5. The Primitive Recursive Functions

In this module we consider 3 models of computation

s The URMSs, which captures computation as it
happens on a computer.

s The Turing Machines , which capture computation
on a piece of paper.

s The partial recursive functions , developed in this

and the next section.
s Partial recursive functions were first proposed by
GO0del and Kleene 1936.

There are many other models of computation.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 5-1

Algebraic View of Computation

Main motivation for partial recursive functions:
s Algebraic view of computation.

s The class of partial computable functions in this

model is defined by certain combinators .

s We have some initial functions and close them
under operations which form from partial
computable functions new partial computable
functions.

s So In this model of computation we define directly a
set of functions (rather than defining first a
programming language and then the functions
defined by it).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 5-2

Algebraic View of Computation

\We can assign a term to each partial recursive function.
s E.Q.
primrec(zero, proj7)
denotes the predecessor function.
These combinators allow

s to define functions more easily directly, and
therefore show that they are computable;

s and to manipulate terms denoting partial recursive
functions.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 5-3

Primitive Recursive Functions

In this section we will first start introducing the primitive
recursive functions.

They form an important subclass of the partial
recursive functions.

Main property of the primitive recursiv functions.
s All primitive recursive functions are total .

» Therefore not all computable functions are
primitive recursive
s There exists no programming language, such that
all definable functions are total, which allows to
define all computable functions.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 5-4

Primitive Recursive Functions

9

The primitive recursive functions contain all feasible
functions (and many infeasible functions as well.

Therefore all realistic functions can be defined
primitive recursively

The principle of primitive recursion is closely related to
the principle of induction .

s In the dependently typed programming language
Agda induction and primitive recursion are the same
principle.

Extensions of the principle of primitive recursion form
the main ingredient of many functional programming
languages .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5

5-5

Overview

(a) Introduction of primitive recursive functions

(b) Closure Properties of the primitive rec. functions

s We will show that the set of primitive recursive

functions Is a rich set of functions, closed under
many operations.

s This will show as well extend our intuition of how
powerful URM computable functions are.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5

5-6

(a) Introd. of the Prim. Rec. Functions

Inductive definition of the primitive recursive functions
f:NF - N.
The following basic Functions are primitive recursive:

o zero: N — N,
o succ: N — N,

s projf :NF - N (0 <i< k)

Remember that these functions have defining equations
s zero(y) = 0,

» succ(y) =y + 1,

o projf (Yo, - - Ye—1) = Y.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-7

Def. Prim. Rec. Functions

o |f
s f:N¥ — Nis primitive recursive,

s ¢g; : N” — N are primitive recursive, (: =0, ...,k — 1),

SO IS
fol(go,---y9k-1):N"—=N .
Remember that h := f o (go,...,9x_1) IS defined as

MZ) = f(go(Z), ..., gk—1(Z)) .

Especially, if f: N — Nand ¢g: N — N are primitive
recursive, so IS
fog:N—N .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-8

Def. Prim. Rec. Functions

o |f
s g:N"— N,
s h:N""? _ N are primitive recursive,

so is the function f : N**! — N defined by primitive
recursion from g, h.

Remember that f Iis defined by
s f(Z,0) = g(2),
» f('f7n + 1) — h(f7n7 f(:a n))
® fis denoted by primrec(g, h).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-9

Def. Prim. Rec. Functions

o |f
o keN,
s h:N? — Nis primitive recursive,

so is the function f : N — N, defined by primitive
recursion from k£ and h.

#® Remember that f := primrec(k, h) is defined by
s f(0) =k,
s f(y+1) =Ny, f(y))

fis denoted by primrec(k, h).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-10

Inductively Defined Sets

That the set of primitive recursive functions is inductively
defined means:
ltis the least set

s containing basic functions

» and closed under the operations.

o Or: Itis the set generated by the above.

Or: The primitive recursive functions are those we can
write as terms formed
s from zero, succ, proj;’,
s using composition _o(_,...,)

s l.e. by forming from f.g; fo(g0,...,9n-1)
s and primrec.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-11

Inductively Defined Sets

E.Q.

® primrec(proj}, sucg o projs) : N2 — N is prim. rec.
—— N
:N—N :\N_>N N3 —N

:N??;N

:N;;N
(= addition)

® primrec(_ 0 , projé) : N — N is prim. rec.
eN N2 N

\ &

:NLN
(= pred)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-12

Primitive Rec. Relations and Sets

® Arelation R C N |s primitive recursive , If

xr :N*—= N

IS primitive recursive.
Note that we identified a set A C N" with the relation
R C N" given by
R(¥) < xe A
Therefore a set A C N" Is primitive recursive If the
corresponding relation R Is.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-13

Remark

Unless demanded explicitly, for showing that f is
defined by the principle of primitive recursion (i.e. by
primrec), It suffices to express:

s f(2,0) as an expression built from
s previously defined prim. rec. functions,
s T,
s and constants.
Example:

f(:l?(),a?l,()) — (:E() + 371) -3 .

(Assuming that +, - have already been shown to be
primitive recursive).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-14

Remark

and to express

s f(Z,y+ 1) as an expression built from
s previously defined prim. rec. functions,
T

the recursion argument vy,

the recursion hypothesis f(Z,y),
and constants.

Example:

L T R B

f($0,$1,y+1) — ($0+$1+y+f(330,331,y)) -3

(Assuming that +, - have already been shown to be
primitive recursive).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-15

Remark

Similarly, for showing f is prim. rec. by using previously
defined functions using composition, it suffices to

express f() in terms of

s previously defined prim. rec. functions,
s parameters x

s constants.

Example:

fz,y,2) =(x+y) -3+ .

(Assuming that +, - have already been shown to be
primitive recursive).

#® When looking at the first examples, we will express
primitive recursive functions directly by using the basic
functions, primrec and o.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-16

ldentity Function

#® id:N— N, id(y) = y IS primitive recursive:
s id = projp:
projg : NI — N,
projo(y) = y = id(y).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-17

Constant Function

® const, : N — N, const,(z) = n IS primitive recursive:
const,, = SUCC O - - - O SUCC OZEero:.

n times
SUCC O - - - O SUCC ozero(aj) = SUCC(SUCC(' X SUCC(ZerO(w)»)
n times n tiﬁes

= succ(succ(- - - succ(0)))
n times

= 04+1+1---+1
n times

— n

= const,(x) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-18

Addition

® add:N? = N, add(z,y) =z +y

IS primitive recursive.
We have the laws:

add(z,0)

add(z,y + 1)

r+0

T

v+ (y+1)
(z+y)+1
add(z,y) + 1
succ(add(z,y))

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-19

Addition

add(x,0) = =z« ,
add(x,y +1) = succ(add(zx,y)) .

® add(x,0) = g(x),
where
g:N—=N, g(x) ==,
.e. g = id = proj}.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-20

Addition

add(x,0) = x=g(x) ,
add(x,y +1) = succ(add(zx,y)) .

® add(x,y+ 1) = h(x,y,add(zx,y)),
where
h:N° = N, h(z,y,) := succ(z).
h = succ o projs:

(succ o proj3)(z,y,2) = succ(projs(x,y, 2))
= succ(z)

= h(z,y,2) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-21

Addition

add(z,0) = z=g(x) ,
add(z,y +1) = succ(add(z,y)) = h(x,y,add(z,y)) ,
g = projy .
h = succoprojg.
Therefore

add = primrec(projp, succ o proj3) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-22

Multiplication

® mult: N? - N, mult(z,y) =z -y
IS primitive recursive.
We have the laws:

mult(z,0) = x-0=
mult(z,y+1) = z-(y+1)
= T-Y+x
= mult(x,y) +

add(mult(z,y),)

Jump over rest

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-23

Multiplication

mult(x,0) = 0 ,
mult(z,y +1) = add(mult(z,y),z) .

#® mult(x,0) =g(z), where g : N — N, g(z) =0,
l.e. g = zero,

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-24

Multiplication

mult(z,0) = 0=g(x) ,
mult(x,y +1) = add(mult(z,y),z) .

® mult(z,y+ 1) = h(x,y, mult(z,y)),
where
h:N° =N, h(z,y,2) := add(z, z).
h = add o (proj3, projo):

(add o (proj3, projy)) (¢, y,2) = add(proj3(z, y, z), projj(z, ¥, 2))
= add(z,)

= h(z,y,z) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-25

Multiplication

mult(x,0) = 0=g(x) ,
mult(x,y +1) = add(mult(x,y),x) = h(z,y, mult(z,y)) ,
= zero ,

g
h = add o (proj;, projy) -

Therefore

mult = primrec(zero, add o (projs, proji)) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-26

Predecessor Function

® pred IS prim. rec.:

pred(0) = 0,
pred(z +1) = =z .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-27

Subtraction

® sub(z,y) =x = y IS prim. rec.:

sub(z,0) = =z |

sub(x,y+1) = == (y+1)
= (z-y) -1
= pred(sub(x,y)) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-28

Signum Function

® sig: N — N,

. 1, ifx >0,
S8(7) =0 0 e — o

IS prim. rec.:
sig(x) =x = (x = 1):
s For x =0 we have

r— (r—1) 0-(0=-1)=0-=-0

= 0 =sig(z) .
o For x > 0 we have

r— (r— 1)

r—(r—1)=zr—x+1
= 1 =sig(x) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-29

Signum Function

® Note that
Sig = Xx>0

where = > 0 stands for the unary predicate, which is
true for x iff z > O:

Xz>0(y) = { Loy >0, } = sig(y)

0, ify=0.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-30

r < y IS Prim. Rec.

A(x,y) & x < y IS primitive recursive, since
xa(z,y) = sig(y -)
® Ifz <y, then
y—xr=y—x >0,
therefore
sig(y — «) =1 = xal(z,y)

® If-(zx<y)le x>y,
then
y—x=0,

sig(ly —) =0 = xa(z,y) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-31

Add., Mult., Exp.

Consider the sequence of definitions of addition,
multiplication, exponentiation:

o Addition:

r+0 = o,
r+y+1) = (e+y +1,

Therefore, if we write ((+) 1) for the function N — N,
((+) 1)(z) = x+ 1, then

r+y=((+) 1)’(z) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-32

Remark on Notation

The notation ((+) 1)Y(x) Is to be understood as follows:
s Let f be afunction (e.g. ((+) 1)). Then we define

F(@) = fUC S)

n times

s This is not to be confused with exponentiation

m

® SO
((+) D¥(z) = ((+) 1)(((+)j)(- () (@) --+))

(o (4D +1) -+ 1) =a+y
wt?rges

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-33

Add., Mult., Exp.

s Multiplication:

-0
r-(y+1)

Therefore, if we write ((+) x) for the function N — N,

(+))(y) =y + x, then

0,

r-y=((+) 2)7(0) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-34

Add., Mult., Exp.

s EXxponentiation:

:Cozl,

2V = (aY) -z,

Therefore, if we write ((-) x) for the function N — N,
(() z)(y) =z -y, then

v =(())(1) .

Note that above, we have both occurrences of =¥ for
exponentation and of ((-) x)¥(1) for iterated function
application.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-35

Superexponentiation

Extend this sequence further, by defining
s Superexponentiation:

superexp(z,0) = 1 ,

SUpGI’GXp(.%y—I—l) — $Superexp(az,y) |

Therefore, if we write ((7) n) for the function N — N,
((1) n)(k) = n*, then

superexp(z,y) = ((T) z)*(1) -

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a)

5-36

Supersuperexponentiation

s Supersuperexponentiation:

supersuperexp(z,0) = 1 ,
supersuperexp(x,y + 1) = superexp(z,supersuperexp(x,y))
s EtcC.
One obtains sequence of extremely fast growing
functions.
These functions will exhaust the primitive recursive
functions.
We will reconsider this sequence at the beginning of
Sect. 6 (a).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-37

(b) Closure of the Prim. Rec. Func.

Closure under Vv, A, —

o If R,.S CN"are prim. rec., so are
s RVS,
s RANS,
s R.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-38

Closure under Prop. Connectives

® Here
s (RVS)(¥) < R(T)V
s (RAS)(T) & R(Z) A
s (0R)(Z) & —~R().

#® So the prim. rec. predicates are closed under the
propositional connectives A, V, —.

Example:

» Above we have seen that “x < ¢” IS primitive
recursive.

» Therefore the predicates “z < y” and “z = ¢” are
primitive recursive:
s < ys (y <o)
s r=yr<yNy <.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-39

Remark A, Vv, N"\

We have
s RV S=RUS (the set theoretic union of R and 5)
s RANS=RnNS,
s "R=N"\R.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-40

Closure under V, A, —

® Proofof RUS=RVS:
(RUS)(X)

Jump over Rest
® Proofof RNS=RAS:

(RN S)(T)

t ¢ ¢

t ¢ ¢

FERUS
FERVIES
R(Z) V S(7)

reRNS
reERANTES
R(Z) N S(Z)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-41

Closure under U, N, \

#® Proof of N\ R = —R:
(N"\ R)(Z)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-42

Proof of Closure under Vv

® XRrvs(T) = sig(xr(T) + xs(7)),
(therefore R Vv S Is primitive recursive):.

s If R(Z) holds, then

sig(Xr(Z) + xs(Z)) =1 = xRrvs(T) .
1 >0

\ . J/
-~

>1

_J/

=1

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-43

Proof of Closure under Vv

s Similarly, if S(£) holds, then

sig(Xr(T) + xs(T)) =1 = Xrvs(T)
>0 =1

\ . J/
N

>1

J/

=1

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-44

Proof of Closure under Vv

s If neither R(Z) nor S(¥) holds, then we have

sig(Xr(Z) + xs5(Z)) = 0= xRrvs(Z) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-45

Proof of Closure under A

® \rns(T) = xr(T) - xs(T))
(and therefore R A S Is primitive recursive):
Jump over Rest of Proof

s If R(%) and S(&) hold, then

XR(T) - xs(T) = 1= XRas(T)

=1

NV
=1
(. 7

N

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-46

Proof of Closure under A

s If =R(Z) holds, then xr(%) = 0, therefore

XR(T) xs(Z) = 0= xrns(Z) -
=0

\ - J/

~
s Similarly, if =S(%), we have

XR(T) - Xs(T) = 0 = xRras(T) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-47

Proof of Closure under —

® x-r(Z) =1+ xg(7)
(and therefore primitive recursive):
Jump over Rest of Proof

s If R(Z) holds, then yr(7) =1, therefore

1 = xr(%) = 1= x~r(7) .

{

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-48

Definition by Cases

The primitive recursive functions are closed under

definition by cases:
Assume

s ¢1,92 : N — N are primitive recursive,
s R C N"|s primitive recursive.
Then f: N" — N,

-\ gl(f)v If R(f)1
/) { 7). if ~R(7),

IS primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-49

Definition by Cases

7) - — gl(f)v If R(f)1
o {92@), f-R(2),

f(@) = q1(7) - xr(¥) + g2(7) - x~r(F) prim. rec.
Jump over rest of proof.

o If R(¥) holds, then yr(Z) =1,
XnegR(f) = 0, therefore

91(Z) - XR(T) + 92(T) - x-r(T) = q1(Z) = f(Z) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-50

Definition by Cases

Show

s If =R(Z) holds,
then xr(7) =0, x-r(7) =1,

91(Z) - XRr(Z) + g2(Z) - X-~r(T) = g2(Z) = f(T) .
——

——
=0 =g2(7)
=g2(%)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-51

Bounded Sums

o Ifg:N**! — Nis prim. rec., sois

NN f(Fy) =) g(F2)

Z2<y

where

Zg(f, 2) =0,

and for y > 0,

2<y

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-52

Bounded Sums

f:NTH_]HN) f(:ay) = Zz<yg(f7z) y
Proof that f is prim. rec.:

F(Z,0) = 0,
f@y+1) = f(@y) +g9(y) .

Jump over rest of proofThe last equations follows from

f(fay+1) — Z g(f,z)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-53

Example

® We have above

f(Z,0) = g(z,0)

f(@1) = g(%0)+g(Z,1)
= f(7,0) +g(Z,0)

f(Z,2) = g(%,0)+g(Z,1) +g(Z,2)
= f(@,1) +9(7,2)

etc.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-54

Bounded Products

o Ifg:N**! — Nis prim. rec., sois

fiNL N f(Ey) =]] e 2)

Z2<y

where

Hg(f, z) =1,

and for y > 0,

119 2) :=g(z,0) - g(& 1) g(&y—1) .

Z2<y

Omit Proof and Example Factorial Function

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-55

Bounded Products

f:NTH_]HN) f(:ay) = Hz<yg(faz) y
Proof that f is prim. rec.:

f(z,0) = 1,
f(@,y+1) = f(@dy)- 9@ y).

Here, the last equations follows by

f@y+1) = 9(%, 2)

Jump over next Example

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-56

Example

Example for closure under bounded products:
f:N—N,
flx):=al=1-2.-----n

fO-0-1,
IS prlmltlve recursive, Since
fla) =16+ =TTa0 .

where ¢g(y) :=y + 1 IS prim. rec..
(Note that in the special case =+ = 0 we have

fOy=0=1=JJ6+1))

1<0

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-57

Remark on Factorial Function

Alternatively, the factorial function can be defined
directly by using primitive recursion as follows:

(z +1)!

z! - (x+1)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-58

Bounded Quantification

o If R C N**lis prim. rec., so are

) &= Vz<y.R(T z) ,
) & dz<y.R(T z) .

R (
Ro(

LY
LY

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-59

Bounded Quantification

Ri(Z,y) = Vz<y.R(Z z2) ,

Proof for Rjy:

xR (Z,9) HXR
z2<y
Jump over details.

s IfVz <y .R(7, 2z) holds,
thenVz < y.xr(Z,2) = 1,
therefore

[[xr@y) =1]1=1=xr(Zv) .

Z<y A

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-60

Bounded Quantification

Ri(Z,y) = Vz<y.R(Z z2) ,
ShOW XRl (fa y) — Hz<y XR(fa Z)

s If -R(7, z) forone z <y,
then xr(%, 2z) = 0, therefore

[xr(#2) =0=xr(Zy) .

Z2<y

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-61

Bounded Quantification

Ro(Z,y) & dz < y.R(Z,2) .

Proof for R»:

X5, (T, y) = sig»> ~ xr(Z,2))

Z2<y

Jump over Rest of Proof
s IfVz <y.—R(T,z), then

sig(Y xr(T,y) = sig(D>_0)

z<y Z<yY

= sig(0)
= 0

= Xr,(T,y) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-62

Bounded Quantification

Ro(Z,y) & dz < y.R(Z,2) .
Show x g, (7, y) = sig()_,, XRr(Z, 2))

s If R(Z, z), for some z < y, then
xgr(7,z) = 1, therefore

> xr(Zy) > xr(#2) =1,
2<y

therefore

sig(Y Xxr(Z,y)) =1=xr,(T,y) .

Z2<y

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-63

Bounded Search

If R C N*t!is a prim. rec. predicate, so is
f(Z,y) == pz < y.R(Z, z), where

the least z s.t. R(7, z) holds, if such z exist

2 <y.R(x z):= .
pe < y-R(T,2) {y otherwise.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-64

Bounded Search

f(Z,y) = pz < y.R(T, 2)

#® f can be defined by primitive recursion directly using
the equations:

f(Z,0) = 0
[(&) iff(Ty) <.

Y if f(Z,y) =y A R(Z,y),
_y+1 otherwise.

—n
B
<
+
Z
|

#® Exercise: Show
s f fulfills those equations
s From these equations it follows that f is primitive
recursive, provided R is.

Jump over Alternative Proof

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-65

Bounded Search

f(Z,y) = pz <y.R(Z, 2)
Alternative Proof of Closure under Bounded Search
Define

y) &= R(Z,y) A\Vz<y—-R(Z z) ,
Q'(7,y) & Vz<y—R(T 2)
@) and @’ are primitive recursive.

Q(Z,y) holds, if y is minimal s.t. R(Z,y).
We show

= () xo(@2)-2)+xg(@y) -y .
Z<y

Jump over details.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-66

Bounded Search

Q(Z,y) = R(Z,y) N\Vz <y.-R(Z,z2) ,
Q' (7,y) = Vz<y—R(Z z2) ,

s Assume dz < y.R(Z, z).
Let z be minimal s.t. R(Z, 2).

= Q(T, 2),

= xQ(%,2) -z =2 .

For =z £ 2’ we have -Q(Z, /),

therefore xq(z,2") - 2 =0 (¢ # 2).

Furthermore, -Q'(#,y), therefore xo/ (Z,y)-y=0 .
Therefore

ZXQiCZ +XQ/(:13 Y) - y:z:,uz’<y.R(:E’,z’) :
z2<y

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-67

Bounded Search

Q(Z,y) = R(Z,y) N\Vz <y.-R(Z,z2) ,
Q' (7,y) = Vz<y—R(Z z2) ,

s Assume Vz < y.—R(Z, z).
= —Q(, z) for z < y,
= Vz <y.x(Z,2) -2=0.
Furthermore, Q'(Z,y),
therefore xo/ (Z,y) -y = v.
Therefore

ZXQCCZ +XQ/(:C Y) - y:y:,uz’<y.R(f,z’) :
Z<y

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-68

Example

#® Let P C N be a primitive recursive predicate, and define

f : N—-=N,
flz) = Hy<az|Py)} .

® f(x)Iisthe number of y < z s.t. P(y) holds.
f Is primitive recursive, since

fl@)=> xply) .

y<zx

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-69

Example 2

Omit Example 2
#® Let @ C N be a primitive recursive predicate.

We show how to determine primitive recursively the
second least y < z s.t. Q(y) holds.

#® Stepl: Express the property to be the second least
y < x S.I. Q(y) holds as a prim. rec. predicate P(y):

P(y):<
Qy) N (2 < y.Q(2))A
—(Jz < 9.3 <y (Q(2) ANQ(Z) Nz # 2))

P(y) Is primitive recursive, since it is defined from @
using A, =, bounded quantification and “z = 2'".

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-70

Example 2

® Step 2: Let f(y) be the second least y < = s.t. Q(y)
holds:

Flz) = y, Ify <xand P(y),
| z, ifthereisnoy < z s.t. P(y).

#® Then
f(z) = py <x.P(y)
SO f IS primitive recursive.
(We could have defined instead
P'(y) & Qy) A3z <y.Q(z) -

Then f(z) = uy < x.P'(y) holds.)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-71

Lemma 5.1

The coding and decoding functions for pairs, tuples and
sequences of natural numbers are primitive recursive.

More precisely, the following functions are primitive
recursive:
(a) 7:N? — N.
(Remember, n(x,y) encodes two natural numbers as
one.)
(b) 7y, m : N — N,
(Remember no(n(z,y)) =z, m(n(x,y)) = y).
(c) 7% :NF - N (k > 1).
(Remember 7%(x, ..., z1_1) encodes the sequence
(205 s Tp—1)-

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-72

Lemma 5.1

(d) f:N3 =N,

™ (x), ifi <k,

f(:l?,k,i) { Z

X, otherwise.

(Remember that ¥ (7*(zo, ..., 25_1)) = x; fori < k.)
We write 7% (a) for f(z, ki), evenif i > k.

(e) fr:NF =N,
fk(x()a R 7'7:]6—1) — <LE07 RN ,lUk_1>.
(Remember that (x,...,z;_1) encodes the sequence
X0, ...,Tr_1 @S one natural number.

(f) Ih: N — N.

(Remember that |h({zq,...,zt_1)) = k.)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-73

Lemma 5.1

(9) 9:N? =N, g(z,i) = (2);.
(Remember that ({(zq,...,z5_1)); = z; for i < k.)

The proof will be omitted in the lecture.

Jump over proof.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-74

Proof of Lemma 5.1 (a), (b)

(a)
m(z,y) = () O)+y

IS primitive recursive.

(b) One can easily show that x,y < 7 (z,y).
Therefore we can define

mo(zr) = py<zc+liz<z+lax=n(yz) ,
mi(z) = pr<zx+liy<z+loz=xn(yz) .

Therefore my, m; are primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-75

Proof of Lemma 5.1 (c)

(c) Proof by induction on &:
s k=1:7%(x) =z, so n! is primitive recursive.

s k — k+ 1: Assume that 7” is primitive recursive.

Show that 7%t is primitive recursive as well:

7Tk+1(3307 o 733]6) — 7T(7Tk(£13(), ce ,33]4;—1)7 :Ek’) .

Therefore 7#*1 is primitive recursive
(using that =, 7% are primitive recursive).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-76

Proof of Lemma 5.1 (d)

(d) We have
7T(l)(x) — X y
7Tf“(ﬂ?) = 7w (mo(z)), if i <k,
mt @) = m(z),ifi=
Therefore

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-77

Proof of Lemma 5.1 (d)

and
T if i > k,
Fla, ki) = 4 my((m)Fi(x)), 10 <i<k,
(m0)* (), ifi=0< k.
Define ¢ : N2 — N,
g(z,0) = x,
gz, k+1) = mo(g(z,k)) ,

which Is primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-78

Proof of Lemma 5.1 (d)

Then we get g(z, k) = (m0)*(x), therefore

z, if i > k,
[z, ki) =< m(g(x, k=1)), If0O<i<Kk,
g(z, k), Ifi =0 < k.

So f Is primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-79

Proof of Lemma 5.1 (e), (f), (Q)

(e)
fu(zo, .. ap—1) = l4+mw(k= 1,7z, ,25-1))
IS primitive recursive.
(f)
h(z) = { ?r;(a:; 1) + 1 ::i;g
(9)

(@) = 7" (m(x = 1))
= f(m(x = 1),lh(z),17)

IS primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-80

Lemma and Definition 5.2

(Technical Lemma needed in the proof of closure under
course-of-value primitive recursion below.)

Prim. rec. functions as follows do exist:
(a) snoc: N? — N s.t.

snoc({xq, ..., Tp-1),2) = (T0y-- -, Tn-1,T) .

o Remark: snoc Is the word cons reversed.
snoc IS like cons, but adds an element to the end
rather than to the beginning of a list.

(b) last : N — N and beginning : N — N s.t.

last(snoc(x,y)) = vy ,
beginning(snoc(x,y)) = x .
Jump over proof.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-81

Proof of Lemma 5.2 (a)

Define

(Y), If =0,
1+ n(lh(z), n(m(x = 1),y)), otherwise,

snoc(x,y) = {

SO snoc IS primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-82

Proof of Lemma 5.2 (a)

We have

snoc((), y)

= snoc(0, y)

= W)

snoc({xg, ..., Tk),Y)

= snoc(1+ w(k, 7" (xg, ..., 21)),y)

= 1+m(k+1,7(m((1+ 7k, 7 (2g,...,21))) = 1),9))
(by lh({zg,...,21)) =k +1)

1+ (k4 1, 7(m (7 (k, 7"z, ... 21))),)

1+ m(k+ 1, 7(7* Y (20,...,21),9))

1+ k+1,7rk+2(:1:0,...,:1:k,y))

= (T0,..., Tk, Y) -

/N

/N 7 N /N

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-83

Proof of Lemma 5.2 (b)

Proof for beginning:

Define
beglnnlng(a:)
(), if Ih(z) < 1,
=< ((x)o) If Ih(x) = 2,
1+ 7((h(z) = 1) = 1,m(m(y — 1))), otherwise.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-84

Proof of Lemma 5.2 (b)

Let x = snoc(y, z). Show beginning(x) = v.
Case |Ih(y) = 0: Then

r = snoc(y, z) = (2)
therefore Ih(x) = 1, and

beginning(z) = ()

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-85

Proof of Lemma 5.2 (b)

Case lh(y) = 1: Then y = (/) for some ¢/, snoc(y, z) = (¢/, 2),

beginning(z) =

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-86

Proof of Lemma 5.2 (b)

Case |h(y) > 1: Let Ih(y) = n + 2,

v ={Yo,...,Ynt1) = 1 +7m(n+ 1,7T"+2(y0, ey Ynt1))

Then
snoc(y, z) = 1+ m(n+2,m(m(y - 1),2)) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-87

Proof of Lemma 5.2 (b)

Therefore

beginning(snoc(y, z))

= 1+ a(((h(z) = 1) = 1), mo(m (snoc(y, 2) =

= 1+ 7(n,mo(m((L+7(n+2,7(m(y— 1),z

— 1—|—7T(n 7T()(7T1((n—|—2 77(7T1(y — 1))))>)

= 1+m(n,mo(m(m(y - 1),2)))

= 14+7(n,m(y—= 1))

= 14+7(n,m((L+a(n+1,7"2(yo,..., Ynt1))) = 1))
1 +7(n,m(m(n+ 1,7 2(yo, ..., Yn+1))))

= 1+7(n,7"2(yo,. .., Ynt+1)))

)= 1))

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-88

Proof of Lemma 5.2 (b)

Proof for last:
Define

ast(x) == (2)(a)- 1

If y = (vo,...,yn—1), then

last(snoc(y, z)) = last({yo, ..., Yn—-1,2))
— (<y07 ey Yn—1, Z>)|h((yo,...,yn_1,z>)‘— 1

= ((Wo, -+, Yn—-1,2))n

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-89

Definition Course-Of-Value

Assume f: N**! — N. Then we define

I Nt & N
7(f7n) = (f(f,()),f(f,l),...,f(f,n—1)>
Especially f(#,0) = ().

fis called the course-of-value function associated with

f.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-90

Course-of-Value Prim. Recursion

The prim. rec. functions are closed under
course-of-value primitive recursion :

Assume
g: N2 N
IS primitive recursive.
Then
foN" LN
f(@, k) = g(Z,k, f(Z,k))
IS prim. rec.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-91

Course-of-Value Prim. Recursion

Informal meaning of course-of-value primitive recursion:
If we can express f(Z,y) by an expression using

constants,

o 2.y,

previously defined prim. rec. functions,
® f(7 z) for z <y,

then f Is prim. rec.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-92

Example

Fibonacci numbers are prim. rec.
fib : N — N given by:

Definab

® We

fib(0) = 1,

fib(1) = 1,

fib(x) := fib(zx —2)+fib(x —1),1fz > 1,
e by course-of-value primitive recursion:
have

if © <
fib(z) — 1._ - If z < 1.,
(fib(z))z—2 + (fib(x)),—1 Otherwise.

using (fib(z)),_2 = fib(x — 2), (fib(x)),_1 = fib(z — 1).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-93

Proof

Proof that prim. rec. functions are closed under
course-of-value primitive recursion:
Let f be defined by

Show f is prim. rec.

We show first that f is primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-94

f(Z,0) = (),
f@Ey+1) = (f(£,0), (@ 1),.... f(@y—1) f(Zy))
= snoc({f(#,0), f(Z,1),..., f(&y —1)), f(T,y))
:?é,y)
= snoc(f(Z,y), f(Z,))
= snoc(f(Z,y),9(Z,y, f(Z,9)))

Therefore f is primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-95

Proof

IS primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-96

Lemma and Definition 5.3

(Technical Lemma used later to simulate Turing Machines
using primitive recursive/partial recursive functions).

There exist prim. rec. functions as follows:
(a) append : N* — N s.t.

append(<$07 R 7£Ek—1>7 <y07 I 7yl—1>)

— <$07"'7$k—lay07"'7yl—1> .
We write x x y for append(z, y).

(b) subst : N* — N, s.t. if i < n then
subst((x(), Ce ,:En_1>, 1, y) = <£C(), oy =1, Y, i1, Tt 2y v v vy Tp—1
and if ¢ > n, then
subst({(zg, ..., Tn-1),%,Yy) = (Tg, .-, Tn—1) -

We write x|i/y| for subst(x, 7, y).

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-97

Lemma and Definition 5.3

(C) subseq: N° — N s.t., ifi <n,
SUbSGC]((iC(), e 7£Cn—1>7 27]) — <ZC7;, Li+1y - - - 7xmin(j—1,n—1)>)
and if 1 > n,

subseq({xg, ..., Tn-1),7,7) = () .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-98

Lemma and Definition 5.3

(d) half : N — N,
s.t. half(z) =y ifx =2y or z =2y + 1.
(e) The function bin: N — N, s.t.
bin(x) = (by, ..., bk),
for b; In normal form (no leading zeros, unless n = 0),
S.t. x = (b(), Cee bk)g
(f) A function bin™! : N — N, s.t.
bin~!((bo, ..., b)) =z, if (bo,...,bp)2 = z.

The proof will be omitted in the lecture.

Jump over proof.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-99

Proof of Lemma 5.3 (a)

We have

append({xq, ..., x,),0)

= append({zo, ..., Tn),())

= (T0,...,%n) ,

and for m > 0

append({xo, ..., Zn), (Y0, ---,Ym))

— <$07---7$nay07---7ym>

= SnOC(<$Oa---axnayOa---aym—1>vym)

= snoc(append(<x0, N ,£En>, <y07 e 7ym—1>)7 ym)

= snoc(append({xq,...,Ty),
beginning((yo, - -, ¥m))),
last({yo, ..., ym))) .

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-100

Proof of Lemma 5.3 (a)

Therefore we have

append(z,0) = =

)

append(z,y) = snoc(append(z,beginning(y)), last(y)) ,

One can see that beginning(x) < x for x > 0, therefore the
last equations give a definition of append by course-of-value
primitive recursion, therefore append IS primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-101

Proof of Lemma 5.3 (b)

We have

subst(z, i, y)
(

€, If |h(£€) S i,
= 4 snoc(beginning(x),y), If: + 1 =1lh(z),
| snoc(subst(beginning(z),4,y), last(x)) 1fi+ 1 <lh(z).

Therefore subst is definable by course-of-value primitive
recursion.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-102

Proof of Lemma 5.3 (C)

We can define

subseq(z, i, j)

[(), if i > Ih(x),

B subseq(beginning(z), 1, j), If : < Ih(x)

B and j < Ih(z),
| snoc(subseq(beginning(x),,7),last(z)) Ifi < lh(x) < j,

which is a definition by course-of-value primitive recursion.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-103

Proof of Lemma 5.3 (d), (e)

(d) half(x) = py <z.2-y=2V2-y+1=ux).
(€)

<O>7 |f r = O,
bin(z) = ¢ (1) if x =1,
snoc(half(x),x — (2 - half(x))), Ifz > 1.

therefore definable by course-of-value primitive
recursion.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-104

Proof of Lemma 5.3 (f)

/

0, if In(z) =0,
bin~(z) =< (2)o if h(z) = 1,
\ bin~! (beginning(z)) - 2 + last(z) if Ih(z) > 1,

therefore definable by course-of-value primitive recursion.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-105

	5. The Primitive Recursive Functions
	Algebraic View of Computation
	Algebraic View of Computation
	Primitive Recursive Functions
	Primitive Recursive Functions
	Overview
	(a) Introd.
of the Prim. Rec. Functions
	Def. Prim. Rec. Functions
	Def. Prim. Rec. Functions
	Def. Prim. Rec. Functions
	Inductively Defined Sets
	Inductively Defined Sets
	Primitive Rec. Relations and Sets
	Remark
	Remark
	Remark
	Identity Function
	Constant Function
	Addition
	Addition
	Addition
	Addition
	Multiplication
	Multiplication
	Multiplication
	Multiplication
	Predecessor Function
	Subtraction
	Signum Function
	Signum Function
	$x <y$ is Prim. Rec.
	Add., Mult., Exp.
	Remark on Notation
	Add., Mult., Exp.
	Add., Mult., Exp.
	Superexponentiation
	Supersuperexponentiation
	(b) Closure
of the Prim. Rec. Func.
	Closure under Prop. Connectives
	Remark $land $, $lor $, $Nbb ^n setminus $
	Closure under $lor $, $land $, $
eg $
	Closure under $cup $, $cap $, $setminus $
	Proof of Closure under $lor $
	Proof of Closure under $lor $
	Proof of Closure under $lor $
	Proof of Closure under $land $
	Proof of Closure under $land $
	Proof of Closure under $
eg $
	Definition by Cases
	Definition by Cases
	Definition by Cases
	Bounded Sums
	Bounded Sums
	Example
	Bounded Products
	Bounded Products
	Example
	Remark on Factorial Function
	Bounded Quantification
	Bounded Quantification
	Bounded Quantification
	Bounded Quantification
	Bounded Quantification
	Bounded Search
	Bounded Search
	Bounded Search
	Bounded Search
	Bounded Search
	Example
	Example 2
	Example 2
	Lemma lempietcprimrec
	Lemma lempietcprimrec
	Lemma lempietcprimrec
	Proof of Lemma lempietcprimrec {} (a),
(b)
	Proof of Lemma lempietcprimrec {} (c)
	Proof of Lemma lempietcprimrec {} (d)
	Proof of Lemma lempietcprimrec {} (d)
	Proof of Lemma lempietcprimrec {} (d)
	Proof of Lemma lempietcprimrec {} (e),
(f), (g)
	Lemma and Definition lemdefsncoetcprimrec {}
	Proof of Lemma lemdefsncoetcprimrec {} (a)
	Proof of Lemma lemdefsncoetcprimrec {} (a)
	Proof of Lemma lemdefsncoetcprimrec {} (b)
	Proof of Lemma lemdefsncoetcprimrec {} (b)
	Proof of Lemma lemdefsncoetcprimrec {} (b)
	Proof of Lemma lemdefsncoetcprimrec {} (b)
	Proof of Lemma lemdefsncoetcprimrec {} (b)
	Proof of Lemma lemdefsncoetcprimrec {} (b)
	Definition Course-Of-Value
	Course-of-Value Prim. Recursion
	Course-of-Value Prim. Recursion
	Example
	Proof
	Proof
	Proof
	Lemma and Definition lemdefappendetcprimrec {}
	Lemma and Definition lemdefappendetcprimrec {}
	Lemma and Definition lemdefappendetcprimrec {}
	Proof of Lemma lemdefappendetcprimrec {} (a)
	Proof of Lemma lemdefappendetcprimrec {} (a)
	Proof of Lemma lemdefappendetcprimrec {} (b)
	Proof of Lemma lemdefappendetcprimrec {} (c)
	Proof of Lemma lemdefappendetcprimrec {} (d),
(e)
	Proof of Lemma lemdefappendetcprimrec {} (f)

