/. The Recursion Theorem

® Main result in this section:
Kleene’'s Recursion Theorem.

s Recursive functions are closed under a very general
form of recursion.

# For the proof we will use the S-m-n-theorem.

s Used in many proofs in computability theory.

s However, both the S-m-n theorem and the proof of
the Recursion theorem will be omitted this year.
Jump to Kleene’s Recursion Theorem.
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The S-m-n Theorem

°

Assume f : NT" 5 N partial recursive.
Fix the first m arguments (say [ := lo, . .., Ly—1).
Then we obtain a partial recursive function

Y

g:N"5N,  g@~f(l.7) .

The S-m-n theorem expresses that we can compute a
Kleene index of ¢

s l.e.aneé st g ={}"
from a Kleene index of f and [ primitive recursively.
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The S-m-n Theorem

f: N™t" N partial rec.
[ N™
g : N* = N partial rec.

(%) = f(I, 7).

# So there exists a primitive recursive function S7* s.t.,
s if f = {e}™*n,
s then g = {S"(e, 1)}

® S0 {S7(e, )}™(T) = {e}" (1, 7).
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Notation

{Si(e, DY (&) =~ {e}™ (1, 7).
# Assume t is an expression depending on n variables 7,

s.t. we can compute ¢ from z partial recursively.
Then A2 ¢ is any natural number e s.t. {e}"(Z) >~ t.

® Then we will have

Spt(e, 1) = AZ{e}™ (I, &) .
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Theorem 7.1 (S-m-n Theorem)

® Assume m,n € N.
#® There exists a primitive recursive function

S N7t N
s.t. forall [ e N™ 7 € N"

{Sh (e, D}™(@) =~ {e}™ (1, 7) .
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Proof of S-m-n Theorem

® LetT be aTM encoded as e.

» A Turing machine T’ corresponding to S”(e, 1) should be
S.L.

T/(n)(f) ~ T(n—l—m)(l_: f) .
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Proof of S-m-n Theorem

T 1s TM for e.
Want to define T s.t. T/ (z) ~ T(+m) ([, )
T’ can be defined as follows:

1. The initial configuration is:
s I written on the tape,
» head pointing to the left most bit:

Lo Lo | bin(zg) |La |-+ |La|bin(zp_1) | L

L

I
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Proof of S-m-n Theorem

T 1s TM for e.

—

Want to define T’ s.t. /(" (Z) ~ T(tm) (], 7)
Initial configuration:

| b

bin(a:o)

L

(I

bin(xn_l)

L

L

2. » T writes first binary representation of I = Iy, . .
In front of this.

s terminates this step with the head pointing to the

I

most significant bit of bin(/y).
So configuration after this step Is:

- ln—l

bin(lp) | L

(-

bin(lm_l)

L

bin(:z:o)

L

(-

bin(x),

I
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Proof of S-m-n Theorem

T 1s TM for e.
Want to define T/ s.t. T (z) ~ T+m) ([ 7).
Configuration after first step:

bin(lg) | Lo |-+ | Lo | bin(lyp-1) | Lo | bin(zg) | Lo

L

bin(xy,

N

#® Then T’ runs T, starting in this configuration.

It terminates, If T terminates.
The result is

~ M) (" ) |

and we get therefore

— as desied.
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Proof of the S-m-n Theorem

T 1s TM for e.
T’ is a TM s.t. T/ () ~ T+m) ([ 7)

® From a code for T one can now obtain a code for TV in a
primitive recursive way.

#® S is the corresponding function.

#® The detalls will not be given in the lecture
Jump to Kleene’s Recursion Theorem
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Proof of the S-m-n Theorem

o A codﬁe for TV can be obtained from a code for T and
from [ as follows:

s One takes a Turing machine T”, which writes the
binary representations of

I P

In front of its initial position (separated by a blank
and with a blank at the end), and terminates at the
left most bit.

s It's a straightforward exercise to write a code for the
Instructions of such a Turing machine, depending on

[, and show that the function defining it is primitive
recursive.
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Proof of the S-m-n Theorem

s Assume, the terminating state of T” has Godel
number (i.e. code) s, and that all other states have
GOodel numbers < s.

s Then one appends to the instructions of T the
Instructions of T, but with the states shifted, so that
the new Initial state of T is the final state s of T” (i.e.
we add s to all the Gddel numbers of states
occurring in T).

s This can be done as well primitive recursively.
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Proof of the S-m-n Theorem

# So a code for T” can be defined primitive recursively

depending on a code e for T and [, and ST is the
primitive recursive function computing this. With this
function it follows now that, if e is a code for a TM, then

{Sh(e.DY™(@) =~ {e}" ™ (1, 7) .

This equation holds, even if e is not a code for a TM: In
this case {e}™*" interprets e as if it were the code for a
valid TM T
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Proof of the S-m-n Theorem

#® (A code for such a valid TM is obtained by

s deleting any instructions encode(q, a, ¢’ ,a’, D) in e
s.t. there exists an instruction encode(q, a, ¢",a”, D)
occurring before it in the sequence e,

s and by replacing all directions > 1 by [R]| = 1.)
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Proof of the S-m-n Theorem

® ¢ :=S™(e, 1) will have the same deficiencies as e, but
when applying the Kleene-brackets, it will be interpreted
as a TM T’ obtained from ¢’ in the same way as we
obtained T from ¢, and therefore

{1(@) ~ T (@) = T ([ 7) ~ {e} (1L F)

So we obtain the desired result in this case as well.

CS_226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-15



Kleene’'s Recursion Theorem

# Assume f: N*T! 5 N partial recursive.
#® Then there exists an e € N s.t.

le}"(7) = fle, ) .

(Here ¥ = xq, ..., xp—_1).
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Example 1

Kleene's Rec. Theorem: de.VZ.{e}"(¥) ~ f(e, T).
#® There exists an e s.t.
{feb(z) ~e+1 .

For showing this take in the Recursion Theorem
fle,n) :=e+1.
Then

{e}(z) ~ fle,x) e+ 1 .
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Remark

Kleene's Rec. Theorem: de.VZ.{e}"(¥) ~ f(e, T).

# Applications as Example 1 are usually not very useful.

# Usually, when using the Rec. Theorem, one
s doesn’t use the index e directly,
s but only the application of {e} to arguments.
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Example 2

# The function computing the Fibonacci-numbers fib IS
recursive.

s (This is a weaker result than what we obtained
above —

s above we showed that it is even prim. rec.)
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Fibonaccli Numbers

Remember the defining equations for fib:

fib(0) = fib(1) =1,
fib(n+2) = fib(n)+fib(n+1) .

From these equations we obtain

fib(n) 1, fn=00rn=1,
ID(1 ) — )
fib(n — 2) + fib(n = 1), otherwise.

We show that there exists a recursive function ¢ : N — N,
S.t.

w 1. fn=00rn=1,
n)~
g g(n = 2)+g(n = 1), otherwise.
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Fibonaccli Numbers

Show: EXxists ¢ rec.

S.t.g(n)N{ 1, ifn:().ornzl,
g(n=2)4g(n— 1), otherwise.

Shown as follows: Define a recursive f : N° — N s.t.

1, fn=00rn=1,
fle,n) = { {e}(n = 2)+{e}n = 1), otherwise.

Now let e be s.t.

{e}(n) ~ f(e,n) .
Then e fulfils the equations
1, fn=00rn=1,
te}(n) = { {ed(n = 2) + {e}(n = 1), otherwise.
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Fibonaccli Numbers

1, fn=0o0rn=1,
{e}(n) =~ { {e}(n = 2)+{e}(n = 1), otherwise.
Let g = {e}.
Then we get

1, fn=00rn=1,
g(n) ~ | . .
g(n=2)+g(n—+ 1), otherwise.

These are the defining equations for fib.

One can show by induction on n that g(n) = fib(n) for all
n € N,

Therefore fib Is recursive.
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General Applic. of Rec. Theorem

# Similarly, one can introduce arbitrary partial recursive
functions g, where

s ¢(n) refers to arbitrary other values g(m).
#® S50, instead of arguing as before that fib is partial
recursive, it suffices to say the following
s By the recursion theorem, there exists a partial
recursive function fib : N = N, s.t.

fib(n) 1, fn=00rn=1,
ID(1 ) = .
fib(n = 2) + fib(n — 1), otherwise.

» We can prove by induction on n that Vn : N.fib(n)|
holds.

o Therefore fib Is total and therefore recursive.
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General Applic. of Rec. Theorem

# This use of the the recursion theorem corresponds to
the recursive definition of functions in programming.

# E.g. In Java one defines

public static int fib(int n){
if (n=0|] n == 1){
return 1;}
el se{
return fib(n-1) + fib(n-2);
}
I3
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Example 3

As In general programming, recursively defined functions
need not be total:

® There exists a partial recursive function ¢ : N = N s.t.

g(x) ~g(z)+1 .
® We get g(x)7.
# The definition of ¢ corresponds to the following Java
definition:

public static int g(int n){
return g(n) + 1;

>

o When executing g(z), Java loops.
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Example 4

® There exists a partial recursive function g : N = N s.t.
glx)~glz+1)+1 .
Note that that’s a “black hole recursion”, which is not
solvable by a total function.

# Itis solved by g(x)7.

# Note that a recursion equation for a function f cannot
always be solved by setting f(z)7.

s E.g. the recursion equation for fib can’t be solved by
setting fib(n)T.
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Ackermann Function

® The Ackermann function Is recursive:
Remember the defining equations:

Ack(0,y) = y+1,
Ack(z +1,0) = Ack(z,1) ,
Ack(x +1,y+1) = Ack(x,Ack(z+1,y)) .

® From this we obtain

( Y+ 1, If v =0,
Ack(z,y) = ¢ Ack(x = 1,1), if  >0andy =0,
| Ack(z — 1,Ack(x,y — 1)), otherwise.
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Ackermann Function

Y+, if 2 =0,
Ack(z,y) =< Ack(z = 1,1), If z > 0andy =0,
| Ack(z = 1,Ack(z,y — 1)), otherwise.

#® Define g partial recursive s.t.

y_|_17 |f33:0,
g(x,y) ~ ¢ gz~ 1,1), fz>0Ay =0,
glx = 1,9g(x,y= 1)), fx>0Ay>0.

# ¢ fulfils the defining equations of Ack.

#® Proof that g(x,y) ~ Ack(x,y) follows by main induction
on z, side-induction on y. The details will not be given
In the lecture. Jump over remaining slides.
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Proof of Correctness of Ack

o \We show by induction on x that g(x, y) Is defined and
equal to Ack(z,y) for all =,y € N:

s Base case x = 0.
9(0,y) =y + 1= Ack(0,y) .
s Induction Step =z — = + 1. Assume

g(z,y) = Ack(z,y) .

We show
gz +1,y) = Ack(z + 1, y)

by side-induction on y:
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Proof of Correctness of Ack

Show g(z + 1,y) = Ack(z + 1,y)
o Base case y = 0:

Maln IH

g(r+1,0) ~ g(x,1) Ack(x,1) = Ack(x +1,0) .

s Induction Step y — y + 1:

gz + 1,y +1) ~ g(z,9(z+1,y))

Main-IH
~ g(z,Ack(z +1,y))

Side-IH
T Ack(z, Ack(z + 1,))

= Ack(z + 1,y +1) .

Jump over remaining slides
(Proof of the Recursion Theorem)
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ldea of Proof of the Rec. Theorem

Assume

NN
We have to find an e s.t.

Vi € NAe)(7) ~ f(e,7) .
® We sete = A7.{e1}" (e, %) for some e to be

determined.

# Then the left and right hand side of the equation of the
recursion theorem reads

{e}"(@) ~ {AZ{e1}"(e1,7)}"(7)
{e1}"(e1, 7)
f(NT{e1}" (e, T), 7)

2

fle, 7)

2
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ldea Proof of Rec. Theorem

We need to satisfy Vi € N.{e}"(¥) ~ f(e, T).
Let e = AZ.{e1}" (e, ).

{e3"(@) = {e}"(er,7) ,
fle,@) ~ f(ANF{e1}"He1,7),7) .

® S0 e; needs to fulfill the following equation:

{er}"t(e1, 7)

= [

2
P
>

® This can be fulfilled if we define e; S.t.

{61}n+1 (62, f) ~ f()\f.{eg}nJrl(eg, f), f)
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ldea of Proof of Rec. Theorem

{e1}" L (e9, 7) ~ f(AT{e2} " (es, ¥), ).

# By the S-m-n Theorem we can obtain this if we have ¢;
S.L

{e1}"" (ea, &) ~ f(S,(e2,€2),T)

® There exists a partial recursive function g : N +1 = N,
S.L

9(627 f) = f(S711(€27 62)7 f)
# If ¢; Is an index for ¢ we obtain the desired equation.

{e1}""(ea, ) ~ f(S,(e2,€2),T)
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Complete Proof of Rec. Theorem

Let e; be s.t.

{e1}" ™ (v, %) ~ f(Sh(y,9). T) .

Let e := 5717/(61, 61).
Then we have

. e= Stier,er) | o
e} (7) ~ 1Snler, e1)1"(7)
S-m-n gleorem fe )" ey, )

Def of e
~ f(S)(e1,€1),7)

fle,z) .

1
e=S,(e1,e1)
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