output of T(1)(x) is the value of largest binary string
in the final configuration starting with the head position.

This string is the empty string, which is interpreted as 0.
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Remark
If the tape of the Turing machine initially contains only
finitely many cells which are not blank, then at any step
during the execution of the TM only finitely many cells
are non blank.

Follows since in each step at most one cell can be
modified to become non-blank.
So in finitely many steps only finitely many cells can
be converted from blank to non-blank.
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(b) URM Comput. ⇒ TM Comput.

Theorem 4.3 If f : N
n ∼
→ N is URM-computable, then it is

as well Turing-computable by a TM with alphabet {0, 1, xy}.
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Proof of Theorem 4.3
Notation
:::::

The
::::::

tape
:::

of
:::

a
::::

TM
::::::::::::

contains
:::::::::::

a0, . . . , al means:

Starting from the head position, the cells of the tape
contain a0, . . . , al.

All other cells contain xy.
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Proof of Theorem 4.3
Assume

f = U(n),

U refers only to R0, . . . ,Rl−1 and l > n,

We define a TM T, which simulates U. Done as follows:

That the registers R0, . . . ,Rl−1 contain a0, . . . , al−1 is
simulated by the tape containing b̃in(a0)xy · · · xyb̃in(al−1).

An instruction Ij will be simulated by states sj,0, . . . , sj,i

with instructions for those states.
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Conditions on the Simulation
Assume the URM U is in a state s.t.

R0, . . . ,Rl−1 contain a0, . . . , al−1,
the URM is about to execute Ij.

Assume after executing Ij , the URM is in a state where
R0, . . . ,Rl−1 contain b0, . . . , bl−1,
the PC contains k.

Then we want that, if configuration of the TM T is, s.t.

the tape contains b̃in(a0)xyb̃in(a1)xy · · · xyb̃in(al−1),
and the TM is in state sj,0,

then the TM reaches a configuration s.t.

the tape contains b̃in(b0)xyb̃in(b1)xy · · · xyb̃in(bl−1),
the TM is in state sk,0.
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Example
Assume the URM is about to execute instruction

I4 = pred(2) (i.e. PC = 4),
with register contents
R0 R1 R2

2 1 3

Then the URM will end with
PC = 5
and register contents
R0 R1 R2

2 1 2
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Example
Then we want that, if the simulating TM is

in state s4,0,

with tape content b̃in(2)xyb̃in(1)xyb̃in(3)

it should reach
state s5,0

with tape content b̃in(2)xyb̃in(1)xyb̃in(2)
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Proof of Theorem 4.3
Furthermore, we need initial states sinit,0, . . . , sinit,j and
corresponding instructions, s.t.

if the TM initially contains

b̃in(b0)xyb̃in(b1)xy · · · xyb̃in(bn−1)

it will reach state s0,0 with the tape containing

b̃in(b0)xyb̃in(b1)xy · · · xyb̃in(bn−1)xy 0xy0xy · · · xy0︸ ︷︷ ︸
l − n times

xy
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Proof of Theorem 4.3
Assume the run of the URM, starting with Ri containing
a0,i = ai i = 0, . . . , n − 1, and a0,i = 0 for i = n, . . . , l − 1 is as
follows:

Instruction R0 R1 · · · Rn−1 Rn · · · Rl−1

I0 a0 a1 · · · an−1 0 · · · 0

= = = = = =

Ik0
a0,0 a0,1 · · · a0,n−1 a0,n · · · a0,l−1

Ik1
a1,0 a1,1 · · · a1,n−1 a1,n · · · a1,l−1

Ik2
a2,0 a2,1 · · · a2,n−1 a2,n · · · a2,l−1

· · ·
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Proof of Theorem 4.3
Then the corresponding TM will successively reach the
following configurations:

State Tape contains
sinit,0 b̃in(a0)xyb̃in(a1)xy · · · xyb̃in(an−1)xy

s0,0 b̃in(a0)xyb̃in(a1)xy · · · xyb̃in(an−1)xyb̃in(0)xy · · · xyb̃in(0)xy

= =

sk0,0 b̃in(a0,0)xyb̃in(a0,1)xy · · · xyb̃in(a0,l−1)xy

sk1,0 b̃in(a1,0)xyb̃in(a1,1)xy · · · xyb̃in(a1,l−1)xy

sk2,0 b̃in(a2,0)xyb̃in(a2,1)xy · · · xyb̃in(a2,l−1)xy

· · ·
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Example
Consider the URM program U (which was discussed
already in the section on URMs):
I0 = ifzero(0, 3)
I1 = pred(0)
I2 = ifzero(1, 0)

U(1)(a) ' 0.
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Example
I0 = ifzero(0, 3)
I1 = pred(0)
I2 = ifzero(1, 0)

We saw in the last section that a run of U(1)(2) is as follows:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

I1 1 0

I2 0 0

I0 0 0

I3 0 0

URM Stops
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Corresponding TM Simulation
I0 = ifzero(0, 3)
I1 = pred(0)
I2 = ifzero(1, 0)

Instruction R0 R1 State of TM Content of Tape
sinit,0 b̃in(2)xy

I0 2 0 s0,0 b̃in(2)xyb̃in(0)xy

I1 2 0 s1,0 b̃in(2)xyb̃in(0)xy

I2 1 0 s2,0 b̃in(1)xyb̃in(0)xy

I0 1 0 s0,0 b̃in(1)xyb̃in(0)xy

I1 1 0 s1,0 b̃in(1)xyb̃in(0)xy

I2 0 0 s2,0 b̃in(0)xyb̃in(0)xy

I0 0 0 s0,0 b̃in(0)xyb̃in(0)xy

I3 0 0 s3,0 b̃in(0)xyb̃in(0)xy

URM Stops TM Stops
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Proof of Theorem 4.3
If we have defined this we have

If
U(n)(a0, . . . , an−1) ↓ ,

U(n)(a0, . . . , an−1) ' c ,

then U eventually stops with Ri containing some values
bi, where b0 = c.
Then, the TM T starting with

bin(a0)xy · · · xybin(an−1)

will eventually terminate in a configuration

b̃in(b0)xy · · · xyb̃in(bk−1) .

for some k ≥ n.
Therefore T(n)(a0, . . . , an−1) ' b0 = c.
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Proof of Theorem 4.3
If

U(n)(a0, . . . , an−1)↑ ,

the URM U will loop and the TM T will carry out the
same steps as the URM and loop as well.
Therefore

T(n)(a0, . . . , an−1)↑ ,

again

U(n)(a0, . . . , an−1) ' T(n)(a0, . . . , an−1) .
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Proof of Theorem 4.3
It follows

U(n) = T(n) ,

and the proof is complete, if the simulation has been
introduced.

The following slides contain a detailed proof, which will
not be presented in the lecture this year.
Jump over remaining proof.
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Proof of Theorem 4.3
Informal description of the simulation of URM instructions.

Initialisation.
Initially, the tape contains bin(a0)xy · · · xybin(an−1).
We need to obtain configuration:
b̃in(a0)xy · · · xyb̃in(an−1)xy b̃in(0)xy · · · xyb̃in(0)︸ ︷︷ ︸

l − n times

.

Achieved by
moving head to the end of the initial configuration
inserting, starting from the next blank, l − n-times
0xy,
then moving back to the beginning.
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Proof of Theorem 4.3
Simulation of URM instructions.

Simulation of instruction Ik = succ(j).
Need to increase (j + 1)st binary number by 1 Initial
configuration:

b̃in(c0) xy b̃in(c1) xy · · · xy b̃in(cj) xy · · · xy b̃in(cl) xy

↑

sk,0

First move to the (j + 1)st blank to the right. Then we
are at the end of the (j + 1)st binary number.

b̃in(c0) xy b̃in(c1) xy · · · xy b̃in(cj) xy · · · xy b̃in(cl) xy

↑
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Proof of Theorem 4.3

b̃in(c0) xy b̃in(c1) xy · · · xy b̃in(cj) xy · · · xy b̃in(cl) xy

↑

Now perform the operation for increasing by 1 as
above.
At the end we obtain:

b̃in(c0) xy b̃in(c1) xy · · · xy b̃in(cj + 1) xy · · · xy b̃in(cl) xy

↑

It might be that we needed to write over the
separating blank a 1, in which case we have:

b̃in(c0) xy b̃in(c1) xy · · · b̃in(cj−1) b̃in(cj + 1) xy · · · xy b̃in

↑
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Proof of Theorem 4.3
In the latter case, shift all symbols to the left once left, in
order to obtain a separating xy between the lth and
l − 1st entry.
We obtain

b̃in(c0) xy b̃in(c1) xy · · · b̃in(cj−1) xy b̃in(cj + 1) xy · · · xy

↑

Otherwise, move the head to the left, until we reach the
(j + 1)st blank to the left, and then move it once to the
right.
We obtain

b̃in(c0) xy b̃in(c1) xy · · · xy b̃in(cj + 1) xy · · · xy b̃in(cl) xy

↑

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 4 (b) 4-55

Proof of Theorem 4.3
Simulation of instruction Ik = pred(j).

Assume the configuration at the beginning is :

b̃in(c0) xy b̃in(c1) xy · · · b̃in(cj) xy · · · xy b̃in(cl) xy

↑

We want to achieve

b̃in(c0) xy b̃in(c1) xy · · · b̃in(cj −
· 1) xy · · · xy b̃in(cl)

↑

Done as follows:
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Proof of Theorem 4.3
Initially: b̃in(c0) xy · · · xy b̃in(cj) xy · · · xy b̃in(cl) xy

↑

Finally: b̃in(c0) xy · · · xy b̃in(cj −
· 1) xy · · · xy b̃in(cl) xy

↑

Move to end of the (j + 1)st number.
Check, if the number consists only of zeros or not.

If it consists only of zeros, pred(j) doesn’t change
anything.
Otherwise, number is of the form b0 · · · bk1 00 · · · 0︸ ︷︷ ︸

l′ times

.

Replace it by b0 · · · bk0 11 · · · 1︸ ︷︷ ︸
l′ times

.

Done as for succ.
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Proof of Theorem 4.3
Initially: b̃in(c0) xy · · · xy b̃in(cj) xy · · · xy b̃in(cl) xy

↑

Finally: b̃in(c0) xy · · · xy b̃in(cj −
· 1) xy · · · xy b̃in(cl) xy

↑

We have achieved

b̃in(c0) xy b̃in(c1) xy · · · b̃in(cj −
· 1) xy · · · xy b̃in(cl)

↑

Move back to the beginning:

b̃in(c0) xy b̃in(c1) xy · · · b̃in(cj −
· 1) xy · · · xy b̃in(cl)

↑
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Proof of Theorem 4.3
Simulation of instruction Ik = ifzero(j, k′).

Move to j + 1st binary number on the tape.
Check whether it contains only zeros.

If yes, switch to state sk′,0.
Otherwise switch to state sk+1,0.

This completes the simulation of the URM U.
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Remark
We will later show that all TM-computable functions are
URM-computable.

This will be done by showing that
all TM-computable functions are partial recursive,
all partial recursive functions are
URM-computable.

This will be easier than showing directly that
TM-computable functions are URM-computable.

Therefore the set of TM-computable functions and the
set of URM-computable functions coincide.
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Extension to Arbitrary Alphabets
Let A be a finite alphabet s.t. xy 6∈ A, and B := A∗.

To a Turing machine T = (Σ, S, I, xy, s0) with A ⊆ Σ

corresponds a partial function T (A,n) : Bn ∼
→ B, where

T (A,n)(a0, . . . , an−1) is computed as follows:
Initially write a0xy · · · xyan−1 on the tape, otherwise
xy.
Start in state s0 on the left most position of a0.
Iterate TM as before.
In case of termination, the output of the function is
c0 · · · cl−1, if the tape contains, starting with the head
position c0 · · · cl−1d with ci ∈ A, d 6∈ A.
Otherwise, the function value is undefined.
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Characteristic function
In order to introduce the notion of Turing-decidable we
need to remind us of the following definition:

Let M ⊆ N
n be a predicate. The characteristic function

χ
M

:::

: N
n → N for M is defined as follows:

χ
M (~x) :=

{
1 if M(~x) holds,
0 otherwise

If we treat true as 1 and false as 0, then the
characteristic function is nothing but the Boolean valued
function which decides whether M(~x) holds or not:

χ
M (~x) =

{
true if M(~x) holds,
false otherwise
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Extension to Arbitrary Alphabets
Notion is modulo encoding of A∗ into N equivalent to the
notion of Turing-computability on N.

However, when considering complexity bounds, this
notation might be more appropriate.

Avoids encoding/decoding into N.
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Turing-Computable Predicates
A predicate A is Turing-decidable, iff χA is
Turing-computable.

Instead of simulating χA

means to write the output of χA (a binary number 0
or 1) on the tape

it is more convenient, to take TM with two additional
special states strue and sfalse corresponding to truth and
falsity of the predicate.
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Turing-Computable Predicates
Then a predicate is Turing decidable, if, when we write
initially the inputs as before on the tape and start
executing the TM,

it always terminates in strue or sfalse,
and it terminates in strue, iff the predicate holds for
the inputs,
and in sfalse, otherwise.

The latter notion is equivalent to the first notion.

Usually the latter one is taken as basis for complexity
considerations.
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(c) Undecid. of the Halting Problem

Undecidability of the Halting Problem first proved 1936
by Alan Turing.

In this Section, we will identify computable with
Turing-computable.

This will later be justified by the Church-Turing
thesis.
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History of Computability Theory

Alan Mathison Turing
(1912 – 1954)
Introduced the Turing machine.
Proved the undecidability
of the Turing-Halting problem.
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Definition 4.4
(a) A

:::::::::::

problem is an n-ary predicate M(~x) of natural
numbers, i.e. a property of n-tuples of natural numbers.

(b) A problem (or predicate) M is (Turing-)
::::::::::::

decidable , if
the characteristic function χ

M of M is
(Turing-)computable.
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Example of Decidable Problems
The binary predicate

Multiple(x, y) :⇔ x is a multiple of y

is a predicate and therefore a problem.
χ
Multiple(x, y) decides, whether Multiple(x, y) holds (then

it returns 1 for yes), or not:

χ
Multiple(x, y) =

{
1 if x is a multiple of y,
0 if x is not a multiple of y.

χ
Multiple is intuitively computable, therefore Multiple is

decidable.
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Need of Encoding of TMs
We want to show that it is not decidable whether a
Turing Machine terminates or not.

For this we need to be able to talk about programs
which have as input a Turing Machine.

For this we need to give a formalisation of what a Turing
Machine is.

Since we are restricting ourselves to functions having
as arguments elements of N

k, we need to encode a TM
as an element of N

k for some k.

We will actually encode TMs as elements of N.
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Encoding of Turing Machines
A Turing Machine is a quintuple (Σ, S, I, xy, s0).

We can assume that xy, each symbol of the alphabet,
and each state can be represented by a string of letters
and numbers.

Then this quintuple can be written as a string of
ASCII-symbols.

⇒ Turing machines can be represented as elements of
A∗, where
A = set of ASCII-symbols.

⇒ Turing machines can be encoded as natural
numbers.

Of course more efficient encoding exist.
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Encoding of Turing Machines
Let for a Turing machine T, encode(T) ∈ N be its code.

It is intuitively decidable, whether a string of ASCII
symbols is a Turing machine.

One can show that this can be decided by a Turing
machine.

⇒ It is intuitively decidable, whether n = encode(T) for a
Turing machine T.
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{e}k(n)

Assume e ∈ N. We define a partial function
{e}k : N

k ∼
→ N, by

{e}k(~x) '





m if e = encode(T) for some Turing machine T

and T(k)(~x) ' m,
⊥ otherwise.

So if e = encode(T), {e}k = T(k).

Roughly speaking, {e}k is the function computed by
the eth Turing machine.
So for every computable (more precisely
Turing-computable) function f : N

k ∼
→ N there exists

an e s.t. f = {e}k.
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{e}k

The notation {e}k is due to Stephen Kleene.

{} are called Kleene-Brackets .

We write {e} for {e}1.
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Stephen Cole Kleene

Stephen Cole Kleene
(1909 – 1994)
Probably the most influential
computability theorist up to now.
Introduced the partial recursive
functions.
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The Halting Problem
Definition 4.5
The

:::::::::

Halting
::::::::::::

Problem is the following binary predicate:

Halt(e, n) :⇔ {e}(n)↓

We will show that Halt is undecdiable.
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Example
Let e = encode(T), where T is the Turing machine T
which translates the URM program consisting of only
one instruction

I0 = ifzero(0, 0)

If this TM is run with arguments written on the tape, it
loops if the first argument is 0, and terminates otherwise
with its first argument unchanged.

So we have

{e}(k) ' T(1)(k) '

{
k if k > 0

⊥ otherwise.

Therefore Halt(e, k) holds for k > 0 and does not hold for
k = 0.
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Remark
Below we will see: Halt is undecideable.

However, the following function WeakHalt is computable:

WeakHalt(e, n) :'

{
1 if {e}(n)↓

⊥ otherwise

Computed as follows:
First check whether e = encode(T) for some Turing
machine T.
If not, enter an infinite loop.
Otherwise, simulate T with input n.
If simulation stops, output 1, otherwise the program
loops for ever.
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Question
What is WeakHalt(e, n), where e is a code for the Turing
machine corresponding to the URM program

I0 = ifzero(0, 0) ?
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Theorem 4.6
Theorem 4.6 The halting problem is undecidable.

Proof:

Assume the Halting problem is decidable
i.e. assume that we can decide using a Turing machine
whether {e}(n)↓ holds.

We will define below a computable function f : N
∼
→ N,

s.t. f 6= {e}.

Therefore f cannot be computed by the Turing machine
with code e for any e, i.e. f is noncomputable.

Therefore we obtain a contradiction.
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Proof of Theorem 4.6
We argue similarly as in the proof of N 6≈ P(N)

We define f(e) in such a way that f = {e} is violated
by having f(e) 6' {e}(e).

If {e}(e)↓, then we let f(e)↑.

If {e}(e)↑, we let f(e)↓, e.g. by defining f(e) ' 0 (any
other defined result would be appropriate as well).

So we define

f(e) '

{
⊥, if {e}(e)↓
0, if {e}(e)↑
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Proof of Theorem 4.6

f(e) '

{
⊥, if {e}(e)↓
0, if {e}(e)↑

We obtain f(e)↓ ⇔ {e}(e)↑. (∗)

Since Halt is decidable, f is computable (Exercise:
show that f is computable by a Turing machine,
assuming a Turing machine for Halt).

Therefore f = {e} for some e.

But then by (∗)

f(e)↓
(∗)
⇔ {e}(e)↑

f={e}
⇔ f(e)↑

a contradiction.
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Proof of Theorem 4.6
The complete proof on one slide is as follows:

Assume Halt were decidable.

Define

f(e) '

{
⊥, if {e}(e)↓
0, if {e}(e)↑

By Halt decidable, we obtain f is computable, so
f = {e} for some e.

But then

f(e)↓
Def of f

⇔ {e}(e)↑
f={e}
⇔ f(e)↑
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Remark
The above proof can easily be adapted to any
reasonable programming language, in which one can
define all intuitively computable functions.

Such programming languages are called
:::::::::::::::::::::

Turing-complete languages.
Babbage’s machine was, if one removes the
restriction to finite memory, Turing-complete, since it
had a conditional jump.

For standard Turing complete languages, the
unsolvability of the Turing-halting problem means:
it is not possible to write a program, which checks,
whether a program on given input terminates.
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Halting Problem with no Inputs
Theorem 4.7: It is undecidable, whether a Turing
machine started with a blank tape terminates.

Proof:
Let

Halt′(e) :⇔ e is a code for a Turing machineT

and T started with a blank tape
terminates

Assume Halt′ were decidable.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 4 (c) 4-84



Halting Problem with no Inputs
Then we can decide Halt(e, n) as follows:

Assume inputs e, n.
If e is not a code for a Turing machine, we return 0.
Otherwise, let encode(T) = e.
Define a Turing machine V as follows:

V first writes bin(n) on the tape and moves head to
the left most bit of bin(n).
Then it executes the Turing machine T.

We have
V, run with blank tape, terminates

iff T run with tape containing bin(n) terminates
iff T(1)(n)↓
iff {e}(n)↓.
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Halting Problem with no Inputs
V, run with blank tape, terminates iff {e}(n)↓.

Let encode(V) = e′. Then

Halt′(e′) ⇔ Halt(e, n)

Therefore using the decidability of Halt′ we can
decide Halt(e, n).

So we have decided Halt, a contradiction.
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