7. The Recursion Theorem

- Main result in this section: **Kleene's Recursion Theorem**.
	- **Recursive functions are closed under a very general** form of recursion.
- For the proof we will use the **S-m-n-theorem**.
	- Used in many proofs in computability theory.
	- However, both the S-m-n theorem and the proof of the Recursion theorem will be omitted this year. Jump to Kleene's [Recursion](#page-15-0) Theorem.

The S-m-n Theorem

- Assume $f: \mathbb{N}^{m+n} \overset{\sim}{\to} \mathbb{N}$ partia ∼ $\stackrel{\sim}{\rightarrow} \mathbb{N}$ partial recursive.
- Fix the first m arguments (say $\vec{l}:=l_0,\ldots,l_{m-1}$).
- Then we obtain ^a partial recursive function

$$
g: \mathbb{N}^n \xrightarrow{\sim} \mathbb{N}, \qquad g(\vec{x}) \simeq f(\vec{l}, \vec{x})
$$
.

• The S-m-n theorem expresses that we can compute a Kleene index of g

$$
\bullet \ \mathsf{i.e.} \ \mathsf{an}\ e^{\prime} \ \mathsf{s.t.} \ g = \{e^{\prime}\}^n
$$

from a Kleene index of f and \vec{l} **primitive recursively**.

The S-m-n Theorem

- f : $\mathbb{N}^{m+n} \stackrel{\sim}{\; \; }$ $\vec{l} : \mathbb{N}^m$ $\stackrel{\sim}{\rightarrow}$ N partial rec. $g : \mathbb{N}^n \stackrel{\sim}{\rightarrow}$ $g(\vec{x}) \simeq f(\vec{l}, \vec{x}).$ $\stackrel{\sim}{\rightarrow}$ N partial rec.
- So there exists a primitive recursive function S_n^m $\, n \,$ $\frac{m}{n}$ s.t.,
	- if f = $\{e\}^{m+n}$,
	- then $g=\frac{d}{dx}$ $\{\mathsf S_m^m$ $_{n}^{m}(e,\vec{l})\}^{n}$.
- ${\sf So}~\{\mathsf S_m^m$ $_{n}^{m}(e,\vec{l})\}^{n}$ $^{n}(\vec{x}) \simeq \{e\}^{m+n}$ $^{n}(\vec{l}, \vec{x})$.

Notation

$\{\mathsf S_n^m(e,\vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l},\vec{x}).$

- Assume t is an expression depending on n variables $\vec{x},$ s.t. we can compute t from \vec{x} partial recursively.
Then \mathbb{R}^d is any natural number e.s.t. $\lceil e \rceil^n (\vec{x}) \rceil$ Then $\lambda \vec{x}.t$ is any natural number e s.t. $\{e\}^n(\vec{x}) \simeq t.$
- **Then we will have**

$$
\mathsf{S}_n^m(e,\vec{l}) = \lambda \vec{x}.\{e\}^{m+n}(\vec{l},\vec{x})\ .
$$

Theorem 7.1 (S-m-n Theorem)

Assume $m,n\in\mathbb{N}.$

• There exists a primitive recursive function

$$
\mathsf{S}_n^m:\mathbb{N}^{m+1}\to\mathbb{N}
$$

s.t. for all $\vec{l} \in \mathbb{N}^m, \vec{x} \in \mathbb{N}^n$

$$
\{\mathsf S_n^m(e,\vec l)\}^n(\vec x) \simeq \{e\}^{m+n}(\vec l,\vec x) \ .
$$

- Let $\mathrm{T}% _{F}$ be a TM encoded as $e.$
- A Turing machine T' corresponding to S_n^m $_{n}^{m}(e,\vec{l})$ should be s.t.

$$
\mathrm{T}'^{(n)}(\vec{x}) \simeq \mathrm{T}^{(n+m)}(\vec{l}, \vec{x}) .
$$

 $\mathrm{T}% _{1}\left(\mathbf{1}\right)$ is TM for $e.$ Want to define T' s.t. $\mathrm{T}'^{(n)}$ T' can be defined as follows: $(\vec{x})\simeq \mathrm{T}^{(n)}$ $+m) (\vec{l},$ (l,\vec{x})

- 1. The initial configuration is:
	- \vec{x} written on the tape,
	- head pointing to the left most bit:

· · · xy xy bin (x0) xy · · · xy bin (xn1) xy xy · · · ↑

 $\mathrm{T}% _{1}\left(\mathbf{1}\right)$ is TM for $e.$ Want to define T' s.t. $\mathrm{T}'^{(n)}$ Initial configuration: $(\vec{x})\simeq \mathrm{T}^{(n)}$ $+m) (\vec{l},$ (l,\vec{x})

- 2. \bullet T' writes first binary representation of $\vec{l}=l_0,\ldots,l_{n-1}$ in front of this.
	- **•** terminates this step with the head pointing to the most significant bit of $\mathsf{bin}(l_0).$

So configuration after this step is:

Then T' runs T , starting in this configuration. It terminates, if T terminates.
The result is The result is

$$
\simeq \mathrm{T}^{(m+n)}(\vec{l},\vec{x}) ,
$$

and we get therefore

$$
\mathrm{T}'^{(n)}(\vec{x}) \simeq \mathrm{T}^{(m+n)}(\vec{l}, \vec{x})
$$

as desired.

 CS_2 26 Computability Theory, Michaelmas Term 2008, Sect. 7 7 -9

 $\mathrm{T}% _{1}\left(\mathbf{1}\right)$ is TM for e . T' is a TM s.t. $\mathrm{T}'^{(n)}$ $(\vec{x})\simeq \mathrm{T}^{(n)}$ $\, + \,$ $^{m)}(\vec{l},$ (l,\vec{x})

- From a code for T one can now obtain a code for T' in a
saimitive requisive very primitive recursive way.
- $\mathsf{S}^m_\text{\tiny m}$ $\, n \,$ $\frac{m}{n}$ is the corresponding function.
- The details will not be given in the lecture Jump to Kleene's [Recursion](#page-15-0) Theorem

- A code for T' can be obtained from a code for T and
frame \vec{l} an fallows: from $\vec l$ as follows:
	- One takes a Turing machine T'' , which writes the binary representations of

$$
\vec{l}=l_0,\ldots,l_{m-1}
$$

in front of its initial position (separated by ^a blank and with ^a blank at the end), and terminates at theleft most bit.

It's a straightforward exercise to write a code for the instructions of such ^a Turing machine, depending on \overline{l} , and show that the function defining it is primitive recursive.

- Assume, the terminating state of $\mathrm{T}^{\prime\prime}$ has Gödel number (i.e. code) $s,$ and that all other states have Gödel numbers $< s$.
- Then one appends to the instructions of $\mathrm{T}^{\prime\prime}$ the instructions of T , but with the states shifted, so that the new initial state of T is the final state s of T'' (i.e.
we add, to all the Gödel numbers of states. we add s to all the Gödel numbers of states occurring in T).
- This can be done as well primitive recursively.

So a code for $\mathrm{T}^{\prime\prime}$ can be defined primitive recursively depending on a code e for T and \vec{l} , and S_n^m primitive recursive function computing this. With this $\, n \,$ $\frac{m}{n}$ is the function it follows now that, if e is a code for a TM, then

$\{\mathsf S_m^m$ $_{n}^{m}(e,\vec{l})\}^{n}$ $\binom{n}{x} \simeq \{e\}^n$ $^{+m}(\vec{l}, \vec{x})$.

This equation holds, even if e is not a code for a TM: In this case $\{e\}^{m+n}$ interprets e as if it were the code for a valid TM \rm{T}

- (A code for such ^a valid TM is obtained by
	- deleting any instructions $\mathrm{encode}(q, a, q^{\prime})$ $,a^{\cdot}$ s.t. there exists an instruction $\mathrm{encode}(q, a, q'', a'', D')$ $^{\prime},D)$ in e occurring before it in the sequence $e,$
	- and by replacing all directions >1 by $\lceil \mathsf{R} \rceil = 1$.)

e when applying the Kleene-brackets, it will be interpreted1 $' := \mathsf{S}_n^m$ $_{n}^{m}(e,\vec{l})$ will have the same deficiencies as $e,$ but as a TM T^{\prime} obtained from e $\mathsf{A} \cap \mathsf{B}$ in Trama and the same is obtained T from $e,$ and therefore $^\prime$ in the same way as we

$$
\{e'\}^n(\vec{x}) \simeq T'^{(n)}(\vec{x}) \simeq T^{(n+m)}(\vec{l},\vec{x}) \simeq \{e\}^{n+m}(\vec{l},\vec{x}) .
$$

So we obtain the desired result in this case as well.

Kleene's Recursion Theorem

- Assume $f : \mathbb{N}^{n+1}$ ∼ $\stackrel{\sim}{\rightarrow} \mathbb{N}$ partial recursive.
- Then there exists an $e\in\mathbb{N}$ s.t.

 $\{e\}^n$ $f''(\vec{x}) \simeq f(e, \vec{x})$.

(Here \vec{x} $=x_0, \ldots, x_{n-1}.$

Example 1

Kleene's Rec. Theorem: $\exists e.\forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x}).$

There exists an e s.t. $\,$

 ${e}(x) \simeq e + 1$.

For showing this take in the Recursion Theorem $f(e, n) := e + 1.$ Then

$$
{e}(x) \simeq f(e,x) \simeq e+1 .
$$

Remark

Kleene's Rec. Theorem: $\exists e.\forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x}).$

- Applications as Example ¹ are usually not very useful.
- **Usually, when using the Rec. Theorem, one**
	- doesn't use the index e directly,
	- but only the application of $\{e\}$ to arguments. \bullet

Example 2

- The function computing the **Fibonacci-numbers** fib is recursive.
	- (This is ^a weaker result than what we obtainedabove –
	- above we showed that it is even prim. rec.)

Fibonacci Numbers

Remember the defining equations for fib:

$$
\begin{array}{rcl}\n\operatorname{fib}(0) & = & \operatorname{fib}(1) = 1, \\
\operatorname{fib}(n+2) & = & \operatorname{fib}(n) + \operatorname{fib}(n+1) \,.\n\end{array}
$$

From these equations we obtain

$$
\mathsf{fib}(n) = \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \mathsf{fib}(n-2) + \mathsf{fib}(n-1), & \text{otherwise.} \end{cases}
$$

We show that there exists a recursive function $g:\mathbb{N}\rightarrow\mathbb{N},$ s.t.

$$
g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n-2) + g(n-1), & \text{otherwise.} \end{cases}
$$

CS₋226 Computability Theory, Michaelmas Term 2008, Sect. 7 7 -20

Fibonacci Numbers

Show: Exists g rec. s.t. $g($ $\, n \,$) \simeq \begin{cases} 1, if $n = 0$ or $n = 1$, $g($ $n \div 2) + g($ Shown as follows: Define a recursive $f : \mathbb{N}^2$ $n-1),\;$ otherwise. \overline{P} \rightarrow N s.t.

$$
f(e, n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n-2) + \{e\}(n-1), & \text{otherwise.} \end{cases}
$$

Now let e be s.t.

 ${e}(n) \simeq f(e, n)$.

Then e fulfils the equations

$$
\{e\}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n-2) + \{e\}(n-1), & \text{otherwise.} \end{cases}
$$

CS₋226 Computability Theory, Michaelmas Term 2008, Sect. 7 7 -21

Fibonacci Numbers

$$
\{e\}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n-2) + \{e\}(n-1), & \text{otherwise.} \end{cases}
$$

Let $g=$ Then we get $\{e\}$.

$$
g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n-2) + g(n-1), & \text{otherwise.} \end{cases}
$$

These are the defining equations for fib. One can show by induction on n that $g(n) = \mathsf{fib}(n)$ for all $n\in\mathbb{N}.$ Therefore fib is recursive.

General Applic. of Rec. Theorem

- Similarly, one can introduce arbitrary partial recursivefunctions $g,$ where
	- $g(\vec{n})$ refers to arbitrary other values $g(\vec{m})$.
- So, instead of arguing as before that fib is partial recursive, it suffices to say the following
	- By the recursion theorem, there exists ^a partial recursive function fib : $\mathbb{N} \stackrel{\sim}{\text{--}}$ \rightarrow $\mathbb{N},$ s.t.

$$
\mathsf{fib}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \mathsf{fib}(n-2) + \mathsf{fib}(n-1), & \text{otherwise.} \end{cases}
$$

- We can prove by induction on n that $\forall n : \mathbb{N}.{\mathfrak{fib}}(n)\!\!\downarrow$ holds.
- Therefore fib is total and therefore recursive.

General Applic. of Rec. Theorem

- **•** This use of the the recursion theorem corresponds to the recursive definition of functions in programming.
- E.g. in Java one defines

```
public static int fib(int n)
{if (n == 0 || n == 1)
{return 1;
}else{

return fib(n-1) + fib(n-2);
  }};
```
Example 3

As in general programming, recursively defined functionsneed not be total:

There exists a partial recursive function $g : \mathbb{N} \stackrel{\sim}{\to} \mathbb{N}$ s.t.

$$
g(x) \simeq g(x) + 1 .
$$

- \bullet We get $g(x)$ \uparrow .
- The definition of g corresponds to the following Java definition:

```
public static int g(int n){
  return q(n) + 1;
};
```
When executing $g(x)$, Java loops.

Example 4

There exists a partial recursive function $g : \mathbb{N} \stackrel{\sim}{\to} \mathbb{N}$ s.t.

 $g(x) \simeq g(x + 1) + 1$.

Note that that's ^a "black hole recursion", which is not solvable by ^a total function.

- It is solved by $g(x)\!\!\uparrow$.
- Note that a recursion equation for a function f cannot always be solved by setting $f(x){\uparrow}.$
	- E.g. the recursion equation for fib can't be solved bysetting fib (n) ↑.

Ackermann Function

• The Ackermann function is recursive: Remember the defining equations:

$$
\begin{aligned}\n\text{Ack}(0, y) &= y + 1, \\
\text{Ack}(x + 1, 0) &= \text{Ack}(x, 1), \\
\text{Ack}(x + 1, y + 1) &= \text{Ack}(x, \text{Ack}(x + 1, y)).\n\end{aligned}
$$

• From this we obtain

$$
\mathsf{Ack}(x, y) = \begin{cases} y+1, & \text{if } x = 0, \\ \mathsf{Ack}(x-1, 1), & \text{if } x > 0 \text{ and } y = 0, \\ \mathsf{Ack}(x-1, \mathsf{Ack}(x, y-1)), & \text{otherwise.} \end{cases}
$$

Ackermann Function

$$
\mathsf{Ack}(x, y) = \begin{cases} y+1, & \text{if } x = 0, \\ \mathsf{Ack}(x-1, 1), & \text{if } x > 0 \text{ and } y = 0, \\ \mathsf{Ack}(x-1, \mathsf{Ack}(x, y-1)), & \text{otherwise.} \end{cases}
$$

Define g partial recursive s.t.

$$
g(x,y) \simeq \begin{cases} y+1, & \text{if } x = 0, \\ g(x-1,1), & \text{if } x > 0 \land y = 0, \\ g(x-1,g(x,y-1)), & \text{if } x > 0 \land y > 0. \end{cases}
$$

- \overline{g} fulfils the defining equations of Ack.
- Proof that $g(x,y) \simeq {\sf Ack}(x,y)$ follows by main induction
on a side induction on a The details will not be give on x , side-induction on y . The details will not be given in the lecture. **Jump over remaining slides**.

Proof of Correctness of Ack

- We show by induction on x that $g(x,y)$ is defined and equal to $\mathsf{Ack}(x,y)$ for all $x,y\in\mathbb{N}$:
	- Base case $x=0$.

$$
g(0, y) = y + 1 = \mathsf{Ack}(0, y) .
$$

Induction Step $x\rightarrow x+1.$ Assume

$$
g(x,y) = \mathsf{Ack}(x,y) .
$$

We show

$$
g(x+1,y) = \mathsf{Ack}(x+1,y)
$$

by side-induction on $y\mathrm{:}$

Proof of Correctness of Ack

Show $g(x+1,y) = \mathsf{Ack}(x+1,y)$

$$
\bullet \quad \textbf{Base case } y = 0:
$$

 $g(x+1,0) \simeq g(x,1)$ Main-IH $=$ " $\mathsf{Ack}(x,1) = \mathsf{Ack}(x+1,0)$.

Induction Step $y\to y+1$:

$$
g(x+1, y+1) \simeq g(x, g(x+1, y))
$$

\n**Main-H**
\n
$$
\simeq g(x, \text{Ack}(x+1, y))
$$

\n**Side-H**
\n
$$
\simeq \text{Ack}(x, \text{Ack}(x+1, y))
$$

\n
$$
= \text{Ack}(x+1, y+1)
$$

Jump over remaining slides(Proof of the Recursion Theorem)

CS₋226 Computability Theory, Michaelmas Term 2008, Sect. 7 $7\text{-}30$

ldea of Proof of the Rec. Theorem

Assume

$$
f:\mathbb{N}^{n+1}\stackrel{\sim}{\to}\mathbb{N} .
$$

We have to find an e s.t.

$$
\forall \vec{x} \in \mathbb{N}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x}) .
$$

- We set $e=$ determined. $=$ $\lambda \vec{x}. \{e_1\}^{n+1}$ $^1(e_1,\vec{x})$ for some e_1 $_1$ to be
- Then the left and right hand side of the equation of the recursion theorem reads

$$
\{e\}^{n}(\vec{x}) \simeq \{\lambda \vec{x}. \{e_{1}\}^{n+1}(e_{1}, \vec{x})\}^{n}(\vec{x})
$$

$$
\simeq \{e_{1}\}^{n+1}(e_{1}, \vec{x})
$$

$$
f(e, \vec{x}) \simeq f(\lambda \vec{x}. \{e_{1}\}^{n+1}(e_{1}, \vec{x}), \vec{x})
$$

Idea Proof of Rec. Theorem

We need to satisfy $\forall \vec{x} \in \mathbb{N}. \{e\}^n$ Let $e=\lambda \vec{x}. \{e_1\}^{n+1}(e_1)$. $^n(\vec{x}) \simeq f(e, \vec{x}).$ $= \lambda \vec{x}.\{e_1\}^{n+1}$ ${e}^n(\vec{x}) \simeq {e_1}^{n+1}$ $^{1}(e_{1},\vec{x}).$ $n(\vec{x}) \simeq \{e_1\}^{n+1}$ $f(e, \vec{x}) \approx f(\lambda \vec{x}. \{e_1\}^{n+1})$ $\perp(e_1, \vec{x})$, $^{1}(e_1, \vec{x}), \vec{x})$.

 ${\sf So}\ e_1$ $_1$ needs to fulfill the following equation:

$$
\{e_1\}^{n+1}(e_1, \vec{x}) \simeq \{e\}^n(\vec{x})
$$

$$
\simeq f(e, \vec{x})
$$

$$
\simeq f(\lambda \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x}), \vec{x})
$$

This can be fulfilled if we define e_1 $_1$ s.t.

$$
\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(\lambda \vec{x}. \{e_2\}^{n+1}(e_2, \vec{x}), \vec{x})
$$

Idea of Proof of Rec. Theorem

$\{e_1\}^{n+1}$ $1(e_2, \vec{x}) \simeq f(\lambda \vec{x}. \{e_2\}^{n+1})$ $^{1}(e_2,\vec{x}),\vec{x}).$

By the S-m-n Theorem we can obtain this if we have e_1 s.t.

$$
\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(\mathsf{S}_n^1(e_2, e_2), \vec{x})
$$

There exists a partial recursive function $g: \mathbb{N}^n+1\stackrel{\sim}{-}$ $\stackrel{\sim}{\rightarrow} \mathbb{N},$ s.t.

$$
g(e_2, \vec{x}) \simeq f(\mathsf{S}_n^1(e_2, e_2), \vec{x})
$$

If e_1 $_1$ is an index for g we obtain the desired equation.

$$
\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(\mathsf{S}_n^1(e_2, e_2), \vec{x})
$$

Complete Proof of Rec. Theorem

Let e_1 $_1$ be s.t.

$$
{e_1}^{n+1}(y, \vec{x}) \simeq f(\mathsf{S}_n^1(y, y), \vec{x}) .
$$

Let $e:=\mathsf{S}_n^1$ $\sqrt{10}$ $\frac{1}{n}(e_1,e_1)$. Then we have

$$
\{e\}^{n}(\vec{x}) \quad \overset{e = \mathsf{S}_{n}^{1}(e_{1}, e_{1})}{\cong} \quad \{S_{n}^{1}(e_{1}, e_{1})\}^{n}(\vec{x})
$$
\n
$$
\mathsf{S}\text{-m-n theorem} \quad \{e_{1}\}^{n+1}(e_{1}, \vec{x})
$$
\n
$$
\overset{\mathsf{Def}}{\simeq} \mathsf{of} \ e_{1} \quad \qquad f(\mathsf{S}_{n}^{1}(e_{1}, e_{1}), \vec{x})
$$
\n
$$
e = \mathsf{S}_{n}^{1}(e_{1}, e_{1}) \quad \qquad f(e, \vec{x}) \ .
$$