
7. The Recursion Theorem

Main result in this section:
Kleene’s Recursion Theorem.

Recursive functions are closed under a very general
form of recursion.

For the proof we will use the S-m-n-theorem.
Used in many proofs in computability theory.
However, both the S-m-n theorem and the proof of
the Recursion theorem will be omitted this year.
Jump to Kleene’s Recursion Theorem.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-1

The S-m-n Theorem
Assume f : N

m+n
∼

→ N partial recursive.

Fix the first m arguments (say ~l := l0, . . . , lm−1).

Then we obtain a partial recursive function

g : N
n ∼

→ N , g(~x) ' f(~l, ~x) .

The S-m-n theorem expresses that we can compute a
Kleene index of g

i.e. an e′ s.t. g = {e′}n

from a Kleene index of f and ~l primitive recursively.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-2

The S-m-n Theorem
f : N

m+n
∼

→ N partial rec.
~l : N

m

g : N
n

∼

→ N partial rec.
g(~x) ' f(~l, ~x).

So there exists a primitive recursive function Sm

n
s.t.,

if f = {e}m+n,

then g = {Sm

n
(e,~l)}n.

So {Sm

n
(e,~l)}n(~x) ' {e}m+n(~l, ~x).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-3

Notation
{Sm

n
(e,~l)}n(~x) ' {e}m+n(~l, ~x).

Assume t is an expression depending on n variables ~x,
s.t. we can compute t from ~x partial recursively.
Then λλ~x.t

::::
is any natural number e s.t. {e}n(~x) ' t.

Then we will have

S
m

n
(e,~l) = λλ~x.{e}m+n(~l, ~x) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-4

Theorem 7.1 (S-m-n Theorem)
Assume m,n ∈ N.

There exists a primitive recursive function

S
m

n
: N

m+1 → N

s.t. for all ~l ∈ N
m, ~x ∈ N

n

{Sm

n
(e,~l)}n(~x) ' {e}m+n(~l, ~x) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-5

Proof of S-m-n Theorem
Let T be a TM encoded as e.

A Turing machine T′ corresponding to Sm

n
(e,~l) should be

s.t.
T′(n)

(~x) ' T(n+m)(~l, ~x) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-6

Proof of S-m-n Theorem
T is TM for e.
Want to define T′ s.t. T′(n)

(~x) ' T(n+m)(~l, ~x)
T′ can be defined as follows:

1. The initial configuration is:
~x written on the tape,
head pointing to the left most bit:

· · · xy xy bin(x0) xy · · · xy bin(xn−1) xy xy · · ·

↑

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-7

Proof of S-m-n Theorem
T is TM for e.
Want to define T′ s.t. T′(n)

(~x) ' T(n+m)(~l, ~x)
Initial configuration:
· · · xy xy bin(x0) xy · · · xy bin(xn−1) xy xy · · ·

↑

2. T′ writes first binary representation of ~l = l0, . . . , ln−1

in front of this.
terminates this step with the head pointing to the
most significant bit of bin(l0).

So configuration after this step is:

bin(l0) xy · · · xy bin(lm−1) xy bin(x0) xy · · · xy bin(xn−1)

↑

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-8

Proof of S-m-n Theorem
T is TM for e.
Want to define T′ s.t. T′(n)

(~x) ' T(n+m)(~l, ~x).
Configuration after first step:
bin(l0) xy · · · xy bin(lm−1) xy bin(x0) xy · · · xy bin(xn−1)

↑

Then T′ runs T, starting in this configuration.
It terminates, if T terminates.
The result is

' T(m+n)(~l, ~x) ,

and we get therefore

T′(n)
(~x) ' T(m+n)(~l, ~x)

as desired.
CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-9

Proof of the S-m-n Theorem
T is TM for e.
T′ is a TM s.t. T′(n)

(~x) ' T(n+m)(~l, ~x)

From a code for T one can now obtain a code for T′ in a
primitive recursive way.

Sm

n
is the corresponding function.

The details will not be given in the lecture
Jump to Kleene’s Recursion Theorem

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-10

Proof of the S-m-n Theorem
A code for T′ can be obtained from a code for T and
from ~l as follows:

One takes a Turing machine T′′, which writes the
binary representations of

~l = l0, . . . , lm−1

in front of its initial position (separated by a blank
and with a blank at the end), and terminates at the
left most bit.
It’s a straightforward exercise to write a code for the
instructions of such a Turing machine, depending on
~l, and show that the function defining it is primitive
recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-11

Proof of the S-m-n Theorem
Assume, the terminating state of T′′ has Gödel
number (i.e. code) s, and that all other states have
Gödel numbers < s.
Then one appends to the instructions of T′′ the
instructions of T, but with the states shifted, so that
the new initial state of T is the final state s of T′′ (i.e.
we add s to all the Gödel numbers of states
occurring in T).
This can be done as well primitive recursively.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-12

Proof of the S-m-n Theorem
So a code for T′′ can be defined primitive recursively
depending on a code e for T and ~l, and Sm

n
is the

primitive recursive function computing this. With this
function it follows now that, if e is a code for a TM, then

{Sm

n
(e,~l)}n(~x) ' {e}n+m(~l, ~x) .

This equation holds, even if e is not a code for a TM: In
this case {e}m+n interprets e as if it were the code for a
valid TM T

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-13

Proof of the S-m-n Theorem
(A code for such a valid TM is obtained by

deleting any instructions encode(q, a, q′, a′, D) in e

s.t. there exists an instruction encode(q, a, q′′, a′′, D′)
occurring before it in the sequence e,
and by replacing all directions > 1 by dRe = 1.)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-14

Proof of the S-m-n Theorem
e′ := Sm

n
(e,~l) will have the same deficiencies as e, but

when applying the Kleene-brackets, it will be interpreted
as a TM T′ obtained from e′ in the same way as we
obtained T from e, and therefore

{e′}n(~x) ' T′(n)
(~x) ' T(n+m)(~l, ~x) ' {e}n+m(~l, ~x) .

So we obtain the desired result in this case as well.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-15

Kleene’s Recursion Theorem

Assume f : N
n+1 ∼

→ N partial recursive.

Then there exists an e ∈ N s.t.

{e}n(~x) ' f(e, ~x) .

(Here ~x = x0, . . . , xn−1).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-16

Example 1
Kleene’s Rec. Theorem: ∃e.∀~x.{e}n(~x) ' f(e, ~x).

There exists an e s.t.

{e}(x) ' e + 1 .

For showing this take in the Recursion Theorem
f(e, n) := e + 1.
Then

{e}(x) ' f(e, x) ' e + 1 .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-17

Remark
Kleene’s Rec. Theorem: ∃e.∀~x.{e}n(~x) ' f(e, ~x).

Applications as Example 1 are usually not very useful.

Usually, when using the Rec. Theorem, one
doesn’t use the index e directly,
but only the application of {e} to arguments.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-18

Example 2
The function computing the Fibonacci-numbers fib is
recursive.

(This is a weaker result than what we obtained
above –
above we showed that it is even prim. rec.)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-19

Fibonacci Numbers
Remember the defining equations for fib:

fib(0) = fib(1) = 1 ,

fib(n + 2) = fib(n) + fib(n + 1) .

From these equations we obtain

fib(n) =

{

1, if n = 0 or n = 1,
fib(n −· 2) + fib(n −· 1), otherwise.

We show that there exists a recursive function g : N → N,
s.t.

g(n) '

{

1, if n = 0 or n = 1,
g(n −· 2) + g(n −· 1), otherwise.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-20

Fibonacci Numbers
Show: Exists g rec.

s.t. g(n) '

{

1, if n = 0 or n = 1,
g(n −· 2) + g(n −· 1), otherwise.

Shown as follows: Define a recursive f : N
2 → N s.t.

f(e, n) '

{

1, if n = 0 or n = 1,
{e}(n −· 2) + {e}(n −· 1), otherwise.

Now let e be s.t.
{e}(n) ' f(e, n) .

Then e fulfils the equations

{e}(n) '

{

1, if n = 0 or n = 1,
{e}(n −· 2) + {e}(n −· 1), otherwise.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-21

Fibonacci Numbers

{e}(n) '

{

1, if n = 0 or n = 1,
{e}(n −· 2) + {e}(n −· 1), otherwise.

Let g = {e}.
Then we get

g(n) '

{

1, if n = 0 or n = 1,
g(n −· 2) + g(n −· 1), otherwise.

These are the defining equations for fib.
One can show by induction on n that g(n) = fib(n) for all
n ∈ N.
Therefore fib is recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-22

General Applic. of Rec. Theorem
Similarly, one can introduce arbitrary partial recursive
functions g, where

g(~n) refers to arbitrary other values g(~m).

So, instead of arguing as before that fib is partial
recursive, it suffices to say the following

By the recursion theorem, there exists a partial
recursive function fib : N

∼

→ N, s.t.

fib(n) '

{

1, if n = 0 or n = 1,
fib(n −· 2) + fib(n −· 1), otherwise.

We can prove by induction on n that ∀n : N.fib(n)↓
holds.
Therefore fib is total and therefore recursive.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-23

General Applic. of Rec. Theorem
This use of the the recursion theorem corresponds to
the recursive definition of functions in programming.

E.g. in Java one defines

public static int fib(int n){
if (n == 0 || n == 1){
return 1;}

else{
return fib(n-1) + fib(n-2);

}
};

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-24

Example 3
As in general programming, recursively defined functions
need not be total:

There exists a partial recursive function g : N
∼

→ N s.t.

g(x) ' g(x) + 1 .

We get g(x)↑.

The definition of g corresponds to the following Java
definition:
public static int g(int n){
return g(n) + 1;

};

When executing g(x), Java loops.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-25

Example 4

There exists a partial recursive function g : N
∼

→ N s.t.

g(x) ' g(x + 1) + 1 .

Note that that’s a “black hole recursion”, which is not
solvable by a total function.

It is solved by g(x)↑.

Note that a recursion equation for a function f cannot
always be solved by setting f(x)↑.

E.g. the recursion equation for fib can’t be solved by
setting fib(n)↑.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-26

Ackermann Function
The Ackermann function is recursive:
Remember the defining equations:

Ack(0, y) = y + 1 ,

Ack(x + 1, 0) = Ack(x, 1) ,

Ack(x + 1, y + 1) = Ack(x,Ack(x + 1, y)) .

From this we obtain

Ack(x, y) =











y + 1, if x = 0,
Ack(x −· 1, 1), if x > 0 and y = 0,
Ack(x −· 1,Ack(x, y −· 1)), otherwise.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-27

Ackermann Function

Ack(x, y) =











y + 1, if x = 0,
Ack(x −· 1, 1), if x > 0 and y = 0,
Ack(x −· 1,Ack(x, y −· 1)), otherwise.

Define g partial recursive s.t.

g(x, y) '











y + 1, if x = 0,
g(x −· 1, 1), if x > 0 ∧ y = 0,
g(x −· 1, g(x, y −· 1)), if x > 0 ∧ y > 0.

g fulfils the defining equations of Ack.

Proof that g(x, y) ' Ack(x, y) follows by main induction
on x, side-induction on y. The details will not be given
in the lecture. Jump over remaining slides.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-28

Proof of Correctness of Ack

We show by induction on x that g(x, y) is defined and
equal to Ack(x, y) for all x, y ∈ N:

Base case x = 0.

g(0, y) = y + 1 = Ack(0, y) .

Induction Step x → x + 1. Assume

g(x, y) = Ack(x, y) .

We show
g(x + 1, y) = Ack(x + 1, y)

by side-induction on y:

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-29

Proof of Correctness of Ack

Show g(x + 1, y) = Ack(x + 1, y)

Base case y = 0:

g(x + 1, 0) ' g(x, 1)
Main-IH

= Ack(x, 1) = Ack(x + 1, 0) .

Induction Step y → y + 1:

g(x + 1, y + 1) ' g(x, g(x + 1, y))

Main-IH
' g(x,Ack(x + 1, y))

Side-IH
' Ack(x,Ack(x + 1, y))

= Ack(x + 1, y + 1) .

Jump over remaining slides
(Proof of the Recursion Theorem)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-30

Idea of Proof of the Rec. Theorem
Assume

f : N
n+1 ∼

→ N .

We have to find an e s.t.

∀~x ∈ N.{e}n(~x) ' f(e, ~x) .

We set e = λλ~x.{e1}
n+1(e1, ~x) for some e1 to be

determined.

Then the left and right hand side of the equation of the
recursion theorem reads

{e}n(~x) ' {λλ~x.{e1}
n+1(e1, ~x)}n(~x)

' {e1}
n+1(e1, ~x)

f(e, ~x) ' f(λλ~x.{e1}
n+1(e1, ~x), ~x)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-31

Idea Proof of Rec. Theorem
We need to satisfy ∀~x ∈ N.{e}n(~x) ' f(e, ~x).
Let e = λλ~x.{e1}

n+1(e1, ~x).
{e}n(~x) ' {e1}

n+1(e1, ~x) ,

f(e, ~x) ' f(λλ~x.{e1}
n+1(e1, ~x), ~x) .

So e1 needs to fulfill the following equation:

{e1}
n+1(e1, ~x) ' {e}n(~x)

!
' f(e, ~x)

' f(λλ~x.{e1}
n+1(e1, ~x), ~x)

This can be fulfilled if we define e1 s.t.

{e1}
n+1(e2, ~x) ' f(λλ~x.{e2}

n+1(e2, ~x), ~x)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-32

Idea of Proof of Rec. Theorem
{e1}

n+1(e2, ~x) ' f(λλ~x.{e2}
n+1(e2, ~x), ~x).

By the S-m-n Theorem we can obtain this if we have e1

s.t.
{e1}

n+1(e2, ~x) ' f(S1
n
(e2, e2), ~x)

There exists a partial recursive function g : N
n + 1

∼

→ N,
s.t.

g(e2, ~x) ' f(S1
n
(e2, e2), ~x)

If e1 is an index for g we obtain the desired equation.

{e1}
n+1(e2, ~x) ' f(S1

n
(e2, e2), ~x)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-33

Complete Proof of Rec. Theorem
Let e1 be s.t.

{e1}
n+1(y, ~x) ' f(S1

n
(y, y), ~x) .

Let e := S1
n
(e1, e1).

Then we have

{e}n(~x)
e = S1

n
(e1, e1)
' {S1

n
(e1, e1)}

n(~x)

S-m-n theorem
' {e1}

n+1(e1, ~x)

Def of e1

' f(S1
n
(e1, e1), ~x)

e = S1

n
(e1, e1)
' f(e, ~x) .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 7 7-34

	7. The Recursion Theorem
	The S-m-n Theorem
	The S-m-n Theorem
	Notation
	Theorem 7.1 (S-m-n Theorem)
	Proof of S-m-n Theorem
	Proof of S-m-n Theorem
	Proof of S-m-n Theorem
	Proof of S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Proof of the S-m-n Theorem
	Kleene's Recursion Theorem
	Example 1
	Remark
	Example 2
	Fibonacci Numbers
	Fibonacci Numbers
	Fibonacci Numbers
	General Applic. of Rec. Theorem
	General Applic. of Rec. Theorem
	Example 3
	Example 4
	Ackermann Function
	Ackermann Function
	Proof of Correctness of $Acksf $
	Proof of Correctness of $Acksf $
	Idea of Proof of the Rec. Theorem
	Idea Proof of Rec. Theorem
	Idea of Proof of Rec. Theorem
	Complete Proof of Rec. Theorem

