Section 2

Encoding of Data Types into N

- There are lots of different data types available.
- Some data types have finite size.
 - E.g. the type of Booleans $\{true, false\}$.
- Some data types have infinite size but are still "small".
 - E.g. the type of natural numbers $\mathbb{N} = \{0, 1, 2, \dots, \}$.

Size and Computability

- We can introduce a notion of computability for finite and for small infinite data types.
 - E.g. it makes sense to compute certain functions mapping natural numbers to natural numbers.
- We cannot introduce in general a notion of computability for big data types.
 - We cannot even represent its elements on the computer.

26 Computability Theory, Michaelmas Term 2008, Sect. 2

2-1

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 2

Size and Computability

- There are notions of computability for certain "big data types" which make use of approximations of elements of such data types.
 - Topic of intensive research in Swansea esp. of Ulrich Berger, Jens Blanck, Monika Seisenberger, John Tucker.
 - One considers especially ℝ and sets of functions (E.g. N→N, (N→N)→N).
 - Not part of this lecture.

Encoding of Data Types into N

- Some data types are "big".
 - E.g. the set of subsets $\mathcal{P}(\mathbb{N})$ of \mathbb{N} .
 - ${\scriptstyle {\bullet}} {\scriptstyle {\bullet}}$ Subsets of ${\mathbb N}$ have in general no finite description.
 - **•** Some are finite (e.g. $\{0, 1, 3\}$).
 - Some can be described by formulae
 - \cdot E.g. the set of even numbers is

 $\{n\in\mathbb{N}\mid \exists m\in\mathbb{N}.n=2m\}$.

- But there are subsets which cannot be described by formulae.
- There is no way of associating a finite description to all elements of $\mathcal{P}(\mathbb{N})$.
 - · This will be shown in this section.

Topic of this Section

- In this Section we will make precise the notion of size of a set.
 - Notion of "cardinality" and "equinumerous".
 - We will introduce a hierarchy of sizes.
 - We will be able to distinguish between sizes of different "big" sets.
- Countable sets will be the sets, which were called "small" above.
 - This notion will include the finite sets.

Structure of this Section

- (a) Mathematical background.
- (b) Cardinality.
- (c) Countable sets.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 2

- (d) Reducing computability to \mathbb{N} .
- (e) Encoding of some data types into \mathbb{N} .
- (f) Further mathematical background: Partial functions.

26 Computability Theory, Michaelmas Term 2008, Sect. 2

2-5

Notions of Computability

- We will later introduce computability on \mathbb{N} .
- Computability on countable sets will in this section be reduced to computability on N.

(a) Mathematical Background

Some Standard Sets

• \mathbb{N} is the set of natural numbers:

 $\mathbb{N}:=\{0,1,2,\ldots\}$.

- Note that 0 is a natural number.
- When counting, we start with 0:
 - The element no. 0 of a sequence is what is usually called the first element:

E.g., in x_0, \ldots, x_{n-1} , x_0 is the first variable.

The element no. 1 of a sequence is what is usually called the second element.

E.g., in x_0, \ldots, x_{n-1} , x_1 is the second variable.

🎐 etc.

2-6

Some Standard Sets

 \blacksquare \mathbb{Z} is the set of integers:

$$\mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\} .$$

So

$$\mathbb{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots, \}$$

Some Standard Sets

- \blacksquare \mathbb{R} is the set of real numbers.
 - E.g.
 - $0.333333\cdots \in \mathbb{R}$,
 - $\sqrt{2} \in \mathbb{R}$,
 - $-\sqrt{2} \in \mathbb{R}$,
 - $\pi \in \mathbb{R}$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-9

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Some Standard Sets

- Assume *A*, *B* are sets.
 - $A \times B$ is the product of A and B:

 $A \times B := \{ (x, y) \mid x \in A \land y \in B \}$

• $A \rightarrow B$ is the set of functions $f : A \rightarrow B$.

Some Standard Sets

Q is the set of rationals, i.e.

$$\mathbb{Q} := \{ \frac{x}{y} \mid x \in \mathbb{Z}, y \in \mathbb{N}, y \neq 0 \}$$

- So \mathbb{Q} contains $\frac{2}{17}, \frac{-3}{5}, \frac{-2}{3}$, etc.
- As usual we identify equal fractions e.g.

$$\frac{2}{4} = \frac{1}{2}$$
.

- We write $-\frac{n}{m}$ instead of $\frac{-n}{m}$, e.g. $-\frac{1}{2} = \frac{-1}{2}$.
- As usual $\frac{z}{-m} := -\frac{z}{m}$, e.g. $\frac{1}{-2} := -\frac{1}{2}$.

Some Standard Sets

Assume A is a set, k ∈ N.
 Then A^k_∼ is the set of k-tuples of elements of A or k-fold Cartesian product of A defined as follows:

$$A^k := \{(x_0, \dots, x_{k-1}) \mid x_0, \dots, x_{k-1} \in A\}$$
.

Note that

$$A^0 = \{()\}$$

We identify A^1 with A. So we don't distinguish between (x) and x.

Essentially, $A^k = \underbrace{A \times \cdots \times A}_{k \text{ times}}$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-13

A^*

We define

$$\mathcal{A}^*_{\sim} := \{ (a_0, \dots, a_{k-1}) \mid k \in \mathbb{N}, a_0, \dots, a_{k-1} \in A \}$$

So A^* is

- the set of sequences of elements of A (of arbitrary length),
- also called the set of <u>lists of A</u>,
- or <u>A-Kleene-Star</u>.
- So A^* is the union of all A^k for $k \in \mathbb{N}$, i.e.

$$A^* = \bigcup_{k \in \mathbb{N}} A^k$$

A^*

Remark:

- A* can be considered as the set of strings having letters in the alphabet A.
 - E.g. if

$$A = \{a, b, c, \dots, z\}$$

then A^* is the set of strings formed from lower case letters.

- So (r, e, d) stands for the string "red".
- A^k is the set of strings of length k from alphabet A.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

$\mathcal{P}(X)$

- $\mathcal{P}(X)$, the powerset of *X*, is the set of all subsets of *X*.
- For finite sets *X*, the power set of *X* will be finite:

 $\mathcal{P}(\{0,1,2\}) = \{\{\}, \\ \{0\}, \{1\}, \{2\}, \\ \{0,1\}, \{0,2\}, \{1,2\} \\ \{0,1,2\}\}$

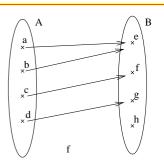
- For infinite sets X we will see that the X is big ("uncountable").
- Therefore we cannot write down the elements of $\mathcal{P}(X)$ for such *X*.

²⁶ Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Exercise

- Write down $\mathcal{P}(\{0, 1, 2, 3\})$ and $\mathcal{P}(\{0, 1, 2, 3, 4\})$.
- Make sure you have the right number of elements: If a set has n elements, then $\mathcal{P}(X)$ has 2^n elements.

Image of f



2-17

Image of f

Definition 2.1

- Let $f : A \to B$, $C \subseteq A$.
- (a) $f[C] := \{f(a) \mid a \in C\}$ is called the image of C under f.
- (b) The image of A under f (i.e. f[A]) is called the image of f.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Image of f

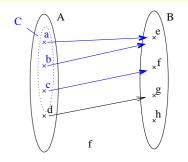


Image of C under f.

Image of f

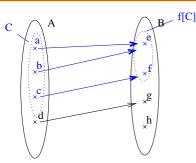


Image of C under f.

 $f[C] = \{e, f\}$

Injective/Surjective/Bijective

Definition 2.2

Let A, B be sets, $f : A \rightarrow B$.

- (a) f is injective or an injection or one-to-one, if f applied to different elements of A has different results $\forall a, b \in A.a \neq b \rightarrow f(a) \neq f(b)$.
- (b) f is surjective or a surjection or onto, if every element of B is in the image of f: $\forall b \in B. \exists a \in A. f(a) = b.$
- (c) f is bijective or a bijection or a one-to-one correspondence if it is both surjective and injective.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-19

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Visualisation of "Injective"

If we visualise a function by having arrows from elements $a \in A$ to $f(a) \in B$ then we have the following:

A function is injective, if for every element of B there is at most one arrow pointing to it:

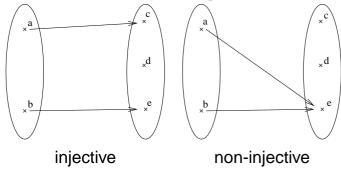


Image of f

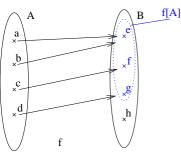
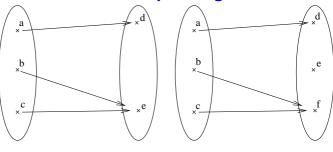


Image of f.

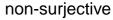
 $f[A] = \{e, f, g\}$

Visualisation of "Surjective"

A function is surjective, if for every element of B there is at least one arrow pointing to it:



surjective



Remark

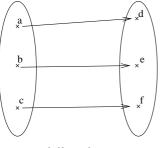
- The injective, surjective, bijective functions are closed under composition:
 - If f : A → B and g : B → C are injective (or surjective or bijective), then g ∘ f : A → C is injective (surjective, bijective, respectively) as well.
- **Proof:** See mathematics lectures or easy exercise.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-22

Visualisation of "Bijective"

A function is **bijective**, if for every element of *B* there is exactly one arrow pointing to it:



bijective

Note that, since we have a function, for every element of A there is exactly one arrow originating from there. CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Infinite Sequences

- An infinite sequence of elements of a set B is an enumeration of certain elements of B by natural numbers.
 - E.g. the sequence of even numbers is

 $(0,2,4,6,8,\ldots)$

We might repeat elements, e.g.

 $(0, 2, 0, 2, 0, 2, \ldots)$

Infinite Sequences

Sequences of natural numbers are written as

 $(a_n)_{n\in\mathbb{N}}$

which stands for

 (a_0, a_1, a_2, \ldots)

So the sequence of even numbers is

$$(0, 2, 4, 6, ...)$$

= $(a_0, a_1, a_2, ...)$
= $(a_n)_{n \in \mathbb{N}}$

where

A sequence

 $a_n = 2n$

 $(a_n)_{n \in \mathbb{N}}$

of elements in A is nothing but a function $f : \mathbb{N} \to A$, s.t.

 $f(n) = a_n$

■ In fact we will identify functions $f : \mathbb{N} \to A$ with infinite

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Infinite Sequences

2-26

Infinite Sequences

So the following denotes the same mathematical object

• The function $f : \mathbb{N} \to \mathbb{N}$, $f(n) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ 1 & \text{if } n \text{ is even.} \end{cases}$

- The sequence (1, 0, 1, 0, 1, 0, ...).
- The sequence $(a_n)_{n \in \mathbb{N}}$ where $a_n = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ 1 & \text{if } n \text{ is even.} \end{cases}$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Infinite Sequences

- Occasionally, we will enumerate sequences by different index sets.
 - E.g. we consider a sequence indexed by non-zero natural numbers

 $(a_n)_{n\in\mathbb{N}\setminus\{0\}}$

or a sequence indexed by integers

 $(a_z)_{z\in\mathbb{Z}}$

• A sequence $(a_x)_{x \in B}$ of elements in *A* is nothing but the function

$$f: B \to A$$
, $f(x) = a_x$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

sequences of elements of A.

λ -Notation

• $\lambda x.t$ means in an informal setting the function mapping x to t.

E.g.

- $\lambda x.x + 3$ is the function f s.t. f(x) = x + 3.
- $\lambda x.\sqrt{x}$ is the function f s.t. $f(x) = \sqrt{x}$.
- This notation used, if one one wants to introduce a function without giving it a name.
- Domain and codomain not specified when this notation is used, this will be clear from the context.

The "dot"-notation.

🍠 In

$$(A \to \forall x. B(x) \land C(x)) \lor D(x)$$

 $\forall x \text{ refers} \\ \text{only to} \\$

$$B(x) \wedge C(x)$$

This is the maximum scope possible It doesn't make sense to include ") $\lor D(x)$ " into the scope.

2-30 26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a) CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a) The "dot"-notation. The "dot"-notation. In expressions like 🍠 In $\exists x.A(x) \land B(x)$ $\forall x.A(x) \land B(x)$ $\exists x \text{ refers to}$ the quantifier ($\forall x$.) is as far as possible: $A(x) \wedge B(x)$ 🥒 In $\forall x.A(x) \land B(x)$ 🥒 In $(A \land \exists x.B(x) \lor C(x)) \land D(x)$ $\forall x$. refers to $\exists x \text{ refers to}$ $A(x) \wedge B(x)$ $B(x) \lor C(x)$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

The "dot"-notation.

- This applies as well to λ -expressions.
 - 🥒 So

 $\lambda x.x + x$

is the function taking an x and returning x + x.

Relations, Predicates and Sets

- We can use P(a) in formulas. Therefore:
 - $\neg P(a)$ ("not P(a)") means that "P(a) is not true".
 - $P(a) \wedge Q(b)$ means that "both P(a) and Q(b) are true"
 - $P(a) \lor Q(b)$ means that "P(a) or Q(b) is true".

(We have inclusive or: if both P(a) and Q(b) are true, then $P(a) \lor Q(b)$ is true as well).

• $\forall x \in B.P(x)$ means that "for all elements x of the set

B P(x) is true".

 ∃x ∈ B.P(x) means that "there exists an element x of the set B s.t. P(x) is true".

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-34

Relations, Predicates and Sets

- A predicate on a set A is a property P of elements of A.
 In this lecture, A will usually be N^k for some k ∈ N,
 k > 0.
- We write <u>P(a)</u> for "predicate P is true for the element a of A".
- We often write " $\underline{P(x)}$ holds" for "P(x) is true".

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Relations, Predicates and Sets

- In this lecture, "relation" is another word for "predicate".
- We identify a predicate *P* on a set *A* with {*x* ∈ *A* | *P*(*x*)} Therefore predicates and sets will be identified.
 E.g., if *P* is a predicate,
 - $x \in \mathbb{P}$ stands for $x \in \{x \in A \mid P(x)\}$,

which is equivalent to P(x),

• $\forall x \in \underline{P}.\varphi(x)$ for a formula φ stands for

$$\forall x. P(x) \to \varphi(x)$$

etc.

Relations, Predicates and Sets

• An <u>*n*-ary relation</u> or predicate on \mathbb{N} is a relation $P \subseteq \mathbb{N}^n$.

A <u>unary</u>, <u>binary</u>, <u>ternary</u> relation on \mathbb{N} is a 1-ary, 2-ary, 3-ary relation on \mathbb{N} , respectively.

- For instance < and equality are binary relations on $\mathbb N.$
- An <u>n-ary function</u> on N is a function f : Nⁿ → N.
 A <u>unary</u>, <u>binary</u>, <u>ternary</u> function on N is a 1-ary, 2-ary, 3-ary function on N, respectively.

Examples

🍠 If

 $f: \mathbb{N}^{n+1} \to \mathbb{N}$

then in $f(\vec{x}, y)$, \vec{x} needs to stand for n arguments. Therefore

$$\vec{x} = x_0, \dots, x_{n-1}$$

🥒 lf

 $f:\mathbb{N}^{n+2}\to\mathbb{N}$

then in $f(\vec{x}, y)$, \vec{x} needs to stand for n+1 arguments, so

 $\vec{x} = x_0, \ldots, x_n$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

Examples

• If *P* is an n + 4-ary relation, then in $P(\vec{x}, y, z)$, \vec{x} stands for

 x_0,\ldots,x_{n+1}

9 Similarly, we write \vec{y} for

 y_0,\ldots,y_{n-1}

where n is clear from the context.

Similarly for

 $\vec{z}, \vec{n}, \vec{m}, \dots$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-38

\vec{x}, \vec{y} etc.

In many expressions we will have arguments, to which we don't refer explicitly.
Example: Variables x_0, \ldots, x_{n-1} in

$$f(x_0, \dots, x_{n-1}, y) = \begin{cases} g(x_0, \dots, x_{n-1}), & \text{if } y = 0, \\ h(x_0, \dots, x_{n-1}), & \text{if } y > 0. \end{cases}$$

- We abbreviate x_0, \ldots, x_{n-1} , by \vec{x} .
- Then the above can be written shorter as

$$f(\vec{x}, y) = \begin{cases} g(\vec{x}), & \text{if } y = 0, \\ h(\vec{x}), & \text{if } y > 0. \end{cases}$$

• In general, \vec{x} stands for x_0, \ldots, x_{n-1} , where the number of arguments n is clear from the context.

Notation

٩

$\forall \vec{x} \in \mathbb{N}. \varphi(\vec{x})$

stands for

 $\forall x_0, \dots, x_{n-1} \in \mathbb{N}.\varphi(x_0, \dots, x_{n-1})$

where the number of variables n is implicit (and usually unimportant).

٩

$\exists \vec{x} \in \mathbb{N}. \varphi(\vec{x})$

is to be understood similarly.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (a)

2-42

Notation

_

$$\{\vec{x} \in \mathbb{N}^n \mid \varphi(\vec{x})\}$$

is to be understood as

$$\{(x_0,\ldots,x_{n-1})\in\mathbb{N}^n\mid\varphi(x_0,\ldots,x_{n-1})\}\$$

9

$$\{(\vec{x}, y, z) \in \mathbb{N}^{n+2} \mid \varphi(\vec{x}, y, z)\}$$

is to be understood as

 $\{(x_0, \ldots, x_{n-1}, y, z) \in \mathbb{N}^{n+2} \mid \varphi(x_0, \ldots, x_{n-1}, y, z)\}$

Similar notations are to be understood analogously.

(b) Cardinality

- In this subsection, we will make precise the notion of "small", "big" sets above.
- So we need a notion of size of a set.
- For finite sets one can introduce a number for the size of a set.
- For infinite sets, introducing such numbers (cardinality) is beyond the scope of this lectures
- However, we can introduce a notion of relative size, namely what it means for one set to be smaller/equal/greater in size than another set.
 - Equinumerous will mean "equal in size".

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Number of Elements

Notation 2.3

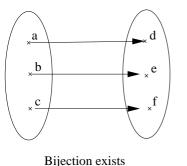
If A is a finite set, let |A| be the number of elements in A.

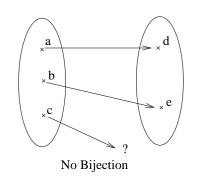
Remark 2.4

One sometimes writes #A for |A|.

Cardinality of Finite Sets

If *A* and *B* are finite sets, then |A| = |B|, if and only if there is a bijection between *A* and *B*:





Cardinality of Sets

Definition 2.5

Two sets A and B are equinumerous or "have the same cardinality", in mathematical notation

 $A \approx B$

if there exists a bijection

 $f:A\to B$

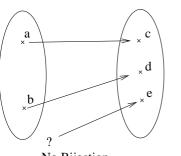
Remark 2.6

If *A* and *B* are finite sets, then $A \approx B$ if and only *A* and *B* have the same number of elements, i.e. |A| = |B|.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-46

Cardinality of Finite Sets



No Bijection

The above can be generalized to arbitrary (possibly infinite sets) as follows:

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Cardinality of infinite sets

- However we have \mathbb{N} and $\mathbb{N} \cup \{\bullet\}$, where is a new element, are equinumerous.
 - $f : \mathbb{N} \to \mathbb{N} \cup \{\bullet\}, \text{ s.t.}$ • $f(0) = \bullet, f(n+1) = n$ is a bijection.
- Analogy with a hotel with infinite many rooms numbered by natural numbers.
 - This hotel can always accomodate a new guest, by moving every guest from room n to room n+1, and the new guest to room no. 0.

Change of Notation

- Until the academic year 2004/05, we used in lectures
 - "have the same cardinality" instead of "equinumerous",
 - and \simeq instead of \approx .
 - Note that \simeq is used (and was used) for partial equality as well.
 - Change of notation in order to avoid the overloading of notation.
 - Please take this into account when looking at old exams and other lecture material.
- Both notions occur as well in the literature and might be used in other modules.

pprox as an Equivalence Relation

Lemma 2.7

 \approx is an equivalence relation, i.e. for all sets $A,\,B,\,C$ we have:

- (a) **Reflexivity.** $A \approx A$.
- (b) Symmetry. If $A \approx B$, then $B \approx A$.
- (c) Transitivity. If $A \approx B$ and $B \approx C$, then $A \approx C$.

Proof:

(a): The function $id : A \to A$, id(a) = a is a bijection. (b): If $f : A \to B$ is a bijection, so is its inverse f^{-1} .

(c): If $f : A \to B$ and $g : B \to C$ are bijections, so is the composition $g \circ f : A \to C$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-50

Notion of Cardinality in Set Theory

- In set theory there exists the notion of a cardinality, which is some kind of number (an ordinal) which measures the size of a set.
 - Then one can show:
 - A ≈ B iff the cardinality expressed as an ordinal for A and B is the same.
 - However, this notion is beyond the scope of this module.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Meaning of the above

- That \approx is an equivalence relation means that it has properties we expect of a relation expressing that two sets have the same size:
 - Every set has the same size as itself

 $A \approx A$

If A has the same size as B, then B has the same size as A.

 $A\approx B\to B\approx A$

If A has the same size as B and B has the same size as C then A has the same size as C:

 $(A\approx B\wedge B\approx C)\to A\approx C$

Meaning of the above

- If we wrongly defined A and B to have the same size if there is an injection from A to B then symmetry wouldn't hold.
- So there is something to be shown, the language notation we use only suggests that the above mentioned properties hold.
 - Don't let yourself be deceived by language!

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-54

Cardinality of the Power Set

Theorem 2.8

A set *A* and its power set $\mathcal{P}(A) := \{B \mid B \subseteq A\}$ are never equinumerous:

 $A \not\approx \mathcal{P}(A)$

Stronger Result

 In fact we will show something even stronger: For any set A the following holds: there is no surjection

 $C: A \to \mathcal{P}(A)$

● If this is shown, then we know that there is no bijection $C: A \rightarrow \mathcal{P}(A), A \not\approx \mathcal{P}(A).$

• Remark on Notation:

- We write here the capital letter C instead of the usual letters f, g etc. for functions, in order to flag that C(a) is a set.
- For notational convenience we write C_a instead of C(a), so C_a is "the ath set enumerated by the function C".

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Proof

- A typical diagonalisation argument.
- First consider the case $A = \mathbb{N}$.
- Assume $C : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ is a surjection.
- We define a set $D \subseteq \mathbb{N}$ s.t. $D \neq C_n$ for every $n \in \mathbb{N}$.
- $D = C_n$ will be violated at element *n*:
 - If $n \in C_n$, we add n not to D, therefore $n \in C_n \land n \notin D$.
 - If $n \notin C_n$, we add n to D, therefore $n \notin C_n \land n \in D$.
- On the next slide we take as an example some function $C : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ and show how to construct a set D s.t. $C_n \neq D$ for all $n \in \mathbb{N}$.

Example

$$C_0 = \{ (0,) \ 1, \ 2, \ 3, \ 4, \ \dots \}$$

Example

$$C_{0} = \{ \begin{array}{ccc} 0, & 1, & 2, & 3, & 4, & \dots \end{array} \}$$

$$C_{1} = \{ \begin{array}{ccc} 0, & 0 & 2, & 4, & \dots \end{array} \}$$

$$D = \{ \end{array}$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-58

Example

$$C_0 = \{ (0,) \ 1, \ 2, \ 3, \ 4, \ \dots \}$$

 $D = \{ (0,) \ (0,$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Example

$$C_{0} = \{ \begin{array}{ccc} 0, & 1, & 2, & 3, & 4, & \dots \} \\ C_{1} = \{ \begin{array}{ccc} 0, & & & & \\ 0, & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

Example

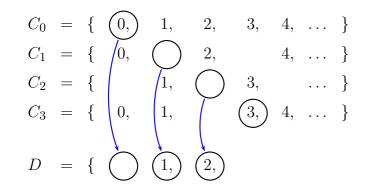
$$C_{0} = \{ \begin{array}{cccc} 0, & 1, & 2, & 3, & 4, & \dots \end{array} \}$$

$$C_{1} = \{ \begin{array}{cccc} 0, & 0 & 2, & 4, & \dots \end{array} \}$$

$$C_{2} = \{ \begin{array}{ccccc} 1, & 0 & 3, & \dots \end{array} \}$$

$$D = \{ \begin{array}{cccccc} 0, & 1, & 0 \\ 0, & 0 & 2, & 4, & \dots \end{array} \}$$

Example



26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-58

Example

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Example

$$C_{0} = \{ \begin{array}{cccc} 0, & 1, & 2, & 3, & 4, & \dots \\ C_{1} = \{ \begin{array}{cccc} 0, & 0 & 2, & 4, & \dots \\ C_{2} = \{ \begin{array}{cccc} 1, & 0, & 3, & \dots \\ 0, & 1, & 3, & \dots \\ 1, & 3, & 4, & \dots \\ \end{array} \right\}$$

$$C_{3} = \{ \begin{array}{cccc} 0, & 1, & 2, \\ \end{array} \right)$$

Example

$$C_{0} = \{ \begin{array}{cccc} 0, & 1, & 2, & 3, & 4, \dots \end{array} \}$$

$$C_{1} = \{ \begin{array}{cccc} 0, & 0 & 2, & 4, & \dots \end{array} \}$$

$$C_{2} = \{ \begin{array}{cccc} 1, & 0, & 3, & \dots \end{array} \}$$

$$C_{3} = \{ \begin{array}{ccccc} 0, & 1, & 0, & 3, & \dots \end{array} \}$$

$$D = \{ \begin{array}{ccccc} 0, & 1, & 2, & 0 & \dots \end{array} \}$$

We were going through the diagonal in the above matrix.

Proof

So we define

$$D := \{ n \in \mathbb{N} \mid n \notin C_n \} .$$

We have $D \neq C_n$ for all n: Assume $D = C_n$.

- If $n \in D$, then by the definition of D we have $n \notin C_n$, therefore by $D = C_n$ we get $n \notin D$, a contradiction.
- If $n \notin D$, then by the definition of *D* we have $n \in C_n$, therefore by $D = C_n$ we get $n \in D$, a contradiction.

Therefore we obtain a contradiction in both cases, $D \neq C_n$.

Therefore D is not in the image of C, so C is not a surjection

a contradiction.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Formal Proof ($A = \mathbb{N}$)

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-58

Example

We were going through the diagonal in the above matrix. Therefore this proof is called a **diagonalisation argument**.

In short, the above argument for $A = \mathbb{N}$ reads as follows: Assume $C : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ is a surjection.

Define

$$D := \{ n \in \mathbb{N} \mid n \notin C_n \}$$

Since C is surjective, D must be in the image of C. Assume $D = C_n$. Then we have

$$n \in D \quad \begin{array}{c} \text{Definition of } D \\ \Leftrightarrow \end{array} \quad n \notin C_n \\ \stackrel{D = C_n}{\Leftrightarrow} \qquad n \notin D \\ \text{a contradiction} \end{array}$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

General Situation

For general *A*, the proof is almost identical: Assume $C : A \rightarrow \mathcal{P}(A)$ is a surjection. We define a set *D*, s.t. $D = C_a$ is violated for *a*:

 $D := \{a \in A \mid a \notin C_a\}$

Since *C* is surjective, *D* must be in the image of *C*. Assume $D = C_a$. Then we have

$$a \in D \quad \stackrel{\text{Definition of } D}{\Leftrightarrow} \quad a \notin C_a$$
$$\stackrel{D = C_a}{\Leftrightarrow} \quad a \notin D$$
$$\text{a contradiction}$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-61

 $\mathcal{P}(A)$ and $A \to \text{Bool}$

Lemma 2.9 For every set A

$$\mathcal{P}(A) \approx (A \to \text{Bool}) \approx (A \to \{0, 1\})$$

Remark: Note that we can identify the set of Booleans
$$Bool$$
 with $\{0, 1\}$ by identifying

- true with 1,
- \checkmark false with 0.

Therefore we get $(A \rightarrow Bool) \approx (A \rightarrow \{0, 1\})$.

Proof

• Let for $B \in \mathcal{P}(A)$

$$\begin{array}{rcl} \chi_B & : & A \to \{0,1\} \\ \chi_B(x) & := & \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B \end{cases} \end{array}$$

 χ_B is called the characteristic function of *B*.

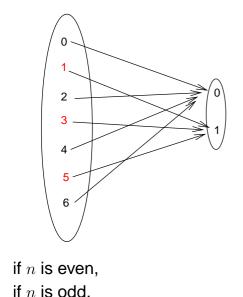
• If we consider 0 as false and 1 as true, then we get

$$\chi_B(x) = \begin{cases} \text{true} & \text{if } x \in B, \\ \text{false} & \text{if } x \notin B. \end{cases}$$

• Therefore χ_B is the function, which determines whether its argument is in B or not.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

Example: *B* = set of Odd Numbers



 $\chi_B(n) =$

Proof

- χ is a function from $\mathcal{P}(A)$ to $A \to \{0, 1\}$, where we write the application of χ to an element *B* as χ_B instead of $\chi(B)$.
- We show that χ is a bijection.
 - Then it follows that $\mathcal{P}(A) \approx (A \rightarrow \{0, 1\})$. Jump over rest of proof

χ and χ^{-1} are inverse

$$\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}$$
$$\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}$$

- We show that χ and χ^{-1} are inverse:
- $\chi^{-1} \circ \chi$ is the identity:
- If $B \subseteq A$, then

$$\chi^{-1}(\chi_B) = \{ x \in A \mid \chi_B(x) = 1 \}$$
$$= \{ x \in A \mid x \in B \}$$
$$= B$$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

χ and χ^{-1} are inverse

$$\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}$$
$$\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}$$

•
$$\chi \circ \chi^{-1}$$
 is the identity:

• If
$$f: A \to \{0, 1\}$$
, then

$$\chi_{\chi^{-1}(f)}(x) = 1 \quad \Leftrightarrow \quad x \in \chi^{-1}(f)$$
$$\Leftrightarrow \quad f(x) = 1$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-65

$$\chi_B(x) := \begin{cases} 1 & \text{if } x \in B, \\ 0 & \text{if } x \notin B. \end{cases}$$

• χ has an inverse: Define

$$\chi^{-1}$$
 : $(A \to \{0, 1\}) \to \mathcal{P}(A)$
 $\chi^{-1}(f)$:= $\{x \in A \mid f(x) = 1\}$

χ and χ^{-1} are inverse

$$\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}$$
$$\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}$$

and

$$\chi_{\chi^{-1}(f)}(x) = 0 \quad \Leftrightarrow \quad x \notin \chi^{-1}(f)$$
$$\Leftrightarrow \quad f(x) \neq 1$$
$$\Leftrightarrow \quad f(x) = 0 \quad .$$

Therefore $\chi_{\chi^{-1}(f)} = f$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (b)

2-69

χ and χ^{-1} are inverse

It follows that χ is bijective and therefore

$$\mathcal{P}(A) \approx (A \rightarrow \{0,1\})$$
.

(c) Countable Sets

Definition 2.10

- A set A is countable, if it is finite or $A \approx \mathbb{N}$.
- A set, which is not countable, is called **uncountable**.
- Intuitively
 - uncountable sets are very big
 - countable sets are finite or small infinite sets.
 - Countable sets have at most the size of the \mathbb{N} .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Relationship to Cardinality

- Intuitively (this can be made mathematically precise) the cardinalities of sets start with the finite cardinalities 0, 1, 2, ... corresponding to finite sets having 0, 1, 2, ... elements.
 - All these cardinalities are different (for finite sets A, B we have A ≈ B iff A and B have the same number of elements).
- Then the next cardinality is that of \mathbb{N} .
- Then we have higher cardinalities like the cardinality of $\mathcal{P}(\mathbb{N})$ (or \mathbb{R}).

Relationship to Cardinality

- $egin{array}{ccc} 0 & 1 & & \ 2 & & \ & & \mathbb{N} & \ \mathcal{P}(\mathbb{N}) & & \ & & \dots \end{array}$
- Countable sets are the sets having cardinality less than or equal the cardinality of N.
 - Which means they have cardinality of N or finite cardinality.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-73

Examples of (Un)countable Sets

- \blacksquare N is countable.
- **9** $\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots\}$ is countable.
 - We can enumerate the elements of ℤ in the following way:
 0,+1,-1,+2,-2,+3,-3,+4,-4,...

So we have the following map:

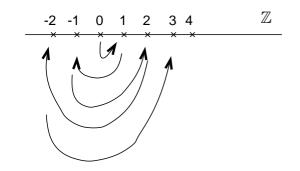
 $0 \mapsto 0, \ 1 \mapsto +1, \ 2 \mapsto -1, \ 3 \mapsto +2, \ 4 \mapsto -2$, etc. This map can be described as follows:

$$g:\mathbb{N}\to\mathbb{Z}$$
,

$$g(n) := \begin{cases} \frac{-n}{2} & \text{if } n \text{ is even}, \\ \frac{n+1}{2} & \text{if } n \text{ is odd}. \end{cases}$$

Exercise: Show that *g* is bijective.

Illustration of \mathbb{Z} is Countable



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Examples of (Un)countable Sets

- $\mathcal{P}(\mathbb{N})$ is uncountable.
 - $\mathcal{P}(\mathbb{N})$ is not finite.
 - $\mathbb{N} \not\approx \mathcal{P}(\mathbb{N}).$
- $\mathcal{P}(\{1, \dots, 10\})$ is countable.
 - Since it is finite.

Characterisation of Countable Sets

Lemma 2.11

A set *A* is countable, if and only if there is an injective map $g: A \rightarrow \mathbb{N}$.

Remark 2.12

Intuitively, Lemma 2.11 expresses: *A* is countable, if we can assign to every element $a \in A$ a unique code $f(a) \in \mathbb{N}$. However, it is not required that each element of \mathbb{N} occurs as a code.

The code f(a) can be considered as a finite description of a. So A is countable if we can give a unique finite description for each of its element.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-77

Proof of Lemma 2.11, "\Rightarrow"

"⇒":

Assume *A* is countable.

Show that there exists an injective function $f : A \to \mathbb{N}$.

• Case *A* is finite:

Let $A = \{a_0, \ldots, a_n\}$, where a_i are different. We can define $f : A \to \mathbb{N}$, $a_i \mapsto i$. f is injective.

Case A is infinite:

A is countable, so there is a bijection from A into $\mathbb{N},$ which is therefore injective.

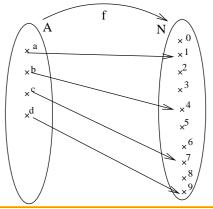
Proof of Lemma 2.11, "⇐"

" \Leftarrow ": Assume $f : A \rightarrow \mathbb{N}$ is injective.

Show *A* is countable.

If *A* is finite, we are done.

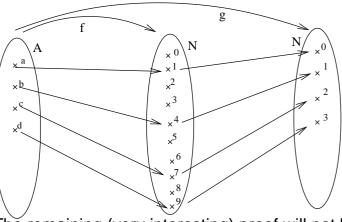
Assume A is infinite. Then f is for instance something like the following:



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.11, "⇐"

In order to obtain a bijection $g: A \to \mathbb{N}$, we need to jump over the gaps in the image of f:

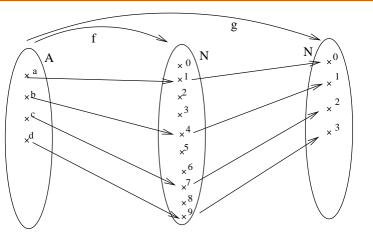


The remaining (very interesting) proof will not be given in

the lecture. Jump over remaining proof.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.11, " \Leftarrow "

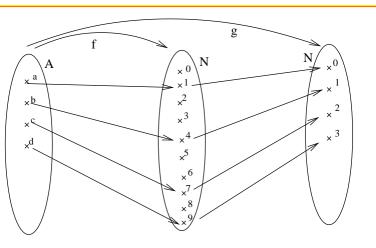


f(a) = 1, which is the element number 0 in the image of f.
 g should instead map a to 0.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

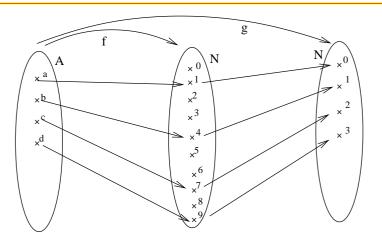
2-81

Proof of Lemma 2.11, "⇐"



f(b) = 4, which is the element number 1 in the image of f.
 g should instead map b to 1. Etc.

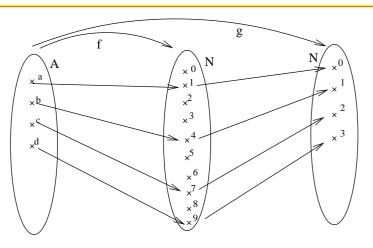
Proof of Lemma 2.11, " "



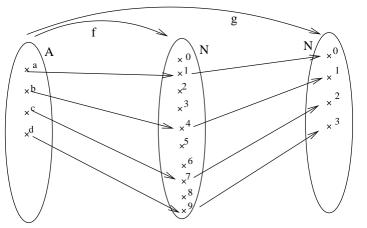
• 1 is element number 0 in the image of f, because the number of elements f(a') below f(a) is 0.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.11, "⇐"



• 4 is element number 1 in the image of f, because the number of elements f(a') below f(b) is 1.



So in general we define $g: A \to \mathbb{N}$.

$$g(a) := |\{a' \in A \mid f(a') < f(a)\}|$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-84

Proof of Lemma 2.11, "⇐"

 $g(a) := |\{a' \in A \mid f(a') < f(a)\}|$

g is well defined, since *f* is injective, so the number of $a' \in A$ s.t. f(a') < f(a) is finite.

Proof of Lemma 2.11, "⇐"

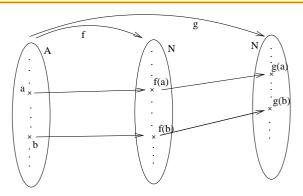
$g(a) = |\{a' \in A \mid f(a') < f(a)\}|$

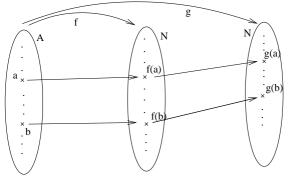
We show that g is a bijection:

g is injective: Assume *a*, *b* ∈ *A*, *a* ≠ *b*. Show *g*(*a*) ≠ *g*(*b*).
By the injectivity of *f* we have *f*(*a*) ≠ *f*(*b*). Let for instance *f*(*a*) < *f*(*b*).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.11, "⇐"





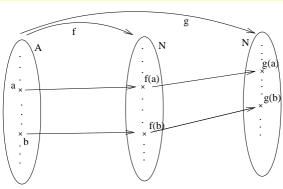
Then

$$\{a' \in A \mid f(a') < f(a)\} \stackrel{\subset}{\neq} \{a' \in A \mid f(a') < f(b)\} ,$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-87

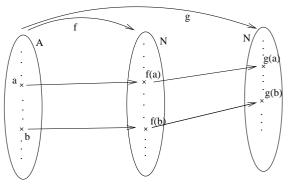
Proof of Lemma 2.11, "⇐"



therefore

$$g(a) = |\{a' \in A \mid f(a') < f(a)\}| < |\{a' \in A \mid f(a') < f(b)\}| = g(b) \ ,$$

Proof of Lemma 2.11, " "



therefore

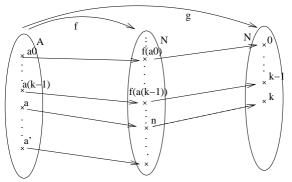
 $g(a) = |\{a' \in A \mid f(a') < f(a)\}| < |\{a' \in A \mid f(a') < f(b)\}| = g$ $g(a) \neq g(b).$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.11, "⇐"

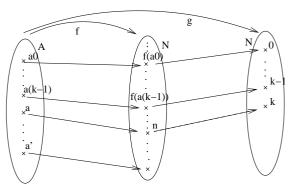
 $g(a) = |\{a' \in A \mid f(a') < f(a)\}|$

g is surjective: We define by induction on *k* for *k* ∈ N an element *a_k* ∈ A s.t. *g*(*a_k*) = *k*. Then the assertion follows: Assume we have defined already *a*₀,..., *a_{k-1}*.



There exist infinitely many $a' \in A$, f is injective, so there must be at least one $a' \in A$ s.t. $f(a') > f(a_{k-1})$.

Proof of Lemma 2.11, " "

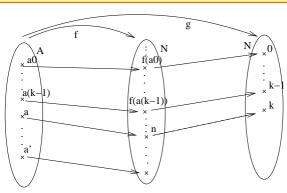


n minimal s.t. n = f(a') for some $a' \in A$, $n > f(a_{k-1})$ Let *a* be the unique element of *A* s.t. f(a) = n.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-89

Proof of Lemma 2.11, " "

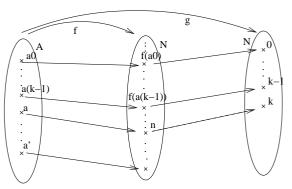


There exists $a' \in A$ s.t. $f(a') > f(a_{k-1})$.

Let *n* be minimal s.t. n = f(a) for some $a \in A$ and $n > f(a_{k-1})$.

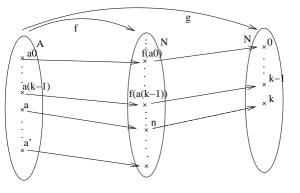
CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.11, "⇐"



 $n \text{ minimal s.t. } n = f(a) \text{ for some } a \in A, n > f(a_{k-1})$ f(a) = n

$$\{a'' \in A \mid f(a'') < f(a)\} = \{a'' \in A \mid f(a'') < f(a_{k-1})\} \cup \{a_{k-1}\}$$



Therefore
$$g(a) = |\{a'' \in A \mid f(a'') < f(a)\}|$$

= $|\{a'' \in A \mid f(a'') < f(a_{k-1})\}| + 1$
= $g(a_{k-1}) + 1 = k - 1 + 1 = k$.
Let $a_k := a$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-90

Corollary

Corollary 2.13

- (a) If *B* is countable and $g: A \rightarrow B$ injective, then *A* is countable.
- (b) If A is uncountable and $g: A \rightarrow B$ injective, then B is uncountable.
- (c) If B is countable and $A \subseteq B$, then A is countable.

Proof:

- (a) If B is countable, there exists an injection f : B → N.
 But then f ∘ g : A → N is an injection as well, therefore A is countable.
- (b): By (a). Why? (Exercise).
- (c): By (a). (What is g?; exercise).

Corollary (Cont.)

Corollary 2.13

- (d) If A is uncountable and $A \subseteq B$, then B is uncountable.
- (e) If $A \approx B$, then A is countable if and only if B is countable.

Proof:

- (d): By (c). Why? (Exercise).
- (e): By (a). Why ?

Remark:

 A corollary is a lemma/theorem which is a direct consequence of a more difficult lemma or theorem shown before.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Injection and Size

- Intuitively we can say:
 - That there exists an injective function

 $f: A \to B$

means that the size of A is less than or equal to the size of B.

- That A ⊆ B means that there is an injection from A into B.
 - So the size of A is less than or equal to the size of B.

Characterisation of Count. Sets, II

Lemma 2.14

A set *A* is countable, if and only if $A = \emptyset$ or there exists a surjection $h : \mathbb{N} \to A$.

Remark: This explains the notion "countable": A non-empty set is countable if we can enumerate its elements (repetitions are allowed).

2nd Remark: The empty set \emptyset is countable, but there exists no surjection $h : \mathbb{N} \to \emptyset$ – in fact there exists no function $h : \mathbb{N} \to \emptyset$ at all.

Jump over Proof.

Proof of Lemma 2.14

Case A is infinite.

A is countable, so there exists a bijection from \mathbb{N} to A, which is therefore surjective.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.14

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

" \Rightarrow ": Assume *A* is countable. If *A* is empty we are done. So assume *A* is non-empty. Show there exists a surjection $f : \mathbb{N} \to A$.

• Case A is finite. Assume $A = \{a_0, \dots, a_n\}$. Define $f : \mathbb{N} \to A$,

$$f(k) := \begin{cases} a_k & \text{if } k \le n \\ a_0 & \text{otherwise} \end{cases}$$

f is clearly surjective.

Proof of Lemma 2.14

"⇐":

- If $A = \emptyset$, then A is countable.
- So assume A and

 $h: \mathbb{N} \to A$ is surjective

- Show *A* is countable.
- Define

$$\begin{array}{rcl} g & : & A \to \mathbb{N} & , \\ g(a) & := & \min\{n \mid h(n) = a\} & . \end{array}$$

- g(a) is well-defined, since *h* is surjective:
 - There exists some n s.t. h(n) = a, therefore the minimal such n is well-defined.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-94

Proof of Lemma 2.14

$$\begin{array}{rcl} g & : & A \to \mathbb{N} & , \\ g(a) & := & \min\{n \mid h(n) = a\} \end{array}$$

It follows that for $a \in A$ we have

$$h(g(a)) = a$$

- Therefore g is injective:
 - If g(a) = g(a') then

$$a = h(g(a)) = h(g(a')) = a'$$
.

• Therefore $g: A \to \mathbb{N}$ is an injection, and by Lemma 2.11, *A* is countable.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-98

Proof of Corollary 2.15 (a)

- To be shown: If A is countable, $g : A \rightarrow B$ is surjective, then B is countable as well.
- **9** So assume A is countable, $g : A \rightarrow B$ is surjective.
- If A is empty, then B is empty as well and therefore countable.
 - (We need to treat $A = \emptyset$ as a special case, since in that case there exists no surjection $f : \mathbb{N} \to A$ as assumed in the next step, even so A is countable).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Corollary

Corollary 2.15

- (a) If A is countable and $g: A \rightarrow B$ surjective, then B is countable.
- (b) If *B* is uncountable and $g: A \rightarrow B$ surjective, then *A* is uncountable.

Proof of Corollary 2.15 (a)

Otherwise there exists a surjection

 $f:\mathbb{N}\to A$

But then

 $g \circ f : \mathbb{N} \to B$

is a surjection as well, therefore B is countable.

Proof of Corollary 2.15 (b)

Follows by (a). Why?

Examples of Uncountable Sets

Lemma 2.16

The following sets are uncountable:

- (a) $F := \{ f \mid f : \mathbb{N} \to \{0, 1\} \}.$
- (b) $G := \{f \mid f : \mathbb{N} \to \mathbb{N}\}.$
- (c) The set of real numbers \mathbb{R} .
- Proof of (a): By Lemma 2.9 $\mathcal{P}(\mathbb{N}) \approx (\mathbb{N} \to \{0, 1\})$. $\mathcal{P}(\mathbb{N})$ is uncountable, therefore $\mathbb{N} \to \{0, 1\}$ as well.
- Proof of (b): $F \subseteq G$, F is uncountable, so G is uncountable.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-102

Surjectivion and Size

- Intuitively we can say:
 - That there exists a surjective function

 $f:A\to B$

means that the size of A is greater than or equal to the size of B.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2

Idea of Proof of Lemma 2.16 (c)

- In order to show R is uncountable, it suffices to show that the half open interval [0, 1[
 (i.e. {x ∈ R | 0 ≤ x < 1}) is uncountable).
- Elements of [0, 1[are in binary representation of the form

 $(0.a_0a_1a_2a_3\cdots)_2$

where $a_i \in \{0, 1\}$.

- $(a_n)_{n \in \mathbb{N}}$ is a function $\mathbb{N} \to \{0, 1\}$.
- If the function mapping sequences (a_n)_{n∈ℕ} : N → {0, 1} to R were injective, then we could conclude from N → {0, 1} uncountable that [0, 1[and therefore R are uncountable.

Idea of Proof of Lemma 2.16 (c)

- However this function is not injective since $0.a_0a_1a_2\cdots a_n011111\cdots$ and $0.a_0a_1a_2\cdots a_n100000\cdots$ are the same number.
 - This is similar to decimal representation, where $0.a_0a_1a_2\cdots a_n099999\cdots$ and $0.a_0a_1a_2\cdots a_n100000\cdots$ are the same.
- This problem can be overcome with some effort.
- The detailed proof will be omitted in the lecture. Jump over Proof.

Proof of Lemma 2.16 (c)

Show \mathbb{R} is uncountable.

The problem is that

 $(0.a_0a_1\cdots a_k01111\cdots)_2$ and $(0.a_0a_1\cdots a_k10000\cdots)_2$

denote the same real number, so f_0 is not injective.

We modify f₀ so that we don't obtain any binary numbers of the form

 $(0.a_0a_1\cdots a_k01111\cdots)_2$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-106

Proof of Lemma 2.16 (c)

- **•** Show \mathbb{R} is uncountable.
- By (b),

 $F = \{ f \mid f : \mathbb{N} \to \{0, 1\} \}$

is uncountable.

- A first idea is to define a function
 - $f_0 : F \to \mathbb{R} ,$ $f_0(g) = (0.g(0)g(1)g(2)\cdots)_2$

Here the right hand side is a number in binary format.

• If f_0 were injective, then by F uncountable we could conclude \mathbb{R} is uncountable.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.16 (c)

Define instead

$$\begin{array}{rcl} f & : & F \to \mathbb{R} & , \\ f(g) & := & (0.g(0) \ 0 \ g(1) \ 0 \ g(2) \ 0 \cdots)_2 & , \end{array}$$

So

$$f(g) = (0.a_0 a_1 a_2 \cdots)_2$$

where

 $a_k := \left\{ egin{array}{cc} 0 & ext{if } k ext{ is odd,} \\ g(rac{k}{2}) & ext{otherwise.} \end{array}
ight.$

Proof of Lemma 2.16 (c)

If two sequences

$$(b_0, b_1, b_2, \ldots)$$
 and (c_0, c_1, c_2, \ldots)

do not end in

$$1, 1, 1, 1, \dots$$

i.e. are not of the form

$$(d_0, d_1, \ldots, d_l, 1, 1, 1, 1, 1, \ldots)$$
,

then one can easily see that

$$(0.b_0b_1\cdots)_2 = (0.c_0c_1\cdots)_2 \Leftrightarrow (b_0, b_1, b_2, \ldots) = (c_0, c_1, c_2, \ldots)$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-110

Proof of Lemma 2.16 (c)

Therefore

$$f(g) = f(g')$$

$$\Leftrightarrow (0.g(0) \ 0 \ g(1) \ 0 \ g(2) \ 0 \cdots)_2 = (0.g'(0) \ 0 \ g'(1) \ 0 \ g'(2) \ 0 \cdots)_2$$

$$\Leftrightarrow (g(0) \ , 0, \ g(1), \ 0, \ g(2), \ 0, \ldots) = (g'(0), \ 0, \ g'(1), \ 0, \ g'(2), \ 0, \ldots)$$

$$\Leftrightarrow (g(0), \ g(1), \ g(2), \ \ldots) = (g'(0), \ g'(1), \ g'(2), \ \ldots)$$

$$\Leftrightarrow \quad g = g'$$

f is injective.

More Uncountable Sets

Lemma 2.17

If *A* is infinite, then $\mathcal{P}(A)$ and $\{f \text{ function} \mid f : A \rightarrow \{0, 1\}\}$ are uncountable.

Proof: Exercise (reduce it to Lemma 2.16 (a)).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Countable and Complement

Lemma 2.18

- (a) If A, B are countable, so is $A \cup B$.
- (b) If *A* is uncountable and *B* is countable then $A \setminus B$ is uncountable.
- Here $A \setminus B = \{a \in A \mid a \notin B\}$, so $A \setminus B$ is A without the elements in B.
- Note that
 - (a) reads: If two sets are small, their union is small as well.
 - (b) reads: If one removes from a big set a small set, then what remains is still big.

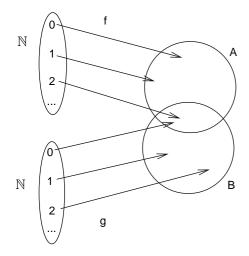
26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.18 (a)

- To be shown: If A, B are countable, so is $A \cup B$.
- We will use the fact that a set X is countable if and only if it is empty or there exist a surjective function $f: \mathbb{N} \to X$.
- Therefore we need to treat the special cases when A or B are empty.
- Case 1: A is empty. Then $A \cup B = B$ which is countable.
- Case 2: *B* is empty. Then $A \cup B = A$ which is countable.

Proof of Lemma 2.18 (a)

Assume $f : \mathbb{N} \to A$, $g : \mathbb{N} \to B$.



26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-114

Proof of Lemma 2.18 (a)

- Case 3: *A*, *B* are not empty.
 - By A, B countable there exist surjective functions

$$f: \mathbb{N} \to A \qquad g: \mathbb{N} \to B$$

• Define $h : \mathbb{N} \to A \cup B$,

$$h(n) := \left\{ \begin{array}{ll} f(\frac{n}{2}) & \text{if } n \text{ is even,} \\ g(\frac{n-1}{2}) & \text{if } n \text{ is odd.} \end{array} \right.$$

• So
$$f(n) = h(2n)$$
 and $g(n) = h(2n + 1)$.

Therefore

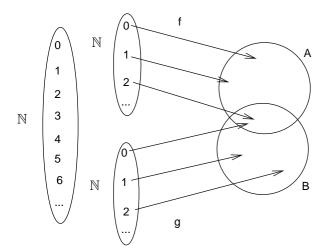
$$A \cup B = f[\mathbb{N}] \cup g[\mathbb{N}] \subseteq h[\mathbb{N}]$$

f is surjective.

Proof of Lemma 2.18 (a)

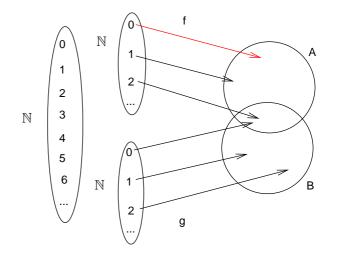
$$h(2n) = f(n), h(2n+1) = g(n)$$
:

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)



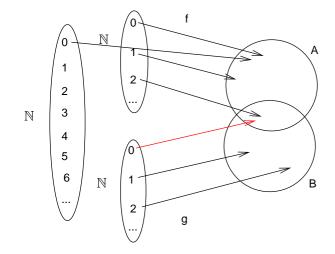
Proof of Lemma 2.18 (a)

h(2n) = f(n), h(2n+1) = g(n):



Proof of Lemma 2.18 (a)

h(2n) = f(n), h(2n+1) = g(n):

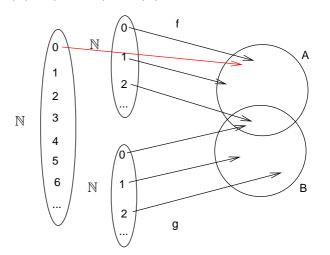


26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-117

Proof of Lemma 2.18 (a)

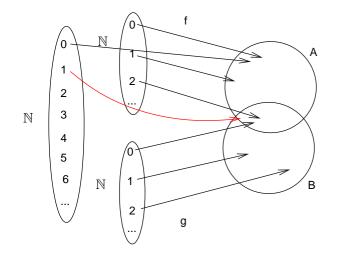
$$h(2n) = f(n), h(2n+1) = g(n)$$
:



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

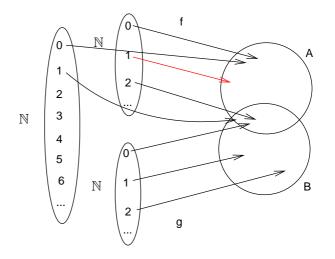
Proof of Lemma 2.18 (a)

$$h(2n) = f(n), h(2n+1) = g(n)$$
:



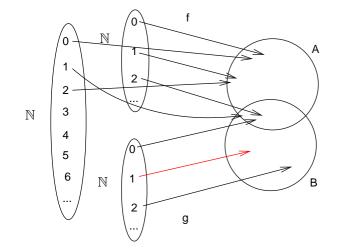
Proof of Lemma 2.18 (a)

h(2n) = f(n), h(2n+1) = g(n):



Proof of Lemma 2.18 (a)

h(2n) = f(n), h(2n+1) = g(n):

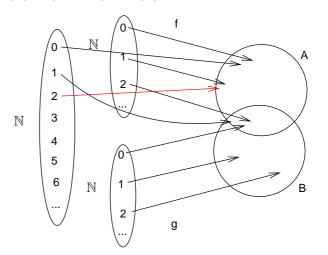


26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-117

Proof of Lemma 2.18 (a)

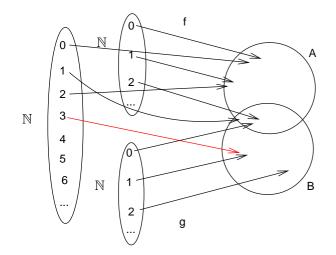
$$h(2n) = f(n), h(2n+1) = g(n)$$
:



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

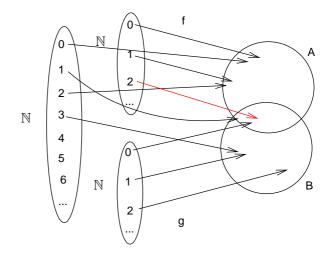
Proof of Lemma 2.18 (a)

$$h(2n) = f(n), h(2n+1) = g(n)$$
:



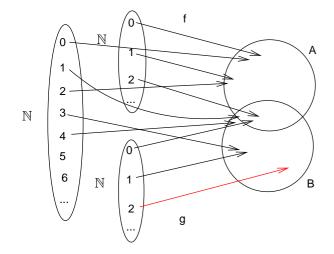
Proof of Lemma 2.18 (a)

h(2n) = f(n), h(2n+1) = g(n):



Proof of Lemma 2.18 (a)

h(2n) = f(n), h(2n+1) = g(n):

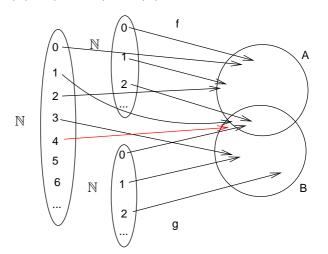


26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-117

Proof of Lemma 2.18 (a)

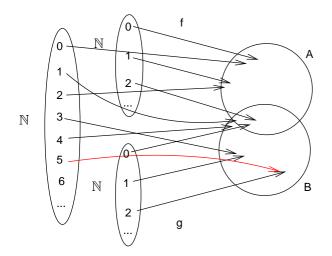
$$h(2n) = f(n), h(2n+1) = g(n)$$
:



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Proof of Lemma 2.18 (a)

$$h(2n)=f(n)\text{, }h(2n+1)=g(n)\text{:}$$



Jump over the alternative proof.

2

Alternative Proof of Lemma 2.18 (a)

- To be shown: If A, B are countable, so is $A \cup B$.
- **So assume** *A*, *B* are countable.
- Then there exist (by Lemma 2.11) injective functions

$$f: A \to \mathbb{N} \ , \qquad g: B \to \mathbb{N}$$

Define

$$h : A \cup B \to \mathbb{N}$$

$$h(x) := \begin{cases} f(x) \cdot 2 & \text{if } x \in A \\ g(x) \cdot 2 + 1 & \text{if } x \in B \setminus A \end{cases}$$

- h is injective.
- Therefore, by Lemma 2.11, $A \cup B$ is countable.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

2-118

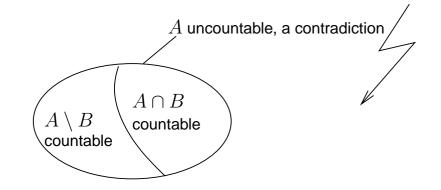
Proof of Lemma 2.18 (b)

To be shown:

If *A* is uncountable and *B* is countable, then $A \setminus B$ is uncountable.

- Assume *A* is uncountable, *B* is countable and $A \setminus B$ were countable.
- Then $A \cap B$ is countable (since $A \cap B \subseteq B$).
- Therefore A = (A \ B) ∪ (A ∩ B) is countable as well, a contradiction.

Proof of Lemma 2.18 (b)



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

Continuum Hypothesis

Remark:

- One can show $\mathcal{P}(\mathbb{N}) \approx \mathbb{R}$.
- Both these sets are uncountable, so they have size bigger than N.
- Question: Is there a set *B* which has size (cardinality) between N and R?
 - I.e. there are injections $\mathbb{N} \to B$ and $B \to \mathbb{R}$,
 - but neither bijections $\mathbb{N} \to B$ nor $B \to \mathbb{R}$.
- Continuum Hypothesis: There exists no such set.
- Continuum Hypothesis is independent of set theory,
 i.e. it is neither provable nor is its negation provable.
 - This was one of the most important open problems in set theory for a long time.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

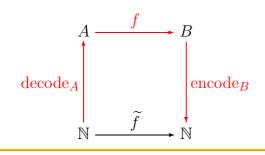
Paul Cohen

Paul Cohen (1934 – 2007) Showed 1963 that the continuum hypothesis is independent of set theory.

Reduction of Computability to \mathbb{N}

- encode_A : $A \to \mathbb{N}$, decode_A : $\mathbb{N} \to A$.
- Assume we have such functions $encode_A$, $decode_A$, $encode_B$, $decode_B$ for A and B.
- Then from an intuitively computable $f : A \rightarrow B$ we can obtain an intuitively computable function

 $\widetilde{f} := \operatorname{encode}_B \circ f \circ \operatorname{decode}_A : \mathbb{N} \to \mathbb{N}$:



2-122

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (c)

(d) Reducing Computability to ℕ

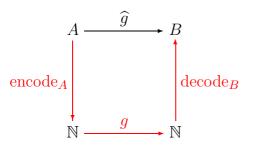
Goal: Reduce computability on some data types A to computability on N.

A could be for instance the set of strings, of matrices, of trees, of lists of strings, etc.

- If we can do this, then there is no need for a special definition of computability on *A*, we can concentrate on the notion of computability on N.
- We can reduce computability on A to computability on N, if we have two intuitively computable functions
 - $encode_A : A \to \mathbb{N}$,
 - decode_A : $\mathbb{N} \to A$.

Reduction of Computability to N

• Furthermore from a computable $g : \mathbb{N} \to \mathbb{N}$ we can obtain an intuitively computable function $\widehat{g} := \operatorname{decode}_B \circ g \circ \operatorname{encode}_A : A \to B$:



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (d)

Reduction of Computability to N

- We would like to take the computable functions g : N → N as representations of all computable functions f : A → B.
 - In the sense that f represents the function $\widehat{g} : A \to B$.
- This is possible if for any intuitively computable $f: A \to B$ we find a $g: \mathbb{N} \to \mathbb{N}$ s.t. $\widehat{g} = f$.
- We want to use $g = \tilde{f}$, which is computable, if f is computable.
- But then we need $\tilde{f} = f$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (d)

Reduction of Computability to ℕ

 $\operatorname{decode}_B \circ \operatorname{encode}_B \circ f \circ \operatorname{decode}_A \circ \operatorname{encode}_A \stackrel{!}{=} f$

This is fulfilled if we have

 $decode_A \circ encode_A = id_A$ $decode_B \circ encode_B = id_B$

where id_A is the identity on A, i.e. $\lambda x.x$ similarly for id_B .

This means that

 $\forall x \in A. \operatorname{decode}_A(\operatorname{encode}_A(x)) = x$ $\forall x \in B. \operatorname{decode}_B(\operatorname{encode}_B(x)) = x$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (d)

2

Reduction of Computability to ℕ

$$\widetilde{f} = \operatorname{encode}_B \circ f \circ \operatorname{decode}_A : \mathbb{N} \to \mathbb{N},$$

$$\widehat{g} = \operatorname{decode}_B \circ g \circ \operatorname{encode}_A : A \to B,$$

want $\widehat{\widetilde{f}} = f.$

• In order to obtain $\widehat{\widetilde{f}} = f$, we need

 $\widehat{\widetilde{f}} = \operatorname{decode}_B \circ \widetilde{f} \circ \operatorname{encode}_A$ = decode_B \circ encode_B \circ f \circ decode_A \circ encode_A $\stackrel{!}{=} f$

 $(\stackrel{!}{=}$ is the equality we need, whereas the other equalities follow by the definition).

Reduction of Computability to N

 $\forall x \in A. \operatorname{decode}_A(\operatorname{encode}_A(x)) = x$ $\forall x \in B. \operatorname{decode}_B(\operatorname{encode}_B(x)) = x$

- This is a natural condition: If we encode an element of A, and then decode it, we obtain the original element of A back, similarly for B.
 - Note that relationship to cryptography: if we encrypt a message and then decrypt it, we should obtain the original message.

Reduction of Computability to N

Note that we don't need

 $encode_A(decode_A(x)) = x$

- Such a condition would mean: every element $n \in \mathbb{N}$ is a code for an element of A (namely $\operatorname{decode}_A(n)$).
- In cryptography this means: not every element of the datatype of codes is actually an encrypted message.

Computable Encodings

 $\operatorname{decode}_A(\operatorname{encode}_A(a)) = a$

- Note that by the above we obtain $encode_A$ is injective.
 - In general we have for two functions $f: B \to C$, $g: C \to D$ that if $g \circ f$ is injective, then f is injective as well.
- Therefore if A has a computable encoding into \mathbb{N} , then there exists an injection $\operatorname{encode}_A : A \to \mathbb{N}$, therefore A is countable.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (d)

2-130

Computable Encodings

Informal Definition

A data type A has a **computable encoding into** \mathbb{N} , if there exist in an intuitive sense computable functions

 $\operatorname{encode}_A : A \to \mathbb{N} \ , \quad \text{and} \operatorname{decode}_A : \mathbb{N} \to A$

such that for all $a \in A$ we have

$$\operatorname{decode}_A(\operatorname{encode}_A(a)) = a$$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (d)

2

Extension of the Encoding

- We want to show that we have computable encodings of more complex data types into N.
- Assume A and B have computable encodings into \mathbb{N} .
- Then we will show that the same applies to
 - $A \times B$, the product of A and B,
 - A^k , the set of k-tuples of A,
 - A^* , the set of lists (or sequences) of elements of A.
- The proof will show as well that if A, B are countable, so are

 $A \times B$, A^k , A^* .

(e) Encod. of Data Types into N

In order to show that $A \times B$, A^k , A^* have computable encodings into \mathbb{N} , if A, B have, it suffices to show that

 $\mathbb{N} \times \mathbb{N}$, \mathbb{N}^n , \mathbb{N}^* ,

have computable encodings into \mathbb{N} .

• Note that $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$.

Reduction to $\ensuremath{\mathbb{N}}$

Then we obtain a computable encoding

$$\operatorname{encode}_{A \times B} : (A \times B) \to \mathbb{N}$$
$$\operatorname{encode}_{A \times B}((a, b)) = \operatorname{encode}_{\mathbb{N}^2}((\underbrace{\operatorname{encode}_A(a)}_{\in \mathbb{N}}, \underbrace{\operatorname{encode}_B(b)}_{\in \mathbb{N}})$$
$$\underbrace{\in \mathbb{N}^2}_{\in \mathbb{N}^2}$$

In short

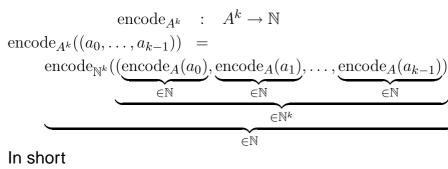
 $encode_{A \times B}((a, b)) = encode_{\mathbb{N}^2}((encode_A(a), encode_B(b)))$

Exercise: Define $\operatorname{decode}_{A \times B}$, show $\operatorname{decode}_{A \times B}(\operatorname{encode}_{A \times B}(x)) = x$ and verify that $\operatorname{decode}_{A \times B}$ is intuively computable.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2

Reduction to \mathbb{N}



 $\operatorname{encode}_{A^{k}}((a_{0},\ldots,a_{k-1})) = \\ \operatorname{encode}_{\mathbb{N}^{k}}(\operatorname{encode}_{A}(a_{0}),\operatorname{encode}_{A}(a_{1}),\ldots,\operatorname{encode}_{A}(a_{k-1}))$

Exercise: Define $\operatorname{decode}_{A^k}$, show $\operatorname{decode}_{A^k}(\operatorname{encode}_{A^k}(x)) = x$ and verify that $\operatorname{decode}_{A^k}$ is intuively computable.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Reduction to ℕ

In order to see this assume we had already shown that

 \mathbb{N}^n , \mathbb{N}^* ,

have computable encodings, so we have computable injections

 $\begin{array}{rcl} \mathrm{encode}_{\mathbb{N}^n} & : & \mathbb{N}^n \to \mathbb{N} & , \\ \mathrm{encode}_{\mathbb{N}^*} & : & \mathbb{N}^* \to \mathbb{N} & . \end{array}$

with corresonding computable decoding functions.

Assume A, B have computable with encodings

encode_A : $A \to \mathbb{N}$, encode_B : $B \to \mathbb{N}$.

Reduction to ℕ

We obtain a computable encoding

$$\operatorname{encode}_{A^*} : A^* \to \mathbb{N}$$

$$\operatorname{encode}_{A^*}((a_0, \dots, a_{n-1})) =$$

$$\operatorname{encode}_{\mathbb{N}^*}((\underbrace{\operatorname{encode}_A(a_0)}_{\in \mathbb{N}}, \underbrace{\operatorname{encode}_A(a_1)}_{\in \mathbb{N}}, \dots, \underbrace{\operatorname{encode}_A(a_{n-1})}_{\in \mathbb{N}^*}))$$

∈ℕ

In short

 $\operatorname{encode}_{A^*}((a_0,\ldots,a_{n-1})) = \\ \operatorname{encode}_{\mathbb{N}^*}((\operatorname{encode}_A(a_0),\operatorname{encode}_A(a_1),\ldots,\operatorname{encode}_A(a_{n-1})))$

Exercise: Define $\operatorname{decode}_{A^*}$, show $\operatorname{decode}_{A^*}(\operatorname{encode}_{A^*}(x)) = x$

and verify that $ext{decode}_{A^*}$ is intuively computable.

Encoding of Pairs

- The first step is to give a computable encoding of \mathbb{N}^2 into $\mathbb{N}.$
- In fact our encoding will be a bijection.
- We will define intuitively computable functions

 $\begin{array}{rcl} \pi & : & \mathbb{N}^2 \to \mathbb{N} \\ \pi_0 & : & \mathbb{N} \to \mathbb{N} \\ \pi_1 & : & \mathbb{N} \to \mathbb{N} \end{array}$

s.t. π and

$$\lambda n.(\pi_0(n),\pi_1(n)):\mathbb{N}\to\mathbb{N}^2$$

are inverse to each other.

Encoding of Pairs

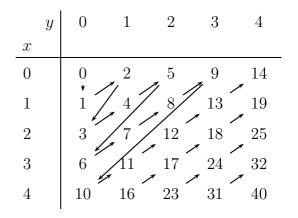
- $\pi \ : \ \mathbb{N}^2 \to \mathbb{N}$
- $\pi_0 : \mathbb{N} \to \mathbb{N}$
- $\pi_1 : \mathbb{N} \to \mathbb{N}$
- Therefore we obtain a computable encoding of $\mathbb{N}\times\mathbb{N}$ into \mathbb{N} with
 - $\begin{array}{rcl} \mathrm{encode}_{\mathbb{N}\times\mathbb{N}} & := & \pi & : & \mathbb{N}^2 \to \mathbb{N} \\ \mathrm{decode}_{\mathbb{N}\times\mathbb{N}} & := & \lambda x.(\pi_0(x), \pi_1(x)) & : & \mathbb{N} \to \mathbb{N}^2 \end{array}$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Encoding of Pairs

π will be called the pairing function and π_i the projection functions or short projections.
 π is a computable encoding of N² into N.

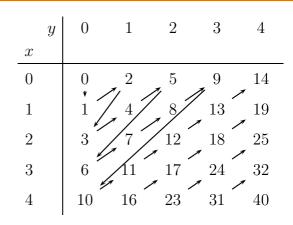
Pairs of natural numbers can be enumerated in the following way:



26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-142

Definition of π



 $\pi(0,0)=0$, $\pi(1,0)=1$, $\pi(0,1)=2$,

$$\pi(2,0)=3$$
 , $\pi(1,1)=4$, $\pi(0,2)=5$, etc.

Attempt which fails

Note, that the following naïve attempt to enumerate the pairs, fails:

	y	0		1		2		3		
x										
0		$\pi(0,0)$	\rightarrow	$\pi(0,1)$	\rightarrow	$\pi(0,2)$	\rightarrow	$\pi(0,3)$	\rightarrow	•••
1			\rightarrow		\rightarrow		\rightarrow		\rightarrow	•••
2			\rightarrow		\rightarrow		\rightarrow		\rightarrow	•••
3			\rightarrow		\rightarrow		\rightarrow		\rightarrow	•••
4			\rightarrow		\rightarrow		\rightarrow		\rightarrow	•••

 $\pi(0,0) = 0$, $\pi(0,1) = 1$, $\pi(0,2) = 2$, etc.

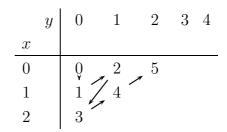
We never reach the pair (1,0).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

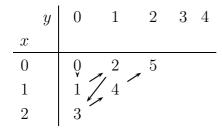
2

Devel. of a Formula for Defining π

- In the following we are going to develop a mathematical formula for π.
- In the lecture this material was omitted and we give directly the definition of π.
 Jump over Development of π.



Definition of π



For the pairs in the diagonal we have the property that x + y is constant.

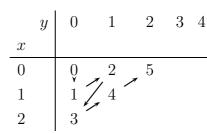
The first diagonal, consisting of (0,0) only, is given by

x + y = 0.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-146

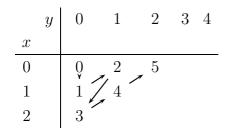
Definition of π



For the pairs in the diagonal we have the property that x + y is constant.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

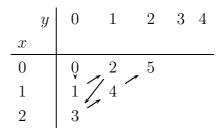
Definition of $\boldsymbol{\pi}$



For the pairs in the diagonal we have the property that x + y is constant.

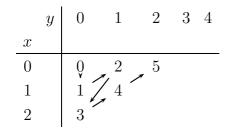
The second diagonal, consisting of (1,0), (0,1), is given by

x + y = 1.



- For the pairs in the diagonal we have the property that x + y is constant.
- The third diagonal, consisting of (2,0), (1,1), (0,2), is given by x + y = 2.

Definition of π



CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Definition of π

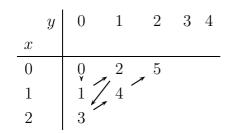
26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

4

- For the pairs in the diagonal we have the property that x + y is constant.
- The third diagonal, consisting of (2,0), (1,1), (0,2), is given by x + y = 2.

Etc.

Definition of π



If we look in the original approach at the diagonals we see that following:

If we look in the original approach at the diagonals we see that following:

• The diagonal given by x + y = n, consists of n + 1 pairs:

Definition of π

If we look in the original approach at the diagonals we see that following:

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The second diagonal, given by x + y = 1, consists of (1,0), (0,1), i.e. of 2 pairs.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-147

Definition of π

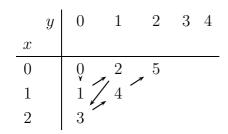
4

If we look in the original approach at the diagonals we see that following:

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The first diagonal, given by x + y = 0, consists of (0,0) only, i.e. of 1 pair.

Definition of π

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)



If we look in the original approach at the diagonals we see that following:

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The third diagonal, given by x + y = 2, consisting of (2,0), (1,1), (0,2), i.e. of 3 pairs.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

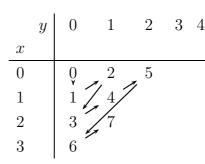
If we look in the original approach at the diagonals we see that following:

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The third diagonal, given by x + y = 2, consisting of (2,0), (1,1), (0,2), i.e. of 3 pairs.
 - etc.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-147

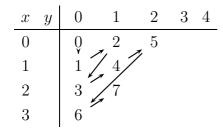
Definition of π



We count the elements occurring before the pair (x_0, y_0) .

- We have to count all elements of the previous diagonals. These are those given by x + y = n for n < x₀ + y₀.
 - In the above example for the pair (2, 1), these are the diagonals given by x + y = 0, x + y = 1, x + y = 2.

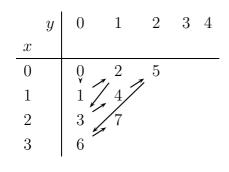
Definition of $\boldsymbol{\pi}$



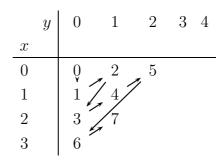
- The diagonal, given by x + y = n, has n + 1elements, so in total we have $\sum_{i=0}^{x+y-1}(i+1) = 1 + 2 + \dots + (x+y) = \sum_{i=1}^{x+y} i$ elements in those diagonals.
- A often used formula says $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. Therefore, the above is $\frac{(x+y)(x+y+1)}{2}$.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Definition of π



- Further, we have to count all pairs in the current diagonal, which occur in this ordering before the current one. These are y pairs.
 - Before (2,1) there is only one pair, namely (3,0).
 - Before (3,0) there are 0 pairs.
 - Before (0,2) there are 2 pairs, namely (2,0), (1,1).



• Therefore we get that there are in total $\frac{(x+y)(x+y+1)}{2} + y$ pairs before (x, y), therefore the pair (x, y) is the pair number $(\frac{(x+y)(x+y+1)}{2} + y)$ in this order.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-151

Definition of π

Definition 2.19

$$\pi(x,y) := \frac{(x+y)(x+y+1)}{2} + y \quad (= (\sum_{i=1}^{x+y} i) + y)$$

Exercise: Prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

π is Bijective

Lemma 2.20

 π is bijective.

Omit Proof

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Proof of Bijectivity of π

We show π is injective:

We prove first that, if x + y < x' + y', then $\pi(x, y) < \pi(x', y')$:

$$\pi(x,y) = (\sum_{i=1}^{x+y} i) + y < (\sum_{i=1}^{x+y} i) + x + y + 1 = \sum_{i=1}^{x+y+1} i$$
$$\leq (\sum_{i=1}^{x'+y'} i) + y' = \pi(x',y')$$

Proof of Bijectivity of π

We show π is injective:

Assume now $\pi(x, y) = \pi(x', y')$ and show x = x' and y = y'. We have by the above

$$x + y = x' + y'$$

Therefore

$$y = \pi(x, y) - (\sum_{i=1}^{x+y} i) = \pi(x', y') - (\sum_{i=1}^{x'+y'} i) = y'$$

and

$$x = (x + y) - y = (x' + y') - y' = x'$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-155

Proof of Bijectivity of π

We show π is surjective: Assume $n \in \mathbb{N}$. Show $\pi(x, y) = n$ for some $x, y \in \mathbb{N}$. The sequence $(\sum_{i=1}^{k'} i)_{k' \in \mathbb{N}}$ is strictly existing. Therefore there exists a k s.t.

$$a := \sum_{i=1}^{k} i \le n < \sum_{i=1}^{k+1} i$$

Proof of Bijectivity of π

 $n \in \mathbb{N}$ Show $\pi(x, y) = n$ for some x, y

$$a := \sum_{i=1}^{k} i \le n < \sum_{i=1}^{k+1} i \tag{(*)}$$

So, in order to obtain $\pi(x, y) = n$, we need x + y = k. By $y = \pi(x, y) - \sum_{i=1}^{x+y} i$, we need to define y := n - a. By k = x + y, we need to define x := k - y. By (*) it follows $0 \le y < k + 1$, therefore $x, y \ge 0$. Further, $\pi(x, y) = (\sum_{i=1}^{x+y} i) + y = (\sum_{i=1}^{k} i) + (n - \sum_{i=1}^{k} i) = n$.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2

Definition of π_0 , π_1

Since π is bijective, we can define π_0 , π_1 as follows:

Definition 2.21 Let $\pi_0 : \mathbb{N} \to \mathbb{N}$ and $\pi_1 : \mathbb{N} \to \mathbb{N}$ be s.t.

 $\pi_0(\pi(x,y)) = x$, $\pi_1(\pi(x,y)) = y$.

π , π_i are Computable

Remark

 π, π_0, π_1 are computable in an intuitive sense.

"Proof:"

- π is obviously computable.
- In order to compute π_0 , π_1 , first observe that $x, y \leq \pi(x, y).$
 - Follows from $\pi(x, y) = (\sum_{i=1}^{x+y} i) + y$.
- Therefore $\pi_0(n)$, $\pi_1(n)$ can be computed by
 - searching for $x, y \leq n$ s.t. $\pi(x, y) = n$,
 - and then setting $\pi_0(n) = x$, $\pi_1(n) = y$.

Encoding of \mathbb{N}^k

- We want to encode \mathbb{N}^k into \mathbb{N} .
- $(l, m, n) \in \mathbb{N}^3$ can be encoded as follows
 - First encode (l,m) as $\pi(l,m) \in \mathbb{N}$.
 - Then encode the complete triple as

 $\pi(\pi(l,m),n) \in \mathbb{N}$.

So define

$$\pi^3(l,m,n) := \pi(\pi(l,m),n)$$
.

• Similarly $(l, m, n, p) \in \mathbb{N}^4$ can be encoded as follows:

 $\pi^4(l,m,n,p) := \pi(\pi(\pi(l,m),n),p)$.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Remark 2.22

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Remark 2.22 For all $z \in \mathbb{N}$.

$$\pi(\pi_0(z),\pi_1(z)) = z$$
.

Proof:

Assume $z \in \mathbb{N}$ and show

$$z = \pi(\pi_0(z), \pi_1(z))$$
.

 π is surjective, so there exists x, y s.t.

$$\pi(x,y) = z$$

Then

$$\pi(\pi_0(z),\pi_1(z)) = \pi(\pi_0(\pi(x,y)),\pi_1(\pi(x,y))) = \pi(x,y) = z.$$

2-159

Decoding Function

- **•** If $x = \pi^{3}(l, m, n) = \pi(\pi(l, m), n)$, then we see
 - $l = \pi_0(\pi_0(x)),$
 - $m = \pi_1(\pi_0(x)),$
 - $n = \pi_1(x)$.
- So we define

•
$$\pi_0^3(x) = \pi_0(\pi_0(x)),$$

•
$$\pi_1^3(x) = \pi_1(\pi_0(x)),$$

•
$$\pi_2^3(x) = \pi_1(x)$$

Decoding Function

- Similarly, if $x = \pi^4(l, m, n, p) = \pi(\pi(\pi(l, m), n), p)$, then we see
 - $l = \pi_0(\pi_0(\pi_0(x)))$,
 - $m = \pi_1(\pi_0(\pi_0(x))),$
 - $n = \pi_1(\pi_0(x)).$
 - $p = \pi_1(x)$.
- So we define
 - $\pi_0^4(x) = \pi_0(\pi_0(\pi_0(x))),$
 - $\pi_1^4(x) = \pi_1(\pi_0(\pi_0(x))),$
 - $\pi_2^4(x) = \pi_1(\pi_0(x)).$
 - $\pi_3^4(x) = \pi_1(x)$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Formal definition of π^k , π^k_i

• Then π^k and

 $\lambda x.(\pi_0^k(x),\ldots,\pi_{k-1}^k(x))$

are inverse to each other.

• A formal inductive Definition of π^k and π^k_i is as follows: Jump over formal definition of π

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Definition for General k

In general one defines for $k\geq 1$

$$\pi^{k} : \mathbb{N}^{k} \to \mathbb{N} ,$$

$$\pi^{k}(x_{0}, \dots, x_{k-1}) := \pi(\dots \pi(\pi(x_{0}, x_{1}), x_{2}) \dots x_{k-1}) ,$$

and for i < k

$$\begin{array}{rcl} \pi_i^k & : & \mathbb{N} \to \mathbb{N} &, \\ \pi_0^k(x) & := & \underbrace{\pi_0(\cdots \pi_0(\ x) \cdots)}_{k \, -1 \text{ times}} &, \\ \text{and for } 0 < i < k, \\ \pi_i^k(x) & := & \pi_1(& \underbrace{\pi_0(\pi_0(\cdots \pi_0(\ x) \cdots)))}_{k \, -i \, -1 \text{ times}} &. \end{array}$$

Definition 2.23 of π^k , π^k_i

(a) We define by induction on k for $k \in \mathbb{N}$, $k \ge 1$

$$\begin{aligned} \pi^k & : & \mathbb{N}^k \to \mathbb{N} \\ \pi^1(x) & := & x \end{aligned}$$
For $k > 0$ $\pi^{k+1}(x_0, \dots, x_k)$ $:= & \pi(\pi^k(x_0, \dots, x_{k-1}), x_k)$

(b) We define by induction on k for $i, k \in \mathbb{N}$ s.t. $1 \le k$, $0 \le i < k$

$$\begin{aligned} \pi_i^k &: \mathbb{N} \to \mathbb{N} \\ \pi_0^1(x) &:= x \\ \pi_i^{k+1}(x) &:= \pi_i^k(\pi_0(x)) \text{ for } i < k \\ \pi_k^{k+1}(x) &:= \pi_1(x) \end{aligned}$$

Omit Examples.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Examples

- $\pi^2(x,y) = \pi(\pi^1(x),y) = \pi(x,y).$
- $\pi^3(x,y,z) = \pi(\pi^2(x,y),z) = \pi(\pi(x,y),z).$
- $\pi^4(x, y, z, u) = \pi(\pi^3(x, y, z), u) = \pi(\pi(\pi(x, y), z), u).$
- $\pi_0^4(u) = \pi_0^3(\pi_0(u)) = \pi_0^2(\pi_0(\pi_0(u))) = \pi_0^1(\pi_0(\pi_0(\pi_0(u)))) = \pi_0(\pi_0(\pi_0(u))).$
- $\pi_2^4(u) = \pi_2^3(\pi_0(u)) = \pi_1(\pi_0(u)).$

Proof

Induction on k. Base case k = 0: Proof of (a): Let $(x_0) \in \mathbb{N}^1$. Then $\pi_0^1(\pi^1(x_0)) = x_0$. Proof of (b): Let $x \in \mathbb{N}$. Then $\pi^1(\pi_0^1(x)) = x$.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-167

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Lemma 2.24

(a) For
$$(x_0, \ldots, x_{k-1}) \in \mathbb{N}^k$$
, $i < k$, $x_i = \pi_i^k(\pi^k(x_0, \ldots, x_{k-1}))$.

(b) For $x \in \mathbb{N}$, $x = \pi^k(\pi_0^k(x), \dots, \pi_{k-1}^k(x))$.

(Omit Proof)

Proof of Lemma 2.24

Induction step $k \rightarrow k + 1$: Assume the assertion has been shown for k. Proof of (a): Let $(x_0, \ldots, x_k) \in \mathbb{N}^{k+1}$. Then for $i < k \quad \pi_i^{k+1}(\pi^{k+1}(x_0, \ldots, x_k)))$ $= \quad \pi_i^k(\pi_0(\pi(\pi^k(x_0, \ldots, x_{k-1}), x_k))))$ $= \quad \pi_i^k(\pi^k(x_0, \ldots, x_{k-1}))$ $\stackrel{\text{IH}}{=} \quad x_i$ and $\pi_k^{k+1}(\pi^{k+1}(x_0, \ldots, x_k)))$ $= \quad \pi_1(\pi(\pi^k(x_0, \ldots, x_{k-1}), x_k)))$ $= \quad x_k$

Proof of Lemma 2.24

Induction step $k \rightarrow k + 1$: Assume the assertion has been shown for k. *Proof of (b)*: Let $x \in \mathbb{N}$.

$$\begin{aligned} \pi^{k+1}(\pi_0^{k+1}(x), \dots, \pi_k^{k+1}(x)) \\ &= & \pi(\pi^k(\pi_0^{k+1}(x), \dots, \pi_{k-1}^{k+1}(x)), \pi_k^{k+1}(x)) \\ &= & \pi(\pi^k(\pi_0^k(\pi_0(x)), \dots, \pi_{k-1}^k(\pi_0(x))), \pi_1(x)) \\ & \underset{=}{\overset{\text{H}}{=}} & \pi(\pi_0(x), \pi_1(x)) \\ & \text{Rem. 2.22} & x \end{aligned}$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-171

Encoding of \mathbb{N}^*

- We want to define an encoding $encode_{\mathbb{N}^*} : \mathbb{N}^* \to \mathbb{N}$ (which will be a bijection).
- $\mathbb{N}^* = \mathbb{N}^0 \cup \bigcup_{k \ge 1} \mathbb{N}^k$.

• $\mathbb{N}^0 = \{()\},\$ We can encode () as 0.

- Encoding of $\bigcup_{k\geq 1} \mathbb{N}^k$:
 - We have an encoding

$$\pi^k:\mathbb{N}^k\to\mathbb{N}$$
 .

Encoding of \mathbb{N}^*

- ▶ Note that each $n \in \mathbb{N}$ is a code for elements of \mathbb{N}^k for every *k*.
 - So if we encoded (n_0, \ldots, n_{k-1}) as $\pi^k(n_0, \ldots, n_{k-1})$ we couldn't determine the length k of the original sequence from the code.
- So we need to add the length to the code for (n_0, \ldots, n_{k-1}) (considered as an element of \mathbb{N}^*).
- Therefore encode a sequence $(n_0, \ldots, n_{k-1}) \in \mathbb{N}^*$ for k > 0 as

$$\pi(k-1,\pi^k(n_0,\ldots,n_{k-1}))$$
.

- In order to distinguish it from code of (), add 1 to it.
- In total we obtain a bijection.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Definition 2.25 of $\langle \rangle$, lh, $(x)_i$

(a) Define for
$$x \in \mathbb{N}^*$$
, $\langle x \rangle : \mathbb{N}$ as follows:

$$\langle \rangle := \langle () \rangle := 0 ,$$
for $k > 0$

$$\langle n_0, \dots, n_{k-1} \rangle := \langle (n_0, \dots, n_{k-1}) \rangle$$

$$:= 1 + \pi (k - 1, \pi^k (n_0, \dots, n_{k-1}))$$

(b) Define for $x \in \mathbb{N}$, the <u>length</u> $h(x) \in \mathbb{N}$ as follows:

$$\begin{array}{rcl} {\sf lh} & : & \mathbb{N} \to \mathbb{N} \ , \\ {\sf lh}(0) & := & 0 \ , \\ {\sf lh}(x) & := & \pi_0(x-1) + 1 \ {\sf if} \ x > 0 \ . \end{array}$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Definition 2.25 of $\langle \rangle$, lh, $(x)_i$

(c) We define for $x \in \mathbb{N}$ and i < lh(x), the *i*th component

 $(x)_i \in \mathbb{N}$

of a code x for a sequence as follows:

$$(x)_i := \pi_i^{\mathsf{lh}(x)}(\pi_1(x-1))$$
.

For $lh(x) \leq i$, let

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

$$(x)_i := 0$$

Remark:

- (a) Note that (x_0, \ldots, x_{k-1}) is a tuple, which is an element of \mathbb{N}^k , whereas $\langle x_0, \ldots, x_{k-1} \rangle$ is the code for this tuple, which is an element of \mathbb{N} .
- (b) Especially $() \in \mathbb{N}^0$ is the empty tuple, whereas $\langle \rangle = 0 \in \mathbb{N}$ is the code for the empty tuple.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Remark

- Ih(x), (x)_i are defined in such a way that Lemma 2.26 (a), (b) given below hold.
- This shows that Ih, $(x)_i$ together form the inverse of the forming of $\langle x_0, \ldots, x_{k-1} \rangle$.

Lemma 2.26

Lemma 2.26

- (a) $\mathsf{lh}(\langle \rangle) = 0$, $\mathsf{lh}(\langle n_0, \dots, n_k \rangle) = k + 1$.
- (b) For $i \leq k$, $(\langle n_0, ..., n_k \rangle)_i = n_i$.
- (c) For $x \in \mathbb{N}$, $x = \langle (x)_0, \dots, (x)_{\mathsf{lh}(x)-1} \rangle$.

Remark

If we define

$$\begin{split} \langle \rangle^{-1} : \mathbb{N} &\to \mathbb{N}^* \\ \langle \rangle^{-1}(x) = ((x)_0, \dots, (x)_{\mathsf{lh}(x)-1}) \end{split}$$

Then we have by Lemma 2.26

$$\langle \rangle^{-1}(\langle x_0, \dots, x_{n-1} \rangle) = (x_0, \dots, x_{n-1})$$

so $\langle \rangle^{-1}$ is the inverse of $\vec{x} \mapsto \langle \vec{x} \rangle$.

(Omit Proof of Lemma 2.26)

Proof of Lemma 2.26 (b)

Proof of (b):

Show $(\langle n_0, \dots, n_k \rangle)_i = n_i$. $lh(\langle n_0, \dots, n_k \rangle) = k + 1$. Therefore

$$\begin{array}{rcl} & (\langle n_0, \dots, n_k \rangle)_i \\ & = & \pi_i^{k+1}(\pi_1(\langle n_0, \dots, n_k \rangle - 1)) \\ & = & \pi_i^{k+1}(\pi_1(1 + \pi(k, \pi^{k+1}(n_0, \dots, n_k)) - 1)) \\ & = & \pi_i^{k+1}(\pi^{k+1}(n_0, \dots, n_k)) \end{array}$$

Lem 2.24 (a)
$$& = & n_i \end{array}$$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-179

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2

Proof of Lemma 2.26 (a)

Proof of (a): Show: $lh(\langle \rangle) = 0$:

 $lh(\langle \rangle) = lh(0) = 0.$ Show: $lh(\langle n_0, \dots, n_k \rangle) = k + 1$:

 $m(n_0,\ldots,n_k/)=n+1.$

$$\begin{aligned} \mathsf{lh}(\langle n_0, \dots, n_k \rangle) &= \pi_0(\langle n_0, \dots, n_k \rangle - 1) + 1 \\ &= \pi_0(\pi(k, \cdots) + 1 - 1) + 1 \\ &= k + 1 \end{aligned}$$

Proof of Lemma 2.26 (c)

Proof of (c): Show $x = \langle (x)_0, \dots, (x)_{lh(x)-1} \rangle$. Case x = 0. lh(x) = 0. Therefore $\langle (x)_0, \dots, (x)_{lh(x)-1} \rangle = \langle \rangle = 0 = x$. Case x > 0. Let $x - 1 = \pi(l, y)$. Then lh(x) = l + 1, $(x)_i = \pi_i^{l+1}(y)$ and therefore $\langle (x)_0, \dots, (x)_{lh(x)-1} \rangle$ $= \langle \pi_0^{l+1}(y), \dots, \pi_l^{l+1}(y) \rangle$ $= \pi(l, \pi^{l+1}(\pi_0^{l+1}(y), \dots, \pi_l^{l+1}(y))) + 1$ Lem 2.24 (b) $= \pi(l, y) + 1$ = x

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Encoding of Finite Sets, Strings

Informal Lemma

If *A* is a finite non-empty set, then *A* and A^* have computables encoding into \mathbb{N} .

Proof of the Informal Lemma

encode_A and decode_A are in an intuitive sense computable, and

 $\operatorname{decode}_A(\operatorname{encode}_A(a)) = a$

- Therefore A has a computable encoding into \mathbb{N} ,
- Therefore A* has as well a computable encoding into N.

Remark: One easily sees that the encoding obtained by this proof is

$$\operatorname{encode}_{A^*} : A^* \to \mathbb{N} ,$$

$$\operatorname{encode}_{A^*}(a_0, \dots, a_n) = \langle \operatorname{encode}_A(a_0), \dots, \operatorname{encode}_A(a_n) \rangle$$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Proof of the Informal Lemma

Assume

$$A = \{a_0, \ldots, a_n\}$$

where $a_i \neq a_j$ for $i \neq j$, $n \ge 0$.

Define

$$\operatorname{encode}_A : A \to \mathbb{N}$$
$$\operatorname{encode}_A(a_i) = i .$$

Define

$$decode_A : \mathbb{N} \to A$$
$$decode_A(i) := a_i \text{ if } i \le n$$
$$decode_A(i) := a_0 \text{ if } i > n.$$

Theorem 2.27

Theorem 2.27

- (a) \mathbb{N}^k and \mathbb{N}^* are countable.
- (b) If A is countable, so are A^k , A^* .
- (c) If A, B are countable, so is $A \times B$.
- (d) If A_n are countable sets for $n \in \mathbb{N}$, so is $\bigcup_{n \in \mathbb{N}} A_n$.
- (e) \mathbb{Q} , the set of rational numbers, is countable.

Proof of Theorem 2.27 (a)

- $\mathbb{N}^0 = \{()\}$ is finite therefore countable.
- **. For** k > 0

 $\pi^k:\mathbb{N}^k\to\mathbb{N}$

is a bijection.

The function

 $\lambda x. \langle x \rangle : \mathbb{N}^* \to \mathbb{N}$

is a bijection.

Proof of Theorem 2.27 (c)

- Assume A, B countable.
- Then there exist injections

 $encode_A : A \to \mathbb{N}$ $encode_B : B \to \mathbb{N}$

Define

$$f : (A \times B) \to \mathbb{N}^2$$
,
 $f(a,b) := (\operatorname{encode}_A(a), \operatorname{encode}_B(b))$

• *f* is injective, \mathbb{N}^2 is countable, so $A \times B$ is countable as well.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-187

Proof of Theorem 2.27 (b)

- To be shown: If A is countable, so are A^k , A^* .
- Assume A is countable.
- We show first that A* is countable:
- There exists $encode_A : A \to \mathbb{N}$, $encode_A$ injective.
- Define

$$f : A^* \to \mathbb{N}^* ,$$

$$f(a_0, \dots, a_{k-1}) := (\text{encode}_A(a_0), \dots, \text{encode}_A(a_{k-1}))$$

- *f* is injective as well, N^{*} is countable, so by Corollary 2.13 A^{*} is countable.
- $A^k \subseteq A^*$, so A^k is countable as well.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

Proof of Theorem 2.27 (d)

- Assume A_n are countable for $n \in \mathbb{N}$.
- Show

 $A := \bigcup_{n \in \mathbb{N}} A_n$

is countable as well.

• If all A_n are empty, so is

 $\bigcup_{n\in\mathbb{N}}A_n$

and therefore countable.

• Assume now A_{k_0} is non-empty for some k_0 .

Proof of Theorem 2.27 (d)

 A_n are countable Show $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

- By replacing empty A_l by A_{k_0} , we get a sequence of non-empty sets $(A_n)_{n \in \mathbb{N}}$, s.t. their union is the same as A.
- So we can assume without loss of generality $A_n \neq \emptyset$ for all *n*.
- A_n are countable and non-empty, so there exist $f_n : \mathbb{N} \to A_n$ surjective.

Proof of Theorem 2.27 (e)

- **•** To be shown: \mathbb{Q} is countable.
- We have $\mathbb{Z} \times \mathbb{N}$ is countable, since \mathbb{Z} and \mathbb{N} are countable.
- Let

 $A:=\{(z,n)\in\mathbb{Z}\times\mathbb{N},n\neq0\}$.

- $A \subseteq \mathbb{Z} \times \mathbb{N}$, therefore A is countable as well.
- Define

$$g : A \to \mathbb{Q}$$
$$g(z,n) := \frac{z}{n} .$$

g is surjective, *A* countable, therefore by Corollary 2.15
 Q is countable as well.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

2-191

Proof of Theorem 2.27 (d)

 $f_n : \mathbb{N} \to A_n$ surjective Show $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

Then

$$\begin{array}{rcl} f & : & \mathbb{N}^2 \to \bigcup_{n \in \mathbb{N}} A_n & , \\ f(n,m) & := & f_n(m) \end{array}$$

is surjective as well.

• \mathbb{N}^2 is countable, so by Corollary 2.15 *A* is countable as well.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e)

(f) Partial Functions

- A partial function $f : A \xrightarrow{\sim} B$ is the same as a function $f : A \to B$, but f(a) might not be defined for all $a \in A$.
- Key example: function computed by a computer program:
 - Program has some input a ∈ A and possibly returns some b ∈ B.

(We assume that program does not refer to global variables).

- If the program applied to $a \in A$ terminates and returns b, then f(a) is defined and equal to b.
- If the program applied to $a \in A$ does not terminate, then f(a) is undefined.

Examples of Partial Functions

- Other Examples:
 - $f: \mathbb{R} \xrightarrow{\sim} \mathbb{R}, f(x) = \frac{1}{x}$: f(0) is undefined.
 - $g: \mathbb{R} \xrightarrow{\sim} \mathbb{R}, g(x) = \sqrt{x}$: g(x) is defined only for $x \ge 0$.

Terms formed from Partial Function

- We want to work with terms like f(g(2), h(3)), where f, g, h are partial functions.
- **Question:** what happens if g(2) or h(3) is undefined?
 - There is a theory of partial functions, in which f(g(2), h(3)) might be defined, even if g(2) or h(3) is undefined.
 - Makes senses for instance for the function $f:\mathbb{N}^2\xrightarrow{\sim}\mathbb{N}$, f(x,y)=0.
 - Theory of such functions is more complicated.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

2-195

Definition of Partial Functions

Definition 2.28

• Let A, B be sets. A partial function f from A to B, written $f : A \xrightarrow{\sim} B$, is a function $f : A' \rightarrow B$ for some $A' \subseteq A$.

A' is called the domain of f, written as A' = dom(f).

- Let $f: A \xrightarrow{\sim} B$.
 - f(a) is defined, written as $f(a) \downarrow$, if $a \in dom(f)$.
 - Let $b \in \mathbb{N}$. $f(a) \simeq b$ (f(a) is partially equal to b) $:\Leftrightarrow f(a) \downarrow \land f(a) = b$.

Strict vs. Non-strict Functions

- Functions, which are defined, even if some of its arguments are undefined, are called <u>non-strict</u>.
- Functions, which are defined only if all of its arguments are defined are called <u>strict</u>.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

2

Call-By-Value

- Strict function are obtained by "call-by-value" evaluation.
 - <u>Call-by-value</u> means that before the value of a function applied to arguments, is computed, the arguments of the function are evaluated.
 - If we treat undefinedness as non-termination, then all functions computed by call-by-value will be strict.
 - There is as well finite error, e.g. the error if a division by 0 occurs. This kind of undefinedness will be handled in a non-strict way by many programming languages.
 - Most programming languages (including practially all imperative and object-oriented languages), use call-by-value evaluation.

```
26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)
```

2-199

Example

- Let $f: \mathbb{N}^2 \xrightarrow{\sim} \mathbb{N}$, f(x, y) = x.
- Let t be an undefined term, e.g. g(0), where $g : \mathbb{N} \xrightarrow{\sim} \mathbb{N}$, g(x) := g(x).
 - So the recursion equation of g(x) doesn't terminate.
- With call-by-name, the term f(2,t) evaluates to 2, since we never need to evaluate t.
- With call-by-value, first *t* is evaluated, which never terminates, so $f(2,t)\uparrow$.
- In our setting, functions are strict, so f(2,t) as above is undefined.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

2

Call-By-Name

- Non-strict functions are obtained by "call-by-name" evaluation:
 - The arguments of a function are evaluated only if they are needed in the computation of *f*.
 - Haskell uses call-by-name-evaluation.
 - Therefore functions in Haskell are in general non-strict.

Terms formed from Partial Function

- In this lecture, functions will always be strict.
- Therefore, a term like f(g(2), h(3)) is defined only, if g(2) and h(3) are defined, and if f applied to the results of evaluating g(2) and h(3) is defined.
- f(g(2), h(3)) is evaluated as for ordinary functions: We first compute g(2) and h(3), and then evaluate f applied to the results of those computations.

- (pronounced <u>bottom</u>) is a term which is always undefined.
- So $\perp \downarrow$ does not hold.

Remark

Note that variables are always considered as being defined:

 $x \downarrow$

One can easily observe

 $t{\downarrow} \Leftrightarrow \exists x.t \simeq x$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

Terms formed from Partial Functions

Definition 2.29

- For expressions t formed from constants, ⊥, variables and partial functions we define whether t ↓, and whether t ≃ b holds (for a constant b):
 - If t = a is a constant, then $t \downarrow$ holds always and $t \simeq b :\Leftrightarrow a = b$.
 - If $t = \bot$, then neither $t \downarrow$ not $t \simeq b$ do hold.
 - If t = x is a variable, then $t \downarrow$ holds always, $t \simeq b : \Leftrightarrow x = b$.

$$f(t_1, \dots, t_n) \simeq b \quad :\Leftrightarrow \quad \exists a_1, \dots, a_n \cdot t_1 \simeq a_1 \wedge \dots \wedge t_n \simeq a_n$$
$$\wedge f(a_1, \dots, a_n) \simeq b \quad .$$
$$f(t_1, \dots, t_n) \downarrow \quad :\Leftrightarrow \quad \exists b \cdot f(t_1, \dots, t_n) \simeq b$$

Terms formed from Partial Function

 $\ \, \bullet \ \, s\uparrow:\Leftrightarrow \neg(s\downarrow).$

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

 We define for expressions s, t formed from constants and partial functions

 $s \simeq t :\Leftrightarrow (s \downarrow \leftrightarrow t \downarrow) \land (s \downarrow \rightarrow \exists a, b.s \simeq a \land t \simeq b \land a = b)$

- t is total means $t \downarrow$.
- A function $f : A \xrightarrow{\sim} B$ is total, iff $\forall a \in A.f(a) \downarrow$ (or, equivalently, dom(f) = A).

Remark:

Total partial functions are ordinary (non-partial) functions.

Quantifiers

Remark:

Quantifiers always range over defined elements. So by $\exists m.f(n) \simeq m$ we mean: there exists a defined m s.t. $f(n) \simeq m$.

So from $f(n) \simeq g(k)$ we cannot conclude $\exists m. f(n) \simeq m$ unless $g(k) \downarrow$.

Examples

- Assume $f : \mathbb{N} \xrightarrow{\sim} \mathbb{N}$, $\operatorname{dom}(f) = \{n \in \mathbb{N} \mid n > 0\}$. f(n) := n - 1 for $n \in \operatorname{dom}(f)$.
- Let $g: \mathbb{N} \xrightarrow{\sim} \mathbb{N}$, dom $(g) = \{0, 1, 2\}$, g(n) := n + 1. Then:
- $f(1) \downarrow, f(0)\uparrow, f(1) \simeq 0, f(0) \simeq n$ for all $n \in \mathbb{N}$.
- $g(\underbrace{f(0)}_{\uparrow})\uparrow$, since $f(0)\uparrow$.
- $g(\underbrace{f(1)}_{\simeq 0}) \downarrow$, since $f(1) \downarrow$, $f(1) \simeq 0$, $g(0) \downarrow$.
- $g(\underbrace{f(4)}_{\simeq 3})\uparrow$, since $f(4)\downarrow$, $f(4)\simeq 3$, but $g(3)\uparrow$.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

Examples

$$\begin{split} f &: \mathbb{N} \xrightarrow{\sim} \mathbb{N}, \operatorname{dom}(f) = \{n \in \mathbb{N} \mid n > 0\}, \ f(n) &:= n - 1 \text{ for} \\ n \in \operatorname{dom}(f). \\ g &: \mathbb{N} \xrightarrow{\sim} \mathbb{N}, \ \operatorname{dom}(g) = \{0, 1, 2\}, \ g(n) &:= n + 1. \end{split}$$

- $\ \ \, \underbrace{g(f(0))}_{\uparrow}\simeq \underbrace{f(0)}_{\uparrow}, \ \ \, \text{since both expressions are undefined.} \ \ \, \\$
- $\underbrace{g(f(1))}_{\simeq 1} \simeq \underbrace{f(g(1))}_{\simeq 1}$, since both sides are defined and equal to 1.
- $\underbrace{g(f(0))}_{\uparrow} \not\simeq \underbrace{f(g(0))}_{\downarrow}$, since the left hand side is undefined, the right hand side is defined.

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

2-207

Remark 2.30

Remark 2.30

- (a) If a, b are constants, $s \simeq a$, $s \simeq b$, then a = b.
- (b) For all terms we have $t \downarrow \Leftrightarrow \exists a.t \simeq a$.

(c)
$$f(t_1, \ldots, t_n) \downarrow \Leftrightarrow \exists a_1, \ldots, a_n . t_1 \simeq a_1 \land \cdots$$

 $\land t_n \simeq a_n$
 $\land f(a_1, \ldots, a_n) \downarrow$.

Examples

 $f: \mathbb{N} \xrightarrow{\sim} \mathbb{N}, \operatorname{dom}(f) = \{n \in \mathbb{N} \mid n > 0\}, f(n) := n - 1$ for $n \in \operatorname{dom}(f).$ $g: \mathbb{N} \xrightarrow{\sim} \mathbb{N}, \operatorname{dom}(g) = \{0, 1, 2\}, g(n) := n + 1.$

• $\underbrace{f(f(2))}_{\simeq 0} \simeq \underbrace{f(2)}_{\simeq 1}$, since both sides evaluate to different (defined) values.

Definition

Assume $f: \mathbb{N}^n \xrightarrow{\sim} \mathbb{N}$.

(a) The range of f, in short ran(f) is defined as follows:

 $\operatorname{ran}(f) := \{ y \in \mathbb{N} \mid \exists \vec{x}. (f(\vec{x}) \simeq y) \} \ .$

(b) The graph of f is the set G_f defined as

 $\mathsf{G}_f := \{ (\vec{x}, y) \in \mathbb{N}^{n+1} \mid f(\vec{x}) \simeq y \} \ .$

26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

2-211

Examples

- $\begin{array}{l} f:\mathbb{N}\xrightarrow{\sim}\mathbb{N}\text{, } \operatorname{dom}(f)=\{n\in\mathbb{N}\mid n>0\}\text{, } f(n):=n-1 \text{ for }\\ n\in\operatorname{dom}(f)\text{.} \end{array}$
- $g:\mathbb{N}\xrightarrow{\sim}\mathbb{N}, \operatorname{dom}(g)=\{0,1,2\}, g(n):=n+1.$
- +, · etc. can be treated as partial functions. So for instance
 - $\underbrace{f(1)}_{\downarrow} + \underbrace{f(2)}_{\downarrow} \downarrow$, since $f(1) \downarrow$, $f(2) \downarrow$, and + is total.

•
$$\underbrace{f(1)}_{\simeq 0} + \underbrace{f(2)}_{\simeq 1} \simeq 1.$$

•
$$f(0) + f(1)\uparrow$$
, since $f(0)\uparrow$.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

Remark on G_f

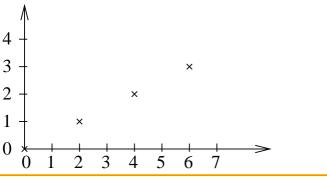
- The notion "graph" used here has nothing to do with the notion of "graph" in graph theory.
- The graph of a function is essentially the graph we draw when visualising f.

Remark on G_f

Example:

$$f: \mathbb{N} \xrightarrow{\sim} \mathbb{N}$$
, $f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ even,} \\ \bot, & \text{if } x \text{ is odd} \end{cases}$

We can draw f as follows:



26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

2-215

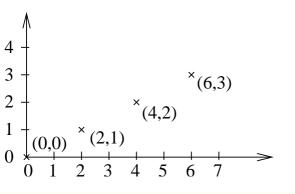
CS_226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)

Remark on G_f

In this example we have

 $\mathsf{G}_f = \{(0,0), (2,1), (4,2), (6,3), \ldots\}$

These are exactly the coordinates of the crosses in the picture:



26 Computability Theory, Michaelmas Term 2008, Sec. 2 (f)