
Sect. 3: The URM

(a) Definition of the URM.

(b) Higher level programming concepts for URMs.

(c) URM computable functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 3 3-1

(a) Definition of the URM

A
::::::::

model
:::

of
:::::::::::::::::

computation consists of a set of partial
computable functions together with methods, which
describe, how to compute those functions.

One aims at models of computation which are
complete .

Here a model of computation is
::::::::::::

complete , if it
contains all computable functions.

Since “intuitively computable” is not a mathematical
notion, completeness is not a mathematical notion
and cannot be proved mathematically.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-2

Turing Completeness
Sometimes by “complete” it is meant that the model
contains all functions computable by a Turing machine –
then one obtains a mathematical definition.

We use
::::::::

Turing
:::::::::::::

complete for this mathematical
definition.

So a model is Turing complete if it contains all
functions computable by a Turing machine.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-3

Models of Computation
Aim: an as simple model of computation as possible:
constructs used minimised, while still being able to
represent all intuitively computable functions.

Makes it easier to show for other models of
computation, that the first model can be interpreted
in it.
In mathematics one always aims at giving as simple
and short definitions as possible, and to avoid
unnecessary additions .

Models of computation are mainly used for showing that
something is non-computable rather than for showing
that something is computable in this model.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-4

The URM
The URM (the unlimited register machine) is one model
of computation.

Particularly easy.
It defines a virtual machine, i.e. a description how a
computer would execute its program.
The URM is not intended for actual implementation
(although it can easily be implemented).
It is not intended to be a realistic model of a
computer.
It is intended as a mathematical model, which is then
investigated mathematically.
Not many programs are actually written in it – one
shows that in principal there is a way of writing a
certain program in this language.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-5

The URM
Rather difficult to write actual programs for the URM.
Low level programming language (only goto)
URM idealised machine – no bounds on the amount
of memory or execution time

however all values will be finite.
Many variants of URM – this URM will be particularly
easy.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-6

URM

John Shepherdson (Bristol) (2nd from the right)

Developed together with Sturgis the URM.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-7

Description of the URM
The

::::::

URM consists of
infinitely many registers Ri

can store arbitrarily big natural number;
a

::::::

URM
::::::::::::

program consisting of a finite sequence of

:::::::::::::::

instructions I0, I1, I2, . . . In;
and a

:::::::::::

program
:::::::::::

counter
::::

PC.
stores a natural number.
If PC contains a number 0 ≤ i ≤ n, it points to
instruction Ii.
If content of PC is outside this range, the program
stops.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-8

Remark
Note that the URM program is part of the URM.

One could distinguish between
The architecture of a URM consisting of registers,
the program counter and a memory for a URM
program,
and the URM program itself.

For historic reasons by a URM we mean the URM
architecture together with a URM program.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-8a

The URM

R0 R1 R2 R3 R4 R5 R6 R7 R8 · · ·

I0 I1 I2 · · · In

PC

Execute Instruction

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-9

The URM

R0 R1 R2 R3 R4 R5 R6 R7 R8 · · ·

I0 I1 I2 · · · In

PC

Program has terminated

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-9

URM Instructions
3 kinds of

::::::

URM
::::::::::::::::

instructions .
The

:::::::::::::

successor
:::::::::::::::

instruction

succ(k) ,

where k ∈ N.
Execution:
Add 1 to register Rk.
Increment PC by 1.
→ execute next instruction or terminate.

A more readable notation is

Rk := Rk + 1

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-10

URM Instructions
The

::::::::::::::::

predecessor
:::::::::::::::

instruction

pred(k) ,

where k ∈ N.
Execution:
If Rk contains value > 0, decrease the content by
1.
If Rk contains value 0, leave it as it is.
In all cases increment PC by 1.
A more readable notation is

Rk := Rk −
· 1

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-11

x −· y

Here
x −· y := max{x − y, 0} ,

i.e.

x −· y =

{

x − y if y ≤ x,
0 otherwise.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-12

URM Instructions
The

::::::::::::::

conditional
::::::::

jump
::::::::::::::

instruction

ifzero(k, q)

where k, q ∈ N. Execution:
If Rk contains 0, PC is set to q

→ next instruction is Iq, if Iq exists.
If no instruction Iq exists, the program stops.

If Rk does not contain 0, the PC incremented by 1.
Program continues executing the next instruction,
or terminates, if there is no next instruction.

A more readable notation is

if Rk = 0 then goto q

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-13

Finiteness
A URM program refers only to finitely many registers ,
namely those referenced explicitly in one of the
instructions.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-14

Example of a URM Program
The following is an example of a URM-program:

I0 = ifzero(0, 3)

I1 = pred(0)

I2 = ifzero(1, 0)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-15

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

I1 1 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

I1 1 0

I2 0 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

I1 1 0

I2 0 0

I0 0 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

I1 1 0

I2 0 0

I0 0 0

I3 0 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Example
I0 = ifzero(0, 3) I1 = pred(0) I2 = ifzero(1, 0)

If we run this program with inital values R0 = 2, R1 = 0, we
obtain the following trace of a run of this program:
Instruction R0 R1

I0 2 0

I1 2 0

I2 1 0

I0 1 0

I1 1 0

I2 0 0

I0 0 0

I3 0 0

URM Stops

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-16

Behaviour of the Example

I0 = ifzero(0, 3)

I1 = pred(0)

I2 = ifzero(1, 0)

Assume R1 is initially zero.

Then R1 will never be changed by the program, so it will
remain 0 for ever.

So in instruction 2 the URM will always jump to instr. 0.

Then the program will as long as R0 6= 0 decrease R0 by
1.

The result is that R0 is set to 0.

This corresonds to the instruction from a higher level
language R0 := 0.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-17

URM-Computable Functions
For every U-program we define the function defined by
it.

In fact there are many function which are defined by the
same U-program:

A unary function U(1), which stores its argument in
R0, sets all other registers to 0, then starts to run the
U.

If the U stops, the result is read off from R0.
Otherwise the result is undefinded.

A binary function U(2), which stores its two
arguments in R0 and R1, then operates as U(1).
And so on. In general we obtain a k-ary partial
function U(k) for every k ≥ 1.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-18

Definition U(k)

Let U = I0, . . . , In−1 be a URM program, k ∈ N, k ≥ 1.

We define a function

U(k) : N
k ∼

→ N

by determining how it is computed:

Assume we want to compute U(k)(a0, . . . , ak−1).

Initialisation:
PC set to 0.
a0, . . . , ak−1 stored in registers R0, . . . ,Rk−1,
respectively.
All other registers set to 0.
(Sufficient to do this for registers referenced in the
program).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-19

URM-Computable Functions
Iteration:
As long as the PC points to an instruction, execute it.
Continue with the next instruction as given by the
PC.
Output:

If PC value > n, the program stops.
· The function returns the value in R0.
· So if R0 contains b then

U(k)(a0, . . . , ak−1) ' b .

If the program never stops,

U(k)(a0, . . . , ak−1)↑ .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-20

URM-Computable Functions

f : N
k ∼

→ N is
::::::::::::::::::::::

URM-computable , if f = U(k) for some
k ∈ N and some URM program U.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-21

Change of Notation
Until the academic year 2004/05, P was used instead of
U to denote URM programs.

P will be used for Turing machines.
In order to distinguish URM-programs and Turing
machine programs, we write here U instead of P.
Please take this into account when looking at exams
and slides from 2004/05 and before.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-22

Example
Consider the example of a URM-program treated
before:

I0 = ifzero(0, 3)

I1 = pred(0)

I2 = ifzero(1, 0)

We have seen that if R1 is initially zero, then the
program reduces R0 to 0 and then stops.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-23

Example

I0 = ifzero(0, 3)

I1 = pred(0)

I2 = ifzero(1, 0)

A computation of U(1)(k) is as follows:
We set R0 to k, all other registers to 0.
Then the URM program is executed, starting with
instruction I0.
This program terminates, with R0 containing 0.
The value returned is the content of R0, i.e. 0.

Therefore U(1)(k) ' 0.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-24

Example

I0 = ifzero(0, 3)

I1 = pred(0)

I2 = ifzero(1, 0)

In order to compute U(2)(k, l) we have to do the same,
but set initially R0 to k, R1 to l.

For l = 0 we obtain the same run of the URM program
as before.

Therefore U(2)(k, 0) ' 0.

What is U(2)(k, l) for l > 0?

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-25

Partial Computable Functions
For a partial function f to be computable we need only:

If f(a) ↓, then after finite amount of time we can
determine this property, and the value of f(a).

If f(a)↑, we will wait infinitally long for an answer, so we
never determine that f(a)↑.

Turing halting problem is the question: “Is f(a) ↓?”.
Turing halting problem is undecidable .

If we want to have always an answer, we need to refer
to total computable functions .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-26

Partial Computable Functions
In order to describe the total computable functions, we
need to introduce the partial computable functions first.

There is no program language s.t.
it is decidable whether a string is a program,
and the program language describes all total
computable functions.
· This is essentially a consequence of the

undecidability of the Turing Halting Problem.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-27

Example of URM-Comp. Function
The following function is computable:

f : N
2 ∼

→ N , f(x, y) ' x + y

We derive a URM-program for it in several steps.
Step 1:
Initially R0 contains x, R1 contains y, and the other registers
contain 0.
Program should then terminate with R0 containing f(x, y),
i.e. x + y.
A higher level program is as follows:

R0 := R0 + R1

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-28

Example of URM-Comp. Function
R0 := R0 + R1

Step 2:
Only successor and predecessor available, replace the
program by the following:

while (R1 6= 0) do {R0 := R0 + 1

R1 := R1 −
· 1}

This increases R0 by 1 as many times as the value
contained in R1.

This means that the content of R1 is added to R0.

Note that at the end of the run, R1 contains 0. But this is
no problem since the at the end we only read off the
result from R0, and ignore R1.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-29

Example of URM-Comp. Function

while (R1 6= 0) do {R0 := R0 + 1

R1 := R1 −
· 1}

Step 3:
Replace the while-loop by a goto:

LabelBegin : if R1 = 0 then goto LabelEnd;

R0 := R0 + 1;

R1 := R1 −
· 1;

goto LabelBegin;

LabelEnd :

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-30

Example of URM-Comp. Function

LabelBegin : if R1 = 0 then goto LabelEnd;

R0 := R0 + 1; R1 := R1 −
· 1; goto LabelBegin;

LabelEnd :

Step 4:
Replace last goto by a conditional goto, depending on
R2 = 0.
R2 is initially 0 and never modified, therefore this jump will
always be carried out.

LabelBegin : if R1 = 0 then goto LabelEnd;

R0 := R0 + 1;

R1 := R1 −
· 1;

if R2 = 0 then goto LabelBegin;

LabelEnd :

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-31

Example of URM-Comp. Function

LabelBegin : if R1 = 0 then goto LabelEnd;

R0 := R0 + 1;

R1 := R1 −
· 1;

if R2 = 0 then goto LabelBegin;

LabelEnd :

Step 5:
Resolve labels:
0 : if R1 = 0 then goto 4;

1 : R0 := R0 + 1;

2 : R1 := R1 −
· 1;

3 : if R2 = 0 then goto 0;

4 :

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-32

Example of URM-Comp. Function

0 : if R1 = 0 then goto 4;

1 : R0 := R0 + 1;

2 : R1 := R1 −
· 1;

3 : if R2 = 0 then goto 0;

4 :

Step 6:
Translate the program into a URM program I0, I1, I2, I3:

I0 = ifzero(1, 4)

I1 = succ(0)

I2 = pred(1)

I3 = ifzero(2, 0)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (a) 3-33

(b) High Level Progr. Constructs

In this Subsection we will introduce some higher level
program constructs for URMs, and how to translate
them back into the original URM language.

These constructs will be still be rather low level in terms
of the theory of programming languages, but high
enough in order to allow easily to introduce the
programs needed in this module.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-34

Convention Concerning Jump Addresses
When inserting URM programs U as part of new URM
programs, jump addresses will be adapted accordingly.

E.g.in succ(0)

U

pred(0)

we add 1 to the jump addresses in the original version
of U.

Furthermore, we assume that, if U terminates, it
terminates with the PC containing the number of the
first instruction following U.

Means that if we then insert U, and a run of U
terminates, the next instruction to be executed is the
one following U.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-35

More Readable Statements
We use the more readable statements

Rk := Rk + 1 for succ(k),
Rk := Rk −

· 1 for pred(k),
if Rk = 0 then goto q for ifzero(k, q).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-36

Labelled URM programs
We introduce labelled URM programs.

It will be easier to translate them back into original URM
programs.

The label End denotes the first instruction following a
program.

So instead of I0 = if R0 = 0 then goto 3

I1 = R0 := R0 −
· 1

I2 = if R1 = 0 then goto 0

we write
LabelBegin : I0 = if R0 = 0 then goto End

I1 = R0 := R0 −
· 1

I2 = if R1 = 0 then goto LabelBegin

End :
CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-37

Omitting Ik =

We omit now “Ik =”.

Furthermore, labels don’t have to start with Label, so
we can write Begin instead of LabelBegin.

We obtain the following program:

Begin : if R0 = 0 then goto End

R0 := R0 −
· 1

if R1 = 0 then goto Begin

End :

Since End : is always the first instruction following the
program, we will omit the last line End :.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-38

Replacing Registers by Variables
We write variable names instead of registers.
So if x, y denote R0, R1, respectively, we write instead of

Begin : if R0 = 0 then goto End

R0 := R0 −
· 1

if R1 = 0 then goto Begin

the following

Begin : if x = 0 then goto End

x := x−· 1

if y = 0 then goto Begin

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-39

Goto
goto mylabel;

stands for the (labelled) URM statement
if aux0 = 0 then goto mylabel;

Here aux0 is a register (which we can keep fixed), which
is initially zero and never modified in the URM program,
so it contains always 0.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-40

while (x 6= 0) do {· · · }

while (x 6= 0) do {

〈Instructions〉};

stands for the following URM program:

LabelLoop : if x = 0 then goto End;

〈Instructions〉

goto LabelLoop;

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-41

Repeat Loop

repeat{

〈Instructions〉}

until x = 0;

stands for the following URM program:

〈Instructions〉;

while (x 6= 0) do {

〈Instructions〉};

Note that this results in doubling of 〈Instructions〉.
One can avoid this.
But the length of the resulting program is not a
problem as long as we are not dealing with
complexity theory.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-42

x := 0

x := 0

stands for the following program:

while (x 6= 0) do {x := x−· 1; };

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-43

y := x;

y := x;
stands for (if x, y denote different registers, aux is new):

aux := 0

while (x 6= 0) do {

x := x−· 1;

aux := aux + 1; }; −−x = 0; aux = x ∼

y := 0; −−x = y = 0; aux = x ∼

while (aux 6= 0) do {

aux := aux−· 1;

x := x + 1;

y := y + 1; }; −−x = x ∼; y = x ∼; aux = 0;

If x, y are the same register, y := x stands for the empty
statement.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-44

Notation x ∼

On the previous slide the comments (indicated by −−)
indicate the state of the variables after executing this
statement.

x ∼, y ∼ denote the values of x, y before executing the
procedure.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-45

Aliasing Problem
Note that if for x, y denoting the same register we would
define y := x as the same program as when they are
different (using a while loop) we obtain the following
program (comments explain the effects in this case):

aux := 0

while (x 6= 0) do {

x := x−· 1;

aux := aux + 1; }; −−x = 0; aux = x ∼

x := 0; −−x = 0; aux = x ∼

while (aux 6= 0) do {

aux := aux−· 1;

x := x + 1;

x := x + 1; }; −−x = x ∼ . 2; aux = 0;

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-45a

Aliasing Problem
Instead of assigning x to y (which means doing
nothing), x is doubled in this program.

The above is an occurrence of the
::::::::::

aliasing
:::::::::::

problem .

The aliasing problem occurs if we have procedure with
parameters which modifies its arguments, and if this
program doesn’t do what it is intended to do in case two
of its arguments are instantiated by the same variable.

Frequent reason for programming erros, which are
difficult to detect.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-45b

y := x;

Note that the URM program y := x; preserved the value
of x.

So after executing the URM program, x contains the
value as it had before starting the execution.

Similarly, in the URM programs introduced on the next
slides

x := y + z

x := y−· z

the values of y and z will preserved.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-46

x := y + z;

Assume x, y, z denote different registers.
x := y + z; stands for the following program (aux is an
additional variable):

x := y; −− x = y ∼; y = y ∼

aux := z;

while (aux 6= 0) do {

aux := aux−· 1;

x := x + 1; }; −− x = y ∼ +z ∼;

−− y = y ∼; z = z ∼; aux = 0;

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-47

x := y−· z;

Assume x, y, z denote different registers.
Remember, that a −· b := max{0, a − b}.
x := y−· z;

is computed as follows (aux is an additional variable):

x := y;

aux := z;

while (aux 6= 0) do {

aux := aux−· 1;

x := x−· 1; };

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-48

Checking for Inequality
We have

(x−· y) + (y−· x) 6= 0 ⇔ x 6= y

Proof:
If x > y, then

x−· y > 0 ,

y−· x = 0 ,

(x−· y) + (y−· x) > 0

If y > x, then

y−· x > 0 ,

x−· y = 0 ,

(x−· y) + (y−· x) > 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-49

Checking for Inequality

(x−· y) + (y−· x) 6= 0 ⇔ x 6= y

If x = y, then

y−· x = 0 ,

x−· y = 0 ,

(x−· y) + (y−· x) = 0

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-50

Checking for Inequality

(x−· y) + (y−· x) 6= 0 ⇔ x 6= y

So a while loop

while (x 6= y) do {· · · }

can be replaced by

while ((x−· y) + (y−· x) 6= 0) do {· · · }

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-51

Checking for Inequality
while ((x−· y) + (y−· x) 6= 0) do {· · · }

which can be replaced by

aux := (x−· y) + (y−· x)

while aux 6= 0) do

{· · ·

aux := (x−· y) + (y−· x)

}

If we unfold this further, we obtain the following:

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-51a

while (x 6= y) do {· · · }

Assume x, y denote different registers.
while (x 6= y) do {
〈Statements〉};

stands for (aux, auxi denote new registers):

aux0 := x−· y;

aux1 := y−· x;

aux := aux0 + aux1;

while (aux 6= 0) do {

〈Statements〉

aux0 := x−· y;

aux1 := y−· x;

aux := aux0 + aux1; };

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (b) 3-52

(c) URM-Computable Functions

We introduce some constructions for introducing
URM-computable functions.

We will later introduce the set of partial recursive
functions as the least set of functions closed under
these constructions

Then by the fact that the URM-computable functions
are closed under these operations it follows that all
partial recursive functions are URM-computable.

We introduce first names for all functions constructed
this way.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-53

Notations for Partial Functions
Definition 3.1

(a) Define the
::::::

zero
:::::::::::

function zero
::::

: N → N, zero(x) = 0.

(b) Define the
:::::::::::::

successor
::::::::::::

function succ
::::

: N → N,

succ(x) = x + 1.

(c) Define for 0 ≤ i < n the
:::::::::::::

projection
:::::::::::

function
projni
:::::

: N
n → N, projni (x0, . . . , xn−1) = xi.

Remark

Note that all total functions are as well partial, so we
have for instance as well zero : N

∼

→ N.

proj10 : N → N is the identity function: proj10(x) = x.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-54

Notations for Partial Functions
(d) Assume

g : (B0 × · · · × Bk−1)
∼

→ C ,

hi : A0 × · · · × An−1
∼

→ Bi . i = 0, . . . , k − 1

Define

f := g ◦ (h0, . . . , hk−1)
:::::::::::::::::::

: A0 × · · · × An−1
∼

→ C :

f(~a) :' g(h0(~a), . . . , hk−1(~a))

In case of k = 1 we write g ◦ h instead of g ◦ (h).
Furthermore as usual

g1 ◦ g2 ◦ · · · ◦ gn := g1 ◦ (g2 ◦ (· · · ◦ (gn−1 ◦ gn))) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-55

Notations for Partial Functions
(e) Assume

g : N
k ∼

→ N ,

h : N
k+2 ∼

→ N .

Then we can define a function f : N
k+1 ∼

→ N defined by
:::::::::::

primitive
:::::::::::::

recursion from g and h as follows:

f(~n, 0) :' g(~n)

f(~n,m + 1) :' h(~n,m, f(~n,m))

We write primrec(g, h)
:::::::::::::

for the function f just defined.

So primrec(g, h) : N
k+1 ∼

→ N.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-56

Notations for Partial Functions
In the special case k = 0, it doesn’t make sense to use g().
Instead replace in this case g by some natural number.
So the case k = 0 reads as follows:

Assume a ∈ N, h : N
2 ∼

→ N.
Define

f : N
∼

→ N

by primitive recursion from a and h as follows:

f(0) :' a

f(m + 1) :' h(m, f(m))

We write primrec(a, h) for f , so primrec(a, h) : N
∼

→ N.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-57

primrec in Haskell
In Haskell we can define primrec as a higher-order
function as follows:

data Nat = Z | S Nat
deriving Show

- - primrec0 is the operator for primitive recursion
- - defining a 1-ary function primrec0 f a :: Nat → Nat
- - from f: Nat → Nat → Nat and a: Nat

primrec0 :: Nat → (Nat → Nat → Nat) → Nat → Nat
primrec0 a g Z = a
primrec0 a g (S n) = g n (primrec0 a g n)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-58

primrec in Haskell (Cont.)

- - primrec1 is the operator for primitive recursion
- - defining a 2-ary function primrec1 f g :: Nat → Nat → Nat
- - from f: Nat → Nat → Nat → Nat and g: Nat → Nat

primrec1 :: (Nat→ Nat)
→ (Nat → Nat → Nat→ Nat)
→ Nat → Nat → Nat

primrec1 g h n Z = g n
primrec1 g h n (S m) = h n m (primrec1 g h n m)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-59

Examples for Primitive Recursion
Addition can be defined using primitive recursion:
Let add

:::
: N

2 → N, add(x, y) := x + y. We have

add(x, 0) = x + 0 = x

add(x, y + 1) = x + (y + 1) = (x + y) + 1 = add(x, y) + 1

Therefore

add(x, 0) = g(x)

add(x, y + 1) = h(x, y, add(x, y))

where
g : N → N , g(x) := x ,

h : N
3 → N , h(x, y, z) := z + 1 .

So add = primrec(g, h).
CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-60

Addition (add)

g : N → N , g(x) := x ,

h : N
3 → N , h(x, y, z) := z + 1 ,

add := primrec(g, h)

We have
add(x, 0) = g(x) = x = x + 0.
add(x, 1) = h(x, 0, add(x, 0)) = add(x, 0) + 1 = x + 1.
add(x, 2) = h(x, 1, add(x, 1)) = add(x, 1)+1 = (x+1)+1.
etc.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-61

Defining + from primrec in Haskell
In Haskell we can define add from primrec as follows

add :: Nat → Nat → Nat
add = primrec1 (λn → n) (λn m k → S k)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-62

Examples for Primitive Recursion
Multiplication can be defined using primitive recursion:
Let mult

::::
: N

2 → N, mult(x, y) := x · y. We have

mult(x, 0) = x · 0 = 0

mult(x, y + 1) = x · (y + 1) = x · y + x = mult(x, y) + x

Therefore

mult(x, 0) = g(x)

mult(x, y + 1) = h(x, y,mult(x, y))

where
g : N → N , g(x) := 0 ,

h : N
3 → N , h(x, y, z) := z + x .

So mult = primrec(g, h).
CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-63

Multiplication (mult)

g : N → N , g(x) := 0 ,

h : N
3 → N , h(x, y, z) := z + x ,

mult := primrec(g, h)

We have
mult(x, 0) = g(x) = 0 = x · 0.
mult(x, 1) = h(x, 0,mult(x, 0)) = mult(x, 0) + x =
0 + x = x.
mult(x, 2) = h(x, 1,mult(x, 1)) = mult(x, 1) + x =
(x · 1) + x.
etc.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-64

Examples for Primitive Recursion
Let pred

::::

: N → N,

pred(n) := n −· 1 =

{

n − 1 if n > 0,
0 otherwise.

pred can be defined using primitive recursion:

pred(0) = 0

pred(x + 1) = x

Therefore

pred(0) = 0

pred(x + 1) = h(x, pred(x))
where

h : N
2 → N , h(x, y) := x

So pred = primrec(0, h).
CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-65

Examples for Primitive Recursion
x −· y can be defined using primitive recursion:
Let f(x, y) := x −· y. We have

f(x, 0) = x −· 0 = x

f(x, y + 1) = x −· (y + 1) = (x −· y) −· 1

= pred(x −· y) = pred(f(x, y))

Therefore

f(x, 0) = g(x)

f(x, y + 1) = h(x, y, f(x, y))

where

g : N → N , g(x) := x ,

h : N
3 → N , h(x, y, z) := pred(z) .

So f = primrec(g, h).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-66

Remark
If f = primrec(g, h), then

f(~n,m)↑ → ∀k ≥ m.f(~n, k)↑

Proof:
We have

f(~n,m + 1) :' h(~n,m, f(~n,m))

All functions are strict.
So if f(~n,m)↑, then

f(~n,m + 1) ' h(~n,m, f(~n,m))↑

therefore
f(~n,m + 1)↑

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-67

Proof of Remark
Therefore we have

f(~n,m)↑ → f(~n,m + 1)↑ .

By induction it follows that f(~n,m)↑ implies

∀k ≥ m.f(~n, k)↑ .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-68

Example
Let

h : N
2 ∼

→ N , h(n,m) '

{

m −· 1 if m > 0,
⊥ otherwise.

Let

f : N
∼

→ N , f := primrec(1, h) ,

i.e. f(0) ' 1 , f(n + 1) ' h(n, f(n)) .

Then
f(0) ' 1

f(1) ' h(0, f(0)) ' h(0, 1) ' 0

f(2) ' h(1, f(1)) ' h(1, 0)↑

∀m ≥ 2.f(m)↑

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-69

Primitive-Recursive Functions
The functions, which can be defined from zero, succ,
projki by using composition (◦) and primitive recursion
(primrec) are called the

:::::::::::

primitive
:::::::::::::

recursive
:::::::::::::

functions .

The primitive-recursive functions will be studied more in
detail in Sect. 5.

There we will see that they are powerful, but
not Turing-complete .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-70

Notations for Partial Functions
Let g : N

n+1 ∼

→ N.
We define µy.(g(~x, y) ' 0):

µy.(g(~x, y) ' 0) :'

the least y ∈ N s.t.
g(~x, y) ' 0

and for 0 ≤ y′ < y

there exists a z′ 6= 0

s.t. g(~x, y′) ' z′ if such y

exists,

⊥ otherwise

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-71

µ(g)

Now define h : N
n ∼

→ N,

h(~x) ' µy.(g(~x, y) ' 0)

We write µ(g)
::::

for this function h.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-72

Examples
Assume

g(x, 0) ' 1

g(x, 1) ↑

g(x, 2) ' 0

Then
µy.(g(x, y) ' 0)↑

Assume instead
g(x, 0) ' 1

g(x, 1) ' 5

g(x, 2) ' 0

Then
µy.(g(x, y) ' 0) ' 2

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-73

Computation of µ(g)

µ(g)(~x) :' µy.(g(~x, y) ' 0).

If g is intuitively computable, we see that h := µ(g) is
intuitively computable as follows:

In order to compute h(~x) we first compute g(~x, 0).
If this computation never terminates g(~x, 0)↑ and
µy.(g(~x, y) ' 0)↑ as well.
If it terminates, and we have g(~x, 0) ' 0, we obtain
µy.(g(~x, y) ' 0) ' 0.

Otherwise, repeat the above with testing of
g(~x, 1) ' 0.

If successful µy.(g(~x, y) ' 0) ' 1.
If unsuccessful repeat it with 2, 3, etc.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-74

Computation of µ(g)

Note that µ(g)(~x)↑
in case there is a y s.t.

g(~x, y)↑

and for y′ < y we have g(~x, y′)↓ but g(~x, y′) ' z for
some z > 0.

This coincides with computation by the above
mentioned intuitive computation:

In this case, the program will compute g(~x, 0),
g(~x, 1), . . . , g(~x, y − 1) and get as result that these
values are 6= 0.
Then it will try to compute g(~x, y), and this
computation never terminates.
So the value of this program is undefined, as is
µy.(g(~x, y) ' 0).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-75

Computation of µ(g)

If we defined µ(g)(~x) to be the least y s.t.

g(~x, y) ' 0

independently of whether g(~x, y′) ↓ for all y′ < y, then we
would obtain a non computable function .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-76

Examples for µ

Let f : N
2 → N, f(x, y) := x −· y. Then

µy.(f(x, y) ' 0) ' x

so µ(f)(x) ' x.

Let f : N
∼

→ N,
f(0)↑,
f(n) := 0 for n > 0.
Then

µy.(f(y) ' 0)↑

.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-77

Examples for µ

Let f : N
∼

→ N,

f(n) :=

1 if there exist primes p, q < 2n + 4

s.t. 2n + 4 = p + q,
0 otherwise

µy.(f(y) ' 0) is the first n s.t. there don’t exist primes p,
q s.t. 2n + 4 = p + q.
Goldbach’s conjecture says that every even number
≥ 4 is the sum of two primes.
This is equivalent to µy.(‘f(y) ' 0)↑.
It is one of the most important open problems in
mathematics to show (or refute) Goldbach’s conjecture.
If we could decide whether a partial computing function
is defined (which we can’t), we could decide Goldbach’s
conjecture.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-78

Partial Recursive Functions
The functions, which can define in the same way as the
primitive-recursive functions

i.e. being defined from zero, succ, projki by using
composition (◦) and primitive recursion (primrec)

but by additionally closing them under µ, are called the
::::::::

partial
:::::::::::::

recursive
:::::::::::::

functions .

The partial recursive functions will be studied more in
detail in Sect. 6.

There we will see that the partial recursive functions
form a Turing complete model of computation .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-79

Next Step
We are going to show that the URM computable
functions are closed under the operations introduced
above.

In order to show this we need to be able to modify URM
programs, so that they

have some other specified input and output registers,
and conserve the content of certain other registers.

The following lemma shows that such a modification is
possible.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-80

Lemma and Definition 3.2
Assume f : N

k ∼

→ N is URM-computable.
Assume x0, . . . , xk−1, y, z0, . . . ,zl are different variables.
Then one can define a URM program, which, computes
f(x0, . . . , xk−1) and stores the result in y in the following
sense:

If f(x0, . . . , xk−1) ↓, the program terminates at the first
instruction following this program , and stores the result
in y.

If f(x0, . . . , xk−1)↑, the program never terminates.

The program can be defined so that it doesn’t change
x0, . . . , xk−1, z0, . . . , zl.

For U we say it is
::

a
::::::

URM
::::::::::::

program
:::::::::

which
:::::::::::::

computes

::::::::::::::::::::::

y ' f(x0, . . . , xk−1)
:::::

and
:::::::::::::

preserves
:::::::::::

z0, . . . , zl.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-81

Intuition behind Lem. 3.2
Lemma 3.2 means that if f is URM-computable then we
can define a URM-program in such a way that

it takes the arguments from registers we have
chosen,
and stores the result in a register we have chosen,
and does this in such a way that the content of the
input registers and of some other registers we have
choosen are not modified.
This is possible as long as the input registers and
the output register are all different.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-82

Idea of the proof
First copy the arguments in some other registers, so
that the arguments are preserved.

Then compute the function on those auxiliary registers
and make sure that the computation doesn’t affect the
registers to be preserved.

Then move the result into the register chosen as output
register, and set variables x0, . . . , xk−1, z0, . . . , zl back to
their original (stored) values.

Omit Proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-83

Proof
Let U be a URM program s.t. U(k) = f .
Let u0, . . . , uk−1 be registers different from the above.
By renumbering of registers and of jump addresses, we
obtain a program U′, which computes the result of
f(u0, . . . , uk−1) in u0

leaves the registers mentioned in the lemma unchanged,
and which, if it terminates, terminates in the first instruction
following U′.
The following is a program as intended:

u0 := x0;

· · ·

uk−1 := xk−1;

U′

y := u0;
CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-84

Lemma 3.3

(a) zero, succ and projni are URM-computable.

(b) If f : N
n ∼

→ N, gi : N
k ∼

→ N are URM-computable, so is
f ◦ (g0, . . . , gn−1).

(c) If g : N
n ∼

→ N, and h : N
n+2 ∼

→ N are URM-computable,
so is the function f := primrec(g, h) defined by primitive
recursion from g and h.

(d) If g : N
n+1 ∼

→ N is URM-computable, so is µ(g).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-85

Remark
The Lemma is very powerful:

It shows that many functions are URM-computable.
This shows that for instance the exponential function
is URM computable.

This follows since addition, multiplication and
exponentiation can be defined by primitive
recursion from the basic functions.
Writing a URM program directly which computes
the exponential function would be very difficult.

Omit Proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-86

Proof of Lemma 3.3 (a)
Let xi denote register Ri.
Proof of (a)

zero is computed by the following program:
x0 := 0.

succ is computed by the following program:
x0 := x0 + 1.

projnk is computed by the following program:
x0 := xk.

Especially, if k = 0 then projnk is the empty program
(i.e. the program with no instructions
this is since we defined x0 := x0 to be the empty
program.)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-87

Proof of Lemma 3.3 (b)

Assume f : N
n ∼

→ N, gi : N
k ∼

→ N are URM-computable.
Show f ◦ (g0, . . . , gn−1) is computable.
A plan for the program is as follows:

Input is stored in registers x0, . . . , xk−1.
Let ~x := x0, . . . , xk−1.

First we compute gi(~x) for i = 0, . . . , n − 1, store result in
registers yi.

By Lemma 3.2 we can do this in such a way that
x0, . . . , xk−1 and the previously computed values
gi(~x), which are stored in yj for j < i are not
destroyed.

Then compute f(y0, . . . , yn−1), and store result in x0.

Then x0 contains f(g0(~x), . . . , gn−1(~x))).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-88

Proof of Lemma 3.3 (b)
Let therefore Ui be a URM program (i = 0, . . . , n − 1),
which computes yi ' gi(~x) and preserves yj for j 6= i.

Let V be a URM program, which computes
x0 ' f(y0, . . . , yn−1).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-89

Proof of Lemma 3.3 (b)
Let U′ be defined as follows:
U0

· · ·

Un−1

V

We show U′(k)(~x) ' (f ◦ (g0(~x), . . . , gn−1(~x))).

Omit rest of proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-90

Proof of Lemma 3.3 (b)
U′ is the program
U0

· · ·
Un−1

V

Case 1: For one i gi(~x)↑.
The program will loop in program Ui for the first such i.
U′(k)(~x)↑, f ◦ (g0, . . . , gn−1)(~x)↑.

Case 2: For all i gi(~x) ↓.
The program executes Ui, sets yi ' gi(x0, . . . , xk−1) and
reaches beginning of V.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-91

Proof of Lemma 3.3 (b)
U′ is the program
U0

· · ·
Un−1

V

Case 2.1: f(g0(~x), . . . , gn−1(~x))↑.
V will loop, U′(k)(~x)↑, f ◦ (g0, . . . , gn−1)(~x)↑.
Case 2.2: Otherwise.
The program reaches the end of program V and
result in x0 ' f(g0(~x), . . . , gn−1(~x)).
So U′(k)(~x) ' (f ◦ (g0, . . . , gn−1))(~x).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-92

Proof of Lemma 3.3 (b)
In all cases

U′(k)(~x) ' (f ◦ (g0, . . . , gn−1))(~x) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-93

Proof of Lemma 3.3 (c)
Assume

g : N
n ∼

→ N , h : N
n+2 ∼

→ N

are URM-computable.
Let

f := primrec(g, h) .

Show f is URM-computable.
Defining equations for f are as follows
(let ~n := n0, . . . , nn−1):

f(~n, 0) ' g(~n),

f(~n, k + 1) ' h(~n, k, f(~n, k)).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-94

Proof of Lemma 3.3 (c)
Computation of f(~n, l) for l > 0 is as follows:

Compute f(~n, 0) as g(~n).

Compute f(~n, 1) as h(~n, 0, f(~n, 0)), using the previous
result.

Compute f(~n, 2) as h(~n, 1, f(~n, 1)), using the previous
result.

· · ·

Compute f(~n, l) as h(~n, l − 1, f(~n, l − 1)), using the
previous result.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-95

Proof of Lemma 3.3 (c)
Plan for the program:

Let ~x := x0, . . . , xn−1.
Let y, z, u be new registers.

Compute f(~x, y) for y = 0, 1, 2, . . . , xn, and store result in
z.

Initially we have y = 0 (holds for all registers except
of x0, . . . , xn initially).
We compute z ' g(~x) (' f(~x, 0)).
Then y = 0, z ' f(~x, 0).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-96

Proof of Lemma 3.3 (c)

In step from y to y + 1:
Assume that we have z ' f(~x, y).
We want that after increasing y by 1 the
::::::

loop
::::::::::::

invariant z ' f(~x, y) still holds.
Obtained as follows
· Compute u ' h(~x, y, z)

(' h(~x, y, f(~x, y)) ' f(~x, y + 1)).
· Execute z := u (' f(~x, y + 1)).
· Execute y := y + 1.
· At the end , z ' f(~x, y) for the new value of y.

Repeat this until y = xn.
Once y has reached xn, z contains f(~x, y) ' f(~x, xn).
Execute x0 := z.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-97

Proof of Lemma 3.3 (c)
Let

U be a URM program, which computes z ' g(~x) and
preserves y (by definition 3.2, it doesn’t modify the
arguments ~x of g);

V be a program, which computes u ' h(~x, y, z). (by
definition 3.2, it doesn’t change ~x, y, z.)

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-98

Proof of Lemma 3.3 (c)
Let U′ be as follows:

U % Compute z ' g(~x)(' f(~x, 0))

while (xn 6= y) do {

V % Compute u ' h(~x, y, z)

% will be ' h(~x, y, f(~x, y)) ' f(~x, y + 1)

z := u;

y := y + 1; };

x0 := z;

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-99

Proof of Lemma 3.3 (c)
Correctness of this program:

When U has terminated, we have y = 0 and
z ' g(~x) ' f(~x, y).

After each iteration of the while loop, we have y := y′ + 1
and z ' h(~x, y′, z′).
(y′, z′ are the previous values of y, z, respectively.)

Therefore we have z ' f(~x, y).

The loop terminates, when y has reached xn.
Then z contains f(~x, y).
This is stored in x0.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-100

Proof of Lemma 3.3 (c)
If U loops for ever, or in one of the iterations V loops for
ever, then:

U′ loops, U′(n+1)(~x, xn)↑.
f(~x, k)↑ for some k < xn,
subsequently f(~x, l)↑ for all l > k.
Especially, f(~x, xn)↑.

Therefore f(~x, xn) ' U′(n+1)(~x, xn).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-101

Proof of Lemma 3.3 (d)
Assume

g : N
n+1 ∼

→ N

is URM-computable.
Show

µ(g)

is URM-computable as well.
Note µ(g)(x0, . . . , xk−1) is the minimal z s.t.

g(x0, . . . , xk−1, z) ' 0 .

Let ~x := x0, . . . , xk−1 and let y, z be registers different from ~x.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-102

Proof of Lemma 3.3 (d)
Plan for the program:

Compute g(~x, 0), g(~x, 1) , . . . until we find a k s.t.
g(~x, k) ' 0.
Then return k.

This is carried out by executing

z ' g(~x, y)

and successively increasing y by 1 until we have z = 0.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-103

Proof of Lemma 3.3 (d)
Let U compute

z ' g(x0, . . . , xk−1, y) ,

(and preserve the arguments x0, . . . , xk−1, y.)
Let V be as follows:

repeat{

U

y := y + 1; }

until (z = 0);

y := y−· 1;

x0 := y;

Omit rest of proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-104

Proof of Lemma 3.3 (d)

V is repeat{U; y := y + 1; } until (z = 0);

y := y−· 1; x0 := y;

Initially y = 0.
After each iteration of the repeat loop, we have

y := y′ + 1 , z ' g(x0, . . . , xk−1, y
′)

(y′ is the value of y before this iteration).
If the loop terminates, we have

z ' 0 y = y′ + 1

where y′ is the first value, such that g(x0, . . . , xk−1, y
′) ' 0 .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-105

Proof of Lemma 3.3 (d)
Finally y is decreased by one.

Then y is the least y s.t.

g(x0, . . . , xk−1, y) ' 0 .

x0 is then set to that value.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 3 (c) 3-106

	Sect. 3: The URM
	(a) Definition
of the URM
	Turing Completeness
	Models of Computation
	The URM
	The URM
	URM
	Description of the URM
	Remark
	The URM
	URM Instructions
	URM Instructions
	$x dotminusForHeadline y$
	URM Instructions
	Finiteness
	Example of a URM Program
	Example
	Behaviour of the Example
	URM-Computable Functions
	Definition $Urm ^{(k)}$
	URM-Computable Functions
	URM-Computable Functions
	Change of Notation
	Example
	Example
	Example
	Partial Computable Functions
	Partial Computable Functions
	Example of URM-Comp. Function
	Example of URM-Comp. Function
	Example of URM-Comp. Function
	Example of URM-Comp. Function
	Example of URM-Comp. Function
	Example of URM-Comp. Function
	(b) High
Level Progr. Constructs
	Convention Concerning Jump Addresses
	More Readable Statements
	Labelled URM programs
	Omitting $Irm _k =$
	Replacing Registers by Variables
	Goto
	$whiledott {(xtt
ot = 0)}{
cdots }$
	Repeat Loop
	$xtt := 0$
	$ytt := xtt ;$
	Notation x$sim $
	Aliasing Problem
	Aliasing Problem
	$ytt := xtt ;$
	$xtt := ytt + ztt ;$
	$xtt := ytt dotminusheadline ztt ;$
	Checking for Inequality
	Checking for Inequality
	Checking for Inequality
	Checking for Inequality
	$whiledott {(xtt
ot = ytt)}{
cdots }$
	(c) URM-Computable
Functions
	Notations for Partial Functions
	Notations for Partial Functions
	Notations for Partial Functions
	Notations for Partial Functions
	primrec in Haskell
	primrec in Haskell (Cont.)
	Examples for Primitive Recursion
	Addition ($addsf $)
	Defining $+$ from primrec in Haskell
	Examples for Primitive Recursion
	Multiplication ($multsf $)
	Examples for Primitive Recursion
	Examples for Primitive Recursion
	Remark
	Proof of Remark
	Example
	Primitive-Recursive Functions
	Notations for Partial Functions
	$mu (g)$
	Examples
	Computation of $mu (g)$
	Computation of $mu (g)$
	Computation of $mu (g)$
	Examples for $mu $
	Examples for $mu $
	Partial Recursive Functions
	Next Step
	Lemma and Definition deflemurmpreserveingvariables
	Intuition behind Lem. deflemurmpreserveingvariables
	Idea of the proof
	Proof
	Lemma lembasicfunctionsurmcomputable
	Remark
	Proof of Lemma lembasicfunctionsurmcomputable {} (a)
	Proof of Lemma lembasicfunctionsurmcomputable {} (b)
	Proof of Lemma lembasicfunctionsurmcomputable {} (b)
	Proof of Lemma lembasicfunctionsurmcomputable {} (b)
	Proof of Lemma lembasicfunctionsurmcomputable {} (b)
	Proof of Lemma lembasicfunctionsurmcomputable {} (b)
	Proof of Lemma lembasicfunctionsurmcomputable {} (b)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (c)
	Proof of Lemma lembasicfunctionsurmcomputable {} (d)
	Proof of Lemma lembasicfunctionsurmcomputable {} (d)
	Proof of Lemma lembasicfunctionsurmcomputable {} (d)
	Proof of Lemma lembasicfunctionsurmcomputable {} (d)
	Proof of Lemma lembasicfunctionsurmcomputable {} (d)

