5. The Primitive Recursive Functions

# In this module we consider 3 models of computation

s The URMSs, which captures computation as it
happens on a computer.

s The Turing Machines , which capture computation
on a piece of paper.

s The partial recursive functions , developed in this

and the next section.
s Partial recursive functions were first proposed by
GO0del and Kleene 1936.

# There are many other models of computation.
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Algebraic View of Computation

# Main motivation for partial recursive functions:
s Algebraic view of computation.

s The class of partial computable functions in this

model is defined by certain combinators .

s We have some initial functions and close them
under operations which form from partial
computable functions new partial computable
functions.

s So In this model of computation we define directly a
set of functions (rather than defining first a
programming language and then the functions
defined by it).
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Algebraic View of Computation

# \We can assign a term to each partial recursive function.
s E.Q.
primrec(zero, proj7 )
denotes the predecessor function.
# These combinators allow

s to define functions more easily directly, and
therefore show that they are computable;

s and to manipulate terms denoting partial recursive
functions.
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Primitive Recursive Functions

# In this section we will first start introducing the primitive
recursive functions.

# They form an important subclass of the partial
recursive functions.

# Main property of the primitive recursiv functions.
s All primitive recursive functions are total .

» Therefore not all computable functions are
primitive recursive
s There exists no programming language, such that
all definable functions are total, which allows to
define all computable functions.
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Primitive Recursive Functions

9

The primitive recursive functions contain all feasible
functions (and many infeasible functions as well.

Therefore all realistic functions can be defined
primitive recursively

The principle of primitive recursion is closely related to
the principle of induction .

s In the dependently typed programming language
Agda induction and primitive recursion are the same
principle.

Extensions of the principle of primitive recursion form
the main ingredient of many functional programming
languages .
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Overview

(a) Introduction of primitive recursive functions

(b) Closure Properties of the primitive rec. functions

s We will show that the set of primitive recursive

functions Is a rich set of functions, closed under
many operations.

s This will show as well extend our intuition of how
powerful URM computable functions are.
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(a) Introd. of the Prim. Rec. Functions

Inductive definition of the primitive recursive functions
f:NF - N.
# The following basic Functions are primitive recursive:

o zero: N — N,
o succ: N — N,

s projf :NF - N (0 <i< k)

Remember that these functions have defining equations
s zero(y) = 0,

» succ(y) =y + 1,

o projf (Yo, - - Ye—1) = Y.
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Def. Prim. Rec. Functions

o |f
s f:N¥ — Nis primitive recursive,

s ¢g; : N” — N are primitive recursive, (: =0, ...,k — 1),

SO IS
fol(go,---y9k-1):N"—=N .
Remember that h := f o (go,...,9x_1) IS defined as

MZ) = f(go(Z), ..., gk—1(Z)) .

Especially, if f: N — Nand ¢g: N — N are primitive
recursive, so IS
fog:N—N .
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Def. Prim. Rec. Functions

o |f
s g:N"— N,
s h:N""? _ N are primitive recursive,

so is the function f : N**! — N defined by primitive
recursion from g, h.

# Remember that f Iis defined by
s f(Z,0) = g(2),
» f('f7n + 1) — h(f7n7 f(:a n))
® fis denoted by primrec(g, h).
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Def. Prim. Rec. Functions

o |f
o keN,
s h:N? — Nis primitive recursive,

so is the function f : N — N, defined by primitive
recursion from k£ and h.

#® Remember that f := primrec(k, h) is defined by
s f(0) =k,
s f(y+1) =Ny, f(y))

# fis denoted by primrec(k, h).
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Inductively Defined Sets

That the set of primitive recursive functions is inductively
defined means:
# ltis the least set

s containing basic functions

» and closed under the operations.

o Or: Itis the set generated by the above.

# Or: The primitive recursive functions are those we can
write as terms formed
s from zero, succ, proj;’,
s using composition _o(_,..., )

s l.e. by forming from f.g; fo(g0,...,9n-1)
s and primrec.
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Inductively Defined Sets

E.Q.

® primrec(proj}, sucg o projs ) : N2 — N is prim. rec.
—— N
:N—N :\N_>N N3 —N

:N??;N

:N;;N
(= addition)

® primrec(_ 0 , projé ) : N — N is prim. rec.
eN N2 N

\ &

:NLN
(= pred)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (a) 5-12



Primitive Rec. Relations and Sets

® Arelation R C N |s primitive recursive , If

xr :N*—= N

IS primitive recursive.
# Note that we identified a set A C N" with the relation
R C N" given by
R(¥) < xe A
Therefore a set A C N" Is primitive recursive If the
corresponding relation R Is.
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Remark

# Unless demanded explicitly, for showing that f is
defined by the principle of primitive recursion (i.e. by
primrec), It suffices to express:

s f(2,0) as an expression built from
s previously defined prim. rec. functions,
s T,
s and constants.
Example:

f(:l?(),a?l,()) — (:E() + 371) -3 .

(Assuming that +, - have already been shown to be
primitive recursive).
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Remark

and to express

s f(Z,y+ 1) as an expression built from
s previously defined prim. rec. functions,
T

the recursion argument vy,

the recursion hypothesis  f(Z,y),
and constants.

Example:

L T R B

f($0,$1,y+1) — ($0+$1+y+f(330,331,y)) -3

(Assuming that +, - have already been shown to be
primitive recursive).
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Remark

# Similarly, for showing f is prim. rec. by using previously
defined functions using composition, it suffices to

express f() in terms of

s previously defined prim. rec. functions,
s parameters x

s constants.

Example:

fz,y,2) =(x+y) -3+ .

(Assuming that +, - have already been shown to be
primitive recursive).

#® When looking at the first examples, we will express
primitive recursive functions directly by using the basic
functions, primrec and o.
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ldentity Function

#® id:N— N, id(y) = y IS primitive recursive:
s id = projp:
projg : NI — N,
projo(y) = y = id(y).
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Constant Function

® const, : N — N, const,(z) = n IS primitive recursive:
const,, = SUCC O - - - O SUCC OZEero:.

n times
SUCC O - - - O SUCC ozero(aj) = SUCC(SUCC(' X SUCC(ZerO(w)»)
n times n tiﬁes

= succ(succ(- - - succ(0)))
n times

= 04+1+1---+1
n times

— n

= const,(x) .
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Addition

® add:N? = N, add(z,y) =z +y

IS primitive recursive.
We have the laws:

add(z,0)

add(z,y + 1)

r+0

T

v+ (y+1)
(z+y)+1
add(z,y) + 1
succ(add(z,y))
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Addition

add(x,0) = =z« ,
add(x,y +1) = succ(add(zx,y)) .

® add(x,0) = g(x),
where
g:N—=N, g(x) ==,
.e. g = id = proj}.
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Addition

add(x,0) = x=g(x) ,
add(x,y +1) = succ(add(zx,y)) .

® add(x,y+ 1) = h(x,y,add(zx,y)),
where
h:N° = N, h(z,y, ) := succ(z).
h = succ o projs:

(succ o proj3)(z,y,2) = succ(projs(x,y, 2))
= succ(z)

= h(z,y,2) .
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Addition

add(z,0) = z=g(x) ,
add(z,y +1) = succ(add(z,y)) = h(x,y,add(z,y)) ,
g = projy .
h = succoprojg.
Therefore

add = primrec(projp, succ o proj3) .
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Multiplication

® mult: N? - N, mult(z,y) =z -y
IS primitive recursive.
We have the laws:

mult(z,0) = x-0=
mult(z,y+1) = z-(y+1)
= T-Y+x
= mult(x,y) +

add(mult(z,y), )

Jump over rest
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Multiplication

mult(x,0) = 0 ,
mult(z,y +1) = add(mult(z,y),z) .

#® mult(x,0) =g(z), where g : N — N, g(z) =0,
l.e. g = zero,
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Multiplication

mult(z,0) = 0=g(x) ,
mult(x,y +1) = add(mult(z,y),z) .

® mult(z,y+ 1) = h(x,y, mult(z,y)),
where
h:N° =N, h(z,y,2) := add(z, z).
h = add o (proj3, projo):

(add o (proj3, projy)) (¢, y,2) = add(proj3(z, y, z), projj(z, ¥, 2))
= add(z, )

= h(z,y,z) .
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Multiplication

mult(x,0) = 0=g(x) ,
mult(x,y +1) = add(mult(x,y),x) = h(z,y, mult(z,y)) ,
= zero ,

g
h = add o (proj;, projy) -

Therefore

mult = primrec(zero, add o (projs, proji)) .
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Predecessor Function

® pred IS prim. rec.:

pred(0) = 0,
pred(z +1) = =z .
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Subtraction

® sub(z,y) =x = y IS prim. rec.:

sub(z,0) = =z |

sub(x,y+1) = == (y+1)
= (z-y) -1
= pred(sub(x,y)) .
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Signum Function

® sig: N — N,

. 1, ifx >0,
S8(7) =0 0 e — o

IS prim. rec.:
sig(x) =x = (x = 1):
s For x =0 we have

r— (r—1) 0-(0=-1)=0-=-0

= 0 =sig(z) .
o For x > 0 we have

r— (r— 1)

r—(r—1)=zr—x+1
= 1 =sig(x) .
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Signum Function

® Note that
Sig = Xx>0

where = > 0 stands for the unary predicate, which is
true for x iff z > O:

Xz>0(y) = { Loy >0, } = sig(y)

0, ify=0.
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r < y IS Prim. Rec.

A(x,y) & x < y IS primitive recursive, since
xa(z,y) = sig(y - )
® Ifz <y, then
y—xr=y—x >0,
therefore
sig(y — «) =1 = xal(z,y)

® If-(zx<y)le x>y,
then
y—x=0,

sig(ly — ) =0 = xa(z,y) .
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Add., Mult., Exp.

# Consider the sequence of definitions of addition,
multiplication, exponentiation:

o Addition:

r+0 = o,
r+y+1) = (e+y +1,

Therefore, if we write ((+) 1) for the function N — N,
((+) 1)(z) = x+ 1, then

r+y=((+) 1)’(z) .
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Remark on Notation

# The notation ((+) 1)Y(x) Is to be understood as follows:
s Let f be afunction (e.g. ((+) 1)). Then we define

F(@) = fUC S )

n times

s This is not to be confused with exponentiation

m

® SO
((+) D¥(z) = ((+) 1)(((+)j)(- () (@) --+))

(o (4D +1) -+ 1) =a+y
wt?rges
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Add., Mult., Exp.

s Multiplication:

-0
r-(y+1)

Therefore, if we write ((+) x) for the function N — N,

(+) )(y) =y + x, then

0,

r-y=((+) 2)7(0) .
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Add., Mult., Exp.

s EXxponentiation:

:Cozl,

2V = (aY) -z,

Therefore, if we write ((-) x) for the function N — N,
(() z)(y) =z -y, then

v =(() )(1) .

# Note that above, we have both occurrences of =¥ for
exponentation and of ((-) x)¥(1) for iterated function
application.
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Superexponentiation

# Extend this sequence further, by defining
s Superexponentiation:

superexp(z,0) = 1 ,

SUpGI’GXp(.%y—I—l) — $Superexp(az,y) |

Therefore, if we write ((7) n) for the function N — N,
((1) n)(k) = n*, then

superexp(z,y) = ((T) z)*(1) -
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Supersuperexponentiation

s Supersuperexponentiation:

supersuperexp(z,0) = 1 ,
supersuperexp(x,y + 1) = superexp(z,supersuperexp(x,y))
s EtcC.
# One obtains sequence of extremely fast growing
functions.
# These functions will exhaust the primitive recursive
functions.
# We will reconsider this sequence at the beginning of
Sect. 6 (a).
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(b) Closure of the Prim. Rec. Func.

Closure under Vv, A, —

o If R,.S CN"are prim. rec., so are
s RVS,
s RANS,
s R.
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Closure under Prop. Connectives

® Here
s (RVS)(¥) < R(T)V
s (RAS)(T) & R(Z) A
s (0R)(Z) & —~R().

#® So the prim. rec. predicates are closed under the
propositional connectives A, V, —.

# Example:

» Above we have seen that “x < ¢” IS primitive
recursive.

» Therefore the predicates “z < y” and “z = ¢” are
primitive recursive:
s < ys (y <o)
s r=yr<yNy <.
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Remark A, Vv, N"\

# We have
s RV S=RUS (the set theoretic union of R and 5)
s RANS=RnNS,
s "R=N"\R.
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Closure under V, A, —

® Proofof RUS=RVS:
(RUS)(X)

Jump over Rest
® Proofof RNS=RAS:

(RN S)(T)

t ¢ ¢

t ¢ ¢

FERUS
FERVIES
R(Z) V S(7)

reRNS
reERANTES
R(Z) N S(Z)
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Closure under U, N, \

#® Proof of N\ R = —R:
(N"\ R)(Z)
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Proof of Closure under Vv

® XRrvs(T) = sig(xr(T) + xs(7)),
(therefore R Vv S Is primitive recursive):.

s If R(Z) holds, then

sig(Xr(Z) + xs(Z)) =1 = xRrvs(T) .
1 >0

\ . J/
-~

>1

_J/

=1
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Proof of Closure under Vv

s Similarly, if S(£) holds, then

sig(Xr(T) + xs(T)) =1 = Xrvs(T)
>0 =1

\ . J/
N

>1

J/

=1
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Proof of Closure under Vv

s If neither R(Z) nor S(¥) holds, then we have

sig(Xr(Z) + xs5(Z)) = 0= xRrvs(Z) .
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Proof of Closure under A

® \rns(T) = xr(T) - xs(T))
(and therefore R A S Is primitive recursive):
Jump over Rest of Proof

s If R(%) and S(&) hold, then

XR(T) - xs(T) = 1= XRas(T)

=1

NV
=1
(. 7

N
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Proof of Closure under A

s If =R(Z) holds, then xr(%) = 0, therefore

XR(T) xs(Z) = 0= xrns(Z) -
=0

\ - J/

~
s Similarly, if =S(%), we have

XR(T) - Xs(T) = 0 = xRras(T) .
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Proof of Closure under —

® x-r(Z) =1+ xg(7)
(and therefore primitive recursive):
Jump over Rest of Proof

s If R(Z) holds, then yr(7) =1, therefore

1 = xr(%) = 1= x~r(7) .

{
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Definition by Cases

# The primitive recursive functions are closed under

definition by cases:
Assume

s ¢1,92 : N — N are primitive recursive,
s R C N"|s primitive recursive.
Then f: N" — N,

-\ gl(f)v If R(f)1
/) { 7). if ~R(7),

IS primitive recursive.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-49



Definition by Cases

7) - — gl(f)v If R(f)1
o {92@), f-R(2),

f(@) = q1(7) - xr(¥) + g2(7) - x~r(F) prim. rec.
Jump over rest of proof.

o If R(¥) holds, then yr(Z) =1,
XnegR(f) = 0, therefore

91(Z) - XR(T) + 92(T) - x-r(T) = q1(Z) = f(Z) .
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Definition by Cases

Show

s If =R(Z) holds,
then xr(7) =0, x-r(7) =1,

91(Z) - XRr(Z) + g2(Z) - X-~r(T) = g2(Z) = f(T) .
——

——
=0 =g2(7)
=g2(%)
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Bounded Sums

o Ifg:N**! — Nis prim. rec., sois

NN f(Fy) =) g(F2)

Z2<y

where

Zg(f, 2) =0,

and for y > 0,

2<y
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Bounded Sums

f:NTH_]HN ) f(:ay) = Zz<yg(f7z) y
Proof that f is prim. rec.:

F(Z,0) = 0,
f@y+1) = f(@y) +g9(y) .

Jump over rest of proofThe last equations follows from

f(fay+1) — Z g(f,z)
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Example

® We have above

f(Z,0) = g(z,0)

f(@1) = g(%0)+g(Z,1)
= f(7,0) +g(Z,0)

f(Z,2) = g(%,0)+g(Z,1) +g(Z,2)
= f(@,1) +9(7,2)

etc.
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Bounded Products

o Ifg:N**! — Nis prim. rec., sois

fiNL N f(Ey) =] ] e 2)

Z2<y

where

Hg(f, z) =1,

and for y > 0,

119 2) :=g(z,0) - g(& 1) g(&y—1) .

Z2<y

Omit Proof and Example Factorial Function

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-55



Bounded Products

f:NTH_]HN ) f(:ay) = Hz<yg(faz) y
Proof that f is prim. rec.:

f(z,0) = 1,
f(@,y+1) = f(@dy)- 9@ y).

Here, the last equations follows by

f@y+1) = 9(%, 2)

Jump over next Example
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Example

Example for closure under bounded products:
f:N—N,
flx):=al=1-2.-----n

fO-0-1,
IS prlmltlve recursive, Since
fla) =16+ =TTa0 .

where ¢g(y) :=y + 1 IS prim. rec..
(Note that in the special case =+ = 0 we have

fOy=0=1=JJ6+1) )

1<0
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Remark on Factorial Function

# Alternatively, the factorial function can be defined
directly by using primitive recursion as follows:

(z +1)!

z! - (x+1)

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-58



Bounded Quantification

o If R C N**lis prim. rec., so are

) &= Vz<y.R(T z) ,
) & dz<y.R(T z) .

R (
Ro(

LY
LY

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b) 5-59



Bounded Quantification

Ri(Z,y) = Vz<y.R(Z z2) ,

Proof for Rjy:

xR (Z,9) HXR
z2<y
Jump over details.

s IfVz <y .R(7, 2z) holds,
thenVz < y.xr(Z,2) = 1,
therefore

[[xr@y) =1]1=1=xr(Zv) .

Z<y A
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Bounded Quantification

Ri(Z,y) = Vz<y.R(Z z2) ,
ShOW XRl (fa y) — Hz<y XR(fa Z)

s If -R(7, z) forone z <y,
then xr(%, 2z) = 0, therefore

[ xr(#2) =0=xr(Zy) .

Z2<y
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Bounded Quantification

Ro(Z,y) & dz < y.R(Z,2) .

Proof for R»:

X5, (T, y) = sig»> ~ xr(Z,2))

Z2<y

Jump over Rest of Proof
s IfVz <y.—R(T,z), then

sig( Y xr(T,y) = sig(D>_0)

z<y Z<yY

= sig(0)
= 0

= Xr,(T,y) .
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Bounded Quantification

Ro(Z,y) & dz < y.R(Z,2) .
Show x g, (7, y) = sig()_,, XRr(Z, 2))

s If R(Z, z), for some z < y, then
xgr(7,z) = 1, therefore

> xr(Zy) > xr(#2) =1,
2<y

therefore

sig( Y Xxr(Z,y)) =1=xr,(T,y) .

Z2<y
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Bounded Search

If R C N*t!is a prim. rec. predicate, so is
f(Z,y) == pz < y.R(Z, z), where

the least z s.t. R(7, z) holds, if such z exist

2 <y.R(x z):= .
pe < y-R(T,2) {y otherwise.
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Bounded Search

f(Z,y) = pz < y.R(T, 2)

#® f can be defined by primitive recursion directly using
the equations:

f(Z,0) = 0
[ (&) iff(Ty) <.

Y if f(Z,y) =y A R(Z,y),
_y+1 otherwise.

—n
B
<
+
Z
|

#® Exercise: Show
s f fulfills those equations
s From these equations it follows that f is primitive
recursive, provided R is.

Jump over Alternative Proof
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Bounded Search

f(Z,y) = pz <y.R(Z, 2)
Alternative Proof of Closure under Bounded Search
Define

y) &= R(Z,y) A\Vz<y—-R(Z z) ,
Q'(7,y) & Vz<y—R(T 2)
@) and @’ are primitive recursive.

Q(Z,y) holds, if y is minimal s.t. R(Z,y).
We show

= () xo(@2)-2)+xg(@y) -y .
Z<y

Jump over details.
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Bounded Search

Q(Z,y) = R(Z,y) N\Vz <y.-R(Z,z2) ,
Q' (7,y) = Vz<y—R(Z z2) ,

s Assume dz < y.R(Z, z).
Let z be minimal s.t. R(Z, 2).

= Q(T, 2),

= xQ(%,2) -z =2 .

For =z £ 2’ we have -Q(Z, /),

therefore xq(z,2") - 2 =0 (¢ # 2).

Furthermore, -Q'(#,y), therefore xo/ (Z,y)-y=0 .
Therefore

ZXQiCZ +XQ/(:13 Y) - y:z:,uz’<y.R(:E’,z’) :
z2<y
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Bounded Search

Q(Z,y) = R(Z,y) N\Vz <y.-R(Z,z2) ,
Q' (7,y) = Vz<y—R(Z z2) ,

s Assume Vz < y.—R(Z, z).
= —Q(, z) for z < y,
= Vz <y.x(Z,2) -2=0.
Furthermore, Q'(Z,y),
therefore xo/ (Z,y) -y = v.
Therefore

ZXQCCZ +XQ/(:C Y) - y:y:,uz’<y.R(f,z’) :
Z<y
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Example

#® Let P C N be a primitive recursive predicate, and define

f : N—-=N,
flz) = Hy<az|Py)} .

® f(x)Iisthe number of y < z s.t. P(y) holds.
f Is primitive recursive, since

fl@)=> xply) .

y<zx
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Example 2

Omit Example 2
#® Let @ C N be a primitive recursive predicate.

# We show how to determine primitive recursively the
second least y < z s.t. Q(y) holds.

#® Stepl: Express the property to be the second least
y < x S.I. Q(y) holds as a prim. rec. predicate P(y):

P(y):<
Qy) N (2 < y.Q(2))A
—(Jz < 9.3 <y (Q(2) ANQ(Z) Nz # 2))

P(y) Is primitive recursive, since it is defined from @
using A, =, bounded quantification and “z = 2'".
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Example 2

® Step 2: Let f(y) be the second least y < = s.t. Q(y)
holds:

Flz) = y, Ify <xand P(y),
| z, ifthereisnoy < z s.t. P(y).

#® Then
f(z) = py <x.P(y)
SO f IS primitive recursive.
# (We could have defined instead
P'(y) & Qy) A3z <y.Q(z) -

Then f(z) = uy < x.P'(y) holds.)
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Lemma 5.1

The coding and decoding functions for pairs, tuples and
sequences of natural numbers are primitive recursive.

More precisely, the following functions are primitive
recursive:
(a) 7:N? — N.
(Remember, n(x,y) encodes two natural numbers as
one.)
(b) 7y, m : N — N,
(Remember no(n(z,y)) =z, m(n(x,y)) = y).
(c) 7% :NF - N (k > 1).
(Remember 7%(x, ..., z1_1) encodes the sequence
(205 s Tp—1)-
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Lemma 5.1

(d) f:N3 =N,

™ (x), ifi <k,

f(:l?,k,i) { Z

X, otherwise.

(Remember that ¥ (7*(zo, ..., 25_1)) = x; fori < k.)
We write 7% (a) for f(z, ki), evenif i > k.

(e) fr:NF =N,
fk(x()a R 7'7:]6—1) — <LE07 RN ,lUk_1>.
(Remember that (x,...,z;_1) encodes the sequence
X0, ...,Tr_1 @S one natural number.

(f) Ih: N — N.

(Remember that |h({zq,...,zt_1)) = k.)
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Lemma 5.1

(9) 9:N? =N, g(z,i) = (2);.
(Remember that ({(zq,...,z5_1)); = z; for i < k.)

The proof will be omitted in the lecture.

Jump over proof.
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Proof of Lemma 5.1 (a), (b)

(a)
m(z,y) = () O)+y

IS primitive recursive.

(b) One can easily show that x,y < 7 (z,y).
Therefore we can define

mo(zr) = py<zc+liz<z+lax=n(yz) ,
mi(z) = pr<zx+liy<z+loz=xn(yz) .

Therefore my, m; are primitive recursive.
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Proof of Lemma 5.1 (c)

(c) Proof by induction on &:
s k=1:7%(x) =z, so n! is primitive recursive.

s k — k+ 1: Assume that 7” is primitive recursive.

Show that 7%t is primitive recursive as well:

7Tk+1(3307 o 733]6) — 7T(7Tk(£13(), ce ,33]4;—1)7 :Ek’) .

Therefore 7#*1 is primitive recursive
(using that =, 7% are primitive recursive).
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Proof of Lemma 5.1 (d)

(d) We have
7T(l)(x) — X y
7Tf“(ﬂ?) = 7w (mo(z)), if i <k,
mt @) = m(z),ifi=
Therefore
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Proof of Lemma 5.1 (d)

and
T if i > k,
Fla, ki) = 4 my((m)Fi(x)), 10 <i<k,
(m0)* (), ifi=0< k.
Define ¢ : N2 — N,
g(z,0) = x,
gz, k+1) = mo(g(z,k)) ,

which Is primitive recursive.
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Proof of Lemma 5.1 (d)

Then we get g(z, k) = (m0)*(x), therefore

z, if i > k,
[z, ki) =< m(g(x, k=1)), If0O<i<Kk,
g(z, k), Ifi =0 < k.

So f Is primitive recursive.
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Proof of Lemma 5.1 (e), (f), (Q)

(e)
fu(zo, .. ap—1) = l4+mw(k= 1,7z, ,25-1))
IS primitive recursive.
(f)
h(z) = { ?r;(a:; 1) + 1 ::i;g
(9)

(@) = 7" (m(x = 1))
= f(m(x = 1),lh(z),17)

IS primitive recursive.
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Lemma and Definition 5.2

(Technical Lemma needed in the proof of closure under
course-of-value primitive recursion below.)

Prim. rec. functions as follows do exist:
(a) snoc: N? — N s.t.

snoc({xq, ..., Tp-1),2) = (T0y-- -, Tn-1,T) .

o Remark: snoc Is the word cons reversed.
snoc IS like cons, but adds an element to the end
rather than to the beginning of a list.

(b) last : N — N and beginning : N — N s.t.

last(snoc(x,y)) = vy ,
beginning(snoc(x,y)) = x .
Jump over proof.

CS_226 Computability Theory, Michaelmas Term 2008, Sec. 5 (b)

5-81



Proof of Lemma 5.2 (a)

Define

(Y), If =0,
1+ n(lh(z), n(m(x = 1),y)), otherwise,

snoc(x,y) = {

SO snoc IS primitive recursive.
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Proof of Lemma 5.2 (a)

We have

snoc((), y)

= snoc(0, y)

= W)

snoc({xg, ..., Tk),Y)

= snoc(1+ w(k, 7" (xg, ..., 21)),y)

= 1+m(k+1,7(m((1+ 7k, 7 (2g,...,21))) = 1),9))
(by lh({zg,...,21)) =k +1)

1+ (k4 1, 7(m (7 (k, 7"z, ... 21))), )

1+ m(k+ 1, 7(7* Y (20,...,21),9))

1+ k+1,7rk+2(:1:0,...,:1:k,y))

= (T0,..., Tk, Y) -

/N

/N 7 N /N
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Proof of Lemma 5.2 (b)

Proof for beginning:

Define
beglnnlng(a:)
(), if Ih(z) < 1,
=< ((x)o) If Ih(x) = 2,
1+ 7((h(z) = 1) = 1,m(m(y — 1))), otherwise.
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Proof of Lemma 5.2 (b)

Let x = snoc(y, z). Show beginning(x) = v.
Case |Ih(y) = 0: Then

r = snoc(y, z) = (2)
therefore Ih(x) = 1, and

beginning(z) = ()
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Proof of Lemma 5.2 (b)

Case lh(y) = 1: Then y = (/) for some ¢/, snoc(y, z) = (¢/, 2),

beginning(z) =
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Proof of Lemma 5.2 (b)

Case |h(y) > 1: Let Ih(y) = n + 2,

v ={Yo,...,Ynt1) = 1 +7m(n+ 1,7T"+2(y0, ey Ynt1))

Then
snoc(y, z) = 1+ m(n+2,m(m(y - 1),2)) .
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Proof of Lemma 5.2 (b)

Therefore

beginning(snoc(y, z))

= 1+ a(((h(z) = 1) = 1), mo(m (snoc(y, 2) =

= 1+ 7(n,mo(m((L+7(n+2,7(m(y— 1),z

— 1—|—7T(n 7T()(7T1( (n—|—2 77(7T1(y — 1) )))>)

= 1+m(n,mo(m(m(y - 1),2)))

= 14+7(n,m(y—= 1))

= 14+7(n,m((L+a(n+1,7"2(yo,..., Ynt1))) = 1))
1 +7(n,m(m(n+ 1,7 2(yo, ..., Yn+1))))

= 1+7(n,7"2(yo,. .., Ynt+1)))

)= 1))
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Proof of Lemma 5.2 (b)

Proof for last:
Define

ast(x) == (2)(a)- 1

If y = (vo,...,yn—1), then

last(snoc(y, z)) = last({yo, ..., Yn—-1,2))
— (<y07 ey Yn—1, Z>)|h((yo,...,yn_1,z>)‘— 1

= ((Wo, -+, Yn—-1,2))n
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Definition Course-Of-Value

# Assume f: N**! — N. Then we define

I Nt & N
7(f7n) = (f(f,()),f(f,l),...,f(f,n—1)>
Especially f(#,0) = ().

# fis called the course-of-value function associated with

f.
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Course-of-Value Prim. Recursion

The prim. rec. functions are closed under
course-of-value primitive recursion :

Assume
g: N2 N
IS primitive recursive.
Then
foN" LN
f(@, k) = g(Z,k, f(Z,k))
IS prim. rec.
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Course-of-Value Prim. Recursion

Informal meaning of course-of-value primitive recursion:
If we can express f(Z,y) by an expression using

# constants,

o 2.y,

# previously defined prim. rec. functions,
® f(7 z) for z <y,

then f Is prim. rec.
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Example

Fibonacci numbers are prim. rec.
fib : N — N given by:

Definab

® We

fib(0) = 1,

fib(1) = 1,

fib(x) := fib(zx —2)+fib(x —1),1fz > 1,
e by course-of-value primitive recursion:
have

if © <
fib(z) — 1._ - If z < 1.,
(fib(z))z—2 + (fib(x)),—1 Otherwise.

using (fib(z)),_2 = fib(x — 2), (fib(x)),_1 = fib(z — 1).
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Proof

Proof that prim. rec. functions are closed under
course-of-value primitive recursion:
Let f be defined by

Show f is prim. rec.

We show first that f is primitive recursive.
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f(Z,0) = (),
f@Ey+1) = (f(£,0), (@ 1),.... f(@y—1) f(Zy))
= snoc({f(#,0), f(Z,1),..., f(&y —1)), f(T,y))
:?é,y)
= snoc(f(Z,y), f(Z,))
= snoc(f(Z,y),9(Z,y, f(Z,9)))

Therefore f is primitive recursive.
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Proof

IS primitive recursive.
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Lemma and Definition 5.3

(Technical Lemma used later to simulate Turing Machines
using primitive recursive/partial recursive functions).

There exist prim. rec. functions as follows:
(a) append : N* — N s.t.

append(<$07 R 7£Ek—1>7 <y07 I 7yl—1>)

— <$07"'7$k—lay07"'7yl—1> .
We write x x y for append(z, y).

(b) subst : N* — N, s.t. if i < n then
subst((x(), Ce ,:En_1>, 1, y) = <£C(), oy =1, Y, i1, Tt 2y v v vy Tp—1
and if ¢ > n, then
subst({(zg, ..., Tn-1),%,Yy) = (Tg, .-, Tn—1) -

We write x|i/y| for subst(x, 7, y).
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Lemma and Definition 5.3

(C) subseq: N° — N s.t., ifi <n,
SUbSGC]((iC(), e 7£Cn—1>7 27]) — <ZC7;, Li+1y - - - 7xmin(j—1,n—1)> )
and if 1 > n,

subseq({xg, ..., Tn-1),7,7) = () .
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Lemma and Definition 5.3

(d) half : N — N,
s.t. half(z) =y ifx =2y or z =2y + 1.
(e) The function bin: N — N, s.t.
bin(x) = (by, ..., bk),
for b; In normal form (no leading zeros, unless n = 0),
S.t. x = (b(), Cee bk)g
(f) A function bin™! : N — N, s.t.
bin~!((bo, ..., b)) =z, if (bo,...,bp)2 = z.

The proof will be omitted in the lecture.

Jump over proof.
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Proof of Lemma 5.3 (a)

We have

append({xq, ..., x,),0)

= append({zo, ..., Tn),())

= (T0,...,%n) ,

and for m > 0

append({xo, ..., Zn), (Y0, ---,Ym))

— <$07---7$nay07---7ym>

= SnOC(<$Oa---axnayOa---aym—1>vym)

= snoc(append(<x0, N ,£En>, <y07 e 7ym—1>)7 ym)

= snoc(append({xq,...,Ty),
beginning((yo, - -, ¥m))),
last({yo, ..., ym))) .
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Proof of Lemma 5.3 (a)

Therefore we have

append(z,0) = =

)

append(z,y) = snoc(append(z,beginning(y)), last(y)) ,

One can see that beginning(x) < x for x > 0, therefore the
last equations give a definition of append by course-of-value
primitive recursion, therefore append IS primitive recursive.
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Proof of Lemma 5.3 (b)

We have

subst(z, i, y)
(

€, If |h(£€) S i,
= 4 snoc(beginning(x),y), If: + 1 =1lh(z),
| snoc(subst(beginning(z),4,y), last(x)) 1fi+ 1 <lh(z).

Therefore subst is definable by course-of-value primitive
recursion.
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Proof of Lemma 5.3 (C)

We can define

subseq(z, i, j)

[ (), if i > Ih(x),

B subseq(beginning(z), 1, j), If : < Ih(x)

B and j < Ih(z),
| snoc(subseq(beginning(x),,7),last(z)) Ifi < lh(x) < j,

which is a definition by course-of-value primitive recursion.
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Proof of Lemma 5.3 (d), (e)

(d) half(x) = py <z.2-y=2V2-y+1=ux).
(€)

<O>7 |f r = O,
bin(z) = ¢ (1) if x =1,
snoc(half(x),x — (2 - half(x))), Ifz > 1.

therefore definable by course-of-value primitive
recursion.
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Proof of Lemma 5.3 (f)

/

0, if In(z) =0,
bin~(z) =< (2)o if h(z) = 1,
\ bin~! (beginning(z)) - 2 + last(z) if Ih(z) > 1,

therefore definable by course-of-value primitive recursion.
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