Section 2

Encoding of Data Types into N

- There are lots of different data types available.
- Some data types have finite size.
 - E.g. the type of Booleans {true, false}.
- Some data types have infinite size but are still "small".
 - E.g. the type of natural numbers $\mathbb{N} = \{0, 1, 2, \dots, \}$.

Encoding of Data Types into N

- Some data types are "big".
 - E.g. the set of subsets $\mathcal{P}(\mathbb{N})$ of \mathbb{N} .
 - Subsets of N have in general no finite description.
 - Some are finite (e.g. $\{0, 1, 3\}$).
 - Some can be described by formulae
 - · E.g. the set of even numbers is

$$\{n \in \mathbb{N} \mid \exists m \in \mathbb{N}. n = 2m\} .$$

- But there are subsets which cannot be described by formulae.
- There is no way of associating a finite description to all elements of $\mathcal{P}(\mathbb{N})$.
 - · This will be shown in this section.

Size and Computability

- We can introduce a notion of computability for finite and for small infinite data types.
 - E.g. it makes sense to compute certain functions mapping natural numbers to natural numbers.
- We cannot introduce in general a notion of computability for big data types.
 - We cannot even represent its elements on the computer.

Size and Computability

- There are notions of computability for certain "big data types" which make use of approximations of elements of such data types.
 - Topic of intensive research in Swansea esp. of Ulrich Berger, Jens Blanck, Monika Seisenberger, John Tucker.
 - One considers especially $\mathbb R$ and sets of functions (E.g. $\mathbb N \to \mathbb N$, $(\mathbb N \to \mathbb N) \to \mathbb N$).
 - Not part of this lecture.

Topic of this Section

- In this Section we will make precise the notion of size of a set.
 - Notion of "cardinality" and "equinumerous".
 - We will introduce a hierarchy of sizes.
 - We will be able to distinguish between sizes of different "big" sets.
- Countable sets will be the sets, which were called "small" above.
 - This notion will include the finite sets.

Notions of Computability

- ullet We will later introduce computability on \mathbb{N} .
- Computability on countable sets will in this section be reduced to computability on \mathbb{N} .

Structure of this Section

- (a) Mathematical background.
- (b) Cardinality.
- (c) Countable sets.
- (d) Reducing computability to \mathbb{N} .
- (e) Encoding of some data types into \mathbb{N} .
- (f) Further mathematical background: Partial functions.

(a) Mathematical Background

Some Standard Sets

N is the set of natural numbers:

$$\mathbb{N} := \{0, 1, 2, \ldots\}$$
.

- Note that 0 is a natural number.
- When counting, we start with 0:
 - The element no. 0 of a sequence is what is usually called the first element:
 - E.g., in x_0, \ldots, x_{n-1} , x_0 is the first variable.
 - The element no. 1 of a sequence is what is usually called the second element.
 - E.g., in x_0, \ldots, x_{n-1} , x_1 is the second variable.
 - etc.

ullet Z is the set of integers:

$$\mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\} .$$

So

$$\mathbb{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots, \}$$

Q is the set of rationals, i.e.

$$\mathbb{Q} := \{ \frac{x}{y} \mid x \in \mathbb{Z}, y \in \mathbb{N}, y \neq 0 \} .$$

- So $\mathbb Q$ contains $\frac{2}{17}, \frac{-3}{5}, \frac{-2}{3}$, etc.
- As usual we identify equal fractions e.g.

$$\frac{2}{4} = \frac{1}{2} .$$

- We write $-\frac{n}{m}$ instead of $\frac{-n}{m}$, e.g. $-\frac{1}{2} = \frac{-1}{2}$.
- As usual $\frac{z}{-m} := -\frac{z}{m}$, e.g. $\frac{1}{-2} := -\frac{1}{2}$.

- ullet is the set of real numbers.
 - E.g.
 - $0.333333\cdots \in \mathbb{R},$
 - $\sqrt{2} \in \mathbb{R}$,
 - $-\sqrt{2} \in \mathbb{R}$,
 - \bullet $\pi \in \mathbb{R}$.

- \blacksquare Assume A, B are sets.
 - $A \times B$ is the product of A and B:

$$A \times B := \{(x, y) \mid x \in A \land y \in B\}$$

• $A \longrightarrow B$ is the set of functions $f: A \to B$.

• Assume A is a set, $k \in \mathbb{N}$.

Then A^k is the set of k-tuples of elements of A or

k-fold Cartesian product of A defined as follows:

$$A^k := \{(x_0, \dots, x_{k-1}) \mid x_0, \dots, x_{k-1} \in A\}$$
.

Note that

$$A^0 = \{()\}$$

We identify A^1 with A. So we don't distinguish between (x) and x.

Essentially,
$$A^k = \underbrace{A \times \cdots \times A}_{k \text{ times}}$$
.

We define

$$A^* := \{(a_0, \dots, a_{k-1}) \mid k \in \mathbb{N}, a_0, \dots, a_{k-1} \in A\}$$

So A^* is

- the set of sequences of elements of A (of arbitrary length),
- also called the set of lists of A,
- or A-Kleene-Star.
- **So** A^* is the union of all A^k for $k \in \mathbb{N}$, i.e.

$$A^* = \bigcup_{k \in \mathbb{N}} A^k$$

Remark:

- ullet A^* can be considered as the set of strings having letters in the alphabet A.
 - E.g. if

$$A = \{a, b, c, \dots, z\} ,$$

then A^* is the set of strings formed from lower case letters.

- So (r, e, d) stands for the string "red".
- A^k is the set of strings of length k from alphabet A.

$\mathcal{P}(X)$

- $m{\mathcal{P}}(X)$, the powerset of X, is the set of all subsets of X.
- For finite sets X, the power set of X will be finite:

$$\mathcal{P}(\{0, 1, 2\}) = \{\{\}, \\ \{0\}, \{1\}, \{2\}, \\ \{0, 1\}, \{0, 2\}, \{1, 2\}, \\ \{0, 1, 2\}\}$$

- For infinite sets X we will see that the X is big ("uncountable").
- Therefore we cannot write down the elements of $\mathcal{P}(X)$ for such X.

Exercise

- Write down $\mathcal{P}(\{0,1,2,3\})$ and $\mathcal{P}(\{0,1,2,3,4\})$.
- Make sure you have the right number of elements: If a set has n elements, then $\mathcal{P}(X)$ has 2^n elements.

Definition 2.1

Let $f: A \rightarrow B$, $C \subseteq A$.

- (a) $f[C] := \{f(a) \mid a \in C\}$ is called the image of C under f.
- (b) The image of A under f (i.e. f[A]) is called the image of f.

Image of C under f.

Image of C under f.

$$f[C] = \{e, f\}$$

Image of f.

$$f[A] = \{e, f, g\}$$

Injective/Surjective/Bijective

Definition 2.2

Let A, B be sets, $f: A \rightarrow B$.

- (a) f is injective or an injection or one-to-one, if f applied to different elements of A has different results: $\forall a,b \in A.a \neq b \rightarrow f(a) \neq f(b)$.
- (b) f is surjective or a surjection or onto, if every element of B is in the image of f: $\forall b \in B. \exists a \in A. f(a) = b$.
- (c) f is bijective or a bijection or a one-to-one correspondence if it is both surjective and injective.

Visualisation of "Injective"

If we visualise a function by having arrows from elements $a \in A$ to $f(a) \in B$ then we have the following:

 \blacksquare A function is **injective**, if for every element of B there is at most one arrow pointing to it:

Visualisation of "Surjective"

▲ A function is surjective, if for every element of B there is at least one arrow pointing to it:

Visualisation of "Bijective"

A function is bijective, if for every element of B there is exactly one arrow pointing to it:

bijective

Note that, since we have a function, for every element of A there is exactly one arrow originating from there.

Remark

- The injective, surjective, bijective functions are closed under composition:
 - If $f:A\to B$ and $g:B\to C$ are injective (or surjective or bijective), then $g\circ f:A\to C$ is injective (surjective, bijective, respectively) as well.
- Proof: See mathematics lectures or easy exercise.

- An infinite sequence of elements of a set B is an enumeration of certain elements of B by natural numbers.
 - E.g. the sequence of even numbers is

$$(0,2,4,6,8,\ldots)$$

We might repeat elements, e.g.

$$(0,2,0,2,0,2,\ldots)$$

Sequences of natural numbers are written as

$$(a_n)_{n\in\mathbb{N}}$$

which stands for

$$(a_0,a_1,a_2,\ldots)$$

So the sequence of even numbers is

$$(0, 2, 4, 6, ...)$$

= $(a_0, a_1, a_2, ...)$
= $(a_n)_{n \in \mathbb{N}}$

where

$$a_n = 2n$$

A sequence

$$(a_n)_{n\in\mathbb{N}}$$

of elements in A is nothing but a function $f: \mathbb{N} \to A$, s.t.

$$f(n) = a_n$$

•

• In fact we will identify functions $f: \mathbb{N} \to A$ with infinite sequences of elements of A.

So the following denotes the same mathematical object:

- The function $f:\mathbb{N}\to\mathbb{N}$, $f(n)=\left\{ egin{array}{ll} 0 & \mbox{if n is odd,} \\ 1 & \mbox{if n is even.} \end{array} \right.$
- The sequence (1, 0, 1, 0, 1, 0, ...).
- The sequence $(a_n)_{n\in\mathbb{N}}$ where $a_n=\left\{\begin{array}{ll} 0 & \text{if } n \text{ is odd,} \\ 1 & \text{if } n \text{ is even.} \end{array}\right.$

- Occasionally, we will enumerate sequences by different index sets.
 - E.g. we consider a sequence indexed by non-zero natural numbers

$$(a_n)_{n\in\mathbb{N}\setminus\{0\}}$$

or a sequence indexed by integers

$$(a_z)_{z\in\mathbb{Z}}$$

• A sequence $(a_x)_{x \in B}$ of elements in A is nothing but the function

$$f: B \to A$$
 , $f(x) = a_x$

λ -Notation

 $\lambda x.t$ means in an informal setting the function mapping x to t.

E.g.

- $\lambda x.x + 3$ is the function f s.t. f(x) = x + 3.
- $\lambda x.\sqrt{x}$ is the function f s.t. $f(x) = \sqrt{x}$.
- This notation used, if one one wants to introduce a function without giving it a name.
- Domain and codomain not specified when this notation is used, this will be clear from the context.

The "dot"-notation.

In expressions like

$$\forall x. A(x) \land B(x)$$

the quantifier $(\forall x.)$ is as far as possible:

In

$$\forall x. A(x) \land B(x)$$

 $\forall x$. refers to

$$A(x) \wedge B(x)$$

The "dot"-notation.

In

$$(A \to \forall x. B(x) \land C(x)) \lor D(x)$$

 $\forall x$ refers only to

$$B(x) \wedge C(x)$$

This is the maximum scope possible It doesn't make sense to include ") \vee D(x)" into the scope.

The "dot"-notation.

In

$$\exists x. A(x) \land B(x)$$

 $\exists x \text{ refers to}$

$$A(x) \wedge B(x)$$

In

$$(A \land \exists x. B(x) \lor C(x)) \land D(x)$$

 $\exists x \text{ refers to}$

$$B(x) \vee C(x)$$

The "dot"-notation.

- This applies as well to λ -expressions.
 - So

$$\lambda x.x + x$$

is the function taking an x and returning x + x.

- A predicate on a set A is a property P of elements of A. In this lecture, A will usually be \mathbb{N}^k for some $k \in \mathbb{N}$, k > 0.
- We write P(a) for "predicate P is true for the element a of A".
- We often write "P(x) holds" for "P(x) is true".

- ullet We can use P(a) in formulas. Therefore:
 - $\neg P(a)$ ("not P(a)") means that "P(a) is not true".
 - $P(a) \wedge Q(b)$ means that "both P(a) and Q(b) are true".
 - $P(a) \vee Q(b)$ means that "P(a) or Q(b) is true".
 - (We have inclusive or: if both P(a) and Q(b) are true, then $P(a) \vee Q(b)$ is true as well).
 - $\forall x \in B.P(x)$ means that "for all elements x of the set BP(x) is true".
 - $\exists x \in B.P(x)$ means that "there exists an element x of the set B s.t. P(x) is true".

- In this lecture, "relation" is another word for "predicate".
- We identify a predicate P on a set A with $\{x \in A \mid P(x)\}$. Therefore predicates and sets will be identified. E.g., if P is a predicate,
 - $x \in P$ stands for $x \in \{x \in A \mid P(x)\}$, which is equivalent to P(x),
 - $\forall x \in P.\varphi(x)$ for a formula φ stands for $\forall x.P(x) \rightarrow \varphi(x)$.
 - etc.

- **▶** An *n*-ary relation or predicate on \mathbb{N} is a relation $P \subset \mathbb{N}^n$.
 - A <u>unary</u>, <u>binary</u>, <u>ternary</u> relation on \mathbb{N} is a 1-ary, 2-ary, 3-ary relation on \mathbb{N} , respectively.
 - For instance < and equality are binary relations on \mathbb{N} .
- An *n*-ary function on $\mathbb N$ is a function $f: \mathbb N^n \to \mathbb N$. A unary, binary, ternary function on $\mathbb N$ is a 1-ary, 2-ary, 3-ary function on $\mathbb N$, respectively.

\vec{x}, \vec{y} etc.

In many expressions we will have arguments, to which we don't refer explicitly.

Example: Variables x_0, \ldots, x_{n-1} in

$$f(x_0, \dots, x_{n-1}, y) = \begin{cases} g(x_0, \dots, x_{n-1}), & \text{if } y = 0, \\ h(x_0, \dots, x_{n-1}), & \text{if } y > 0. \end{cases}$$

- We abbreviate x_0, \ldots, x_{n-1} , by \vec{x} .
- Then the above can be written shorter as

$$f(\vec{x}, y) = \begin{cases} g(\vec{x}), & \text{if } y = 0, \\ h(\vec{x}), & \text{if } y > 0. \end{cases}$$

• In general, \vec{x} stands for x_0, \dots, x_{n-1} , where the number of arguments n is clear from the context.

If

$$f: \mathbb{N}^{n+1} \to \mathbb{N}$$

then in $f(\vec{x}, y)$, \vec{x} needs to stand for n arguments. Therefore

$$\vec{x} = x_0, \dots, x_{n-1}$$

If

$$f: \mathbb{N}^{n+2} \to \mathbb{N}$$

then in $f(\vec{x}, y)$, \vec{x} needs to stand for n+1 arguments, so

$$\vec{x} = x_0, \dots, x_n$$

• If P is an n+4-ary relation, then in $P(\vec{x},y,z)$, \vec{x} stands for

$$x_0,\ldots,x_{n+1}$$

ullet Similarly, we write \vec{y} for

$$y_0,\ldots,y_{n-1}$$

where n is clear from the context.

Similarly for

$$\vec{z}, \vec{n}, \vec{m}, \dots$$

Notation

$$\forall \vec{x} \in \mathbb{N}.\varphi(\vec{x})$$

stands for

$$\forall x_0, \dots, x_{n-1} \in \mathbb{N}.\varphi(x_0, \dots, x_{n-1})$$

where the number of variables n is implicit (and usually unimportant).

$$\exists \vec{x} \in \mathbb{N}. \varphi(\vec{x})$$

is to be understood similarly.

Notation

$$\{\vec{x} \in \mathbb{N}^n \mid \varphi(\vec{x})\}$$

is to be understood as

$$\{(x_0,\ldots,x_{n-1})\in\mathbb{N}^n\mid \varphi(x_0,\ldots,x_{n-1})\}$$

$$\{(\vec{x}, y, z) \in \mathbb{N}^{n+2} \mid \varphi(\vec{x}, y, z)\}$$

is to be understood as

$$\{(x_0,\ldots,x_{n-1},y,z)\in\mathbb{N}^{n+2}\mid \varphi(x_0,\ldots,x_{n-1},y,z)\}$$

Similar notations are to be understood analogously.

(b) Cardinality

- In this subsection, we will make precise the notion of "small", "big" sets above.
- So we need a notion of size of a set.
- For finite sets one can introduce a number for the size of a set.
- For infinite sets, introducing such numbers (cardinality) is beyond the scope of this lectures
- However, we can introduce a notion of relative size, namely what it means for one set to be smaller/equal/greater in size than another set.
 - Equinumerous will mean "equal in size".

Number of Elements

Notation 2.3

If A is a finite set, let |A| be the number of elements in A.

Remark 2.4

One sometimes writes #A for |A|.

Cardinality of Finite Sets

If A and B are finite sets, then |A| = |B|, if and only if there is a bijection between A and B:

Bijection exists

No Bijection

Cardinality of Finite Sets

The above can be generalized to arbitrary (possibly infinite sets) as follows:

Cardinality of Sets

Definition 2.5

Two sets A and B are equinumerous or "have the same cardinality", in mathematical notation

$$A \approx B$$

if there exists a bijection

$$f:A\to B$$

Remark 2.6

If A and B are finite sets, then $A \approx B$ if and only A and B have the same number of elements, i.e. |A| = |B|.

Cardinality of infinite sets

- **●** However we have \mathbb{N} and $\mathbb{N} \cup \{\bullet\}$, where \bullet is a new element, are equinumerous.
 - $f: \mathbb{N} \to \mathbb{N} \cup \{\bullet\}$, s.t. • $f(0) = \bullet$, f(n+1) = n is a bijection.
- Analogy with a hotel with infinite many rooms numbered by natural numbers.
 - This hotel can always accommodate a new guest, by moving every guest from room n to room n+1, and the new guest to room no. 0.

Change of Notation

- Until the academic year 2004/05, we used in lectures
 - "have the same cardinality" instead of "equinumerous",
 - and \simeq instead of \approx .
 - Note that \simeq is used (and was used) for partial equality as well.
 - Change of notation in order to avoid the overloading of notation.
 - Please take this into account when looking at old exams and other lecture material.
- Both notions occur as well in the literature and might be used in other modules.

Notion of Cardinality in Set Theory

- In set theory there exists the notion of a cardinality, which is some kind of number (an ordinal) which measures the size of a set.
 - Then one can show:
 - $A \approx B$ iff the cardinality expressed as an ordinal for A and B is the same.
 - However, this notion is beyond the scope of this module.

pprox as an Equivalence Relation

Lemma 2.7

- \approx is an equivalence relation, i.e. for all sets A, B, C we have:
- (a) Reflexivity. $A \approx A$.
- (b) Symmetry. If $A \approx B$, then $B \approx A$.
- (c) Transitivity. If $A \approx B$ and $B \approx C$, then $A \approx C$.

Proof:

- (a): The function $id: A \rightarrow A$, id(a) = a is a bijection.
- (b): If $f: A \to B$ is a bijection, so is its inverse f^{-1} .
- (c): If $f:A\to B$ and $g:B\to C$ are bijections, so is the composition $g\circ f:A\to C$.

Meaning of the above

- That ≈ is an equivalence relation means that it has properties we expect of a relation expressing that two sets have the same size:
 - Every set has the same size as itself

$$A \approx A$$

If A has the same size as B, then B has the same size as A.

$$A \approx B \rightarrow B \approx A$$

If A has the same size as B and B has the same size as C then A has the same size as C:

$$(A \approx B \land B \approx C) \rightarrow A \approx C$$

Meaning of the above

- If we wrongly defined A and B to have the same size if there is an injection from A to B then symmetry wouldn't hold.
- So there is something to be shown, the language notation we use only suggests that the above mentioned properties hold.
 - Don't let yourself be deceived by language!

Cardinality of the Power Set

Theorem 2.8

A set A and its power set $\mathcal{P}(A) := \{B \mid B \subseteq A\}$ are never equinumerous:

$$A \not\approx \mathcal{P}(A)$$

Stronger Result

In fact we will show something even stronger: For any set A the following holds: there is no surjection

$$C:A\to\mathcal{P}(A)$$

- If this is shown, then we know that there is no bijection $C: A \to \mathcal{P}(A), A \not\approx \mathcal{P}(A)$.
- Remark on Notation:
 - We write here the capital letter C instead of the usual letters f, g etc. for functions, in order to flag that C(a) is a set.
 - For notational convenience we write C_a instead of C(a), so C_a is "the ath set enumerated by the function C".

Proof

- A typical diagonalisation argument.
- First consider the case $A = \mathbb{N}$.
- **●** Assume $C : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ is a surjection.
- We define a set $D \subseteq \mathbb{N}$ s.t. $D \neq C_n$ for every $n \in \mathbb{N}$.
- $D = C_n$ will be violated at element n:
 - If $n \in C_n$, we add n not to D, therefore $n \in C_n \land n \notin D$.
 - If $n \notin C_n$, we add n to D, therefore $n \notin C_n \land n \in D$.
- On the next slide we take as an example some function $C: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ and show how to construct a set D s.t. $C_n \neq D$ for all $n \in \mathbb{N}$.

$$C_0 = \{ (0,) 1, 2, 3, 4, \dots \}$$

$$C_0 = \{ 0, 1, 2, 3, 4, \dots \}$$
 $C_1 = \{ 0, 0, 2, 4, \dots \}$
 $C_2 = \{ 1, 0, 3, \dots \}$
 $C_3 = \{ 0, 1, 3, 4, \dots \}$
 $D = \{ 0, 1, 2, \dots \}$

$$C_0 = \{ (0,) \ 1, \ 2, \ 3, \ 4, \dots \}$$
 $C_1 = \{ (0,) \ 2, \ 4, \dots \}$
 $C_2 = \{ (1,) \ 3, \ \dots \}$
 $C_3 = \{ (0,) \ 1, \ 3, \ 4, \dots \}$
 $D = \{ (1,) \ 2, \ \dots \}$

$$C_0 = \{ (0,) \ 1, \ 2, \ 3, \ 4, \dots \}$$
 $C_1 = \{ (0,) \ 2, \ 4, \dots \}$
 $C_2 = \{ (1,) \ 3, \ \dots \}$
 $C_3 = \{ (0,) \ 1, \ 3, \ 4, \dots \}$
 $D = \{ (1,) \ 2, \ \dots \}$

We were going through the diagonal in the above matrix.

$$C_0 = \{ (0,) \ 1, \ 2, \ 3, \ 4, \dots \}$$
 $C_1 = \{ (0,) \ 2, \ 4, \dots \}$
 $C_2 = \{ (1,) \ 3, \ \dots \}$
 $C_3 = \{ (0,) \ 1, \ 3, \ 4, \dots \}$
 $D = \{ (1,) \ 2, \ \dots \}$

We were going through the diagonal in the above matrix.

Therefore this proof is called a diagonalisation argument.

Proof

So we define

$$D := \{ n \in \mathbb{N} \mid n \notin C_n \} .$$

We have $D \neq C_n$ for all n: Assume $D = C_n$.

- If $n \in D$, then by the definition of D we have $n \notin C_n$, therefore by $D = C_n$ we get $n \notin D$, a contradiction.
- If $n \notin D$, then by the definition of D we have $n \in C_n$, therefore by $D = C_n$ we get $n \in D$, a contradiction.

Therefore we obtain a contradiction in both cases, $D \neq C_n$.

Therefore D is not in the image of C, so C is not a surjection, a **contradiction**.

Formal Proof $(A = \mathbb{N})$

In short, the above argument for $A=\mathbb{N}$ reads as follows: Assume $C:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ is a surjection. Define

$$D := \{ n \in \mathbb{N} \mid n \not\in C_n \} .$$

Since C is surjective, D must be in the image of C. Assume $D=C_n$. Then we have

$$n \in D$$
 Definition of D $n \notin C_n$ $D \stackrel{D}{\rightleftharpoons} C_n$ $n \notin D$ a contradiction

General Situation

For general A, the proof is almost identical:

Assume $C: A \to \mathcal{P}(A)$ is a surjection.

We define a set D, s.t. $D = C_a$ is violated for a:

$$D := \{ a \in A \mid a \not\in C_a \}$$

Since C is surjective, D must be in the image of C. Assume $D = C_a$. Then we have

$$a \in D \qquad \stackrel{\text{Definition of } D}{\Leftrightarrow} \qquad a \notin C_a$$

$$\stackrel{D = C_a}{\Leftrightarrow} \qquad a \notin D$$

$$\text{a contradiction}$$

$\mathcal{P}(A)$ and $A \to \text{Bool}$

Lemma 2.9 For every set A

$$\mathcal{P}(A) \approx (A \to \text{Bool}) \approx (A \to \{0, 1\})$$

Remark: Note that we can identify the set of Booleans Bool with $\{0,1\}$ by identifying

- true with 1,
- \bullet false with 0.

Therefore we get $(A \to \operatorname{Bool}) \approx (A \to \{0, 1\})$.

Proof

• Let for $B \in \mathcal{P}(A)$

$$\chi_B$$
: $A \to \{0,1\}$

$$\chi_B(x) := \begin{cases} 1 & \text{if } x \in B, \\ 0 & \text{if } x \notin B. \end{cases}$$

 χ_B is called the characteristic function of B.

If we consider 0 as false and 1 as true, then we get

$$\chi_B(x) = \begin{cases}
\text{true} & \text{if } x \in B, \\
\text{false} & \text{if } x \notin B.
\end{cases}$$

• Therefore χ_B is the function, which determines whether its argument is in B or not.

Example: B = set of Odd Numbers

$$\chi_B(n) = \left\{ egin{array}{ll} 0 & \mbox{if n is even,} \\ 1 & \mbox{if n is odd.} \end{array}
ight.$$

Proof

- χ is a function from $\mathcal{P}(A)$ to $A \to \{0,1\}$, where we write the application of χ to an element B as χ_B instead of $\chi(B)$.
- We show that χ is a bijection.
 - Then it follows that $\mathcal{P}(A) \approx (A \to \{0, 1\})$. Jump over rest of proof

$$\chi_B(x) := \left\{ egin{array}{ll} 1 & \mbox{if } x \in B, \\ 0 & \mbox{if } x
ot\in B. \end{array}
ight.$$

• χ has an inverse: Define

$$\chi^{-1}$$
 : $(A \to \{0,1\}) \to \mathcal{P}(A)$
 $\chi^{-1}(f)$:= $\{x \in A \mid f(x) = 1\}$

$$\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}$$
 $\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}$

- We show that χ and χ^{-1} are inverse:
- $\chi^{-1} \circ \chi$ is the identity:
- If $B \subseteq A$, then

$$\chi^{-1}(\chi_B) = \{x \in A \mid \chi_B(x) = 1\}$$
$$= \{x \in A \mid x \in B\}$$
$$= B$$

$$\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}$$
 $\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}$

- $\chi \circ \chi^{-1}$ is the identity:
- If $f: A \to \{0, 1\}$, then

$$\chi_{\chi^{-1}(f)}(x) = 1 \Leftrightarrow x \in \chi^{-1}(f)$$
 $\Leftrightarrow f(x) = 1$

$$\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}$$
 $\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}$

and

$$\chi_{\chi^{-1}(f)}(x) = 0 \quad \Leftrightarrow \quad x \notin \chi^{-1}(f)$$
$$\Leftrightarrow \quad f(x) \neq 1$$
$$\Leftrightarrow \quad f(x) = 0.$$

Therefore $\chi_{\chi^{-1}(f)} = f$.

It follows that χ is bijective and therefore

$$\mathcal{P}(A) \approx (A \to \{0,1\})$$
.

(c) Countable Sets

Definition 2.10

- A set A is countable, if it is finite or $A \approx \mathbb{N}$.
- A set, which is not countable, is called uncountable.

- Intuitively
 - uncountable sets are very big
 - countable sets are finite or small infinite sets.
 - ullet Countable sets have at most the size of the \mathbb{N} .

Relationship to Cardinality

- Intuitively (this can be made mathematically precise) the cardinalities of sets start with the finite cardinalities $0, 1, 2, \ldots$ corresponding to finite sets having $0, 1, 2, \ldots$ elements.
 - All these cardinalities are different (for finite sets A, B we have $A \approx B$ iff A and B have the same number of elements).
- ullet Then the next cardinality is that of $\mathbb N$.
- Then we have higher cardinalities like the cardinality of $\mathcal{P}(\mathbb{N})$ (or \mathbb{R}).

Relationship to Cardinality

```
0
1
2
\cdots
\mathbb{N}
\mathcal{P}(\mathbb{N})
```

- Countable sets are the sets having cardinality less than or equal the cardinality of \mathbb{N} .
 - ${\color{red} \bullet}$ Which means they have cardinality of $\mathbb N$ or finite cardinality.

Examples of (Un)countable Sets

- N is countable.
- $\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots\}$ is countable.
 - We can enumerate the elements of \mathbb{Z} in the following way:

$$0, +1, -1, +2, -2, +3, -3, +4, -4, \dots$$

So we have the following map:

$$0 \mapsto 0$$
, $1 \mapsto +1$, $2 \mapsto -1$, $3 \mapsto +2$, $4 \mapsto -2$, etc.

This map can be described as follows:

$$q:\mathbb{N}\to\mathbb{Z}$$
,

$$g(n):=\left\{ egin{array}{ll} rac{-n}{2} & \mbox{if n is even,} \\ rac{n+1}{2} & \mbox{if n is odd.} \end{array}
ight.$$

Exercise: Show that *g* is bijective.

Illustration of \mathbb{Z} is Countable

Examples of (Un)countable Sets

- $ightharpoonup \mathcal{P}(\mathbb{N})$ is uncountable.
 - $ightharpoonup \mathcal{P}(\mathbb{N})$ is not finite.
 - $\mathbb{N} \not\approx \mathcal{P}(\mathbb{N})$.
- $P(\{1,\ldots,10\})$ is countable.
 - Since it is finite.

Characterisation of Countable Sets

Lemma 2.11

A set A is countable, if and only if there is an injective map $g:A\to\mathbb{N}$.

Remark 2.12

Intuitively, Lemma 2.11 expresses: A is countable, if we can assign to every element $a \in A$ a unique code $f(a) \in \mathbb{N}$. However, it is not required that each element of \mathbb{N} occurs as a code.

The code f(a) can be considered as a finite description of a. So A is countable if we can give a unique finite description for each of its element.

Proof of Lemma 2.11, " \Rightarrow "

"⇒":

Assume A is countable.

Show that there exists an injective function $f:A\to\mathbb{N}$.

Case A is finite:

Let $A = \{a_0, \dots, a_n\}$, where a_i are different.

We can define $f: A \to \mathbb{N}$, $a_i \mapsto i$.

f is injective.

Case A is infinite:

A is countable, so there is a bijection from A into \mathbb{N} , which is therefore injective.

" \Leftarrow ": Assume $f: A \to \mathbb{N}$ is injective.

Show *A* is countable.

If A is finite, we are done.

Assume A is infinite. Then f is for instance something like the following:

In order to obtain a bijection $g: A \to \mathbb{N}$, we need to jump over the gaps in the image of f:

The remaining (very interesting) proof will not be given in the lecture. Jump over remaining proof.

• f(a) = 1, which is the element number 0 in the image of f. g should instead map g to g.

• f(b) = 4, which is the element number 1 in the image of f. g should instead map b to 1. Etc.

• 1 is element number 0 in the image of f, because the number of elements f(a') below f(a) is 0.

• 4 is element number 1 in the image of f, because the number of elements f(a') below f(b) is 1.

So in general we define $g:A\to\mathbb{N}$.

$$g(a) := |\{a' \in A \mid f(a') < f(a)\}|$$

$$g(a) := |\{a' \in A \mid f(a') < f(a)\}|$$

g is well defined, since f is injective, so the number of $a' \in A$ s.t. f(a') < f(a) is finite.

Proof of Lemma 2.11, " \Leftarrow "

$$g(a) = |\{a' \in A \mid f(a') < f(a)\}|$$

We show that g is a bijection:

 $m{ ilde{ ilde{m{g}}}}$ g is injective: Assume $a,b\in A,~a\neq b$. Show $g(a)\neq g(b)$. By the injectivity of f we have $f(a)\neq f(b)$. Let for instance f(a)< f(b).

Then

$$\{a' \in A \mid f(a') < f(a)\} \stackrel{\subset}{\neq} \{a' \in A \mid f(a') < f(b)\}\$$
,

therefore

$$g(a) = |\{a' \in A \mid f(a') < f(a)\}| < |\{a' \in A \mid f(a') < f(b)\}| = g(b)$$

therefore

$$g(a) = |\{a' \in A \mid f(a') < f(a)\}| < |\{a' \in A \mid f(a') < f(b)\}| = g(b)$$

$$g(a) \neq g(b)$$
.

$$g(a) = |\{a' \in A \mid f(a') < f(a)\}|$$

• g is surjective: We define by induction on k for $k \in \mathbb{N}$ an element $a_k \in A$ s.t. $g(a_k) = k$. Then the assertion follows: Assume we have defined already a_0, \ldots, a_{k-1} .

There exist infinitely many $a' \in A$, f is injective, so there must be at least one $a' \in A$ s.t. $f(a') > f(a_{k-1})$.

There exists $a' \in A$ s.t. $f(a') > f(a_{k-1})$.

Let n be minimal s.t. n=f(a) for some $a\in A$ and $n>f(a_{k-1})$.

n minimal s.t. n = f(a') for some $a' \in A$, $n > f(a_{k-1})$

Let a be the unique element of A s.t. f(a) = n.

n minimal s.t. n=f(a) for some $a\in A,\ n>f(a_{k-1})$ f(a)=n

$$\{a'' \in A \mid f(a'') < f(a)\} = \{a'' \in A \mid f(a'') < f(a_{k-1})\} \cup \{a_{k-1}\} .$$

Proof of Lemma 2.11, "←"

Therefore
$$g(a) = |\{a'' \in A \mid f(a'') < f(a)\}|$$

 $= |\{a'' \in A \mid f(a'') < f(a_{k-1})\}| + 1$
 $= g(a_{k-1}) + 1 = k - 1 + 1 = k$.

Let $a_k := a$.

Corollary

Corollary 2.13

- (a) If B is countable and $g: A \rightarrow B$ injective, then A is countable.
- (b) If A is uncountable and $g: A \rightarrow B$ injective, then B is uncountable.
- (c) If B is countable and $A \subseteq B$, then A is countable.

Proof:

- (a) If B is countable, there exists an injection $f: B \to \mathbb{N}$. But then $f \circ g: A \to \mathbb{N}$ is an injection as well, therefore A is countable.
- (b): By (a). Why? (Exercise).
- \bullet (c): By (a). (What is g?; exercise).

Corollary (Cont.)

Corollary 2.13

- (d) If A is uncountable and $A \subseteq B$, then B is uncountable.
- (e) If $A \approx B$, then A is countable if and only if B is countable.

Proof:

- (d): By (c). Why? (Exercise).
- (e): By (a). Why ?

Remark:

A corollary is a lemma/theorem which is a direct consequence of a more difficult lemma or theorem shown before.

Injection and Size

- Intuitively we can say:
 - That there exists an injective function

$$f:A\to B$$

means that the size of A is less than or equal to the size of B.

- That $A \subseteq B$ means that there is an injection from A into B.
 - So the size of A is less than or equal to the size of B.

Characterisation of Count. Sets, II

Lemma 2.14

A set A is countable, if and only if $A = \emptyset$ or there exists a surjection $h : \mathbb{N} \to A$.

Remark: This explains the notion "countable": A non-empty set is countable if we can enumerate its elements (repetitions are allowed).

2nd Remark: The empty set \emptyset is countable, but there exists no surjection $h: \mathbb{N} \to \emptyset$ – in fact there exists no function $h: \mathbb{N} \to \emptyset$ at all.

Jump over Proof.

" \Rightarrow ": Assume A is countable. If A is empty we are done. So assume A is non-empty. Show there exists a surjection $f: \mathbb{N} \to A$.

Case A is finite.

Assume $A = \{a_0, \dots, a_n\}$. Define $f : \mathbb{N} \to A$,

$$f(k) := \left\{ egin{array}{ll} a_k & \mbox{if } k \leq n \ a_0 & \mbox{otherwise} \end{array}
ight.$$

f is clearly surjective.

• Case A is infinite. A is countable, so there exists a bijection from $\mathbb N$ to A, which is therefore surjective.

```
"<del>←</del>":
```

- If $A = \emptyset$, then A is countable.
- So assume A and

$$h: \mathbb{N} \to A$$
 is surjective

- Show A is countable.
- Define

$$g: A \to \mathbb{N},$$
 $g(a) := \min\{n \mid h(n) = a\}.$

- ullet g(a) is well-defined, since h is surjective:
 - There exists some n s.t. h(n) = a, therefore the minimal such n is well-defined.

$$g:A \to \mathbb{N}$$
, $g(a):=\min\{n \mid h(n)=a\}$

• It follows that for $a \in A$ we have

$$h(g(a)) = a .$$

- ullet Therefore g is injective:
 - If g(a) = g(a') then

$$a = h(g(a)) = h(g(a')) = a'$$
.

■ Therefore $g: A \to \mathbb{N}$ is an injection, and by Lemma 2.11, A is countable.

Corollary

Corollary 2.15

- (a) If A is countable and $g: A \rightarrow B$ surjective, then B is countable.
- (b) If B is uncountable and $g: A \rightarrow B$ surjective, then A is uncountable.

Proof of Corollary 2.15 (a)

- **●** To be shown: If A is countable, $g: A \rightarrow B$ is surjective, then B is countable as well.
- So assume A is countable, $g:A \rightarrow B$ is surjective.
- If A is empty, then B is empty as well and therefore countable.
 - (We need to treat $A=\emptyset$ as a special case, since in that case there exists no surjection $f:\mathbb{N}\to A$ as assumed in the next step, even so A is countable).

Proof of Corollary 2.15 (a)

Otherwise there exists a surjection

$$f: \mathbb{N} \to A$$

But then

$$g \circ f : \mathbb{N} \to B$$

is a surjection as well, therefore *B* is countable.

Proof of Corollary 2.15 (b)

Follows by (a). Why?

Surjectivion and Size

- Intuitively we can say:
 - That there exists a surjective function

$$f:A\to B$$

means that the size of A is greater than or equal to the size of B.

Examples of Uncountable Sets

Lemma 2.16

The following sets are uncountable:

- (a) $F := \{ f \mid f : \mathbb{N} \to \{0, 1\} \}$.
- (b) $G := \{f \mid f : \mathbb{N} \to \mathbb{N}\}.$
- *(c)* The set of real numbers \mathbb{R} .
- **Proof of (a):** By Lemma 2.9 $\mathcal{P}(\mathbb{N})$ ≈ $(\mathbb{N} \to \{0,1\})$. $\mathcal{P}(\mathbb{N})$ is uncountable, therefore $\mathbb{N} \to \{0,1\}$ as well.
- **Proof of (b):** $F \subseteq G$, F is uncountable, so G is uncountable.

Idea of Proof of Lemma 2.16 (c)

- In order to show $\mathbb R$ is uncountable, it suffices to show that the half open interval [0,1[(i.e. $\{x\in\mathbb R\mid 0\le x<1\})$ is uncountable).
- ullet Elements of [0,1[are in binary representation of the form

$$(0.a_0a_1a_2a_3\cdots)_2$$

where $a_i \in \{0, 1\}$.

- $(a_n)_{n\in\mathbb{N}}$ is a function $\mathbb{N}\to\{0,1\}$.
- If the function mapping sequences $(a_n)_{n\in\mathbb{N}}: \mathbb{N} \to \{0,1\}$ to \mathbb{R} were injective, then we could conclude from $\mathbb{N} \to \{0,1\}$ uncountable that [0,1[and therefore \mathbb{R} are uncountable.

Idea of Proof of Lemma 2.16 (c)

- ullet However this function is not injective since $0.a_0a_1a_2\cdots a_n011111\cdots$ and $0.a_0a_1a_2\cdots a_n100000\cdots$ are the same number.
 - This is similar to decimal representation, where $0.a_0a_1a_2\cdots a_n0999999\cdots$ and $0.a_0a_1a_2\cdots a_n100000\cdots$ are the same.
- This problem can be overcome with some effort.
- The detailed proof will be omitted in the lecture. Jump over Proof.

- ullet Show $\mathbb R$ is uncountable.
- By (b),

$$F = \{ f \mid f : \mathbb{N} \to \{0, 1\} \}$$

is uncountable.

A first idea is to define a function

$$f_0 : F \to \mathbb{R} ,$$

 $f_0(g) = (0.g(0)g(1)g(2)\cdots)_2$

Here the right hand side is a number in binary format.

• If f_0 were injective, then by F uncountable we could conclude \mathbb{R} is uncountable.

Show \mathbb{R} is uncountable.

The problem is that

$$(0.a_0a_1\cdots a_k011111\cdots)_2$$
 and $(0.a_0a_1\cdots a_k10000\cdots)_2$

denote the same real number, so f_0 is not injective.

ullet We modify f_0 so that we don't obtain any binary numbers of the form

$$(0.a_0a_1\cdots a_k011111\cdots)_2$$
.

Define instead

$$f: F \to \mathbb{R},$$

 $f(g) := (0.g(0) \ 0 \ g(1) \ 0 \ g(2) \ 0 \cdots)_2,$

So

$$f(g) = (0.a_0 a_1 a_2 \cdots)_2$$

where

$$a_k := \left\{ egin{array}{ll} 0 & \mbox{if k is odd,} \\ g(rac{k}{2}) & \mbox{otherwise.} \end{array}
ight.$$

If two sequences

$$(b_0, b_1, b_2, \ldots)$$
 and (c_0, c_1, c_2, \ldots)

do not end in

$$1,1,1,1,\ldots ,$$

i.e. are not of the form

$$(d_0, d_1, \ldots, d_l, 1, 1, 1, 1, 1, \ldots)$$
,

then one can easily see that

$$(0.b_0b_1\cdots)_2=(0.c_0c_1\cdots)_2\Leftrightarrow (b_0,b_1,b_2,\ldots)=(c_0,c_1,c_2,\ldots)$$

Therefore

$$f(g) = f(g')$$

$$\Leftrightarrow (0.g(0) \ 0 \ g(1) \ 0 \ g(2) \ 0 \cdots)_2 = (0.g'(0) \ 0 \ g'(1) \ 0 \ g'(2) \ 0 \cdots)_2$$

$$\Leftrightarrow (g(0), 0, g(1), 0, g(2), 0, \ldots) = (g'(0), 0, g'(1), 0, g'(2), 0, \ldots)$$

$$\Leftrightarrow (g(0), g(1), g(2), \ldots) = (g'(0), g'(1), g'(2), \ldots)$$

$$\Leftrightarrow g = g',$$

f is injective.

More Uncountable Sets

Lemma 2.17

If A is infinite, then $\mathcal{P}(A)$ and $\{f \text{ function } | f : A \rightarrow \{0,1\}\}$ are uncountable.

Proof: Exercise (reduce it to Lemma 2.16 (a)).

Countable and Complement

Lemma 2.18

- (a) If A, B are countable, so is $A \cup B$.
- (b) If A is uncountable and B is countable then $A \setminus B$ is uncountable.
- Here $A \setminus B = \{a \in A \mid a \not\in B\}$, so $A \setminus B$ is A without the elements in B.
- Note that
 - (a) reads: If two sets are small, their union is small as well.
 - (b) reads: If one removes from a big set a small set, then what remains is still big.

- **●** To be shown: If A, B are countable, so is $A \cup B$.
- We will use the fact that a set X is countable if and only if it is empty or there exist a surjective function $f: \mathbb{N} \to X$.
- Therefore we need to treat the special cases when A or B are empty.
- Case 1: A is empty. Then $A \cup B = B$ which is countable.
- Case 2: B is empty. Then $A \cup B = A$ which is countable.

- Case 3: A, B are not empty.
 - By A, B countable there exist surjective functions

$$f: \mathbb{N} \to A$$
 $g: \mathbb{N} \to B$

• Define $h: \mathbb{N} \to A \cup B$,

$$h(n) := \left\{ \begin{array}{ll} f(\frac{n}{2}) & \text{if n is even,} \\ g(\frac{n-1}{2}) & \text{if n is odd.} \end{array} \right.$$

- So f(n) = h(2n) and g(n) = h(2n + 1).
- Therefore

$$A \cup B = f[\mathbb{N}] \cup g[\mathbb{N}] \subseteq h[\mathbb{N}]$$

f is surjective.

Assume $f: \mathbb{N} \to A$, $g: \mathbb{N} \to B$.

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n + 1) = g(n)$$
:

$$h(2n) = f(n), h(2n+1) = g(n)$$
:

Jump over the alternative proof.

Alternative Proof of Lemma 2.18 (a)

- **●** To be shown: If A, B are countable, so is $A \cup B$.
- ullet So assume A, B are countable.
- ▶ Then there exist (by Lemma 2.11) injective functions

$$f: A \to \mathbb{N}$$
, $g: B \to \mathbb{N}$.

Define

$$h : A \cup B \to \mathbb{N}$$

$$h(x) := \begin{cases} f(x) \cdot 2 & \text{if } x \in A \\ g(x) \cdot 2 + 1 & \text{if } x \in B \setminus A \end{cases}$$

- h is injective.
- **●** Therefore, by Lemma 2.11, $A \cup B$ is countable.

- To be shown:

 If A is uncountable and B is countable, then $A \setminus B$ is uncountable.
- Assume A is uncountable, B is countable and $A \setminus B$ were countable.
- Then $A \cap B$ is countable (since $A \cap B \subseteq B$).
- Therefore $A = (A \setminus B) \cup (A \cap B)$ is countable as well, a contradiction.

Continuum Hypothesis

Remark:

- One can show $\mathcal{P}(\mathbb{N}) \approx \mathbb{R}$.
- Both these sets are uncountable, so they have size bigger than \mathbb{N} .
- **Question:** Is there a set B which has size (cardinality) between \mathbb{N} and \mathbb{R} ?
 - I.e. there are injections $\mathbb{N} \to B$ and $B \to \mathbb{R}$,
 - but neither bijections $\mathbb{N} \to B$ nor $B \to \mathbb{R}$.
- Continuum Hypothesis: There exists no such set.
- Continuum Hypothesis is independent of set theory, i.e. it is neither provable nor is its negation provable.
 - This was one of the most important open problems in set theory for a long time.

Paul Cohen

Paul Cohen (1934 – 2007) Showed 1963 that the continuum hypothesis is independent of set theory.

(d) Reducing Computability to N

- Goal: Reduce computability on some data types A to computability on \mathbb{N} .
 - A could be for instance the set of strings, of matrices, of trees, of lists of strings, etc.
- If we can do this, then there is no need for a special definition of computability on A, we can concentrate on the notion of computability on \mathbb{N} .
- We can reduce computability on A to computability on \mathbb{N} , if we have two intuitively computable functions
 - encode_A : $A \to \mathbb{N}$,
 - $\operatorname{decode}_A : \mathbb{N} \to A$.

- encode_A : $A \to \mathbb{N}$, decode_A : $\mathbb{N} \to A$.
- Assume we have such functions $encode_A$, $decode_A$, $encode_B$, $decode_B$ for A and B.
- Then from an intuitively computable $f: A \rightarrow B$ we can obtain an intuitively computable function

$$\widetilde{f} := \operatorname{encode}_B \circ f \circ \operatorname{decode}_A : \mathbb{N} \to \mathbb{N}$$
:

• Furthermore from a computable $g: \mathbb{N} \to \mathbb{N}$ we can obtain an intuitively computable function

 $\widehat{g} := \operatorname{decode}_B \circ g \circ \operatorname{encode}_A : A \to B$:

- We would like to take the computable functions $g: \mathbb{N} \to \mathbb{N}$ as representations of all computable functions $f: A \to B$.
 - In the sense that f represents the function $\widehat{g}:A\to B$.
- **●** This is possible if for any intuitively computable $f: A \to B$ we find a $g: \mathbb{N} \to \mathbb{N}$ s.t. $\widehat{g} = f$.
- We want to use $g = \widetilde{f}$, which is computable, if f is computable.
- But then we need $\widehat{\widetilde{f}} = f$.

```
\widetilde{f} = \operatorname{encode}_B \circ f \circ \operatorname{decode}_A : \mathbb{N} \to \mathbb{N},
\widehat{g} = \operatorname{decode}_B \circ g \circ \operatorname{encode}_A : A \to B,
want \widehat{\widetilde{f}} = f.
```

• In order to obtain $\widehat{\widetilde{f}}=f$, we need

```
\widehat{\widetilde{f}} = decode<sub>B</sub> \circ \widetilde{f} \circ encode<sub>A</sub>
 = decode<sub>B</sub> \circ encode<sub>B</sub> \circ f \circ decode<sub>A</sub> \circ encode<sub>A</sub>
 \stackrel{!}{=} f
```

 $\stackrel{!}{=}$ is the equality we need, whereas the other equalities follow by the definition).

 $decode_B \circ encode_B \circ f \circ decode_A \circ encode_A \stackrel{!}{=} f$

This is fulfilled if we have

$$decode_A \circ encode_A = id_A$$

 $decode_B \circ encode_B = id_B$

where id_A is the identity on A, i.e. $\lambda x.x$ similarly for id_B .

This means that

$$\forall x \in A.\operatorname{decode}_A(\operatorname{encode}_A(x)) = x$$

 $\forall x \in B.\operatorname{decode}_B(\operatorname{encode}_B(x)) = x$

```
\forall x \in A.\operatorname{decode}_A(\operatorname{encode}_A(x)) = x
\forall x \in B.\operatorname{decode}_B(\operatorname{encode}_B(x)) = x
```

- This is a natural condition: If we encode an element of A, and then decode it, we obtain the original element of A back, similarly for B.
 - Note that relationship to cryptography: if we encrypt a message and then decrypt it, we should obtain the original message.

Note that we don't need

$$\operatorname{encode}_A(\operatorname{decode}_A(x)) = x$$

- Such a condition would mean: every element $n \in \mathbb{N}$ is a code for an element of A (namely $\operatorname{decode}_A(n)$).
- In cryptography this means: not every element of the datatype of codes is actually an encrypted message.

Computable Encodings

Informal Definition

A data type A has a computable encoding into \mathbb{N} , if there exist in an intuitive sense computable functions

$$\operatorname{encode}_A:A\to\mathbb{N}$$
, and $\operatorname{decode}_A:\mathbb{N}\to A$

such that for all $a \in A$ we have

$$decode_A(encode_A(a)) = a$$

Computable Encodings

$decode_A(encode_A(a)) = a$

- Note that by the above we obtain $encode_A$ is injective.
 - In general we have for two functions $f: B \to C$, $g: C \to D$ that if $g \circ f$ is injective, then f is injective as well.
- Therefore if A has a computable encoding into \mathbb{N} , then there exists an injection $\operatorname{encode}_A : A \to \mathbb{N}$, therefore A is countable.

Extension of the Encoding

- We want to show that we have computable encodings of more complex data types into \mathbb{N} .
- Assume A and B have computable encodings into \mathbb{N} .
- Then we will show that the same applies to
 - $A \times B$, the product of A and B,
 - A^k , the set of k-tuples of A,
 - A^* , the set of lists (or sequences) of elements of A.
- The proof will show as well that if A, B are countable, so are

$$A \times B$$
 , A^k .

(e) Encod. of Data Types into $\mathbb N$

• In order to show that $A \times B$, A^k , A^* have computable encodings into \mathbb{N} , if A, B have, it suffices to show that

$$\mathbb{N} \times \mathbb{N} , \mathbb{N}^n , \mathbb{N}^* ,$$

have computable encodings into \mathbb{N} .

• Note that $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$.

Reduction to \mathbb{N}

In order to see this assume we had already shown that

$$\mathbb{N}^n$$
 , \mathbb{N}^* ,

have computable encodings, so we have computable injections

$$encode_{\mathbb{N}^n} : \mathbb{N}^n \to \mathbb{N}$$
,

$$encode_{\mathbb{N}^*} : \mathbb{N}^* \to \mathbb{N}$$
.

with corresonding computable decoding functions.

Assume A, B have computable with encodings

$$encode_A : A \to \mathbb{N}$$
,

$$encode_B : B \to \mathbb{N}$$
.

Reduction to \mathbb{N}

Then we obtain a computable encoding

$$\operatorname{encode}_{A\times B} : (A\times B) \to \mathbb{N}$$

$$\operatorname{encode}_{A\times B}((a,b)) = \operatorname{encode}_{\mathbb{N}^2}((\underbrace{\operatorname{encode}_A(a)}, \underbrace{\operatorname{encode}_B(b)})_{\in \mathbb{N}})$$

In short

$$\operatorname{encode}_{A \times B}((a, b)) = \operatorname{encode}_{\mathbb{N}^2}((\operatorname{encode}_A(a), \operatorname{encode}_B(b)))$$

Exercise: Define $decode_{A\times B}$, show $decode_{A\times B}(encode_{A\times B}(x)) = x$ and verify that $decode_{A\times B}$ is intuively computable.

Reduction to $\mathbb N$

$$\operatorname{encode}_{A^k}: A^k \to \mathbb{N}$$

$$\operatorname{encode}_{A^k}((a_0, \dots, a_{k-1})) = \\ \operatorname{encode}_{\mathbb{N}^k}((\underbrace{\operatorname{encode}_A(a_0)}, \underbrace{\operatorname{encode}_A(a_1)}, \dots, \underbrace{\operatorname{encode}_A(a_{k-1})})) \\ \in \mathbb{N}$$

$$\in \mathbb{N}$$

In short

$$\operatorname{encode}_{A^k}((a_0, \dots, a_{k-1})) =$$

$$\operatorname{encode}_{\mathbb{N}^k}(\operatorname{encode}_A(a_0), \operatorname{encode}_A(a_1), \dots, \operatorname{encode}_A(a_{k-1}))$$

Exercise: Define $decode_{A^k}$, show $decode_{A^k}(encode_{A^k}(x)) = x$ and verify that $decode_{A^k}$ is intuively computable.

Reduction to N

We obtain a computable encoding

In short

encode_{A*}
$$((a_0, \ldots, a_{n-1})) =$$

encode_{N*} $((\text{encode}_A(a_0), \text{encode}_A(a_1), \ldots, \text{encode}_A(a_{n-1})))$

Exercise: Define $decode_{A^*}$, show $decode_{A^*}(encode_{A^*}(x)) = x$

and verify that $decode_{A*}$ is intuively computable.

Encoding of Pairs

- **●** The first step is to give a computable encoding of \mathbb{N}^2 into \mathbb{N} .
- In fact our encoding will be a bijection.
- We will define intuitively computable functions

$$\pi : \mathbb{N}^2 \to \mathbb{N}$$

$$\pi_0 : \mathbb{N} \to \mathbb{N}$$

$$\pi_1 : \mathbb{N} \to \mathbb{N}$$

s.t. π and

$$\lambda n.(\pi_0(n),\pi_1(n)):\mathbb{N}\to\mathbb{N}^2$$

are inverse to each other.

Encoding of Pairs

- $\pi: \mathbb{N}^2 \to \mathbb{N}$
- $\pi_0 : \mathbb{N} \to \mathbb{N}$
- $\pi_1 : \mathbb{N} \to \mathbb{N}$
- Therefore we obtain a computable encoding of $\mathbb{N} \times \mathbb{N}$ into N with

$$encode_{\mathbb{N}\times\mathbb{N}} := \pi$$
 : $\mathbb{N}^2 \to \mathbb{N}$

$$\operatorname{encode}_{\mathbb{N}\times\mathbb{N}} := \pi$$
 : $\mathbb{N}^2 \to \mathbb{N}$
 $\operatorname{decode}_{\mathbb{N}\times\mathbb{N}} := \lambda x.(\pi_0(x), \pi_1(x))$: $\mathbb{N} \to \mathbb{N}^2$

Encoding of Pairs

• π will be called the <u>pairing function</u> and π_i the <u>projection functions</u> or short <u>projections</u>. π is a computable encoding of \mathbb{N}^2 into \mathbb{N} .

Pairs of natural numbers can be enumerated in the following way:

	y	0	1	2	3	4
\underline{x}						
0		0	2	5	9	14
1		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	4	8/	13	19
2		3	77	12	18	25
3		6	11	17	24	32
4		10	16	23	31	40

	y	0	1	2	3	4
\underline{x}						
0		0	2	5	9	14
1		1	4	8/	13	19
2		3	77/	12	18	2 5
3		6	11	17	24	32
4		10	16	23	31	40

$$\pi(0,0)=0$$
 , $\pi(1,0)=1$, $\pi(0,1)=2$,
$$\pi(2,0)=3$$
 , $\pi(1,1)=4$, $\pi(0,2)=5$, etc.

Attempt which fails

Note, that the following naïve attempt to enumerate the pairs, fails:

	y	0		1		2		3		
\boldsymbol{x}										
0		$\pi(0,0)$	\longrightarrow	$\pi(0,1)$	\rightarrow	$\pi(0,2)$	\longrightarrow	$\pi(0,3)$	\longrightarrow	• • •
1			\longrightarrow		\rightarrow		\longrightarrow		\longrightarrow	• • •
2			\longrightarrow		\longrightarrow		\longrightarrow		\longrightarrow	• • •
3			\longrightarrow		\longrightarrow		\longrightarrow		\longrightarrow	
4			\longrightarrow		\longrightarrow		\longrightarrow		\longrightarrow	• • •

$$\pi(0,0)=0$$
, $\pi(0,1)=1$, $\pi(0,2)=2$, etc.

We never reach the pair (1,0).

Devel. of a Formula for Defining π

- In the following we are going to develop a mathematical formula for π .
- In the lecture this material was omitted and we give directly the definition of π .

 Jump over Development of π .

	y	0	1	2	3	4
x						
0		Ô	2	5		
1			4	,		
2		3	,			

For the pairs in the diagonal we have the property that x + y is constant.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	·			

For the pairs in the diagonal we have the property that x + y is constant.

The first diagonal, consisting of (0,0) only, is given by

$$x + y = 0.$$

	y	0	1	2	3	4
x						
0		Ů,	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

For the pairs in the diagonal we have the property that x + y is constant.

The second diagonal, consisting of (1,0),(0,1), is given by

$$x + y = 1$$
.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

For the pairs in the diagonal we have the property that x+y is constant.

The third diagonal, consisting of (2,0),(1,1),(0,2), is given by x+y=2.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

For the pairs in the diagonal we have the property that x + y is constant.

The third diagonal, consisting of (2,0),(1,1),(0,2), is given by x+y=2.

Etc.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1			4	,		
2		3	<i>,</i>			

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 & \\ \end{array}$	4	,		
2		3	,			

If we look in the original approach at the diagonals we see that following:

• The diagonal given by x + y = n, consists of n + 1 pairs:

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The first diagonal, given by x + y = 0, consists of (0,0) only, i.e. of 1 pair.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The second diagonal, given by x + y = 1, consists of (1,0),(0,1), i.e. of 2 pairs.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The third diagonal, given by x + y = 2, consisting of (2,0),(1,1),(0,2), i.e. of 3 pairs.

	y	0	1	2	3	4
x						
0		Ô	2	5		
1		$\begin{array}{c c} & \\ 1 \end{array}$	4	,		
2		3	,			

- The diagonal given by x + y = n, consists of n + 1 pairs:
 - The third diagonal, given by x + y = 2, consisting of (2,0),(1,1),(0,2), i.e. of 3 pairs.
 - etc.

	y	0	1	2	3	4
\underline{x}						
0		Q	2	5		
1		1	4			
2		3	7			
3		6	,			

We count the elements occurring before the pair (x_0, y_0) .

- We have to count all elements of the previous diagonals. These are those given by x + y = n for $n < x_0 + y_0$.
 - In the above example for the pair (2,1), these are the diagonals given by x+y=0, x+y=1, x+y=2.

x	y	0	1	2	3	4
0		Ô	2	5		
1		1 /	4			
2		3	7			
3		6	- /			

- The diagonal, given by x+y=n, has n+1 elements, so in total we have $\sum_{i=0}^{x+y-1}(i+1)=1+2+\cdots+(x+y)=\sum_{i=1}^{x+y}i$ elements in those diagonals.
- A often used formula says $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. Therefore, the above is $\frac{(x+y)(x+y+1)}{2}$.

	y	0	1	2	3	4
x						
0		Q	2	5		
1		1	4			
2		3	7			
3		6	·			

- Further, we have to count all pairs in the current diagonal, which occur in this ordering before the current one. These are y pairs.
 - Before (2,1) there is only one pair, namely (3,0).
 - Before (3,0) there are 0 pairs.
 - Before (0,2) there are 2 pairs, namely (2,0),(1,1).

	y	0	1	2	3	4
x						
0		Q	2	5		
1		1	4/			
2		3	7			
3		6	•			

• Therefore we get that there are in total $\frac{(x+y)(x+y+1)}{2} + y$ pairs before (x,y), therefore the pair (x,y) is the pair number $(\frac{(x+y)(x+y+1)}{2} + y)$ in this order.

Definition 2.19

$$\pi(x,y) := \frac{(x+y)(x+y+1)}{2} + y \qquad (= (\sum_{i=1}^{x+y} i) + y)$$

Exercise: Prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

π is Bijective

Lemma 2.20

 π is bijective.

Omit Proof

We show π is injective:

We prove first that, if x + y < x' + y', then $\pi(x, y) < \pi(x', y')$:

$$\pi(x,y) = (\sum_{i=1}^{x+y} i) + y < (\sum_{i=1}^{x+y} i) + x + y + 1 = \sum_{i=1}^{x+y+1} i$$

$$\leq (\sum_{i=1}^{x'+y'} i) + y' = \pi(x',y')$$

We show π is injective:

Assume now $\pi(x,y)=\pi(x',y')$ and show x=x' and y=y'. We have by the above

$$x + y = x' + y' .$$

Therefore

$$y = \pi(x, y) - (\sum_{i=1}^{x+y} i) = \pi(x', y') - (\sum_{i=1}^{x'+y'} i) = y'$$

and

$$x = (x + y) - y = (x' + y') - y' = x'$$
.

We show π is surjective:

Assume $n \in \mathbb{N}$.

Show $\pi(x,y) = n$ for some $x,y \in \mathbb{N}$.

The sequence $(\sum_{i=1}^{k'} i)_{k' \in \mathbb{N}}$ is strictly existing.

Therefore there exists a k s.t.

$$a := \sum_{i=1}^{k} i \le n < \sum_{i=1}^{k+1} i$$

 $n \in \mathbb{N}$ Show $\pi(x,y) = n$ for some x, y

$$a := \sum_{i=1}^{k} i \le n < \sum_{i=1}^{k+1} i \tag{*}$$

So, in order to obtain $\pi(x,y)=n$, we need x+y=k.

By $y = \pi(x,y) - \sum_{i=1}^{x+y} i$, we need to define y := n - a.

By k = x + y, we need to define x := k - y.

By (*) it follows $0 \le y < k+1$,

therefore $x, y \ge 0$. Further,

$$\pi(x,y) = (\sum_{i=1}^{x+y} i) + y = (\sum_{i=1}^{k} i) + (n - \sum_{i=1}^{k} i) = n.$$

Definition of π_0 , π_1

Since π is bijective, we can define π_0 , π_1 as follows:

Definition 2.21

Let $\pi_0 : \mathbb{N} \to \mathbb{N}$ and $\pi_1 : \mathbb{N} \to \mathbb{N}$ be s.t.

$$\pi_0(\pi(x,y)) = x$$
, $\pi_1(\pi(x,y)) = y$.

π , π_i are Computable

Remark

 π , π_0 , π_1 are computable in an intuitive sense.

"Proof:"

- \bullet π is obviously computable.
- In order to compute π_0 , π_1 , first observe that $x, y \leq \pi(x, y)$.
 - Follows from $\pi(x,y) = (\sum_{i=1}^{x+y} i) + y$.
- Therefore $\pi_0(n)$, $\pi_1(n)$ can be computed by
 - searching for $x, y \leq n$ s.t. $\pi(x, y) = n$,
 - and then setting $\pi_0(n) = x$, $\pi_1(n) = y$.

Remark 2.22

Remark 2.22

For all $z \in \mathbb{N}$,

$$\pi(\pi_0(z), \pi_1(z)) = z$$
.

Proof:

Assume $z \in \mathbb{N}$ and show

$$z = \pi(\pi_0(z), \pi_1(z))$$
.

 π is surjective, so there exists x, y s.t.

$$\pi(x,y) = z .$$

Then

$$\pi(\pi_0(z), \pi_1(z)) = \pi(\pi_0(\pi(x, y)), \pi_1(\pi(x, y))) = \pi(x, y) = z.$$

Encoding of \mathbb{N}^k

- We want to encode \mathbb{N}^k into \mathbb{N} .
- $(l, m, n) \in \mathbb{N}^3$ can be encoded as follows
 - First encode (l,m) as $\pi(l,m) \in \mathbb{N}$.
 - Then encode the complete triple as

$$\pi(\pi(l,m),n) \in \mathbb{N}$$
.

So define

$$\pi^3(l, m, n) := \pi(\pi(l, m), n)$$
.

• Similarly $(l, m, n, p) \in \mathbb{N}^4$ can be encoded as follows:

$$\pi^4(l, m, n, p) := \pi(\pi(\pi(l, m), n), p)$$
.

Decoding Function

- If $x = \pi^3(l, m, n) = \pi(\pi(l, m), n)$, then we see
 - $l = \pi_0(\pi_0(x)),$
 - $m = \pi_1(\pi_0(x)),$
 - $n = \pi_1(x)$.
- So we define
 - $\pi_0^3(x) = \pi_0(\pi_0(x)),$
 - $\pi_1^3(x) = \pi_1(\pi_0(x)),$
 - $\pi_2^3(x) = \pi_1(x)$.

Decoding Function

Similarly, if $x=\pi^4(l,m,n,p)=\pi(\pi(\pi(l,m),n),p)$, then we see

- $l = \pi_0(\pi_0(\pi_0(x))),$
- $m = \pi_1(\pi_0(\pi_0(x)))$,
- $n = \pi_1(\pi_0(x))$.
- $p = \pi_1(x)$.

So we define

- $\pi_0^4(x) = \pi_0(\pi_0(\pi_0(x))),$
- $\pi_1^4(x) = \pi_1(\pi_0(\pi_0(x))),$
- $\pi_2^4(x) = \pi_1(\pi_0(x))$.
- $\pi_3^4(x) = \pi_1(x)$.

Definition for General k

In general one defines for $k \geq 1$

$$\pi^k : \mathbb{N}^k \to \mathbb{N} ,$$

$$\pi^k(x_0, \dots, x_{k-1}) := \pi(\dots \pi(\pi(x_0, x_1), x_2) \dots x_{k-1}) ,$$

and for i < k

$$\pi_i^k: \mathbb{N} o \mathbb{N} \;,$$
 $\pi_0^k(x):=\underbrace{\pi_0(\cdots \pi_0(\ x)\cdots)}_{k-1 \text{ times}} \;,$
and for $0 < i < k$,
 $\pi_i^k(x):=\pi_1(\underbrace{\pi_0(\pi_0(\cdots \pi_0(\ x)\cdots)))}_{k-i-1 \text{ times}} \;.$

Formal definition of π^k , π_i^k

• Then π^k and

$$\lambda x.(\pi_0^k(x),\ldots,\pi_{k-1}^k(x))$$

are inverse to each other.

• A formal inductive Definition of π^k and π^k_i is as follows: Jump over formal definition of π

Definition 2.23 of π^k , π_i^k

(a) We define by induction on k for $k \in \mathbb{N}$, $k \ge 1$

$$\pi^k : \mathbb{N}^k \to \mathbb{N}$$

$$\pi^1(x) := x$$
 For $k>0$ $\pi^{k+1}(x_0,\ldots,x_k) := \pi(\pi^k(x_0,\ldots,x_{k-1}),x_k)$

(b) We define by induction on k for $i, k \in \mathbb{N}$ s.t. $1 \le k$, 0 < i < k

$$\pi_i^k : \mathbb{N} \to \mathbb{N}$$
 $\pi_0^1(x) := x$
 $\pi_i^{k+1}(x) := \pi_i^k(\pi_0(x)) \text{ for } i < k$
 $\pi_k^{k+1}(x) := \pi_1(x)$

Omit Examples.

Examples

- \bullet $\pi^2(x,y) = \pi(\pi^1(x),y) = \pi(x,y).$
- $\pi^3(x,y,z) = \pi(\pi^2(x,y),z) = \pi(\pi(x,y),z)$.
- $\pi^4(x,y,z,u) = \pi(\pi^3(x,y,z),u) = \pi(\pi(\pi(x,y),z),u)$.
- $\pi_0^4(u) = \pi_0^3(\pi_0(u)) = \pi_0^2(\pi_0(\pi_0(u))) = \pi_0^1(\pi_0(\pi_0(\pi_0(u)))) = \pi_0(\pi_0(\pi_0(u))).$
- $\pi_2^4(u) = \pi_2^3(\pi_0(u)) = \pi_1(\pi_0(u)).$

Lemma 2.24

- (a) For $(x_0, \ldots, x_{k-1}) \in \mathbb{N}^k$, i < k, $x_i = \pi_i^k(\pi^k(x_0, \ldots, x_{k-1}))$.
- (b) For $x \in \mathbb{N}$, $x = \pi^k(\pi_0^k(x), \dots, \pi_{k-1}^k(x))$.

(Omit Proof)

Proof

```
Induction on k.

Base case k=0:

Proof of (a):

Let (x_0) \in \mathbb{N}^1.

Then \pi_0^1(\pi^1(x_0)) = x_0.

Proof of (b):

Let x \in \mathbb{N}.

Then \pi^1(\pi_0^1(x)) = x.
```

Proof of Lemma 2.24

Induction step $k \rightarrow k + 1$:

Assume the assertion has been shown for k.

Proof of (a):

Let
$$(x_0, \ldots, x_k) \in \mathbb{N}^{k+1}$$
. Then

for
$$i < k$$
 $\pi_i^{k+1}(\pi^{k+1}(x_0, \dots, x_k))$
= $\pi_i^k(\pi_0(\pi(\pi^k(x_0, \dots, x_{k-1}), x_k)))$
= $\pi_i^k(\pi^k(x_0, \dots, x_{k-1}))$
 \vdots
 \vdots
 \vdots

and
$$\pi_k^{k+1}(\pi^{k+1}(x_0, \dots, x_k))$$

= $\pi_1(\pi(\pi^k(x_0, \dots, x_{k-1}), x_k))$
= x_k

Proof of Lemma 2.24

Induction step $k \rightarrow k + 1$ *:*

Assume the assertion has been shown for k.

Proof of (b):

Let $x \in \mathbb{N}$.

$$\pi^{k+1}(\pi_0^{k+1}(x),\dots,\pi_k^{k+1}(x))$$

$$= \pi(\pi^k(\pi_0^{k+1}(x),\dots,\pi_{k-1}^{k+1}(x)),\pi_k^{k+1}(x))$$

$$= \pi(\pi^k(\pi_0^k(\pi_0(x)),\dots,\pi_{k-1}^k(\pi_0(x))),\pi_1(x))$$

$$\stackrel{\text{IH}}{=} \pi(\pi_0(x),\pi_1(x))$$

$$\text{Rem. 2.22} \qquad x$$

Encoding of \mathbb{N}^*

- We want to define an encoding $encode_{\mathbb{N}^*} : \mathbb{N}^* \to \mathbb{N}$ (which will be a bijection).
- $\mathbb{N}^* = \mathbb{N}^0 \cup \bigcup_{k>1} \mathbb{N}^k$.
- $\mathbb{N}^0 = \{()\},$ We can encode () as 0.
- Encoding of $\bigcup_{k>1} \mathbb{N}^k$:
 - We have an encoding

$$\pi^k: \mathbb{N}^k \to \mathbb{N}$$
.

Encoding of \mathbb{N}^*

- Note that each $n \in \mathbb{N}$ is a code for elements of \mathbb{N}^k for every k.
 - So if we encoded (n_0, \ldots, n_{k-1}) as $\pi^k(n_0, \ldots, n_{k-1})$ we couldn't determine the length k of the original sequence from the code.
- So we need to add the length to the code for (n_0, \ldots, n_{k-1}) (considered as an element of \mathbb{N}^*).
- Therefore encode a sequence $(n_0, \ldots, n_{k-1}) \in \mathbb{N}^*$ for k > 0 as

$$\pi(k-1,\pi^k(n_0,\ldots,n_{k-1}))$$
.

- In order to distinguish it from code of (), add 1 to it.
- In total we obtain a bijection.

Definition 2.25 of $\langle \rangle$, lh, $(x)_i$

(a) Define for $x \in \mathbb{N}^*$, $\langle x \rangle : \mathbb{N}$ as follows:

$$\langle \rangle := \langle () \rangle := 0 ,$$
 for $k > 0$
$$\langle n_0, \dots, n_{k-1} \rangle := \langle (n_0, \dots, n_{k-1}) \rangle$$

$$:= 1 + \pi(k-1, \pi^k(n_0, \dots, n_{k-1}))$$

(b) Define for $x \in \mathbb{N}$, the length $lh(x) \in \mathbb{N}$ as follows:

$$\begin{array}{rcl} \text{Ih} & : & \mathbb{N} \to \mathbb{N} \ , \\ \text{Ih}(0) & := & 0 \ , \\ \text{Ih}(x) & := & \pi_0(x-1)+1 \text{ if } x>0 \ . \end{array}$$

Definition 2.25 of $\langle \rangle$, lh, $(x)_i$

(c) We define for $x \in \mathbb{N}$ and i < lh(x), the *i*th component

$$(x)_i \in \mathbb{N}$$

of a code x for a sequence as follows:

$$(x)_i := \pi_i^{\mathsf{lh}(x)}(\pi_1(x-1))$$
.

For $lh(x) \leq i$, let

$$(x)_i := 0$$
.

Remark

- lh(x), $(x)_i$ are defined in such a way that Lemma 2.26 (a), (b) given below hold.
- This shows that Ih, $(x)_i$ together form the inverse of the forming of $\langle x_0, \ldots, x_{k-1} \rangle$.

$$(x_0,\ldots,x_{k-1})$$
 vs. $\langle x_0,\ldots,x_{k-1} \rangle$

Remark:

- (a) Note that (x_0, \ldots, x_{k-1}) is a tuple, which is an element of \mathbb{N}^k , whereas $\langle x_0, \ldots, x_{k-1} \rangle$ is the code for this tuple, which is an element of \mathbb{N} .
- (b) Especially $() \in \mathbb{N}^0$ is the empty tuple, whereas $\langle \rangle = 0 \in \mathbb{N}$ is the code for the empty tuple.

Lemma 2.26

Lemma 2.26

- (a) $lh(\langle \rangle) = 0$, $lh(\langle n_0, \dots, n_k \rangle) = k + 1$.
- (b) For $i \leq k$, $(\langle n_0, \ldots, n_k \rangle)_i = n_i$.
- (c) For $x \in \mathbb{N}$, $x = \langle (x)_0, \dots, (x)_{\mathsf{lh}(x)-1} \rangle$.

Remark

If we define

$$\langle \rangle^{-1} : \mathbb{N} \to \mathbb{N}^*$$

 $\langle \rangle^{-1}(x) = ((x)_0, \dots, (x)_{\mathsf{lh}(x)-1})$

Then we have by Lemma 2.26

$$\langle \rangle^{-1}(\langle x_0, \dots, x_{n-1} \rangle) = (x_0, \dots, x_{n-1})$$

so $\langle \rangle^{-1}$ is the inverse of $\vec{x} \mapsto \langle \vec{x} \rangle$.

(Omit Proof of Lemma 2.26)

Proof of Lemma 2.26 (a)

Proof of (a):

Show: $lh(\langle \rangle) = 0$: $lh(\langle \rangle) = lh(0) = 0$.

Show: $lh(\langle n_0, \ldots, n_k \rangle) = k + 1$:

$$\begin{aligned}
\mathsf{Ih}(\langle n_0, \dots, n_k \rangle) &= \pi_0(\langle n_0, \dots, n_k \rangle - 1) + 1 \\
&= \pi_0(\pi(k, \dots) + 1 - 1) + 1 \\
&= k + 1
\end{aligned}$$

Proof of Lemma 2.26 (b)

Proof of (b):

Therefore

$$\begin{array}{ll} & (\langle n_0, \dots, n_k \rangle)_i \\ & = & \pi_i^{k+1}(\pi_1(\langle n_0, \dots, n_k \rangle - 1)) \\ & = & \pi_i^{k+1}(\pi_1(1 + \pi(k, \pi^{k+1}(n_0, \dots, n_k)) - 1)) \\ & = & \pi_i^{k+1}(\pi^{k+1}(n_0, \dots, n_k)) \end{array}$$

 Lem 2.24 (a)
$$= & n_i$$

Proof of Lemma 2.26 (c)

Proof of (c):

Show
$$x = \langle (x)_0, \dots, (x)_{\mathsf{lh}(x)-1} \rangle$$
.

Case
$$x=0$$
.

$$\mathsf{Ih}(x) = 0$$
. Therefore $\langle (x)_0, \dots, (x)_{\mathsf{Ih}(x)-1} \rangle = \langle \rangle = 0 = x$.

Case x > 0.

Let
$$x - 1 = \pi(l, y)$$
.

Then lh(x) = l + 1, $(x)_i = \pi_i^{l+1}(y)$ and therefore

$$\langle (x)_0, \dots, (x)_{\mathsf{lh}(x)-1} \rangle$$

$$= \langle \pi_0^{l+1}(y), \dots, \pi_l^{l+1}(y) \rangle$$

$$= \pi(l, \pi^{l+1}(\pi_0^{l+1}(y), \dots, \pi_l^{l+1}(y))) + 1$$

Lem 2.24 (b)
$$= \pi(l, y) + 1$$
 $= x$

Encoding of Finite Sets, Strings

Informal Lemma

If A is a finite non-empty set, then A and A^* have computables encoding into \mathbb{N} .

Proof of the Informal Lemma

Assume

$$A = \{a_0, \dots, a_n\}$$

where $a_i \neq a_j$ for $i \neq j$, $n \geq 0$.

Define

$$\operatorname{encode}_A : A \to \mathbb{N}$$
 $\operatorname{encode}_A(a_i) = i$.

Define

$$\operatorname{decode}_A: \mathbb{N} \to A$$
 $\operatorname{decode}_A(i) := a_i \text{ if } i \leq n$
 $\operatorname{decode}_A(i) := a_0 \text{ if } i > n.$

Proof of the Informal Lemma

• $encode_A$ and $decode_A$ are in an intuitive sense computable, and

$$decode_A(encode_A(a)) = a$$

- Therefore A has a computable encoding into \mathbb{N} ,
- ▶ Therefore A^* has as well a computable encoding into \mathbb{N} .

Remark: One easily sees that the encoding obtained by this proof is

$$\operatorname{encode}_{A^*}: A^* \to \mathbb{N},$$

 $\operatorname{encode}_{A^*}(a_0, \dots, a_n) = \langle \operatorname{encode}_A(a_0), \dots, \operatorname{encode}_A(a_n) \rangle$

Theorem 2.27

Theorem 2.27

- (a) \mathbb{N}^k and \mathbb{N}^* are countable.
- (b) If A is countable, so are A^k , A^* .
- (c) If A, B are countable, so is $A \times B$.
- (d) If A_n are countable sets for $n \in \mathbb{N}$, so is $\bigcup_{n \in \mathbb{N}} A_n$.
- (e) Q, the set of rational numbers, is countable.

Proof of Theorem 2.27 (a)

- $\mathbb{N}^0 = \{()\}$ is finite therefore countable.
- For k > 0

$$\pi^k: \mathbb{N}^k \to \mathbb{N}$$

is a bijection.

The function

$$\lambda x.\langle x\rangle:\mathbb{N}^*\to\mathbb{N}$$

is a bijection.

Proof of Theorem 2.27 (b)

- **●** To be shown: If A is countable, so are A^k , A^* .
- Assume A is countable.
- We show first that A^* is countable:
- There exists $encode_A : A \to \mathbb{N}$, $encode_A$ injective.
- Define

$$f: A^* \to \mathbb{N}^*,$$

$$f(a_0, \dots, a_{k-1}) := (\operatorname{encode}_A(a_0), \dots, \operatorname{encode}_A(a_{k-1}))$$

- f is injective as well, \mathbb{N}^* is countable, so by Corollary 2.13 A^* is countable.
- $A^k \subset A^*$, so A^k is countable as well.

Proof of Theorem 2.27 (c)

- Assume A, B countable.
- Then there exist injections

$$encode_A : A \to \mathbb{N}$$

 $encode_B : B \to \mathbb{N}$

Define

$$f: (A \times B) \to \mathbb{N}^2,$$

 $f(a,b) := (\operatorname{encode}_A(a), \operatorname{encode}_B(b))$

• f is injective, \mathbb{N}^2 is countable, so $A \times B$ is countable as well.

Proof of Theorem 2.27 (d)

- Assume A_n are countable for $n \in \mathbb{N}$.
- Show

$$A := \bigcup_{n \in \mathbb{N}} A_n$$

is countable as well.

• If all A_n are empty, so is

$$\bigcup_{n\in\mathbb{N}} A_n$$

and therefore countable.

• Assume now A_{k_0} is non-empty for some k_0 .

Proof of Theorem 2.27 (d)

 A_n are countable Show $\bigcup_{n\in\mathbb{N}} A_n$ is countable.

- **●** By replacing empty A_l by A_{k_0} , we get a sequence of non-empty sets $(A_n)_{n \in \mathbb{N}}$, s.t. their union is the same as A.
- So we can assume without loss of generality $A_n \neq \emptyset$ for all n.
- A_n are countable and non-empty, so there exist $f_n: \mathbb{N} \to A_n$ surjective.

Proof of Theorem 2.27 (d)

 $f_n: \mathbb{N} \to A_n$ surjective Show $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

Then

$$f: \mathbb{N}^2 \to \bigcup_{n \in \mathbb{N}} A_n$$
,
 $f(n,m) := f_n(m)$

is surjective as well.

ullet N² is countable, so by Corollary 2.15 A is countable as well.

Proof of Theorem 2.27 (e)

- To be shown: Q is countable.
- We have $\mathbb{Z} \times \mathbb{N}$ is countable, since \mathbb{Z} and \mathbb{N} are countable.
- Let

$$A := \{(z, n) \in \mathbb{Z} \times \mathbb{N}, n \neq 0\} .$$

- $A \subseteq \mathbb{Z} \times \mathbb{N}$, therefore A is countable as well.
- Define

$$g : A \to \mathbb{Q} ,$$

$$g(z,n) := \frac{z}{n} .$$

• g is surjective, A countable, therefore by Corollary 2.15 $\mathbb Q$ is countable as well.

(f) Partial Functions

- ▶ A partial function $f: A \xrightarrow{\sim} B$ is the same as a function $f: A \to B$, but f(a) might not be defined for all $a \in A$.
- Key example: function computed by a computer program:
 - Program has some input a ∈ A and possibly returns some b ∈ B.
 (We assume that program does not refer to global variables).
 - If the program applied to $a \in A$ terminates and returns b, then f(a) is defined and equal to b.
 - If the program applied to $a \in A$ does not terminate, then f(a) is undefined.

Examples of Partial Functions

Other Examples:

- $f: \mathbb{R} \xrightarrow{\sim} \mathbb{R}, f(x) = \frac{1}{x}$: f(0) is undefined.
- $g: \mathbb{R} \xrightarrow{\sim} \mathbb{R}, \ g(x) = \sqrt{x}$: g(x) is defined only for $x \geq 0$.

Definition of Partial Functions

Definition 2.28

- **●** Let A, B be sets. A partial function f from A to B, written $f: A \xrightarrow{\sim} B$, is a function $f: A' \to B$ for some $A' \subseteq A$.

 A' is called the domain of f, written as A' = dom(f).
- Let $f: A \xrightarrow{\sim} B$.
 - f(a) is defined, written as $f(a) \downarrow$, if $a \in dom(f)$.
 - Let $b \in \mathbb{N}$. $f(a) \simeq b$ (f(a) is partially equal to b)

 : $\Leftrightarrow f(a) \downarrow \land f(a) = b$.

Terms formed from Partial Function

- We want to work with terms like f(g(2), h(3)), where f, g, h are partial functions.
- **Question:** what happens if g(2) or h(3) is undefined?
 - There is a theory of partial functions, in which f(g(2),h(3)) might be defined, even if g(2) or h(3) is undefined.
 - Makes senses for instance for the function $f: \mathbb{N}^2 \xrightarrow{\sim} \mathbb{N}$, f(x,y) = 0.
 - Theory of such functions is more complicated.

Strict vs. Non-strict Functions

- Functions, which are defined, even if some of its arguments are undefined, are called non-strict.
- Functions, which are defined only if all of its arguments are defined are called strict.

Call-By-Value

- Strict function are obtained by "call-by-value" evaluation.
 - Call-by-value means that before the value of a function applied to arguments, is computed, the arguments of the function are evaluated.
 - If we treat undefinedness as non-termination, then all functions computed by call-by-value will be strict.
 - ▶ There is as well finite error, e.g. the error if a division by 0 occurs. This kind of undefinedness will be handled in a non-strict way by many programming languages.
 - Most programming languages (including practially all imperative and object-oriented languages), use call-by-value evaluation.

Call-By-Name

- Non-strict functions are obtained by "call-by-name" evaluation:
 - The arguments of a function are evaluated only if they are needed in the computation of f.
 - Haskell uses call-by-name-evaluation.
 - Therefore functions in Haskell are in general non-strict.

- Let $f: \mathbb{N}^2 \xrightarrow{\sim} \mathbb{N}$, f(x,y) = x.
- Let t be an undefined term, e.g. g(0), where $g: \mathbb{N} \xrightarrow{\sim} \mathbb{N}$, g(x) := g(x).
 - So the recursion equation of g(x) doesn't terminate.
- With call-by-name, the term f(2,t) evaluates to 2, since we never need to evaluate t.
- ▶ With call-by-value, first t is evaluated, which never terminates, so $f(2,t)\uparrow$.
- In our setting, functions are strict, so f(2,t) as above is undefined.

Terms formed from Partial Function

- In this lecture, functions will always be strict.
- Therefore, a term like f(g(2), h(3)) is defined only, if g(2) and h(3) are defined, and if f applied to the results of evaluating g(2) and h(3) is defined.
- f(g(2), h(3)) is evaluated as for ordinary functions: We first compute g(2) and h(3), and then evaluate f applied to the results of those computations.

- \perp
- (pronounced bottom) is a term which is always undefined.
- **●** So $\bot \downarrow$ does not hold.

Terms formed from Partial Function

Definition 2.29

- **▶** For expressions t formed from constants, \bot , variables and partial functions we define whether $t \downarrow$, and whether $t \simeq b$ holds (for a constant b):
 - If t = a is a constant, then $t \downarrow$ holds always and $t \simeq b :\Leftrightarrow a = b$.
 - If $t = \bot$, then neither $t \downarrow$ not $t \simeq b$ do hold.
 - If t = x is a variable, then $t \downarrow$ holds always, $t \simeq b :\Leftrightarrow x = b$.

$$f(t_1, \dots, t_n) \simeq b :\Leftrightarrow \exists a_1, \dots, a_n. t_1 \simeq a_1 \wedge \dots \wedge t_n \simeq a_n$$

 $\wedge f(a_1, \dots, a_n) \simeq b$.
 $f(t_1, \dots, t_n) \downarrow :\Leftrightarrow \exists b. f(t_1, \dots, t_n) \simeq b$

Remark

Note that variables are always considered as being defined:

$$x\downarrow$$

One can easily observe

$$t\downarrow \Leftrightarrow \exists x.t \simeq x$$

Terms formed from Partial Function

- \bullet $s\uparrow:\Leftrightarrow \neg(s\downarrow)$.
- ullet We define for expressions s,t formed from constants and partial functions

$$s \simeq t : \Leftrightarrow (s \downarrow \leftrightarrow t \downarrow) \land (s \downarrow \rightarrow \exists a, b.s \simeq a \land t \simeq b \land a = b)$$

- t is total means $t \downarrow$.
- A function $f: A \xrightarrow{\sim} B$ is total, iff $\forall a \in A.f(a) \downarrow$ (or, equivalently, dom(f) = A).

Remark:

Total partial functions are ordinary (non-partial) functions.

Quantifiers

Remark:

Quantifiers always range over defined elements. So by $\exists m. f(n) \simeq m$ we mean: there exists a defined m s.t. $f(n) \simeq m$.

So from $f(n) \simeq g(k)$ we cannot conclude $\exists m. f(n) \simeq m$ unless $g(k) \downarrow$.

Remark 2.30

Remark 2.30

- (a) If a, b are constants, $s \simeq a$, $s \simeq b$, then a = b.
- (b) For all terms we have $t \downarrow \Leftrightarrow \exists a.t \simeq a$.

(c)
$$f(t_1, \ldots, t_n) \downarrow \Leftrightarrow \exists a_1, \ldots, a_n. t_1 \simeq a_1 \wedge \cdots \wedge t_n \simeq a_n \wedge f(a_1, \ldots, a_n) \downarrow .$$

- **●** Assume $f: \mathbb{N} \xrightarrow{\sim} \mathbb{N}$, $dom(f) = \{n \in \mathbb{N} \mid n > 0\}$. f(n) := n 1 for $n \in dom(f)$.
- Let $g: \mathbb{N} \xrightarrow{\sim} \mathbb{N}$, $dom(g) = \{0, 1, 2\}$, g(n) := n + 1. Then:
- $f(1) \downarrow$, $f(0)\uparrow$, $f(1) \simeq 0$, $f(0) \not\simeq n$ for all $n \in \mathbb{N}$.
- $\underbrace{ g(\underline{f(0)}) \uparrow}_{\uparrow} \text{ , since } f(0) \uparrow.$
- $\underbrace{g(f(1))}_{\simeq 0} \downarrow \text{, since } f(1) \downarrow \text{, } f(1) \simeq 0 \text{, } g(0) \downarrow \text{.}$
- $g(\underbrace{f(4)})\uparrow$, since $f(4)\downarrow$, $f(4)\simeq 3$, but $g(3)\uparrow$.

```
f:\mathbb{N}\stackrel{\sim}{\to}\mathbb{N}, \mathrm{dom}(f)=\{n\in\mathbb{N}\mid n>0\}, f(n):=n-1 for n\in\mathrm{dom}(f). g:\mathbb{N}\stackrel{\sim}{\to}\mathbb{N}, \mathrm{dom}(g)=\{0,1,2\}, g(n):=n+1.
```

- $g(f(0)) \simeq f(0)$, since both expressions are undefined.
- $\underbrace{g(f(1))}_{\simeq 1} \simeq \underbrace{f(g(1))}_{\simeq 1} \text{, since both sides are defined and equal to 1.}$
- $g(f(0)) \not\simeq f(g(0))$, since the left hand side is undefined, the right hand side is defined.

```
f:\mathbb{N}\stackrel{\sim}{\to}\mathbb{N}, \mathrm{dom}(f)=\{n\in\mathbb{N}\mid n>0\}, f(n):=n-1 for n\in\mathrm{dom}(f). g:\mathbb{N}\stackrel{\sim}{\to}\mathbb{N}, \mathrm{dom}(g)=\{0,1,2\}, g(n):=n+1.
```

• $\underbrace{f(f(2))}_{\simeq 0} \not\simeq \underbrace{f(2)}_{\simeq 1}$, since both sides evaluate to different (defined) values.

 $f:\mathbb{N}\stackrel{\sim}{ o} \mathbb{N}$, $\mathrm{dom}(f)=\{n\in\mathbb{N}\mid n>0\}$, f(n):=n-1 for $n\in\mathrm{dom}(f)$. $g:\mathbb{N}\stackrel{\sim}{ o} \mathbb{N}$, $\mathrm{dom}(g)=\{0,1,2\}$, g(n):=n+1.

- +, · etc. can be treated as partial functions. So for instance
 - $f(1) + f(2) \downarrow$, since $f(1) \downarrow$, $f(2) \downarrow$, and + is total.
 - $\underbrace{f(1)}_{\sim 0} + \underbrace{f(2)}_{\sim 1} \simeq 1$
 - $f(0) + f(1)\uparrow$, since $f(0)\uparrow$.

Definition

Assume $f: \mathbb{N}^n \xrightarrow{\sim} \mathbb{N}$.

(a) The range of f, in short ran(f) is defined as follows:

$$\operatorname{ran}(f) := \{ y \in \mathbb{N} \mid \exists \vec{x} . (f(\vec{x}) \simeq y) \} .$$

(b) The graph of f is the set G_f defined as

$$G_f := \{ (\vec{x}, y) \in \mathbb{N}^{n+1} \mid f(\vec{x}) \simeq y \}$$
.

Remark on G_f

- The notion "graph" used here has nothing to do with the notion of "graph" in graph theory.
- The graph of a function is essentially the graph we draw when visualising f.

Remark on G_f

Example:

$$f: \mathbb{N} \stackrel{\sim}{\to} \mathbb{N}$$
 , $f(x) = \left\{ egin{array}{ll} rac{x}{2}, & \mbox{if x even,} \\ \perp, & \mbox{if x is odd.} \end{array}
ight.$

We can draw f as follows:

Remark on G_f

In this example we have

$$G_f = \{(0,0), (2,1), (4,2), (6,3), \ldots\}$$

These are exactly the coordinates of the crosses in the picture:

