
Section 2

Encoding of Data Types into N

There are lots of different data types available.

Some data types have finite size.
E.g. the type of Booleans {true, false}.

Some data types have infinite size but are still “small”.
E.g. the type of natural numbers N = {0, 1, 2, . . . , }.
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Encoding of Data Types into N

Some data types are “big”.
E.g. the set of subsets P(N) of N.
Subsets of N have in general no finite description.

Some are finite (e.g. {0, 1, 3}).
Some can be described by formulae
· E.g. the set of even numbers is

{n ∈ N | ∃m ∈ N.n = 2m} .

But there are subsets which cannot be described
by formulae.
There is no way of associating a finite description
to all elements of P(N).
· This will be shown in this section.
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Size and Computability
We can introduce a notion of computability for finite and
for small infinite data types.

E.g. it makes sense to compute certain functions
mapping natural numbers to natural numbers.

We cannot introduce in general a notion of
computability for big data types.

We cannot even represent its elements on the
computer.
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Size and Computability
There are notions of computability for certain “big data
types” which make use of approximations of elements
of such data types.

Topic of intensive research in Swansea esp. of Ulrich
Berger, Jens Blanck, Monika Seisenberger, John
Tucker.
One considers especially R and sets of functions
(E.g. N → N, (N → N) → N).
Not part of this lecture.
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Topic of this Section
In this Section we will make precise the notion of size of
a set.

Notion of “cardinality” and “equinumerous”.
We will introduce a hierarchy of sizes.

We will be able to distinguish between sizes of
different “big” sets.

Countable sets will be the sets, which were called
“small” above.

This notion will include the finite sets.
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Notions of Computability
We will later introduce computability on N.

Computability on countable sets will in this section be
reduced to computability on N.
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Structure of this Section
(a) Mathematical background.

(b) Cardinality.

(c) Countable sets.

(d) Reducing computability to N.

(e) Encoding of some data types into N.

(f) Further mathematical background: Partial
functions.
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(a) Mathematical Background

Some Standard Sets
N is the

::::

set
:::

of
::::::::::

natural
::::::::::::

numbers :

N := {0, 1, 2, . . .} .

Note that 0 is a natural number.
When counting, we start with 0:

The element no. 0 of a sequence is what is usually
called the first element:
E.g., in x0, . . . , xn−1, x0 is the first variable.
The element no. 1 of a sequence is what is usually
called the second element.
E.g., in x0, . . . , xn−1, x1 is the second variable.
etc.
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Some Standard Sets
Z is the

::::

set
:::

of
:::::::::::

integers :

Z
:

:= N ∪ {−n | n ∈ N} .

So
Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . . , }
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Some Standard Sets
Q is the

::::

set
:::

of
::::::::::::

rationals , i.e.

Q
::

:= {x

y
| x ∈ Z, y ∈ N, y 6= 0} .

So Q contains 2
17 , −3

5 , −2
3 , etc.

As usual we identify equal fractions e.g.

2

4
=

1

2
.

We write − n
m instead of −n

m , e.g. −1
2 = −1

2 .

As usual z
−m := − z

m , e.g. 1
−2 := −1

2 .
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Some Standard Sets
R
:

is the
::::

set
:::

of
::::::

real
::::::::::::

numbers .

E.g.
0.333333 · · · ∈ R,√

2 ∈ R,
−
√

2 ∈ R,
π ∈ R.
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Some Standard Sets
Assume A, B are sets.

A × B
:::::::

is the
::::::::::

product
:::

of
:::

A
::::::

and
::

B:

A × B := {(x, y) | x ∈ A ∧ y ∈ B}

A → B
::::::::

is the set of functions f : A → B.
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Some Standard Sets
Assume A is a set, k ∈ N.
Then Ak

:::
is the

::::

set
:::

of
:::::::::::

k-tuples
::::

of
::::::::::::

elements
:::

of
:::

A or

:::::::

k-fold
:::::::::::::

Cartesian
:::::::::::

product
:::

of
:::

A defined as follows:

Ak := {(x0, . . . , xk−1) | x0, . . . , xk−1 ∈ A} .

Note that
A0 = {()}

We identify A1 with A.
So we don’t distinguish between (x) and x.

Essentially, Ak = A × · · · × A︸ ︷︷ ︸
k times

.
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A∗

We define

A∗
:::

:= {(a0, . . . , ak−1) | k ∈ N, a0, . . . , ak−1 ∈ A}

So A∗ is
the

::::

set
:::

of
:::::::::::::::

sequences
:::

of
:::::::::::::

elements
:::

of
:::

A (of arbitrary
length),
also called the set of

:::::

lists
::::

of
::

A,
or

::::::::::::::::::

A-Kleene-Star .

So A∗ is the union of all Ak for k ∈ N, i.e.

A∗ =
⋃

k∈N

Ak
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A∗

Remark:

A∗ can be considered as the set of strings having letters
in the alphabet A.

E.g. if
A = {a, b, c, . . . , z} ,

then A∗ is the set of strings formed from lower case
letters.
So (r, e, d) stands for the string “red”.

Ak is the set of strings of length k from alphabet A.
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P(X)

P(X), the powerset of X, is the set of all subsets of X.

For finite sets X, the power set of X will be finite:

P({0, 1, 2}) = {{},
{0}, {1}, {2},
{0, 1}, {0, 2}, {1, 2}
{0, 1, 2}}

For infinite sets X we will see that the X is big
(“uncountable”).

Therefore we cannot write down the elements of P(X)
for such X.
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Exercise
Write down P({0, 1, 2, 3}) and P({0, 1, 2, 3, 4}).
Make sure you have the right number of elements:
If a set has n elements, then P(X) has 2n elements.
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Image of f

Definition 2.1
Let f : A → B, C ⊆ A.

(a) f [C]
::::

:= {f(a) | a ∈ C} is called the
::::::::

image
:::

of
:::

C
::::::::

under
::

f .

(b) The image of A under f (i.e. f [A]) is called the

::::::::

image
:::

of
::

f .
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Image of f

A

a

b

c

d

f

h

g

f

e
B
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Image of f

A B
e

f

g

h

f

C

b

a

d

c

Image of C under f .
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Image of f

A B

g

h

C

b

a

f

f[C]

e

c

d

Image of C under f .

f [C] = {e, f}

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a) 2-19



Image of f

A B

a

b

c

d h

f

f[A]

e

f

g

Image of f .

f [A] = {e, f, g}
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Injective/Surjective/Bijective
Definition 2.2
Let A, B be sets, f : A → B.

(a) f is
:::::::::::

injective or
:::

an
::::::::::::

injection or
::::::::::::::

one-to-one , if
f applied to different elements of A has different results:
∀a, b ∈ A.a 6= b → f(a) 6= f(b).

(b) f is
:::::::::::::

surjective or
::

a
:::::::::::::

surjection or
::::::

onto , if
every element of B is in the image of f :
∀b ∈ B.∃a ∈ A.f(a) = b.

(c) f is
:::::::::::

bijective or
::

a
:::::::::::

bijection or a

::::::::::::::

one-to-one
::::::::::::::::::::::

correspondence
if it is both surjective and injective.
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Visualisation of “Injective”
If we visualise a function by having arrows from elements
a ∈ A to f(a) ∈ B then we have the following:

A function is injective , if for every element of B there is
at most one arrow pointing to it :

a

b

c

d

e

a

b

c

d

e

injective non-injective

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a) 2-21



Visualisation of “Surjective”
A function is surjective , if for every element of B there
is at least one arrow pointing to it :

a

b

c

d

e

a

b

c

d

f

e

surjective non-surjective
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Visualisation of “Bijective”
A function is bijective , if for every element of B there is
exactly one arrow pointing to it :

a

b

c

d

e

f

bijective

Note that, since we have a function, for every element
of A there is exactly one arrow originating from there.
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Remark
The injective, surjective, bijective functions are closed
under composition:

If f : A → B and g : B → C are injective (or surjective
or bijective), then g ◦ f : A → C is injective
(surjective, bijective, respectively) as well.

Proof: See mathematics lectures or easy exercise.
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Infinite Sequences
An infinite sequence of elements of a set B is an
enumeration of certain elements of B by natural
numbers.

E.g. the sequence of even numbers is

(0, 2, 4, 6, 8, . . .)

We might repeat elements, e.g.

(0, 2, 0, 2, 0, 2, . . .)
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Infinite Sequences
Sequences of natural numbers are written as

(an)n∈N

which stands for
(a0, a1, a2, . . .)

So the sequence of even numbers is

(0, 2, 4, 6, . . .)

= (a0, a1, a2, . . .)

= (an)n∈N

where
an = 2n
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Infinite Sequences
A sequence

(an)n∈N

of elements in A is nothing but a function f : N → A, s.t.

f(n) = an

.

In fact we will identify functions f : N → A with infinite
sequences of elements of A.
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Infinite Sequences
So the following denotes the same mathematical object:

The function f : N → N, f(n) =

{
0 if n is odd,
1 if n is even.

The sequence (1, 0, 1, 0, 1, 0, . . .).

The sequence (an)n∈N where an =

{
0 if n is odd,
1 if n is even.
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Infinite Sequences
Occasionally, we will enumerate sequences by different
index sets.

E.g. we consider a sequence indexed by non-zero
natural numbers

(an)n∈N\{0}

or a sequence indexed by integers

(az)z∈Z

A sequence (ax)x∈B of elements in A is nothing but the
function

f : B → A , f(x) = ax
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λ-Notation
λx.t means in an informal setting the function mapping
x to t.
E.g.

λx.x + 3 is the function f s.t. f(x) = x + 3.
λx.

√
x is the function f s.t. f(x) =

√
x.

This notation used, if one one wants to introduce a
function without giving it a name.

Domain and codomain not specified – when this
notation is used, this will be clear from the context.
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The “dot”-notation.
In expressions like

∀x.A(x) ∧ B(x)

the quantifier (∀x.) is as far as possible:
In

∀x.A(x) ∧ B(x)

∀x. refers to

A(x) ∧ B(x)
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The “dot”-notation.
In

(A → ∀x.B(x) ∧ C(x)) ∨ D(x)

∀x refers
only to

B(x) ∧ C(x)

This is the maximum scope possible
It doesn’t make sense to include “) ∨ D(x)” into the
scope.
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The “dot”-notation.
In

∃x.A(x) ∧ B(x)

∃x refers to

A(x) ∧ B(x)

In
(A ∧ ∃x.B(x) ∨ C(x)) ∧ D(x)

∃x refers to

B(x) ∨ C(x)
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The “dot”-notation.
This applies as well to λ-expressions.

So
λx.x + x

is the function taking an x and returning x + x.
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Relations, Predicates and Sets
A

::::::::::::

predicate on a set A is a property P of elements of A.
In this lecture, A will usually be Nk for some k ∈ N,
k > 0.

We write P (a)
:::::

for “predicate P is true for the element a

of A”.

We often write “
:::::

P (x)
::::::::

holds ” for “P (x) is true”.
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Relations, Predicates and Sets
We can use P (a) in formulas. Therefore:

¬P (a)
:::::::

(“not P (a)”) means that “P (a) is not true”.

P (a) ∧ Q(b)
:::::::::::::

means that “both P (a) and Q(b) are true”.

P (a) ∨ Q(b)
:::::::::::::

means that “P (a) or Q(b) is true”.

(We have inclusive or: if both P (a) and Q(b) are true,
then P (a) ∨ Q(b) is true as well).
∀x ∈ B.P (x)
::::::::::::::

means that “for all elements x of the set

B P (x) is true”.
∃x ∈ B.P (x)
::::::::::::::

means that “there exists an element x of

the set B s.t. P (x) is true”.
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Relations, Predicates and Sets
In this lecture, “relation” is another word for “predicate”.

We identify a predicate P on a set A with {x ∈ A | P (x)}.
Therefore predicates and sets will be identified.
E.g., if P is a predicate,

x ∈ P
::::::

stands for x ∈ {x ∈ A | P (x)},

which is equivalent to P (x),
∀x ∈ P.ϕ(x)
:::::::::::::

for a formula ϕ stands for

∀x.P (x) → ϕ(x).
etc.
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Relations, Predicates and Sets
An

:::::::

n-ary
::::::::::

relation or predicate on N is a relation
P ⊆ Nn.
A

:::::::

unary ,
::::::::

binary ,
:::::::::

ternary relation on N is a 1-ary, 2-ary,
3-ary relation on N, respectively.

For instance < and equality are binary relations on
N.

An
:::::::

n-ary
:::::::::::

function on N is a function f : Nn → N.
A

:::::::

unary ,
::::::::

binary ,
:::::::::

ternary function on N is a 1-ary, 2-ary,
3-ary function on N, respectively.
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~x, ~y etc.
In many expressions we will have arguments, to which
we don’t refer explicitly.
Example: Variables x0, . . . , xn−1 in

f(x0, . . . , xn−1, y) =

{
g(x0, . . . , xn−1), if y = 0,
h(x0, . . . , xn−1), if y > 0.

We abbreviate x0, . . . , xn−1, by ~x.

Then the above can be written shorter as

f(~x, y) =

{
g(~x), if y = 0,
h(~x), if y > 0.

In general, ~x stands for x0, . . . , xn−1, where the number
of arguments n is clear from the context.
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Examples
If

f : Nn+1 → N

then in f(~x, y),
~x needs to stand for n arguments.
Therefore

~x = x0, . . . , xn−1

If
f : Nn+2 → N

then in f(~x, y),
~x needs to stand for n + 1 arguments,
so

~x = x0, . . . , xn
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Examples
If P is an n + 4-ary relation, then in P (~x, y, z),
~x stands for

x0, . . . , xn+1

Similarly, we write ~y for

y0, . . . , yn−1

where n is clear from the context.

Similarly for
~z, ~n, ~m, . . .
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Notation

∀~x ∈ N.ϕ(~x)
:::::::::::::

stands for

∀x0, . . . , xn−1 ∈ N.ϕ(x0, . . . , xn−1)

where the number of variables n is implicit (and usually
unimportant).

∃~x ∈ N.ϕ(~x)
:::::::::::::

is to be understood similarly.
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Notation

{~x ∈ Nn | ϕ(~x)}
is to be understood as

{(x0, . . . , xn−1) ∈ Nn | ϕ(x0, . . . , xn−1)}

{(~x, y, z) ∈ Nn+2 | ϕ(~x, y, z)}
is to be understood as

{(x0, . . . , xn−1, y, z) ∈ Nn+2 | ϕ(x0, . . . , xn−1, y, z)}

Similar notations are to be understood analogously.
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(b) Cardinality

In this subsection, we will make precise the notion of
“small”, “big” sets above.

So we need a notion of size of a set.

For finite sets one can introduce a number for the size
of a set.

For infinite sets, introducing such numbers (cardinality)
is beyond the scope of this lectures

However, we can introduce a notion of relative size ,
namely what it means for one set to be
smaller/equal/greater in size than another set.

Equinumerous will mean “equal in size”.
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Number of Elements
Notation 2.3
If A is a finite set, let |A| be the number of elements in A.

Remark 2.4

One sometimes writes #A for |A|.
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Cardinality of Finite Sets
If A and B are finite sets, then |A| = |B|, if and only if there
is a bijection between A and B:

Bijection exists

a

b

c

d

e

f

No Bijection
?

a

b

c

d

e
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Cardinality of Finite Sets

No Bijection
?

a

b

c

d

e

The above can be generalized to arbitrary (possibly
infinite sets) as follows:
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Cardinality of Sets
Definition 2.5
Two sets A and B are

:::::::::::::::::::

equinumerous or
“
::::::

have
:::::

the
::::::::

same
::::::::::::::

cardinality ”, in mathematical notation

A ≈ B
:::::::

if there exists a bijection

f : A → B

Remark 2.6
If A and B are finite sets, then A ≈ B if and only A and B

have the same number of elements, i.e. |A| = |B|.
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Cardinality of infinite sets
However we have N and N ∪ {•}, where • is a new
element, are equinumerous.

f : N → N ∪ {•}, s.t.
f(0) = •, f(n + 1) = n

is a bijection.

Analogy with a hotel with infinite many rooms numbered
by natural numbers.

This hotel can always accomodate a new guest, by
moving every guest from room n to room n + 1, and
the new guest to room no. 0.
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Change of Notation
Until the academic year 2004/05, we used in lectures

“have the same cardinality” instead of
“equinumerous”,
and ' instead of ≈.

Note that ' is used (and was used) for partial
equality as well.
Change of notation in order to avoid the
overloading of notation.

Please take this into account when looking at old
exams and other lecture material.

Both notions occur as well in the literature and might be
used in other modules.
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Notion of Cardinality in Set Theory
In set theory there exists the notion of a cardinality ,
which is some kind of number (an ordinal ) which
measures the size of a set.

Then one can show:
A ≈ B iff the cardinality expressed as an ordinal
for A and B is the same.

However, this notion is beyond the scope of this
module.
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≈ as an Equivalence Relation
Lemma 2.7
≈ is an equivalence relation, i.e. for all sets A, B, C we
have:

(a) Reflexivity. A ≈ A.

(b) Symmetry. If A ≈ B, then B ≈ A.

(c) Transitivity. If A ≈ B and B ≈ C, then A ≈ C.

Proof:
(a): The function id : A → A, id(a) = a is a bijection.
(b): If f : A → B is a bijection, so is its inverse f−1.

(c): If f : A → B and g : B → C are bijections, so is the

composition g ◦ f : A → C.
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Meaning of the above
That ≈ is an equivalence relation means that it has
properties we expect of a relation expressing that two
sets have the same size:

Every set has the same size as itself

A ≈ A

If A has the same size as B, then B has the same
size as A.

A ≈ B → B ≈ A

If A has the same size as B and B has the same
size as C then A has the same size as C:

(A ≈ B ∧ B ≈ C) → A ≈ C
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Meaning of the above
If we wrongly defined A and B to have the same size if
there is an injection from A to B then symmetry
wouldn’t hold.

So there is something to be shown, the language
notation we use only suggests that the above
mentioned properties hold.

Don’t let yourself be deceived by language!
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Cardinality of the Power Set
Theorem 2.8
A set A and its power set P(A) := {B | B ⊆ A} are never
equinumerous:

A 6≈ P(A)
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Stronger Result
In fact we will show something even stronger:
For any set A the following holds:
there is no surjection

C : A → P(A)

If this is shown, then we know that there is no bijection
C : A → P(A), A 6≈ P(A).

Remark on Notation:
We write here the capital letter C instead of the
usual letters f , g etc. for functions, in order to flag
that C(a) is a set.
For notational convenience we write Ca instead of
C(a), so Ca is “the ath set enumerated by the
function C”.
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Proof
A typical diagonalisation argument.

First consider the case A = N.

Assume C : N → P(N) is a surjection.

We define a set D ⊆ N s.t. D 6= Cn for every n ∈ N.

D = Cn will be violated at element n:
If n ∈ Cn, we add n not to D, therefore
n ∈ Cn ∧ n 6∈ D.
If n 6∈ Cn, we add n to D, therefore n 6∈ Cn ∧ n ∈ D.

On the next slide we take as an example some function
C : N → P(N) and show how to construct a set D s.t.
Cn 6= D for all n ∈ N.
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
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Example

C0 = { 0, 1, 2, 3, 4, . . . }

D = { 0,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }

D = { 0,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }

D = { 0, 1,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }
C2 = { 1, 2, 3, . . . }

D = { 0, 1,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }
C2 = { 1, 2, 3, . . . }

D = { 0, 1, 2,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }
C2 = { 1, 2, 3, . . . }
C3 = { 0, 1, 3, 4, . . . }

D = { 0, 1, 2,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }
C2 = { 1, 2, 3, . . . }
C3 = { 0, 1, 3, 4, . . . }

D = { 0, 1, 2,
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }
C2 = { 1, 2, 3, . . . }
C3 = { 0, 1, 3, 4, . . . }

· · ·
D = { 0, 1, 2, . . . }

We were going through the diagonal in the above matrix.
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Example

C0 = { 0, 1, 2, 3, 4, . . . }
C1 = { 0, 1, 2, 4, . . . }
C2 = { 1, 2, 3, . . . }
C3 = { 0, 1, 3, 4, . . . }

· · ·
D = { 0, 1, 2, . . . }

We were going through the diagonal in the above matrix.

Therefore this proof is called a
::::::::::::::::::::

diagonalisation
::::::::::::::

argument.
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Proof
So we define

D := {n ∈ N | n 6∈ Cn} .

We have D 6= Cn for all n:
Assume D = Cn.

If n ∈ D , then by the definition of D we have n 6∈ Cn,
therefore by D = Cn we get n 6∈ D, a contradiction.

If n 6∈ D, then by the definition of D we have n ∈ Cn,
therefore by D = Cn we get n ∈ D, a contradiction.

Therefore we obtain a contradiction in both cases, D 6= Cn.

Therefore D is not in the image of C, so C is not a surjection,

a contradiction.
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Formal Proof ( A = N)
In short, the above argument for A = N reads as follows:
Assume C : N → P(N) is a surjection.
Define

D := {n ∈ N | n 6∈ Cn} .

Since C is surjective, D must be in the image of C.
Assume D = Cn.
Then we have

n ∈ D
Definition of D⇔ n 6∈ Cn

D=Cn⇔ n 6∈ D

a contradiction
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General Situation
For general A, the proof is almost identical:
Assume C : A → P(A) is a surjection.
We define a set D, s.t. D = Ca is violated for a:

D := {a ∈ A | a 6∈ Ca}
Since C is surjective, D must be in the image of C.
Assume D = Ca. Then we have

a ∈ D
Definition of D⇔ a 6∈ Ca

D=Ca⇔ a 6∈ D

a contradiction
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P(A) and A → Bool

Lemma 2.9 For every set A

P(A) ≈ (A → Bool) ≈ (A → {0, 1})

Remark: Note that we can identify the set of Booleans Bool
with {0, 1} by identifying

true with 1,

false with 0.

Therefore we get (A → Bool) ≈ (A → {0, 1}).
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Proof
Let for B ∈ P(A)

χ
B : A → {0, 1}

χ
B(x) :=

{
1 if x ∈ B,
0 if x 6∈ B.

χ
B is called the

::::::::::::::::::

characteristic
:::::::::::

function
:::

of
:::

B.

If we consider 0 as false and 1 as true, then we get

χ
B(x) =

{
true if x ∈ B,
false if x 6∈ B.

Therefore χ
B is the function, which determines

whether its argument is in B or not.
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Example: B = set of Odd Numbers

2

4

6

0

0

1

1

3

5

χ
B(n) =

{
0 if n is even,
1 if n is odd.
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Proof
χ is a function from P(A) to A → {0, 1}, where we write
the application of χ to an element B as χ

B instead of
χ(B).

We show that χ is a bijection.
Then it follows that P(A) ≈ (A → {0, 1}).
Jump over rest of proof
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χ
B(x) :=

{
1 if x ∈ B,
0 if x 6∈ B.

χ has an inverse:
Define

χ−1 : (A → {0, 1}) → P(A)

χ−1(f) := {x ∈ A | f(x) = 1}
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χ and χ−1 are inverse

χ
B(x) :=

{
1 x ∈ B,

0 otherwise.

χ−1(f) := {x ∈ A | f(x) = 1}

We show that χ and χ−1 are inverse:

χ−1 ◦ χ is the identity:

If B ⊆ A, then

χ−1(χB) = {x ∈ A |χB(x) = 1}
= {x ∈ A | x ∈ B}
= B
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χ and χ−1 are inverse

χ
B(x) :=

{
1 x ∈ B,

0 otherwise.

χ−1(f) := {x ∈ A | f(x) = 1}

χ ◦ χ−1 is the identity:

If f : A → {0, 1}, then

χχ−1(f)(x) = 1 ⇔ x ∈ χ−1(f)

⇔ f(x) = 1
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χ and χ−1 are inverse

χ
B(x) :=

{
1 x ∈ B,

0 otherwise.

χ−1(f) := {x ∈ A | f(x) = 1}

and

χχ−1(f)(x) = 0 ⇔ x 6∈ χ−1(f)

⇔ f(x) 6= 1

⇔ f(x) = 0 .

Therefore χχ−1(f) = f .
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χ and χ−1 are inverse
It follows that χ is bijective and therefore

P(A) ≈ (A → {0, 1}) .

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b) 2-70



(c) Countable Sets
Definition 2.10

A set A is
:::::::::::::

countable , if it is finite or A ≈ N.

A set, which is not countable, is called
::::::::::::::::

uncountable .

Intuitively
uncountable sets are very big
countable sets are finite or small infinite sets.

Countable sets have at most the size of the N.
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Relationship to Cardinality
Intuitively (this can be made mathematically precise)
the cardinalities of sets start with the finite cardinalities
0, 1, 2, . . . corresponding to finite sets having 0, 1, 2, . . .
elements.

All these cardinalities are different (for finite sets A,B

we have A ≈ B iff A and B have the same number of
elements).

Then the next cardinality is that of N.

Then we have higher cardinalities like the cardinality of
P(N) (or R).
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Relationship to Cardinality

0

1

2

· · ·
N

P(N)

· · ·
Countable sets are the sets having cardinality less than
or equal the cardinality of N.

Which means they have cardinality of N or finite
cardinality.
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Examples of (Un)countable Sets
N is countable.

Z := {. . . ,−2,−1, 0, 1, 2, . . .} is countable.
We can enumerate the elements of Z in the following
way:
0,+1,−1,+2,−2,+3,−3,+4,−4, . . ..
So we have the following map:
0 7→ 0, 1 7→ +1, 2 7→ −1, 3 7→ +2, 4 7→ −2, etc.
This map can be described as follows:
g : N → Z,

g(n) :=

{
−n
2 if n is even,

n+1
2 if n is odd.

Exercise: Show that g is bijective.
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Illustration of Z is Countable

-2 -1 0 1 2 4 Z3
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Examples of (Un)countable Sets
P(N) is uncountable.

P(N) is not finite.
N 6≈ P(N).

P({1, . . . , 10}) is countable.
Since it is finite.
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Characterisation of Countable Sets
Lemma 2.11
A set A is countable, if and only if there is an injective map
g : A → N.

Remark 2.12
Intuitively, Lemma 2.11 expresses: A is countable, if we can
assign to every element a ∈ A a unique code f(a) ∈ N.
However, it is not required that each element of N occurs as
a code.
The code f(a) can be considered as a finite description of
a. So A is countable if we can give a unique finite
description for each of its element.
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Proof of Lemma 2.11, “ ⇒”
“⇒”:
Assume A is countable.
Show that there exists an injective function f : A → N.

Case A is finite:
Let A = {a0, . . . , an}, where ai are different.
We can define f : A → N, ai 7→ i.
f is injective.

Case A is infinite:
A is countable, so there is a bijection from A into N,
which is therefore injective.
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Proof of Lemma 2.11, “ ⇐”
“⇐”: Assume f : A → N is injective.
Show A is countable.
If A is finite, we are done.
Assume A is infinite. Then f is for instance something like
the following:

a

b

c

d

0

1

2

3

4

5

6

7

8

9

f
A N
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Proof of Lemma 2.11, “ ⇐”
In order to obtain a bijection g : A → N, we need to jump
over the gaps in the image of f :

a

b

c

d

0

1

2

3

4

5

6

7

8

9

0

1

2

3

A N N
f

g

The remaining (very interesting) proof will not be given in

the lecture. Jump over remaining proof.
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Proof of Lemma 2.11, “ ⇐”

a

b

c

d

0

1

2

3

4

5

6

7

8

9

0

1

2

3

A N N
f

g

f(a) = 1, which is the element number 0 in the image of
f .
g should instead map a to 0.
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Proof of Lemma 2.11, “ ⇐”

a

b

c

d

0

1

2

3

4

5

6

7

8

9

0

1

2

3

A N N
f

g

f(b) = 4, which is the element number 1 in the image of
f .
g should instead map b to 1. Etc.
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Proof of Lemma 2.11, “ ⇐”

a

b

c

d

0

1

2

3

4

5

6

7

8

9

0

1

2

3

A N N
f

g

1 is element number 0 in the image of f , because the
number of elements f(a′) below f(a) is 0.
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Proof of Lemma 2.11, “ ⇐”

a

b

c

d

0

1

2

3

4

5

6

7

8

9

0

1

2

3

A N N
f

g

4 is element number 1 in the image of f , because the
number of elements f(a′) below f(b) is 1.
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Proof of Lemma 2.11, “ ⇐”

a

b

c

d

0

1

2

3

4

5

6

7

8

9

0

1

2

3

A N N
f

g

So in general we define g : A → N.

g(a) := |{a′ ∈ A | f(a′) < f(a)}|
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Proof of Lemma 2.11, “ ⇐”

g(a) := |{a′ ∈ A | f(a′) < f(a)}|
g is well defined, since f is injective, so the number of
a′ ∈ A s.t. f(a′) < f(a) is finite.
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Proof of Lemma 2.11, “ ⇐”

g(a) = |{a′ ∈ A | f(a′) < f(a)}|
We show that g is a bijection:

g is injective:
Assume a, b ∈ A, a 6= b.
Show g(a) 6= g(b).
By the injectivity of f we have f(a) 6= f(b).
Let for instance f(a) < f(b).
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Proof of Lemma 2.11, “ ⇐”

.

.

.

.

.

.

.

.

.

.

.

.
g(b)

g(a)

A

f
g

NN

.

.

.

b

f(b)

.

.

.
f(a)

.

.

.

.

.

.
a

.

.

.
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Proof of Lemma 2.11, “ ⇐”

.

.

.

.

.

.

.

.

.

.

.

.
g(b)

g(a)

A

f
g

NN

.

.

.

b

f(b)

.

.

.
f(a)

.

.

.

.

.

.
a

.

.

.

Then

{a′ ∈ A | f(a′) < f(a)}
⊂
6= {a′ ∈ A | f(a′) < f(b)} ,
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Proof of Lemma 2.11, “ ⇐”

.

.

.

.

.

.

.

.

.

.

.

.
g(b)

g(a)

A

f
g

NN

.

.

.

b

f(b)

.

.

.
f(a)

.

.

.

.

.

.
a

.

.

.

therefore

g(a) = |{a′ ∈ A | f(a′) < f(a)}| < |{a′ ∈ A | f(a′) < f(b)}| = g(b) ,
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Proof of Lemma 2.11, “ ⇐”

.

.

.

.

.

.

.

.

.

.

.

.
g(b)

g(a)

A

f
g

NN

.

.

.

b

f(b)

.

.

.
f(a)

.

.

.

.

.

.
a

.

.

.

therefore

g(a) = |{a′ ∈ A | f(a′) < f(a)}| < |{a′ ∈ A | f(a′) < f(b)}| = g(b) ,

g(a) 6= g(b).
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Proof of Lemma 2.11, “ ⇐”

g(a) = |{a′ ∈ A | f(a′) < f(a)}|

g is surjective:
We define by induction on k for k ∈ N an element ak ∈ A

s.t. g(ak) = k. Then the assertion follows:
Assume we have defined already a0, . . . , ak−1.
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Proof of Lemma 2.11, “ ⇐”

A

f
g

...

.

.

.
.
.
.

a(k−1)

a0 f(a0)

k−1

0NN

.

.

.
f(a(k−1))

.

.

.

.

.
.

n.
.
.

k

a’

a

There exist infinitely many a′ ∈ A, f is injective, so there
must be at least one a′ ∈ A s.t. f(a′) > f(ak−1).
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Proof of Lemma 2.11, “ ⇐”

A

f
g

...

.

.

.
.
.
.

a(k−1)

a0 f(a0)

k−1

0NN

.

.

.
f(a(k−1))

.

.

.

.

.
.

n.
.
.

k

a’

a

There exists a′ ∈ A s.t. f(a′) > f(ak−1).

Let n be minimal s.t. n = f(a) for some a ∈ A and n >

f(ak−1).
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Proof of Lemma 2.11, “ ⇐”

A

f
g

...

.

.

.
.
.
.

a(k−1)

a0 f(a0)

k−1

0NN

.

.

.
f(a(k−1))

.

.

.

.

.
.

n.
.
.

k

a’

a

n minimal s.t. n = f(a′) for some a′ ∈ A, n > f(ak−1)

Let a be the unique element of A s.t. f(a) = n.
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Proof of Lemma 2.11, “ ⇐”

A

f
g

...

.

.

.
.
.
.

a(k−1)

a0 f(a0)

k−1

0NN

.

.

.
f(a(k−1))

.

.

.

.

.
.

n.
.
.

k

a’

a

n minimal s.t. n = f(a) for some a ∈ A, n > f(ak−1)
f(a) = n

{a′′ ∈ A | f(a′′) < f(a)} = {a′′ ∈ A | f(a′′) < f(ak−1)}∪{ak−1} .
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Proof of Lemma 2.11, “ ⇐”

A

f
g

...

.

.

.
.
.
.

a(k−1)

a0 f(a0)

k−1

0NN

.

.

.
f(a(k−1))

.

.

.

.

.
.

n.
.
.

k

a’

a

Therefore g(a) = |{a′′ ∈ A | f(a′′) < f(a)}|
= |{a′′ ∈ A | f(a′′) < f(ak−1)}| + 1

= g(ak−1) + 1 = k − 1 + 1 = k .

Let ak := a.
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Corollary
Corollary 2.13

(a) If B is countable and g : A → B injective,
then A is countable.

(b) If A is uncountable and g : A → B injective,
then B is uncountable.

(c) If B is countable and A ⊆ B, then A is countable.

Proof:

(a) If B is countable, there exists an injection f : B → N.
But then f ◦ g : A → N is an injection as well, therefore
A is countable.

(b): By (a). Why? (Exercise).

(c): By (a). (What is g?; exercise).
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Corollary (Cont.)
Corollary 2.13

(d) If A is uncountable and A ⊆ B, then B is uncountable.

(e) If A ≈ B, then A is countable if and only if B is
countable.

Proof:

(d): By (c). Why? (Exercise).

(e): By (a). Why ?

Remark:

A corollary is a lemma/theorem which is a direct
consequence of a more difficult lemma or theorem
shown before.
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Injection and Size
Intuitively we can say:

That there exists an injective function

f : A → B

means that the size of A is less than or equal to the
size of B.
That A ⊆ B means that there is an injection from A

into B.
So the size of A is less than or equal to the size of
B.
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Characterisation of Count. Sets, II
Lemma 2.14
A set A is countable, if and only if A = ∅ or there exists a
surjection h : N → A.

Remark: This explains the notion “countable”: A non-empty
set is countable if we can enumerate its elements
(repetitions are allowed).

2nd Remark: The empty set ∅ is countable, but there exists
no surjection h : N → ∅ – in fact there exists no function
h : N → ∅ at all.

Jump over Proof.
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Proof of Lemma 2.14
“⇒”: Assume A is countable. If A is empty we are done.
So assume A is non-empty.
Show there exists a surjection f : N → A.

Case A is finite.
Assume A = {a0, . . . , an}.
Define f : N → A,

f(k) :=

{
ak if k ≤ n ,
a0 otherwise .

f is clearly surjective.
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Proof of Lemma 2.14
Case A is infinite.
A is countable, so there exists a bijection from N to A,
which is therefore surjective.
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Proof of Lemma 2.14
“⇐”:

If A = ∅, then A is countable.

So assume A and

h : N → A is surjective

Show A is countable.

Define
g : A → N ,

g(a) := min{n | h(n) = a} .

g(a) is well-defined, since h is surjective:
There exists some n s.t. h(n) = a, therefore the
minimal such n is well-defined.
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Proof of Lemma 2.14

g : A → N ,

g(a) := min{n | h(n) = a}

It follows that for a ∈ A we have

h(g(a)) = a .

Therefore g is injective:
If g(a) = g(a′) then

a = h(g(a)) = h(g(a′)) = a′ .

Therefore g : A → N is an injection, and by Lemma
2.11, A is countable.
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Corollary
Corollary 2.15

(a) If A is countable and g : A → B surjective,
then B is countable.

(b) If B is uncountable and g : A → B surjective,
then A is uncountable.
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Proof of Corollary 2.15 (a)
To be shown: If A is countable, g : A → B is surjective,
then B is countable as well.

So assume A is countable, g : A → B is surjective.

If A is empty, then B is empty as well and therefore
countable.

(We need to treat A = ∅ as a special case, since in
that case there exists no surjection f : N → A as
assumed in the next step, even so A is countable).
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Proof of Corollary 2.15 (a)
Otherwise there exists a surjection

f : N → A

But then
g ◦ f : N → B

is a surjection as well,
therefore B is countable.
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Proof of Corollary 2.15 (b)
Follows by (a). Why?
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Surjectivion and Size
Intuitively we can say:

That there exists a surjective function

f : A → B

means that the size of A is greater than or equal to
the size of B.
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Examples of Uncountable Sets
Lemma 2.16
The following sets are uncountable:

(a) F := {f | f : N → {0, 1}}.

(b) G := {f | f : N → N}.

(c) The set of real numbers R.

Proof of (a): By Lemma 2.9 P(N) ≈ (N → {0, 1}).
P(N) is uncountable, therefore N → {0, 1} as well.

Proof of (b): F ⊆ G, F is uncountable, so G is
uncountable.
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Idea of Proof of Lemma 2.16 (c)
In order to show R is uncountable, it suffices to show
that the half open interval [0, 1[
(i.e. {x ∈ R | 0 ≤ x < 1})
is uncountable).

Elements of [0, 1[ are in binary representation of the
form

(0.a0a1a2a3 · · · )2
where ai ∈ {0, 1}.

(an)n∈N is a function N → {0, 1}.

If the function mapping sequences (an)n∈N : N → {0, 1}
to R were injective, then we could conclude from
N → {0, 1} uncountable that [0, 1[ and therefore R are
uncountable.
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Idea of Proof of Lemma 2.16 (c)
However this function is not injective since
0.a0a1a2 · · · an011111 · · · and 0.a0a1a2 · · · an100000 · · · are
the same number.

This is similar to decimal representation, where
0.a0a1a2 · · · an099999 · · · and 0.a0a1a2 · · · an100000 · · ·
are the same.

This problem can be overcome with some effort.

The detailed proof will be omitted in the lecture.
Jump over Proof.
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Proof of Lemma 2.16 (c)
Show R is uncountable.

By (b),
F = {f | f : N → {0, 1}}

is uncountable.

A first idea is to define a function

f0 : F → R ,

f0(g) = (0.g(0)g(1)g(2) · · · )2

Here the right hand side is a number in binary format.

If f0 were injective, then by F uncountable we could
conclude R is uncountable.
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Proof of Lemma 2.16 (c)
Show R is uncountable.

The problem is that

(0.a0a1 · · · ak01111 · · · )2 and (0.a0a1 · · · ak10000 · · · )2

denote the same real number, so f0 is not injective.

We modify f0 so that we don’t obtain any binary
numbers of the form

(0.a0a1 · · · ak01111 · · · )2 .
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Proof of Lemma 2.16 (c)
Define instead

f : F → R ,

f(g) := (0.g(0) 0 g(1) 0 g(2) 0 · · · )2 ,

So
f(g) = (0.a0a1a2 · · · )2

where

ak :=

{
0 if k is odd,
g(k

2) otherwise.
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Proof of Lemma 2.16 (c)
If two sequences

(b0, b1, b2, . . .) and (c0, c1, c2, . . .)

do not end in
1, 1, 1, 1, . . . ,

i.e. are not of the form

(d0, d1, . . . , dl, 1, 1, 1, 1, 1, . . .) ,

then one can easily see that

(0.b0b1 · · · )2 = (0.c0c1 · · · )2 ⇔ (b0, b1, b2, . . .) = (c0, c1, c2, . . .)
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Proof of Lemma 2.16 (c)
Therefore

f(g) = f(g′)

⇔ (0.g(0) 0 g(1) 0 g(2) 0 · · · )2 = (0.g′(0) 0 g′(1) 0 g′(2) 0 · · · )2
⇔ (g(0) , 0, g(1), 0, g(2), 0, . . .) = (g′(0), 0, g′(1), 0, g′(2), 0, . . .)

⇔ (g(0), g(1), g(2), . . .) = (g′(0), g′(1), g′(2), . . .)

⇔ g = g′ ,

f is injective.
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More Uncountable Sets
Lemma 2.17
If A is infinite, then P(A) and {f function | f : A → {0, 1}}
are uncountable.

Proof: Exercise (reduce it to Lemma 2.16 (a)).
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Countable and Complement

Lemma 2.18
(a) If A, B are countable, so is A ∪ B.
(b) If A is uncountable and B is countable then A \ B is

uncountable.

Here A \ B = {a ∈ A | a 6∈ B},
so A \ B is A without the elements in B.

Note that
(a) reads: If two sets are small, their union is small
as well.
(b) reads: If one removes from a big set a small set,
then what remains is still big.
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Proof of Lemma 2.18 (a)
To be shown: If A, B are countable, so is A ∪ B.

We will use the fact that a set X is countable if and only
if it is empty or there exist a surjective function
f : N → X.

Therefore we need to treat the special cases when A or
B are empty.

Case 1: A is empty.
Then A ∪ B = B which is countable.

Case 2: B is empty.
Then A ∪ B = A which is countable.
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Proof of Lemma 2.18 (a)
Case 3: A,B are not empty.

By A,B countable there exist surjective functions

f : N → A g : N → B

Define h : N → A ∪ B,

h(n) :=

{
f(n

2 ) if n is even,
g(n−1

2 ) if n is odd.

So f(n) = h(2n) and g(n) = h(2n + 1).
Therefore

A ∪ B = f [N] ∪ g[N] ⊆ h[N]

f is surjective.
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Proof of Lemma 2.18 (a)
Assume f : N → A, g : N → B.

0

1

2

...

0

1

2

A

B

f

g

N

N

...
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):

0
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):

0
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):

0
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):

0
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):

0
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Proof of Lemma 2.18 (a)
h(2n) = f(n), h(2n + 1) = g(n):

0

1

2

...

0
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A
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f

g

N

N

...
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...
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Jump over the alternative proof.
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Alternative Proof of Lemma 2.18 (a)
To be shown: If A, B are countable, so is A ∪ B.

So assume A, B are countable.

Then there exist (by Lemma 2.11) injective functions

f : A → N , g : B → N .

Define

h : A ∪ B → N

h(x) :=

{
f(x) . 2 if x ∈ A

g(x) . 2 + 1 if x ∈ B \ A

h is injective.

Therefore, by Lemma 2.11, A ∪ B is countable.
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Proof of Lemma 2.18 (b)

To be shown:
If A is uncountable and B is countable, then A \ B is
uncountable.

Assume A is uncountable, B is countable and A \ B

were countable.

Then A ∩ B is countable (since A ∩ B ⊆ B).

Therefore A = (A \ B) ∪ (A ∩ B) is countable as well, a
contradiction.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c) 2-119



Proof of Lemma 2.18 (b)

countable

A ∩ B
A \ B countable

A uncountable, a contradiction
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Continuum Hypothesis
Remark:

One can show P(N) ≈ R.

Both these sets are uncountable, so they have size
bigger than N.

Question: Is there a set B which has size (cardinality)
between N and R?

I.e. there are injections N → B and B → R,
but neither bijections N → B nor B → R.

::::::::::::::

Continuum
::::::::::::::::

Hypothesis : There exists no such set.

Continuum Hypothesis is independent of set theory ,
i.e. it is neither provable nor is its negation provable.

This was one of the most important open problems
in set theory for a long time.
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Paul Cohen

Paul Cohen
(1934 – 2007)
Showed 1963 that the
continuum hypothesis is
independent of set theory.
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(d) Reducing Computability to N

Goal: Reduce computability on some data types A to
computability on N.

A could be for instance the set of strings, of matrices, of
trees, of lists of strings, etc.

If we can do this, then there is no need for a special
definition of computability on A, we can concentrate on
the notion of computability on N.

We can reduce computabiliy on A to computability on
N, if we have two intuitively computable functions

encodeA : A → N,
decodeA : N → A.
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Reduction of Computability to N

encodeA : A → N, decodeA : N → A.

Assume we have such functions encodeA, decodeA,
encodeB, decodeB for A and B.

Then from an intuitively computable f : A → B we can
obtain an intuitively computable function
f̃ := encodeB ◦ f ◦ decodeA : N → N:

A
f - B

N

decodeA

6

f̃ - N

encodeB

?
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Reduction of Computability to N

Furthermore from a computable g : N → N we can
obtain an intuitively computable function
ĝ := decodeB ◦ g ◦ encodeA : A → B:

A
ĝ - B

N

encodeA

? g - N

decodeB

6
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Reduction of Computability to N

We would like to take the computable functions
g : N → N as representations of all computable
functions f : A → B.

In the sense that f represents the function ĝ : A → B.

This is possible if for any intuitively computable
f : A → B we find a g : N → N s.t. ĝ = f .

We want to use g = f̃ , which is computable, if f is
computable.

But then we need ̂̃
f = f .
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Reduction of Computability to N

f̃ = encodeB ◦ f ◦ decodeA : N → N,
ĝ = decodeB ◦ g ◦ encodeA : A → B,

want ̂̃
f = f .

In order to obtain ̂̃
f = f , we need

̂̃
f = decodeB ◦ f̃ ◦ encodeA

= decodeB ◦ encodeB ◦ f ◦ decodeA ◦ encodeA

!
= f

( !
= is the equality we need, whereas the other equalities

follow by the definition).
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Reduction of Computability to N

decodeB ◦ encodeB ◦ f ◦ decodeA ◦ encodeA
!
= f

This is fulfilled if we have

decodeA ◦ encodeA = idA

decodeB ◦ encodeB = idB

where idA is the identity on A, i.e. λx.x similarly for idB.

This means that

∀x ∈ A.decodeA(encodeA(x)) = x

∀x ∈ B.decodeB(encodeB(x)) = x
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Reduction of Computability to N

∀x ∈ A.decodeA(encodeA(x)) = x

∀x ∈ B.decodeB(encodeB(x)) = x

This is a natural condition: If we encode an element of
A, and then decode it, we obtain the original element of
A back, similarly for B.

Note that relationship to cryptography: if we encrypt
a message and then decrypt it, we should obtain the
original message.
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Reduction of Computability to N

Note that we don’t need

encodeA(decodeA(x)) = x

Such a condition would mean: every element n ∈ N

is a code for an element of A (namely decodeA(n)).
In cryptography this means: not every element of the
datatype of codes is actually an encrypted message.
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Computable Encodings
Informal Definition
A data type A has a

:::::::::::::::

computable
:::::::::::::

encoding
::::::

into
::

N,
if there exist in an intuitive sense computable functions

encodeA : A → N , and decodeA : N → A

such that for all a ∈ A we have

decodeA(encodeA(a)) = a
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Computable Encodings
decodeA(encodeA(a)) = a

Note that by the above we obtain encodeA is injective.
In general we have for two functions f : B → C,
g : C → D that if g ◦ f is injective, then f is injective
as well.

Therefore if A has a computable encoding into N, then
there exists an injection encodeA : A → N, therefore A is
countable.
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Extension of the Encoding
We want to show that we have computable encodings
of more complex data types into N.

Assume A and B have computable encodings into N.

Then we will show that the same applies to
A × B, the product of A and B,

Ak, the set of k-tuples of A,
A∗, the set of lists (or sequences) of elements of A.

The proof will show as well that if A, B are countable,
so are

A × B , Ak, A∗ .
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(e) Encod. of Data Types into N

In order to show that A × B, Ak, A∗ have computable
encodings into N, if A, B have, it suffices to show that

N × N , Nn , N∗ ,

have computable encodings into N.

Note that N2 = N × N.
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Reduction to N

In order to see this assume we had already shown that

Nn , N∗ ,

have computable encodings, so we have computable
injections

encodeNn : Nn → N ,

encodeN∗ : N∗ → N .

with corresonding computable decoding functions.

Assume A, B have computable with encodings

encodeA : A → N ,

encodeB : B → N .
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Reduction to N

Then we obtain a computable encoding

encodeA×B : (A × B) → N

encodeA×B((a, b)) = encodeN2((encodeA(a)︸ ︷︷ ︸
∈N

, encodeB(b)︸ ︷︷ ︸
∈N

)

︸ ︷︷ ︸
∈N2︸ ︷︷ ︸

∈N

In short

encodeA×B((a, b)) = encodeN2((encodeA(a), encodeB(b)))

Exercise: Define decodeA×B, show
decodeA×B(encodeA×B(x)) = x and verify that decodeA×B

is intuively computable.
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Reduction to N

encodeAk : Ak → N

encodeAk((a0, . . . , ak−1)) =

encodeNk((encodeA(a0)︸ ︷︷ ︸
∈N

, encodeA(a1)︸ ︷︷ ︸
∈N

, . . . , encodeA(ak−1)︸ ︷︷ ︸
∈N

)

︸ ︷︷ ︸
∈Nk

)

︸ ︷︷ ︸
∈N

In short
encodeAk((a0, . . . , ak−1)) =

encodeNk(encodeA(a0), encodeA(a1), . . . , encodeA(ak−1))

Exercise: Define decodeAk , show decodeAk(encodeAk(x)) = x

and verify that decodeAk is intuively computable.
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Reduction to N

We obtain a computable encoding

encodeA∗ : A∗ → N

encodeA∗((a0, . . . , an−1)) =

encodeN∗((encodeA(a0)︸ ︷︷ ︸
∈N

, encodeA(a1)︸ ︷︷ ︸
∈N

, . . . , encodeA(an−1)︸ ︷︷ ︸
∈N

)

︸ ︷︷ ︸
∈N∗

)

︸ ︷︷ ︸
∈N

In short
encodeA∗((a0, . . . , an−1)) =

encodeN∗((encodeA(a0), encodeA(a1), . . . , encodeA(an−1)))

Exercise: Define decodeA∗ , show decodeA∗(encodeA∗(x)) = x

and verify that decodeA∗ is intuively computable.
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Encoding of Pairs
The first step is to give a computable encoding of N2

into N.

In fact our encoding will be a bijection.

We will define intuitively computable functions

π : N2 → N

π0 : N → N

π1 : N → N

s.t. π and
λn.(π0(n), π1(n)) : N → N2

are inverse to each other.
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Encoding of Pairs

π : N2 → N

π0 : N → N

π1 : N → N

Therefore we obtain a computable encoding of N × N

into N with

encodeN×N := π : N2 → N

decodeN×N := λx.(π0(x), π1(x)) : N → N2
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Encoding of Pairs
π will be called the

:::::::::

pairing
:::::::::::

function and πi the

:::::::::::::

projection
:::::::::::::

functions or short
:::::::::::::::

projections .
π is a computable encoding of N2 into N.
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Definition of π

Pairs of natural numbers can be enumerated in the
following way:

y 0 1 2 3 4

x

0 0 2 5 9 14

1 1 4 8 13 19

2 3 7 12 18 25

3 6 11 17 24 32

4 10 16 23 31 40
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Definition of π

y 0 1 2 3 4

x

0 0 2 5 9 14

1 1 4 8 13 19

2 3 7 12 18 25

3 6 11 17 24 32

4 10 16 23 31 40

π(0, 0) = 0 , π(1, 0) = 1 , π(0, 1) = 2 ,

π(2, 0) = 3 , π(1, 1) = 4 , π(0, 2) = 5 , etc.
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Attempt which fails
Note, that the following naïve attempt to enumerate the
pairs, fails:

y 0 1 2 3

x

0 π(0, 0) → π(0, 1) → π(0, 2) → π(0, 3) → · · ·
1 → → → → · · ·
2 → → → → · · ·
3 → → → → · · ·
4 → → → → · · ·

π(0, 0) = 0, π(0, 1) = 1, π(0, 2) = 2, etc.

We never reach the pair (1, 0).

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) 2-144



Devel. of a Formula for Defining π

In the following we are going to develop a mathematical
formula for π.

In the lecture this material was omitted and we give
directly the definition of π.
Jump over Development of π.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) 2-146



Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

For the pairs in the diagonal we have the property that x + y

is constant.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

For the pairs in the diagonal we have the property that x + y

is constant.
The first diagonal, consisting of (0, 0) only, is given by

x + y = 0.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

For the pairs in the diagonal we have the property that x + y

is constant.
The second diagonal, consisting of (1, 0), (0, 1), is given by

x + y = 1.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

For the pairs in the diagonal we have the property that x + y

is constant.
The third diagonal, consisting of (2, 0), (1, 1), (0, 2), is given
by x + y = 2.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

For the pairs in the diagonal we have the property that x + y

is constant.
The third diagonal, consisting of (2, 0), (1, 1), (0, 2), is given
by x + y = 2.

Etc.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

If we look in the original approach at the diagonals we see
that following:
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

If we look in the original approach at the diagonals we see
that following:

The diagonal given by x + y = n, consists of n + 1 pairs:
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

If we look in the original approach at the diagonals we see
that following:

The diagonal given by x + y = n, consists of n + 1 pairs:
The first diagonal, given by x + y = 0, consists of
(0, 0) only, i.e. of 1 pair.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

If we look in the original approach at the diagonals we see
that following:

The diagonal given by x + y = n, consists of n + 1 pairs:
The second diagonal, given by x + y = 1, consists of
(1, 0), (0, 1), i.e. of 2 pairs.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) 2-147



Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

If we look in the original approach at the diagonals we see
that following:

The diagonal given by x + y = n, consists of n + 1 pairs:
The third diagonal, given by x + y = 2, consisting of
(2, 0), (1, 1), (0, 2), i.e. of 3 pairs.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3

If we look in the original approach at the diagonals we see
that following:

The diagonal given by x + y = n, consists of n + 1 pairs:
The third diagonal, given by x + y = 2, consisting of
(2, 0), (1, 1), (0, 2), i.e. of 3 pairs.
etc.
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3 7

3 6

We count the elements occurring before the pair (x0, y0).

We have to count all elements of the previous
diagonals. These are those given by x + y = n for
n < x0 + y0.

In the above example for the pair (2, 1), these are the
diagonals given by x + y = 0, x + y = 1, x + y = 2.
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Definition of π

x y 0 1 2 3 4

0 0 2 5

1 1 4

2 3 7

3 6

The diagonal, given by x + y = n, has n + 1
elements, so in total we have∑x+y−1

i=0 (i + 1) = 1 + 2 + · · · + (x + y) =
∑x+y

i=1 i

elements in those diagonals.

A often used formula says
∑n

i=1 i = n(n+1)
2 .

Therefore, the above is (x+y)(x+y+1)
2 .
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3 7

3 6

Further, we have to count all pairs in the current
diagonal, which occur in this ordering before the current
one. These are y pairs.

Before (2, 1) there is only one pair, namely (3, 0).
Before (3, 0) there are 0 pairs.
Before (0, 2) there are 2 pairs, namely (2, 0), (1, 1).
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Definition of π

y 0 1 2 3 4

x

0 0 2 5

1 1 4

2 3 7

3 6

Therefore we get that there are in total
(x+y)(x+y+1)

2 + y pairs before (x, y), therefore the pair

(x, y) is the pair number ( (x+y)(x+y+1)
2 + y) in this

order.
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Definition of π

Definition 2.19

π(x, y)
:::::::

:=
(x + y)(x + y + 1)

2
+ y (= (

x+y∑

i=1

i) + y)

Exercise: Prove that
∑n

i=1 i = n(n+1)
2 .
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π is Bijective
Lemma 2.20
π is bijective.

Omit Proof
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Proof of Bijectivity of π

We show π is injective:
We prove first that, if x + y < x′ + y′, then π(x, y) < π(x′, y′):

π(x, y) = (

x+y∑

i=1

i) + y < (

x+y∑

i=1

i) + x + y + 1 =

x+y+1∑

i=1

i

≤ (

x′+y′∑

i=1

i) + y′ = π(x′, y′)
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Proof of Bijectivity of π

We show π is injective:
Assume now π(x, y) = π(x′, y′) and show x = x′ and y = y′.
We have by the above

x + y = x′ + y′ .

Therefore

y = π(x, y) − (

x+y∑

i=1

i) = π(x′, y′) − (

x′+y′∑

i=1

i) = y′

and
x = (x + y) − y = (x′ + y′) − y′ = x′ .
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Proof of Bijectivity of π

We show π is surjective:
Assume n ∈ N.
Show π(x, y) = n for some x, y ∈ N.

The sequence (
∑k′

i=1 i)k′∈N is strictly existing.
Therefore there exists a k s.t.

a :=
k∑

i=1

i ≤ n <

k+1∑

i=1

i
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Proof of Bijectivity of π

n ∈ N

Show π(x, y) = n for some x, y

a :=
k∑

i=1

i ≤ n <

k+1∑

i=1

i (∗)

So, in order to obtain π(x, y) = n, we need x + y = k.
By y = π(x, y) − ∑x+y

i=1 i, we need to define y := n − a.
By k = x + y, we need to define x := k − y.
By (∗) it follows 0 ≤ y < k + 1,
therefore x, y ≥ 0. Further,
π(x, y) = (

∑x+y
i=1 i) + y = (

∑k
i=1 i) + (n − ∑k

i=1 i) = n.
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Definition of π0, π1

Since π is bijective, we can define π0, π1 as follows:

Definition 2.21
Let π0 : N → N and π1 : N → N be s.t.

π0(π(x, y)) = x , π1(π(x, y)) = y .
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π, πi are Computable
Remark
π, π0, π1 are computable in an intuitive sense.

“Proof:”

π is obviously computable.

In order to compute π0, π1, first observe that
x, y ≤ π(x, y).

Follows from π(x, y) = (
∑x+y

i=1 i) + y.

Therefore π0(n), π1(n) can be computed by
searching for x, y ≤ n s.t. π(x, y) = n,
and then setting π0(n) = x, π1(n) = y.
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Remark 2.22
Remark 2.22
For all z ∈ N,

π(π0(z), π1(z)) = z .

Proof:
Assume z ∈ N and show

z = π(π0(z), π1(z)) .

π is surjective, so there exists x, y s.t.

π(x, y) = z .

Then

π(π0(z), π1(z)) = π(π0(π(x, y)), π1(π(x, y))) = π(x, y) = z.
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Encoding of Nk

We want to encode Nk into N.

(l,m, n) ∈ N3 can be encoded as follows
First encode (l,m) as π(l,m) ∈ N .

Then encode the complete triple as

π(π(l,m), n) ∈ N .

So define

π3(l,m, n) := π(π(l,m), n) .

Similarly (l,m, n, p) ∈ N4 can be encoded as follows:

π4(l,m, n, p) := π(π(π(l,m), n), p) .
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Decoding Function
If x = π3(l,m, n) = π(π(l,m), n), then we see

l = π0(π0(x)),
m = π1(π0(x)),
n = π1(x).

So we define
π3

0(x) = π0(π0(x)),

π3
1(x) = π1(π0(x)),

π3
2(x) = π1(x).
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Decoding Function
Similarly, if x = π4(l,m, n, p) = π(π(π(l,m), n), p), then we
see

l = π0(π0(π0(x))),
m = π1(π0(π0(x))),
n = π1(π0(x)).
p = π1(x).

So we define
π4

0(x) = π0(π0(π0(x))),

π4
1(x) = π1(π0(π0(x))),

π4
2(x) = π1(π0(x)).

π4
3(x) = π1(x).
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Definition for General k

In general one defines for k ≥ 1

πk : Nk → N ,

πk(x0, . . . , xk−1) := π(· · · π(π(x0, x1), x2) · · · xk−1) ,

and for i < k

πk
i : N → N ,

πk
0(x) := π0(· · · π0(︸ ︷︷ ︸

k − 1 times

x) · · · ) ,

and for 0 < i < k,
πk

i (x) := π1( π0(π0(· · · π0(︸ ︷︷ ︸
k − i − 1 times

x) · · · ))) .
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Formal definition of πk, πk
i

Then πk and

λx.(πk
0(x), . . . , πk

k−1(x))

are inverse to each other.

A formal inductive Definition of πk and πk
i is as follows:

Jump over formal definition of π
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Definition 2.23 of πk, πk
i

(a) We define by induction on k for k ∈ N, k ≥ 1

πk : Nk → N

π1(x) := x

For k > 0 πk+1(x0, . . . , xk) := π(πk(x0, . . . , xk−1), xk)

(b) We define by induction on k for i, k ∈ N s.t. 1 ≤ k,
0 ≤ i < k

πk
i : N → N

π1
0(x) := x

πk+1
i (x) := πk

i (π0(x)) for i < k

πk+1
k (x) := π1(x)

Omit Examples.
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Examples
π2(x, y) = π(π1(x), y) = π(x, y).

π3(x, y, z) = π(π2(x, y), z) = π(π(x, y), z).

π4(x, y, z, u) = π(π3(x, y, z), u) = π(π(π(x, y), z), u).

π4
0(u) = π3

0(π0(u)) = π2
0(π0(π0(u))) = π1

0(π0(π0(π0(u)))) =
π0(π0(π0(u))).

π4
2(u) = π3

2(π0(u)) = π1(π0(u)).
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Lemma 2.24

(a) For (x0, . . . , xk−1) ∈ Nk, i < k, xi = πk
i (πk(x0, . . . , xk−1)).

(b) For x ∈ N, x = πk(πk
0(x), . . . , πk

k−1(x)).

(Omit Proof)
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Proof
Induction on k.
Base case k = 0:
Proof of (a):
Let (x0) ∈ N1.
Then π1

0(π
1(x0)) = x0.

Proof of (b):
Let x ∈ N.
Then π1(π1

0(x)) = x.
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Proof of Lemma 2.24
Induction step k → k + 1:
Assume the assertion has been shown for k.
Proof of (a):
Let (x0, . . . , xk) ∈ Nk+1.
Then

for i < k πk+1
i (πk+1(x0, . . . , xk))

= πk
i (π0(π(πk(x0, . . . , xk−1), xk)))

= πk
i (πk(x0, . . . , xk−1))

IH
= xi

and πk+1
k (πk+1(x0, . . . , xk))

= π1(π(πk(x0, . . . , xk−1), xk))

= xk
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Proof of Lemma 2.24
Induction step k → k + 1:
Assume the assertion has been shown for k.
Proof of (b):
Let x ∈ N.

πk+1(πk+1
0 (x), . . . , πk+1

k (x))

= π(πk(πk+1
0 (x), . . . , πk+1

k−1(x)), πk+1
k (x))

= π(πk(πk
0(π0(x)), . . . , πk

k−1(π0(x))), π1(x))

IH
= π(π0(x), π1(x))

Rem. 2.22
= x
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Encoding of N∗

We want to define an encoding encodeN∗ : N∗ → N

(which will be a bijection).

N∗ = N0 ∪ ⋃
k≥1 Nk.

N0 = {()},
We can encode () as 0.

Encoding of
⋃

k≥1 Nk:

We have an encoding

πk : Nk → N .
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Encoding of N∗

Note that each n ∈ N is a code for elements of Nk for
every k.

So if we encoded (n0, . . . , nk−1) as πk(n0, . . . , nk−1)
we couldn’t determine the length k of the original
sequence from the code.

So we need to add the length to the code for
(n0, . . . , nk−1) (considered as an element of N∗).

Therefore encode a sequence (n0, . . . , nk−1) ∈ N∗ for
k > 0 as

π(k − 1, πk(n0, . . . , nk−1)) .

In order to distinguish it from code of (), add 1 to it.

In total we obtain a bijection.
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Definition 2.25 of 〈〉, lh, (x)i

(a) Define for x ∈ N∗, 〈x〉 : N as follows:

〈〉 := 〈()〉 := 0 ,

for k > 0

〈n0, . . . , nk−1〉 := 〈(n0, . . . , nk−1)〉
:= 1 + π(k − 1, πk(n0, . . . , nk−1))

(b) Define for x ∈ N, the
::::::::

length lh(x) ∈ N as follows:

lh : N → N ,

lh(0) := 0 ,

lh(x) := π0(x − 1) + 1 if x > 0 .
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Definition 2.25 of 〈〉, lh, (x)i

(c) We define for x ∈ N and i < lh(x), the ith component

(x)i ∈ N

of a code x for a sequence as follows:

(x)i := π
lh(x)
i (π1(x − 1)) .

For lh(x) ≤ i, let
(x)i := 0 .
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Remark
lh(x), (x)i are defined in such a way that Lemma 2.26
(a), (b) given below hold.

This shows that lh, (x)i together form the inverse of the
forming of 〈x0, . . . , xk−1〉.
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(x0, . . . , xk−1) vs. 〈x0, . . . , xk−1〉
Remark:

(a) Note that (x0, . . . , xk−1) is a tuple, which is an element
of Nk, whereas 〈x0, . . . , xk−1〉 is the code for this tuple,
which is an element of N.

(b) Especially () ∈ N0 is the empty tuple, whereas
〈〉 = 0 ∈ N is the code for the empty tuple.
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Lemma 2.26
Lemma 2.26

(a) lh(〈〉) = 0, lh(〈n0, . . . , nk〉) = k + 1.

(b) For i ≤ k, (〈n0, . . . , nk〉)i = ni.

(c) For x ∈ N, x = 〈(x)0, . . . , (x)lh(x)−1〉.
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Remark
If we define

〈〉−1 : N → N∗

〈〉−1(x) = ((x)0, . . . , (x)lh(x)−1)

Then we have by Lemma 2.26

〈〉−1(〈x0, . . . , xn−1〉) = (x0, . . . , xn−1)

so 〈〉−1 is the inverse of ~x 7→ 〈~x〉.
(Omit Proof of Lemma 2.26)
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Proof of Lemma 2.26 (a)
Proof of (a):
Show: lh(〈〉) = 0:
lh(〈〉) = lh(0) = 0.

Show: lh(〈n0, . . . , nk〉) = k + 1:

lh(〈n0, . . . , nk〉) = π0(〈n0, . . . , nk〉 − 1) + 1

= π0(π(k, · · · ) + 1 − 1) + 1

= k + 1

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) 2-180



Proof of Lemma 2.26 (b)
Proof of (b):
Show (〈n0, . . . , nk〉)i = ni.
lh(〈n0, . . . , nk〉) = k + 1.
Therefore

(〈n0, . . . , nk〉)i
= πk+1

i (π1(〈n0, . . . , nk〉 − 1))

= πk+1
i (π1(1 + π(k, πk+1(n0, . . . , nk)) − 1))

= πk+1
i (πk+1(n0, . . . , nk))

Lem 2.24 (a)
= ni
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Proof of Lemma 2.26 (c)
Proof of (c):
Show x = 〈(x)0, . . . , (x)lh(x)−1〉.
Case x = 0.
lh(x) = 0. Therefore 〈(x)0, . . . , (x)lh(x)−1〉 = 〈〉 = 0 = x.
Case x > 0.
Let x − 1 = π(l, y).
Then lh(x) = l + 1, (x)i = πl+1

i (y) and therefore

〈(x)0, . . . , (x)lh(x)−1〉
= 〈πl+1

0 (y), . . . , πl+1
l (y)〉

= π(l, πl+1(πl+1
0 (y), . . . , πl+1

l (y))) + 1

Lem 2.24 (b)
= π(l, y) + 1

= x
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Encoding of Finite Sets, Strings
Informal Lemma

If A is a finite non-empty set, then A and A∗ have computa-

bles encoding into N.
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Proof of the Informal Lemma
Assume

A = {a0, . . . , an}
where ai 6= aj for i 6= j, n ≥ 0.

Define
encodeA : A → N

encodeA(ai) = i .

Define
decodeA : N → A

decodeA(i) := ai if i ≤ n

decodeA(i) := a0 if i > n.
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Proof of the Informal Lemma
encodeA and decodeA are in an intuitive sense
computable, and

decodeA(encodeA(a)) = a

Therefore A has a computable encoding into N,

Therefore A∗ has as well a computable encoding into N.

Remark: One easily sees that the encoding obtained by
this proof is

encodeA∗ : A∗ → N ,

encodeA∗(a0, . . . , an) = 〈encodeA(a0), . . . , encodeA(an)〉
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Theorem 2.27
Theorem 2.27

(a) Nk and N∗ are countable.

(b) If A is countable, so are Ak, A∗.

(c) If A, B are countable, so is A × B.

(d) If An are countable sets for n ∈ N, so is
⋃

n∈N An.

(e) Q, the set of rational numbers, is countable.
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Proof of Theorem 2.27 (a)
N0 = {()} is finite therefore countable.

For k > 0

πk : Nk → N

is a bijection.

The function
λx.〈x〉 : N∗ → N

is a bijection.
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Proof of Theorem 2.27 (b)
To be shown: If A is countable, so are Ak, A∗.

Assume A is countable.

We show first that A∗ is countable:

There exists encodeA : A → N, encodeA injective.

Define

f : A∗ → N∗ ,

f(a0, . . . , ak−1) := (encodeA(a0), . . . , encodeA(ak−1))

f is injective as well, N∗ is countable, so by Corollary
2.13 A∗ is countable.

Ak ⊆ A∗, so Ak is countable as well.
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Proof of Theorem 2.27 (c)
Assume A, B countable.

Then there exist injections

encodeA : A → N

encodeB : B → N

Define

f : (A × B) → N2 ,

f(a, b) := (encodeA(a), encodeB(b))

f is injective, N2 is countable, so A × B is countable as
well.

CS 226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) 2-189



Proof of Theorem 2.27 (d)
Assume An are countable for n ∈ N.

Show
A :=

⋃

n∈N

An

is countable as well.

If all An are empty, so is
⋃

n∈N

An

and therefore countable.

Assume now Ak0
is non-empty for some k0.
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Proof of Theorem 2.27 (d)
An are countable
Show

⋃
n∈N An is countable.

By replacing empty Al by Ak0
, we get a sequence of

non-empty sets (An)n∈N, s.t. their union is the same as
A.

So we can assume without loss of generality An 6= ∅ for
all n.

An are countable and non-empty, so there exist
fn : N → An surjective.
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Proof of Theorem 2.27 (d)
fn : N → An surjective
Show

⋃
n∈N An is countable.

Then
f : N2 → ⋃

n∈N An ,

f(n,m) := fn(m)

is surjective as well.

N2 is countable, so by Corollary 2.15 A is countable as
well.
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Proof of Theorem 2.27 (e)
To be shown: Q is countable.

We have Z × N is countable, since Z and N are
countable.

Let
A := {(z, n) ∈ Z × N, n 6= 0} .

A ⊆ Z × N, therefore A is countable as well.

Define
g : A → Q ,

g(z, n) := z
n

.

g is surjective, A countable, therefore by Corollary 2.15
Q is countable as well.
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(f) Partial Functions

A partial function f : A
∼→ B is the same as a function

f : A → B, but f(a) might not be defined for all a ∈ A.

Key example: function computed by a computer
program:

Program has some input a ∈ A and possibly returns
some b ∈ B.
(We assume that program does not refer to global
variables).
If the program applied to a ∈ A terminates and
returns b, then f(a) is defined and equal to b.
If the program applied to a ∈ A does not terminate,
then f(a) is undefined.
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Examples of Partial Functions
Other Examples:

f : R
∼→ R, f(x) = 1

x :
f(0) is undefined.

g : R
∼→ R, g(x) =

√
x:

g(x) is defined only for x ≥ 0.
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Definition of Partial Functions
Definition 2.28

Let A, B be sets. A partial function f from A to B,
written f : A

∼→ B, is a function f : A′ → B for some
A′ ⊆ A.
A′ is called the

::::::::::

domain
:::

of
::

f , written as A′ = dom(f).

Let f : A
∼→ B.

:::::

f(a)
:::

is
::::::::::

defined , written as f(a) ↓
::::::

, if a ∈ dom(f).

Let b ∈ N.
f(a) ' b
:::::::::

(
:::::

f(a)
:::

is
:::::::::::

partially
::::::::

equal
:::

to
::

b)

:⇔ f(a) ↓ ∧f(a) = b.
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Terms formed from Partial Functions
We want to work with terms like f(g(2), h(3)), where
f, g, h are partial functions.

Question: what happens if g(2) or h(3) is undefined?
There is a theory of partial functions, in which
f(g(2), h(3)) might be defined, even if g(2) or h(3) is
undefined.
Makes senses for instance for the function
f : N2 ∼→ N, f(x, y) = 0.
Theory of such functions is more complicated.
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Strict vs. Non-strict Functions
Functions, which are defined, even if some of its
arguments are undefined, are called

::::::::::::

non-strict .

Functions, which are defined only if all of its arguments
are defined are called

:::::::

strict .
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Call-By-Value
Strict function are obtained by “call-by-value ”
evaluation.

:::::::::::::::::

Call-by-value means that before the value of a
function applied to arguments, is computed, the
arguments of the function are evaluated.
If we treat undefinedness as non-termination, then
all functions computed by call-by-value will be strict.

There is as well finite error, e.g. the error if a
division by 0 occurs. This kind of undefinedness
will be handled in a non-strict way by many
programming languages.

Most programming languages (including practially all
imperative and object-oriented languages), use
call-by-value evaluation.
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Call-By-Name
Non-strict functions are obtained by “call-by-name ”
evaluation:

The arguments of a function are evaluated only if
they are needed in the computation of f .
Haskell uses call-by-name-evaluation .
Therefore functions in Haskell are in general
non-strict .
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Example

Let f : N2 ∼→ N, f(x, y) = x.

Let t be an undefined term, e.g. g(0), where g : N
∼→ N,

g(x) := g(x).
So the recursion equation of g(x) doesn’t terminate.

With call-by-name, the term f(2, t) evaluates to 2, since
we never need to evaluate t.

With call-by-value, first t is evaluated, which never
terminates, so f(2, t)↑.

In our setting, functions are strict, so f(2, t) as above is
undefined.
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Terms formed from Partial Functions
In this lecture, functions will always be strict.

Therefore, a term like f(g(2), h(3)) is defined only, if g(2)
and h(3) are defined, and if f applied to the results of
evaluating g(2) and h(3) is defined.

f(g(2), h(3)) is evaluated as for ordinary functions: We
first compute g(2) and h(3), and then evaluate f applied
to the results of those computations.
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⊥
⊥
::

(pronounced
:::::::::

bottom ) is a term which is always

undefined.

So ⊥ ↓ does not hold.
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Terms formed from Partial Functions
Definition 2.29

For expressions t formed from constants, ⊥, variables
and partial functions we define whether t ↓, and
whether t ' b holds (for a constant b):

If t = a is a constant, then t ↓ holds always and
t ' b :⇔ a = b.
If t = ⊥, then neither t ↓ not t ' b do hold.
If t = x is a variable, then t ↓ holds always,
t ' b :⇔ x = b.

f(t1, . . . , tn) ' b :⇔ ∃a1, . . . , an.t1 ' a1 ∧ · · · ∧ tn ' an

∧f(a1, . . . , an) ' b .

f(t1, . . . , tn) ↓ :⇔ ∃b.f(t1, . . . , tn) ' b
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Remark
Note that variables are always considered as being
defined:

x↓
One can easily observe

t↓ ⇔ ∃x.t ' x
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Terms formed from Partial Functions
s↑ :⇔ ¬(s ↓).
We define for expressions s, t formed from constants
and partial functions

s ' t :⇔ (s ↓↔ t ↓) ∧ (s ↓→ ∃a, b.s ' a ∧ t ' b ∧ a = b)

:

t
:::

is
::::::

total means t ↓.

A function f : A
∼→ B is

::::::

total , iff ∀a ∈ A.f(a) ↓ (or,
equivalently, dom(f) = A).

Remark:
Total partial functions are ordinary (non-partial) functions.
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Quantifiers
Remark:
Quantifiers always range over defined elements.
So by ∃m.f(n) ' m we mean: there exists a defined m s.t.
f(n) ' m.

So from f(n) ' g(k) we cannot conclude ∃m.f(n) ' m un-

less g(k) ↓.
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Remark 2.30
Remark 2.30

(a) If a, b are constants, s ' a, s ' b, then a = b.

(b) For all terms we have t ↓⇔ ∃a.t ' a.

(c) f(t1, . . . , tn) ↓⇔ ∃a1, . . . , an.t1 ' a1 ∧ · · ·
∧tn ' an

∧f(a1, . . . , an) ↓ .
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Examples

Assume f : N
∼→ N, dom(f) = {n ∈ N | n > 0}.

f(n) := n − 1 for n ∈ dom(f).

Let g : N
∼→ N, dom(g) = {0, 1, 2}, g(n) := n + 1.

Then:

f(1) ↓, f(0)↑, f(1) ' 0, f(0) 6' n for all n ∈ N.

g(f(0)︸︷︷︸
↑

)↑ , since f(0)↑.

g(f(1)︸︷︷︸
'0

) ↓ , since f(1) ↓, f(1) ' 0, g(0) ↓.

g(f(4)︸︷︷︸
'3

)↑, since f(4) ↓, f(4) ' 3, but g(3)↑.
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Examples

f : N
∼→ N, dom(f) = {n ∈ N | n > 0}, f(n) := n − 1 for

n ∈ dom(f).
g : N

∼→ N, dom(g) = {0, 1, 2}, g(n) := n + 1.

g(f(0))︸ ︷︷ ︸
↑

' f(0)︸︷︷︸
↑

, since both expressions are undefined.

g(f(1))︸ ︷︷ ︸
'1

' f(g(1))︸ ︷︷ ︸
'1

, since both sides are defined and

equal to 1.

g(f(0))︸ ︷︷ ︸
↑

6' f(g(0))︸ ︷︷ ︸
↓

, since the left hand side is undefined,

the right hand side is defined.
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Examples

f : N
∼→ N, dom(f) = {n ∈ N | n > 0}, f(n) := n − 1 for

n ∈ dom(f).
g : N

∼→ N, dom(g) = {0, 1, 2}, g(n) := n + 1.

f(f(2))︸ ︷︷ ︸
'0

6' f(2)︸︷︷︸
'1

, since both sides evaluate to different

(defined) values.
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Examples

f : N
∼→ N, dom(f) = {n ∈ N | n > 0}, f(n) := n − 1 for

n ∈ dom(f).
g : N

∼→ N, dom(g) = {0, 1, 2}, g(n) := n + 1.

+, · etc. can be treated as partial functions. So for
instance

f(1)︸︷︷︸
↓

+ f(2)︸︷︷︸
↓

↓, since f(1) ↓, f(2) ↓, and + is total.

f(1)︸︷︷︸
'0

+ f(2)︸︷︷︸
'1

' 1.

f(0)︸︷︷︸
↑

+f(1)↑, since f(0)↑.
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Definition
Assume f : Nn ∼→ N.

(a) The
:::::::

range
::::

of
::

f , in short ran(f)
::::::

is defined as follows:

ran(f) := {y ∈ N | ∃~x.(f(~x) ' y)} .

(b) The
::::::::

graph
:::

of
::

f is the set Gf
:::

defined as

Gf := {(~x, y) ∈ Nn+1 | f(~x) ' y} .
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Remark on Gf

The notion “graph” used here has nothing to do with the
notion of “graph” in graph theory.

The graph of a function is essentially the graph we draw
when visualising f .
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Remark on Gf

Example:

f : N
∼→ N , f(x) =

{
x
2 , if x even,
⊥, if x is odd.

We can draw f as follows:

3

4

2

1

1 2 3 4 5 6 7
0

0
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Remark on Gf

In this example we have

Gf = {(0, 0), (2, 1), (4, 2), (6, 3), . . .}

These are exactly the coordinates of the crosses in the
picture:

3

4

2

1

1 2 3 4 5 6 7
0

0

(0,0) (2,1)
(4,2)

(6,3)
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