
Sec. 8: Semi-Computable Predicates

We study P ⊆ N
n, which are

not decidable ,
but “half decidable ”.

Official name is
semi-decidable ,
or semi-computable .
or recursively enumerable (r.e.) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-1

Rec.enum. vs. semi-decidable
Recursively enumerable stands for the definition
based on the notion of partial recursive functions.

Semi-decidable or semi-computable stand for the
definition based on an intuitive notion of “(partial)
computable function”

Assuming the Church-Turing thesis , the two notions
coincide.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-2

Rec. Sets
Remember:

A predicate A is recursive, iff χA is recursive.

So we have a “full” decision procedure:

P (~x) ⇔ χP (~x) = 1, i.e. answer yes ,

¬P (~x) ⇔ χP (~x) = 0, i.e. answer no .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-3

Semi-Decidable Sets
P ⊆ N

n will be semi-decidable,
if there exists a partial recursive recursive function f s.t.

P (~x) ⇔ f(~x) ↓ .

If P (~x) holds,
we will eventually know it:
the algorithm for computing f will finally terminate,
and then we know that P (~x) holds.

If P (~x) doesn’t hold,
then the algorithm computing f will loop for ever,
and we never get an answer.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-4

Semi-Decidable Sets
So we have:

P (~x) ⇔ f(~x) ↓ i.e. answer yes ,

¬P (~x) ⇔ f(~x)↑ i.e. no answer
returned by f .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-5

Applications
One might think that semi-computable sets don’t occur
in computing.

But they occur in many applications.

Examples are
Checking whether a program terminates is
semi-decidable.
Checking whether a program in C++ is type correct is
because of the template mechanism semi-decidable.

In C++ compilers this problem is usually prevented
by having a flag which limits the number of times
templates are unfolded.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-6

Applications
Examples (Cont.)

Type checking in Agda (used in the module
interactive theorem proving) is semi-decidable.

Does in most applications not cause any problems.
Jump over next example

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-7

Applications
Whether a statement is provable in many logical
systems is semi-decidable.

But even so this is semi-decidable, many search
algorithm succeed in most practical cases.
Often one can predict a certain time, after which
normally the search algorithm should have
returned an answer.
· If the search algorithm hasn’t returned an

answer after this time it is likely (but not
guaranteed) that the statement is unprovable.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-8

Def. 8.1 (Recursively Enumerable)

A predicate A ⊆ N
n is

::::::::::::::

recursively
::::::::::::::::

enumerable ,
in short

::::

r.e.,
if there exists a partial recursive function f : N

n ∼
→ N s.t.

A = dom(f) .

Sometimes recursive predicates are as well called

::::::::::::::::::::

semi-decidable or

::::::::::::::::::::::

semi-computable or

::::::::::

partially
::::::::::::::::

computable .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-9

Lemma 8.3
(a) Every recursive predicate is r.e.

(b) The halting problem , i.e.

Halt
n(e, ~x) :⇔ {e}n(~x) ↓ ,

is r.e., but not recursive.

The proof of Lemma 8.3 and the statement and

proof of Theorem 8.4 will be omitted in this lecture

Jump over proof of Lemma 8.3 and Theorem 8.4.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-10

Proof of Lemma 8.3
(a) Assume A ⊆ N

k is decidable.
Then

N
k \ A

is recursive, therefore its characteristic function

χNk\A

is recursive as well.
Define

f : N
k ∼
→ N, f(~x) :' (µy.χNk\A(~x) ' 0) .

Note that y doesn’t occur in the body of the
µ-expression.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-11

Proof of Lemma 8.3
Then we have

If A(~x), then
χNk\A(~x) ' 0 ,

so
f(~x) ' (µy.χNk\A(~x) ' 0) ' 0 ,

especially
f(~x) ↓ .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-12

Proof of Lemma 8.3
If (Nk \ A)(~x), then

χNk\A(~x) ' 1 ,

so there exists no y s.t.

χNk\A(~x) ' 0 .

therefore

f(~x) ' (µy.χNk\A(~x) ' 0) ' ⊥ ,

especially
f(~x)↑ .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-13

Proof of Lemma 8.3
So we get

A(~x) ⇔ f(~x) ↓⇔ ~x ∈ dom(f) ,

A = dom(f) is r.e. .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-14

Proof of Lemma 8.3
(b) We have

Halt
n(e, ~x) :⇔ fn(e, ~x) ↓ ,

where fn is partial recursive as in Sect. 5 s.t.

{e}n(~x) ' fn(e, ~x) .

So
Halt

n = dom(fn) is r.e. .

We have seen above that Halt
n is non-computable,

i.e. not recursive.
Jump over Theorem 8.4.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-15

Theorem 8.4
There exist r.e. predicates

W
n ⊆ N

n+1

s.t., with
W

n
e := {~x ∈ N

n | W
n(e, ~x)} ,

we have the following:

Each of the predicates Wn
e ⊆ N

n is r.e.

For each r.e. predicate P ⊆ N
n there exists an e ∈ N

s.t. P = Wn
e , i.e.

∀~x ∈ N.P (~x) ⇔ W
n
e (~x) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-16

Theorem 8.4
Therefore, the r.e. sets P ⊆ N

n are exactly the sets Wn
e for

e ∈ N.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-17

Remark on Theorem 8.4
Wn

e is therefore a
universal recursively enumerable sets , which
encodes all other recursively enumerable sets.

The theorem means that that we can assign to every
recursively enumerable predicate A a natural number,
namely the e s.t. A = Wn

e .
Each code denotes one predicate.
However, several numbers denote the same
predicate:

there are e, e′ s.t. e 6= e′, but Wn
e = Wn

e′.
(Since there are e 6= e′ s.t. {e}n = {e′}n).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-18

Proof Idea for Theorem 8.4

W
n
e := dom({e}n) .

If A is r.e., then A = dom(f) for some partial rec. f .
Let f = {e}n.
Then A = Wn

e .

The details given in the following will be omitted in the lec-

ture. Jump over Details

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-19

Proof of Theorem 8.4
Let fn s.t.

∀e, ~n ∈ N.fn(e, ~x) ' {e}(~x) .

Define
W

n := dom(fn) .

Wn is r.e.

We have

~x ∈ W
n
e ⇔ (e, ~x) ∈ W

n

⇔ fn(e, ~x) ↓

⇔ {e}(~x) ↓

⇔ ~x ∈ dom({e}n) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-20

Proof of Theorem 8.4
Therefore

W
n
e = dom({e}n) .

Wn is r.e., since fn is partial recursive.

Furthermore, we have for any set A ⊆ N
n

A is r.e. iff A = dom(f) for some partial recursive f

iff A = dom({e}n) for some e ∈ N

iff A = Wn
e for some e ∈ N.

This shows the assertion.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-21

Theorem 8.5
Let A ⊆ N

n. The following is equivalent:

(i) A is r.e.

(ii)
A = {~x | ∃y.R(~x, y)}

for some primitive recursive predicate R.

(iii)
A = {~x | ∃y.R(~x, y)}

for some recursive predicate R.

(iv)
A = {~x | ∃y.R(~x, y)}

for some recursively enumerable predicate R.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-22

Theorem 8.5
(i) A is r.e.

(v) A = ∅ or

A = {(f0(x), . . . , fn−1(x)) | x ∈ N}

for some primitive recursive functions

fi : N → N .

(vi) A = ∅ or

A = {(f0(x), . . . , fn−1(x)) | x ∈ N}

for some recursive functions

fi : N → N .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-23

Remark
We can summarise Theorem 8.5 as follows:
There are 3 equivalent ways of defining that A ⊆ N

n is
r.e.:

A = dom(f) for some partial recursive f ;
A = ∅ or A is the image of primitive
recursive/recursive functions f0, . . . , fn−1;
A = {~x | ∃y.R(~x, y)} for some primitive
recursive/recursive/r.e. R.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-24

Remark, Case n = 1

For A ⊆ N the following is equivalent:
A is r.e.
A = ∅ or
A = ran(f) for some primitive recursive f : N → N .

A = ∅ or A = ran(f) for some recursive f : N → N .

Therefore A ⊆ N is r.e., if
A = ∅

or there exists a (prim.-)rec. function f , which
enumerates all its elements.

This explains the name “recursively enumerable
predicate”.
Skip Proof.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-25

Proof
Skip proof idea.
Proof Idea for Theorem 8.5:

(i) → (ii):
Assume A is r.e., A = dom(f), for f partial recursive.

A(~x) ⇔ f(~x) ↓

⇔ ∃y.the TM for computing f(~x) terminates
after y steps

⇔ ∃y.R(~x, y)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-26

Proof Idea for Theorem 8.5:
((i) → (ii), Cont)

where

R(~x, y) ⇔ the TM for comp. f(~x) termin. after y steps .

R is primitive recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-27

Proof Ideas
(ii) → (v), special case n = 1:
Assume

A = {x ∈ N | ∃y.R(x, y)} where R is prim. rec.
A 6= ∅,
y ∈ A fixed.

Define f : N → N recursive,

f(x) =

{

π0(x), if R(π0(x), π1(x)),
y otherwise.

Then A = ran(f).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-28

Proof Ideas
(v), (vi) → (i), special case n = 1:
Assume

A = ran(f) ,

where f is (prim.-)recursive.
Then

A = dom(g) ,

where
g(x) ' (µy.f(y) = x) .

g is partial recursive.

The full details will be omitted in the lecture.
Skip Details

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-29

Proof of Theorem 8.5
(i) → (ii):

(The actual predicate R we will take will be slightly
differently from that in the proof idea – it is
technically easier to prove the theorem this way.)
If A is r.e., then for some partial recursive function
f : N

n ∼
→ N we have

A = dom(f) .

Let f = {e}n.
By Kleene’s Normal Form Theorem there exist a
primitive recursive function U : N → N and a primitive
recursive predicate Tn ⊆ N

n+1 s.t.

{e}n(~x) ' U(µy.Tn(e, ~x, y)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-30

Proof of Theorem 8.5
(i) → (ii) (Cont.)

Therefore

A(~x) ⇔ ~x ∈ dom(f)

⇔ ~x ∈ dom({e}n)

⇔ U(µy.Tn(e, ~x, y)) ↓

U prim. rec., therefore total
⇔ µy.Tn(e, ~x, y) ↓

⇔ ∃y.Tn(e, ~x, y)

⇔ ∃y.R(~x, y) .

where
R(~x, y) ⇔ Tn(e, ~x, y) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-31

Proof of Theorem 8.5
(i) → (ii) (Cont.)

Now R is primitive recursive, and

A = {~x | ∃y.R(~x, y)} .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-32

Proof of Theorem 8.5
(ii) → (iii) : Trivial.

(iii) → (iv) : By Lemma 8.3.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-33

Proof of Theorem 8.5
(iv) → (ii) :

Assume
A = {~x | ∃y.R(~x, y)} ,

where R is r.e.
By “(i) → (ii)” there exists a primitive recursive
predicate S s.t.

R(~x, y) ⇔ ∃z.S(~x, y, z) .

Therefore

A = {~x | ∃y.∃z.S(~x, y, z)}

= {~x | ∃y.S(~x, π0(y), π1(y))}

= {~x | ∃y.R′(~x, y)} ,

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-34

Proof of Theorem 8.5
((iv) → (ii), Cont.)

Here

R′(~x, y) :⇔ S(~x, π0(y), π1(y)) is primitive recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-35

Proof of Theorem 8.5
(ii) → (v):

Assume A is not empty and R is primitive recursive
s.t.

A = {~x | ∃y.R(~x, y)} .

Let ~z = z0, . . . , zn−1 be some fixed elements s.t. A(~z)
holds.
Define for i = 0, . . . , n − 1

fi(x) :=
{

πn+1

i (x), if R(πn+1

0
(x), πn+1

1
(x), . . . , πn+1

n−1
(x), πn+1

n (x)),
zi, otherwise.

fi are primitive recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-36

Proof of Theorem 8.5
((ii) → (v), Cont.)

We show

A = {(f0(x), . . . , fn−1(x)) | x ∈ N} .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-37

Proof of Theorem 8.5
((ii) → (v), Cont.)

“⊇”:
Assume x ∈ N, and show

A(f0(x), . . . , fn−1(x)) .

If R(πn+1

0
(x), πn+1

1
(x), . . . , πn+1

n−1
(x), πn+1

n (x)), then

∃z.R(πn+1

0
(x), πn+1

1
(x), . . . , πn+1

n−1
(x), z) ,

therefore

(πn+1

0
(x), πn+1

1
(x), . . . , πn+1

n−1
(x)) ∈ A ,

therefore
A(f0(x), . . . , fn−1(x)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-38

Proof of Theorem 8.5
((ii) → (v), Cont.)

(“⊇”, Cont.):

If (Nk \ R)(πn+1

0
(x), πn+1

1
(x), . . . , πn+1

n−1
(x), πn+1

n (x)),
then

fi(x) = zi ,

therefore by A(~z)

A(f0(x), . . . , fn−1(x)) .

So in both cases we get that

A(f0(x), . . . , fn−1(x)) ,

so
{(f0(x), . . . , fn−1(x)) | x ∈ N} ⊆ A .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-39

Proof of Theorem 8.5
((ii) → (v), Cont.)

“⊆”:
Assume

A(x0, . . . , xn−1) ,

and show

∃z.(f0(z) = x0 ∧ · · · ∧ fn−1(z) = xn−1) .

We have for some y

R(x0, . . . , xn−1, y) .

Let
z = πn+1(x0, . . . , xn−1, y) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-40

Proof of Theorem 8.5
((ii) → (v), Cont.); (“⊆”, Cont)

Then we have

xi = πn+1

i (z) , y = πn+1
n (z) ,

therefore

R(πn+1

0
(z), πn+1

1
(z), . . . , πn+1

n−1
(z), πn+1

n (z)) ,

therefore for i = 0, . . . , n − 1

fi(z) = πn+1

i (z) = xi ,

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-41

Proof of Theorem 8.5
((ii) → (v), Cont.); (“⊆”, Cont)

therefore

(x0, . . . , xn−1) = (f0(z), . . . , fn−1(z))

∈ {(f0(x), . . . , fn−1(x)) | x ∈ N} ,

and we have

A ⊆ {(f0(x), . . . , fn−1(x)) | x ∈ N} .

Therefore we have shown

A = {(f0(x), . . . , fn−1(x)) | x ∈ N} ,

and the assertion follows.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-42

Proof of Theorem 8.5
(v) → (vi) : Trivial.

(vi) → (i):

If A is empty, then A is recursive, therefore r.e.
Assume

A = {(f0(x), . . . , fn−1(x)) | x ∈ N} .

for some recursive functions fi.
Define

f : N
n ∼
→ N ,

s.t.

f(x0, . . . , xn−1) :' µx.(f0(x) ' x0∧· · ·∧fn−1(x) ' xn−1) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-43

Proof of Theorem 8.5
((vi) → (i), Cont.)

f can be written as

f(x0, . . . , xn−1) :' µx.(((f0(x) −· x0) + (x0 −
· f0(x)))+

((f1(x) −· x1) + (x1 −
· f1(x)))+

· · ·+

((fn−1(x) −· xn−1) + (xn−1 −
· fn−1(x)))

' 0) ,

therefore f is partial recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-44

Proof of Theorem 8.5
((vi) → (i), Cont.)

Furthermore, we have

A(x0, . . . , xn−1) ⇔ ∃x ∈ N.x0 = f0(x) ∧ · · · ∧ xn−1 = fn−1(x)

⇔ f(x0, . . . , xn−1) ↓ ,

therefore
A = dom(f) is r.e. .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-45

Theorem 8.6

A ⊆ N
k is recursive iff both A and N

k \ A are r.e.

Proof idea:
“⇒” is easy.
For “⇐”: Assume

A(~x) ⇔ ∃y.R(~x, y)

(Nk \ A)(~x) ⇔ ∃y.S(~x, y)

In order to decide A, search simultaneously for a y

s.t. R(~x, y) and for a y s.t. S(~x, y) holds.
If we find a y s.t. R(~x, y) holds, then A(~x) holds.
If we find a y s.t. S(~x, y) holds, then ¬A(~x) holds

The details of the proof will be omitted in this lecture.

Jump over details
CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-46

Proof of Theorem 8.6, “ ⇒”
If A is recursive, then both A and N

k \ A are recursive,
therefore as well r.e.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-47

Proof of Theorem 8.6, “ ⇐”
Assume A, N

k \ A are r.e.

Then there exist primitive recursive predicates R and S

s.t.

A = {~x | ∃y.R(~x, y)} ,

N
k \ A = {~x | ∃y.S(~x, y)} .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-48

Proof of Theorem 8.6, “ ⇐”
A = {~x | ∃y.R(~x, y)} ,

N
k \ A = {~x | ∃y.S(~x, y)} .

By
A ∪ (Nk \ A) = N

k ,

it follows

∀~x.((∃y.R(~x, y)) ∨ (∃y.S(~x, y))) ,

therefore as well

∀~x.∃y.(R(~x, y) ∨ S(~x, y)) . (∗)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-49

Proof of Theorem 8.6, “ ⇐”
A = {~x | ∃y.R(~x, y)} ,

N
k \ A = {~x | ∃y.S(~x, y)} ,

∀~x.∃y.(R(~x, y) ∨ S(~x, y)) . (∗)

Define

h : N
n → N , h(~x) := µy.(R(~x, y) ∨ S(~x, y)) .

h is partial recursive.

By (∗) we have h is total, so h is recursive.

We show
A(~x) ⇔ R(~x, h(~x)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-50

Proof of Theorem 8.6, “ ⇐”
A = {~x | ∃y.R(~x, y)} , N

k \ A = {~x | ∃y.S(~x, y)} ,

h(~x) := µy.(R(~x, y) ∨ S(~x, y)) ,

Show A(~x) ⇔ R(~x, h(~x)) .

If A(~x) then
∃y.R(~x, y)

and
~x 6∈ (Nk \ A) ,

therefore
¬∃y.S(~x, y) .

Therefore we have for the y found by h(~x) that R(~x, y)
holds, i.e.

R(~x, h(~x)) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-51

Proof of Theorem 8.6, “ ⇐”
A = {~x | ∃y.R(~x, y)} ,

N
k \ A = {~x | ∃y.S(~x, y)} ,

h(~x) := µy.(R(~x, y) ∨ S(~x, y)) ,

Show A(~x) ⇔ R(~x, h(~x)) .

On the other hand, if R(~x, h(~x)) holds then

∃y.R(~x, y) ,

therefore
A(~x) .

Therefore

A = {~x | R(~x, h(~x))} is recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-52

Theorem 8.7
Let f : N

n ∼
→ N.

Then
f is partial recursive ⇔ Gf is r.e. .

Proof idea for “ ⇐”:
Assume R primitive recursive s.t.

Gf (~x, y) ⇔ ∃z.R(~x, y, z) .

In order to compute f(~x), search for a y s.t. R(~x, π0(y), π1(y))
holds.
f(~x) will be the first projection of this y.

The details of the proof will be omitted in this lecture.

Jump over details
CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-53

Proof of Theorem 8.7, “ ⇒”
Assume f is partial recursive.

Then f = {e}n for some e ∈ N.

By Kleene’s Normal Form Theorem we have

f(~x) ' U(µy.Tn(~x, y)) ,

for some primitive recursive relation

Tn ⊆ N
n+1

and some primitive recursive function

U : N → N .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-54

Proof of Theorem 8.7, “ ⇒”
f(~x) ' U(µy.Tn(~x, y)) .

Therefore

(~x, y) ∈ Gf ⇔ (f(~x) ' y)

⇔ ∃z.(Tn(~x, z)∧

(∀z′ < z.¬Tn(~x, z′))

∧U(z) = y) ,

Therefore Gf is r.e.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-55

Proof of Theorem 8.7, “ ⇐”
If Gf is r.e., then there exists a primitive recursive
predicate R s.t.

f(~x) ' y ⇔ (~x, y) ∈ Gf ⇔ ∃z.R(~x, y, z) .

Therefore for any z s.t. R(~x, π0(z), π1(z)) holds we have
that

f(~x) ' π0(z) .

Therefore

f(~x) ' π0(µu.R(~x, π0(u), π1(u))) ,

f is partial recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-56

Lemma 8.8
The recursively enumerable sets are closed under:

(a) Union (and therefore ∨):
If A,B ⊆ N

n are r.e., so is A ∪ B.

(b) Intersection (and therefore ∧):
If A,B ⊆ N

n are r.e., so is A ∩ B.

(c) Substitution by recursive functions:
If A ⊆ N

n is r.e., fi : N
k → N are recursive for

i = 0, . . . , n, so is

C := {~y ∈ N
k | A(f0(~y), . . . , fn−1(~y))} .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-57

Lemma 8.8
(d) (Unbounded) existential quantification:
If D ⊆ N

n+1 is r.e., so is

E := {~x ∈ N
n | ∃y.D(~x, y)} .

(e) Bounded universal quantification:
If D ⊆ N

n+1 is r.e., so is

F := {(~x, z) ∈ N
n+1 | ∀y < z.D(~x, z)} .

The details of the proof will be omitted in this lecture.

Jump over details

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-58

Proof of Lemma 8.8
Let A,B ⊆ N

n be r.e.

Then there exist primitive recursive relations R,S s.t.

A = {~x ∈ N
n | ∃y.R(~x, y)} ,

B = {~x ∈ N
n | ∃y.S(~x, y)} .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-59

Proof of Lemma 8.8 (a), (b)
A = {~x ∈ N

n | ∃y.R(~x, y)} ,

B = {~x ∈ N
n | ∃y.S(~x, y)} .

One can easily see that

A ∪ B = {~x ∈ N
n | ∃y.(R(~x, y) ∨ S(~x, y))} ,

A ∩ B = {~x ∈ N
n | ∃y.(R(~x, π0(y))

∧S(~x, π1(y)))} .

therefore A ∪ B and A ∩ B are r.e.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-60

Proof of Lemma 8.8 (c)
A = {~x ∈ N

n | ∃y.R(~x, y)} ,

B = {~x ∈ N
n | ∃y.S(~x, y)} .

Assume A ⊆ N
n is r.e., fi : N

k → N are recursive for
i = 0, . . . , n.

Need to show that

C := {(~y ∈ N
k | A(f0(~y), . . . , fn−1(~y)} .

is r.e.

Follows by

C = {~y | A(f0(~y), . . . , fn−1(~y))}

= {~y | ∃z.R(f0(~y), . . . , fn−1(~y), z)} is r.e.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-61

Proof of Lemma 8.8 (d), (e)
(d) follows from Theorem 8.5.

(e):

Assume T is a primitive recursive predicate s.t.

D = {(~x, y) ∈ N
n+1 | ∃z.T (~x, y, z)} .

Then we get

F = {(~x, y) | ∀y′ < y.D(~x, y′)}

= {(~x, y) | ∀y′ < y.∃z.T (~x, y′, z)}

= {(~x, y) | ∃z.∀y′ < y.T (~x, y′, (z)y′)} is r.e.,

where in the last line we used that

{(~x, z) | ∀y′ < y.T (~x, y′, (z)y′)} is primitive recursive .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-62

Lemma 8.9
The r.e. predicates are not closed under complement :

There exists an r.e. predicate A ⊆ N
n s.t. N

n \ A is not r.e.

Proof:

Halt
n is r.e.

N
n \ Halt

n is not r.e.
Otherwise by Theorem 8.6 Halt

n would be recursive.
But by Lemma 8.3. (b) Halt

n is not recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 8 8-63

	Sec. 8: Semi-Computable Predicates
	Rec.enum. vs. semi-decidable
	Rec. Sets
	Semi-Decidable Sets
	Semi-Decidable Sets
	Applications
	Applications
	Applications
	Def. 8.1 (Recursively Enumerable)
	Lemma 8.3
	Proof of Lemma 8.3
	Proof of Lemma 8.3
	Proof of Lemma 8.3
	Proof of Lemma 8.3
	Proof of Lemma 8.3
	Theorem 8.4
	Theorem 8.4
	Remark on Theorem 8.4
	Proof Idea for Theorem 8.4
	Proof of Theorem 8.4
	Proof of Theorem 8.4
	Theorem 8.5
	Theorem 8.5
	Remark
	Remark, Case $n=1$
	Proof
	Proof Idea for Theorem 8.5:
	Proof Ideas
	Proof Ideas
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Proof of Theorem 8.5
	Theorem 8.6
	Proof of Theorem 8.6, ``$Ar $''
	Proof of Theorem 8.6, ``$Leftarrow $''
	Proof of Theorem 8.6, ``$Leftarrow $''
	Proof of Theorem 8.6, ``$Leftarrow $''
	Proof of Theorem 8.6, ``$Leftarrow $''
	Proof of Theorem 8.6, ``$Leftarrow $''
	Theorem 8.7
	Proof of Theorem 8.7, ``$Ar $''
	Proof of Theorem 8.7, ``$Ar $''
	Proof of Theorem 8.7, ``$Leftarrow $''
	Lemma 8.8
	Lemma 8.8
	Proof of Lemma 8.8
	Proof of Lemma 8.8 (a),
(b)
	Proof of Lemma 8.8 (c)
	Proof of Lemma 8.8 (d),
(e)
	Lemma 8.9

