Encoding of Data Types intoO N

- **•** There are lots of different data types available.
- Some data types have finite size.
	- E.g. the type of Booleans $\{\mathrm{true},\mathrm{false}\}$.
- Some data types have infinite size but are still "small".
	- E.g. the type of natural numbers $\mathbb{N} = \{0, 1, 2, \ldots, \}$.

Encoding of Data Types intoN

- Some data types are "big".
	- E.g. the set of subsets $\mathcal{P}(\mathbb{N})$ of $\mathbb{N}.$
	- Subsets of N have in general no finite description.
Cases are finite (e.g. (0.1.2))
		- Some are finite (e.g. $\{0,1,3\}$).
		- Some can be described by formulae
			- ·E.g. the set of even numbers is

$$
\{n \in \mathbb{N} \mid \exists m \in \mathbb{N}.n = 2m\}.
$$

- But there are subsets which cannot be describedby formulae.
- **There is no way of associating a finite description** to all elements of $\mathcal{P}(\mathbb{N}).$
	- \overline{a} . TNIS WIII NA SNOWN \cdot This will be shown in this section.

Size and Computability

- We can introduce ^a notion of computability for finite andfor small infinite data types.
	- E.g. it makes sense to compute certain functions mapping natural numbers to natural numbers.
- We cannot introduce in general a notion of computability for big data types.
	- We cannot even represent its elements on thecomputer.

Size and Computability

- There are notions of computability for certain "big data" types" which make use of approximations of elementsof such data types.
	- **Topic of intensive research in Swansea esp. of Ulrich** Berger, Jens Blanck, Monika Seisenberger, JohnTucker.
	- One considers especially \R and sets of functions
 $(\Gamma \circ \mathbb{N} \circ \mathbb{N} \circ \mathbb{N})$ $(\mathsf{E.g.}\,\,\mathbb{N}\rightarrow\mathbb{N},\,(\mathbb{N}\rightarrow\mathbb{N})\rightarrow\mathbb{N}).$
	- α rt of thio looturo Not part of this lecture.

Topic of this Section

- In this Section we will make precise the notion of size of ^a set.
	- Notion of "cardinality" and "equinumerous".
	- We will introduce ^a hierarchy of sizes.
		- We will be able to distinguish between sizes of different "big" sets.
- Countable sets will be the sets, which were called"small" above.
	- **This notion will include the finite sets.**

Notions of Computability

- We will later introduce computability on $\mathbb N.$
- Computability on countable sets will in this section be reduced to computability on $\mathbb N.$

Structure of this Section

- (a) [Mathematical](#page-7-0) background.
- (b) [Cardina](#page-46-0)lity.
- (c) [Countable](#page-82-0) sets.
- (d) Reducing [computability](#page-153-0) to $\mathbb N.$
- (e) [Encoding](#page-164-0) of some data types into $\mathbb N.$
- (f) Further [mathematical](#page-235-0) background: Partial [functio](#page-235-0)ns.

(a) Mathematical Background

Some Standard Sets

N is the **setofnaturalnumbers**: \sim ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

 $\mathbb{N} := \{0, 1, 2, \ldots\}$.

- Note that 0 is ^a natural number.
- When counting, we start with $0\mathrm{:}$
	- The element no. 0 of ^a sequence is what is usuallycalled the first element:

E.g., in $x_0, \ldots, x_{n-1},$ x_0 $_{\rm 0}$ is the first variable.

 The element no. 1 of ^a sequence is what is usuallycalled the second element.

E.g., in $x_0, \ldots, x_{n-1},$ x_1 $_1$ is the second variable.

 e etc.

$\mathbb Z$ is the ✿✿✿✿**set**✿✿✿**of**✿✿✿✿✿✿✿✿✿✿✿**integers**:

$$
\mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\}.
$$

So

$$
\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots, \}
$$

Q is the ✿✿✿✿ **set**✿✿✿ **of**✿✿✿✿✿✿✿✿✿✿✿✿ **rationals**, i.e.

$$
\mathbb{Q} := \{ \frac{x}{y} \mid x \in \mathbb{Z}, y \in \mathbb{N}, y \neq 0 \} .
$$

- So ${\mathbb Q}$ contains $\frac{2}{17}$ $17\,{}^{\backprime}$ −3 5,−2 3 $\frac{-2}{3}$, etc.
- As usual we identify equal fractions e.g.

$$
\frac{2}{4} = \frac{1}{2}
$$

.

- We write $- \frac{n}{2}$ $\,m$ $\frac{n}{m}$ instead of $\frac{-}{n}$ $\, n \,$ $\,m$ $\frac{-n}{m}$, e.g. $-\frac{1}{2}$ $\frac{1}{2}=\frac{-}{2}$ 12.
- As usual $\frac{z}{-m}:=-\frac{z}{m}$, e.g. $\frac{1}{-2}:=-\frac{1}{2}$ $-m$: $= -\frac{z}{\tau}$ $\frac{z}{m}$, e.g. 1 $\frac{1}{-2} := -\frac{1}{2}$ $2\,$.

R✿ is the✿✿✿✿**set**✿✿✿**of**✿✿✿✿✿✿**real**✿✿✿✿✿✿✿✿✿✿✿✿**numbers**.

Assume A, B are sets.

 A A \times $\overline{\mathcal{B}}$ is the ✿✿✿✿✿✿✿✿✿✿ \mathbf{p} **roduct** of A and B :

 $A \times B := \{(x, y) \mid x \in A \land y \in B\}$

✿✿✿✿✿✿✿✿ $A\rightarrow B$ is the set of functions $f:A\rightarrow B.$

Assume A is a set, $k\in\mathbb{N}.$ There A^k is the set of I the Then A_{\circ}^{k} is the set of ✿✿✿ $\frac{k}{\alpha}$ is the <u>set of k -tuples of elements of A </u> or ✿✿✿✿✿✿✿k**-fold**✿✿✿✿✿✿✿✿✿✿✿✿✿**Cartesian**✿✿✿✿✿✿✿✿✿✿✿ $\boldsymbol{product_of_A}$ defined as follows:

$$
A^{k} := \{(x_0, \ldots, x_{k-1}) \mid x_0, \ldots, x_{k-1} \in A\}.
$$

Note that

$$
A^0=\{()\}
$$

We identify A^1 with $A.$ So we don't distinguish between (x) and $x.$

Essentially,
$$
A^k = A \times \cdots \times A
$$
.

\n k times

$$
\mathcal{A}^* := \{(a_0, \dots, a_{k-1}) \mid k \in \mathbb{N}, a_0, \dots, a_{k-1} \in A\}
$$

So A^* is

- the set of sequences length),**sequences**✿✿✿**of**✿✿✿✿✿✿✿✿✿✿✿✿✿ **elements**✿✿✿ **of**✿✿✿^A (of arbitrary
- also called the set of ✿✿✿✿✿**lists**✿✿✿✿**of**✿✿A,
- or A**-Kleene-Star**. ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
- So A^* is the union of all A^k for $k\in\mathbb{N}$, i.e.

$$
A^* = \bigcup_{k \in \mathbb{N}} A^k
$$

I *

Remark:

 A^{\ast} can be considered as the set of strings having letters in the alphabet A .

 \bullet E.g. if

$$
A = \{a, b, c, \ldots, z\} ,
$$

then A^{\ast} is the set of strings formed from lower case letters.

- So (r,e,d) stands for the string "red".
- A^k is the set of strings of length k from alphabet A .

$\mathbb{E}(X)$

- \bullet $\mathcal{P}(X)$, the powerset of X, is the set of all subsets of X.
- For finite sets X , the power set of X will be finite:

$$
\mathcal{P}(\{0, 1, 2\}) = \{\{\},\
$$

$$
\{0\}, \{1\}, \{2\},\
$$

$$
\{0, 1\}, \{0, 2\}, \{1, 2\}
$$

$$
\{0, 1, 2\}\}
$$

- For infinite sets X we will see that the X is big
("uncounteble") ("uncountable").
- Therefore we cannot write down the elements of $\mathcal{P}(X)$ for such X .

Exercise

- Write down ${\cal P}(\{0,1,2,3\})$ and ${\cal P}(\{0,1,2,3,4\}).$
- Make sure you have the right number of elements: If a set has n elements, then $\mathcal{P}(X)$ has 2^n elements.

Definition 2.1

Let $f: A \rightarrow B,$ $C \subseteq A$.

(a) $f[C] := \{f(a) \mid a \in C\}$ is called the image of C under f .

(b) The image of A under f (i.e. $f[A]$) is called the image of f ✿✿✿✿✿✿✿✿ $\mathbf{image} \hspace{0.2mm} \textbf{of} \hspace{0.2mm} f$.

Image of C under f .

Image of C under f .

 $f[C] = \{e, f\}$

Image of $f.$

 $f[A] =\{e, f, g\}$

Injective/Surjective/Bijective

Definition 2.2

Let A , B be sets, $f : A \rightarrow B$.

(a)f is **injective** or ✿✿✿ **an**✿✿✿✿✿✿✿✿✿✿✿✿ **injection** or ✿✿✿✿✿✿✿✿✿✿✿✿✿✿ **one-to-one**, if ✿✿✿✿✿✿✿✿✿✿✿ f applied to different elements of A has different results:
 $\mathcal{L}_{\mathcal{L}}(A)$ $\forall a, b \in A.a \neq b \rightarrow f(a) \neq f(b).$

(b) f is surjective or a surjection every element of B is in the image of f:
 \mathbb{R}^n = R \mathbb{R}^n = A f(\mathbb{R}^n **surjection** or ✿✿✿✿✿✿ **onto**, if $\forall b \in B. \exists a \in A. f(a) = b.$

(c)f is **bijective** or ✿✿ **a bijection** or ^a ✿✿✿✿✿✿✿✿✿✿✿ **one-to-one correspondence** ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ if it is both surjective and injective. ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Visualisation of "Injective"

If we visualise ^a function by having arrows from elements $a\in A$ to $f(a)\in B$ then we have the following:

A function is **injective**, if for every element of *B* there is
at mase one extery nainting to it: **at most one arrow pointing to it**:

Visualisation of "Surjective"

A function is **surjective**, if for every element of *B* there
is at least are arrow pointing to it: is **at least one arrow pointing to it**:

Visualisation of "Bijective"

A function is **bijective**, if for every element of *B* there is
exectly and examinating to it: **exactly one arrow pointing to it**:

bijective

• Note that, since we have a function, for every element of A there is exactly one arrow originating from there.

Remark

- **•** The injective, surjective, bijective functions are closed under composition:
	- If $f : A \to B$ and $g : B \to C$ are injective (or surjective
or bijective) then $g \circ f : A \to C$ is injective or bijective), then $g \circ f : A \to C$ is injective
(suriective, bijective, respectively) as well (surjective, bijective, respectively) as well.
- **Proof:** See mathematics lectures or easy exercise.

- An infinite sequence of elements of a set B is an
enumeration of eartein elements of B by natural enumeration of certain elements of B by natural
numbers numbers.
	- E.g. the sequence of even numbers is

 $(0, 2, 4, 6, 8, \ldots)$

We might repeat elements, e.g.

 $(0, 2, 0, 2, 0, 2, ...)$

● Sequences of natural numbers are written as

 $(a_n)_{n\in\mathbb{N}}$

which stands for

 (a_0,a_1,a_2,\ldots)

So the sequence of even numbers is

$$
(0, 2, 4, 6, ...)
$$

= $(a_0, a_1, a_2, ...)$
= $(a_n)_{n \in \mathbb{N}}$

where

$$
a_n=2n
$$

A sequence

.

 $(a_n)_{n\in\mathbb{N}}$

of elements in A is nothing but a function $f: \mathbb{N} \rightarrow A$, s.t.

 $f(n)=a_n$

In fact we will identify functions $f : \mathbb{N} \to A$ with infinite
sequences of clamants of A \bullet sequences of elements of $A.$

- So the following denotes the same mathematical object:
	- The function $f : \mathbb{N}$ \longrightarrow $\mathbb{N},\,f(n) =$ \begin{cases} 0 if n is odd, 1 if n is even.
	- The sequence $(1,0,1,0,1,0,\ldots)$.
	- The sequence $\Big($ $\it a$ $\, n \,$ $\big)_n$ ∈N $_{\mathbb{N}}$ where a $\, n \,$ = \begin{cases} 0 if n is odd, 1 if n is even.

- Occasionally, we will enumerate sequences by different index sets.
	- E.g. we consider a sequence indexed by non-zero natural numbers

 $(a_n)_{n\in\mathbb{N}\setminus\{0\}}$

or ^a sequence indexed by integers

 $(a_z)_{z\in\mathbb{Z}}$

A sequence $(a_x)_{x\in B}$ $_B$ of elements in A is nothing but the function

$$
f: B \to A \ , \quad f(x) = a_x
$$

λ**-Notation**

- $\lambda x.t$ means in an informal setting the function mapping $\frac{x}{\Box}$ to t .
	- E.g.
	- $\lambda x.x + 3$ is the function f s.t. $f(x) = x + 3$.
	- $\lambda x.\sqrt{x}$ is the function f s.t. $f(x) = \sqrt{x}$.
- **•** This notation used, if one one wants to introduce a function without giving it ^a name.
- Domain and codomain not specified when this notation is used, this will be clear from the context.

The "dot"-notation.

In expressions like

 $\forall x. A(x) \land B(x)$

the quantifier ($\forall x.$) is as far as possible: \blacksquare

 $\forall x. A(x) \land B(x)$

 $\forall x.$ refers to

 $A(x)\wedge B(x)$

The "dot"-notation.

 \bullet In

$$
(A \to \forall x. B(x) \land C(x)) \lor D(x)
$$

 $\forall x$ refers only to

$B(x)\wedge C(x)$

This is the maximum scope possibleIt doesn't make sense to include ") \vee $D(x)$ " into the scope.

The "dot"-notation.

$$
\exists x. A(x) \land B(x)
$$

 $\exists x$ refers to

 $A(x)\wedge B(x)$

\bullet In

 \blacksquare

$$
(A \wedge \exists x.B(x) \vee C(x)) \wedge D(x)
$$

 $\exists x$ refers to

 $B(x)\vee C(x)$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a) $2\text{-}33$
The "dot"-notation.

This applies as well to λ -expressions. So

 $\lambda x.x+x$

is the function taking an x and returning $\ x+x.$

- A **predicate** on ^a set A is ^a property P of elements of A.In this lecture, A will usually be \mathbb{N}^k for some $k\in\mathbb{N},$ ✿✿✿✿✿✿✿✿✿✿✿✿ $k > 0$.
- We write $\overline{P(a)}$ \mathbb{Q} for "predicate P is true for the element a of A ".
- We often write " $P(x)$ $P(x)$ holds" for " $P(x)$ is true".

- We can use $P(a)$ in formulas. Therefore:
	- $\neg P(a)$ \mathbb{Q} ("not $P(a)$ ") means that " $P(a)$ is not true".
	- $P(a) \wedge Q(b)$ $\partial_\mathbf{k}$ means that "both $P(a)$ and $Q(b)$ are true".
	- $\overline{P(a)\vee Q(b)}$ means that " $P(a)$ or $Q(b)$ is true". ✿✿✿✿✿✿✿✿✿✿✿✿✿

(We have inclusive or: if both $P(a)$ and $Q(b)$ are true, then $P(a)\vee Q(b)$ is true as well).

 $\forall x\in B.P(x)$ means that "for all elements x of the set ✿✿✿✿✿✿✿✿✿✿✿✿✿✿

 $B \mathrel P(x)$ is true".

 $\exists x \in B.P(x)$ $\mathbb{R}^n_\mathbb{Z}$ means that "there exists an element x of the set B s.t. $P(x)$ is true".

- **In this lecture, "relation" is another word for "predicate".**
- We identify a predicate P on a set A with $\{x \in A \mid P(x)\}.$ Therefore predicates and sets will be identified. E.g., if P is a predicate,
	- $x \in \mathcal{P}$ stands for $x \in \{x \in A \mid P(x)\},$ which is equivalent to $P(x),$
	- $\forall x\in P.\varphi(x)$ for a formula $\mathbb{E} \big)$ for a formula φ stands for

 $\forall x.P(x)\rightarrow\varphi(x).$

 e etc.

An n -ary $P\subseteq\mathbb{N}^n$ $\frac{n\text{-ary relation}}{n\cdot n}$ or predicate on $\mathbb N$ is a relation .

A IIA A unary 3-ary relation on $\mathbb N,$ respectively. unary, binary, ternary relation on N is a 1-ary, 2-ary,
-

- For instance $<$ and equality are binary relations on N.
- An <u>n-**ary function** on N is a function $f : \mathbb{N}^n$ </u> A <u>unary, binary, ternary</u> function on $\mathbb N$ is a \sim $^{n}\rightarrow\mathbb{N}$. 3-ary function on $\mathbb N,$ respectively. unary, binary, ternary function on N is a 1-ary, 2-ary,

\vec{x}, \vec{y} etc.

In many expressions we will have arguments, to which \bullet we don't refer explicitly. $\textsf{\textbf{Example:}}\ \mathsf{Variables}\ x_0, \ldots, x_{n-1}$ in

$$
f(x_0,\ldots,x_{n-1},y) = \begin{cases} g(x_0,\ldots,x_{n-1}), & \text{if } y = 0, \\ h(x_0,\ldots,x_{n-1}), & \text{if } y > 0. \end{cases}
$$

- We abbreviate x_0, \ldots, x_{n-1} , by \vec{x} .
- Then the above can be written shorter as

$$
f(\vec{x}, y) = \begin{cases} g(\vec{x}), & \text{if } y = 0, \\ h(\vec{x}), & \text{if } y > 0. \end{cases}
$$

In general, \vec{x} stands for x_0, \ldots, x_{n-1} , where the number of arguments n is clear from the context.

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (a) $2\text{-}39$

 \bullet If

$$
f:\mathbb{N}^{n+1}\to\mathbb{N}
$$

then in $f(\vec{x}, y)$, \vec{x} needs to stand for $~n$ arguments. **Therefore**

$$
\vec{x} = x_0, \ldots, x_{n-1}
$$

 \blacksquare

$$
f:\mathbb{N}^{n+2}\to\mathbb{N}
$$

then in $f(\vec{x}, y)$, \vec{x} needs to stand for $~n+1$ arguments, so

$$
\vec{x} = x_0, \ldots, x_n
$$

If P is an $n+4$ -ary relation, then in $P(\vec{x},y,z)$, \vec{x} stands for

 x_0, \ldots, x_{n+1}

Similarly, we write \vec{y} for

 y_0, \ldots, y_{n-1}

where n is clear from the context.

Similarly for

 $\vec{z}, \vec{n}, \vec{m}, \ldots$

Notation

stands for

$$
\forall x_0, \ldots, x_{n-1} \in \mathbb{N}. \varphi(x_0, \ldots, x_{n-1})
$$

where the number of variables n is implicit (and usually unimportant).

 $\exists \vec{x} \in \mathbb{N}. \varphi(\vec{x})$

is to be understood similarly.

Notation

$$
\{\vec{x} \in \mathbb{N}^n \mid \varphi(\vec{x})\}
$$

is to be understood as

$$
\{(x_0,\ldots,x_{n-1})\in\mathbb{N}^n\mid\varphi(x_0,\ldots,x_{n-1})\}
$$

$$
\{(\vec{x}, y, z) \in \mathbb{N}^{n+2} \mid \varphi(\vec{x}, y, z)\}
$$

is to be understood as

$$
\{(x_0, \ldots, x_{n-1}, y, z) \in \mathbb{N}^{n+2} \mid \varphi(x_0, \ldots, x_{n-1}, y, z)\}
$$

Similar notations are to be understood analogously.

(b) Cardinality

- **In this subsection, we will make precise the notion of** "small", "big" sets above.
- So we need a notion of size of a set.
- **•** For finite sets one can introduce a number for the size of ^a set.
- For infinite sets, introducing such numbers (cardinality)is beyond the scope of this lectures
- However, we can introduce ^a notion of **relative size**, namely what it means for one set to be **smaller/equal/greater in size** than another set.
	- **Equinumerous** will mean "equal in size".

Number of Elements

Notation 2.3

If A is a finite set, let $|A|$ be the number of elements in A .

Remark 2.4

One sometimes writes $\#A$ for $|A|.$

Cardinality of Finite Sets

If A and B are finite sets, then $|A|=|B|$, if and only if there
is a bijection between A and B : is a bijection between A and B :

Cardinality of Finite Sets

• The above can be generalized to arbitrary (possibly infinite sets) as follows:

Cardinality of Sets

Definition 2.5Two sets A and B are "✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ **equinumerous** or ✿✿✿✿✿✿**have**✿✿✿✿✿**the**✿✿✿✿✿✿✿✿**same**✿✿✿✿✿✿✿✿✿✿✿✿✿✿**cardinality**", in mathematical notation

A aa

if there exists ^a bijection

 $f: A \rightarrow B$

Remark 2.6

If A and B are finite sets, then $A \approx B$ if and only A and B
boys the same number of alemanta, i.e., $|A|$, , , , , , , have the same number of elements, i.e. $|A|=|B|.$

Cardinality of infinite sets

However we have $\mathbb N$ and $\mathbb N \cup \{\bullet\}$, where \bullet is a new
clement, are equipumereus element, are equinumerous.

\n- $$
f : \mathbb{N} \to \mathbb{N} \cup \{ \bullet \}
$$
, s.t.
\n- $f(0) = \bullet$, $f(n+1) = n$ is a bijection.
\n

- Analogy with ^a hotel with infinite many rooms numberedby natural numbers.
	- **This hotel can always accomodate a new guest, by** moving every guest from room n to room $n+1,$ and the new guest to room no. $0.$

Change of Notation

- Until the academic year 2004/05, we used in lectures
	- "have the same cardinality" instead of "equinumerous",
	- and \simeq instead of \approx .
← Nete that suis us:
		- Note that \simeq is used (and was used) for partial
equelity as well equality as well.
		- Change of notation in order to avoid theoverloading of notation.
	- Please take this into account when looking at old exams and other lecture material.
- Both notions occur as well in the literature and might be used in other modules.

Notion of Cardinality in Set Theory

- In set theory there exists the notion of ^a **cardinality**, which is some kind of number (an **ordinal**) which measures the size of ^a set.
	- **C** Then one can show:
		- $A\approx B$ iff the cardinality expressed as an ordinal
far 4 and B is the same for A and B is the same.
	- **However, this notion is beyond the scope of this** module.

≈**as an Equivalence Relation**

Lemma 2.7

 \approx is an equivalence relation, i.e. for all sets A , B , C we
beye: have:

- (a) **Reflexivity.** $A \approx A$.
- (b) **Symmetry.** If $A \approx B$, then $B \approx A$.
- (c) **Transitivity.** If $A \approx B$ and $B \approx C$, then $A \approx C$.

Proof:

- (a): The function id : $A \to A$, id $(a) = a$ is a bijection.
(b): If $f : A \to B$ is a bijection, so is its inverse f^{-1}
- (b): If $f : A \to B$ is a bijection, so is its inverse $f^{-1}.$

(c): If $f : A \rightarrow B$ and $g : B \rightarrow C$ are bijections, so is the composition $g \circ f : A \to C$.

Meaning of the above

- That \approx is an equivalence relation means that it has represent to the t properties we expect of ^a relation expressing that twosets have the same size:
	- **Every set has the same size as itself**

 $A\thickapprox A$

If A has the same size as B , then B has the same
aize as Λ size as A .

 $A\thickapprox B\to B\thickapprox A$

If A has the same size as B and B has the same
aize as C than A has the same aize as C size as C then A has the same size as C :

 $(A\thickapprox B\wedge B\thickapprox C)\to A\thickapprox C$

Meaning of the above

- If we wrongly defined A and B to have the same size if there is a summatrix. there is an injection from A to B then symmetry
weulde't hold wouldn't hold.
- So there is something to be shown, the language notation we use only suggests that the abovementioned properties hold.
	- . Don't let yourself be deceived by language!

Cardinality of the Power Set

Theorem 2.8

A set A and its power set $\mathcal{P}(A) := \{B \mid B \subseteq A\}$ are never equinumerous:

 $A \not\approx \mathcal{P}(A)$

Stronger Result

In fact we will show something even stronger: For any set A the following holds: there is no surjection

 $C: A \rightarrow \mathcal{P}(A)$

- **If this is shown, then we know that there is no bijection** $C: A \rightarrow \mathcal{P}(A), A \not\approx \mathcal{P}(A).$
- **Remark on Notation:**
	- We write here the capital letter C instead of the value of f usual letters $f, \, g$ etc. for functions, in order to flag that $C(a)$ is a set.
	- For notational convenience we write C_a instead of $C(a)$, so C_a is "the a th set enumerated by the function $C"$.

Proof

- A typical diagonalisation argument.
- First consider the case $A = \mathbb{N}$.
- Assume $C: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$ is a surjection.
- We define a set $D\subseteq \mathbb{N}$ s.t. $D\neq C_n$ for every $n\in \mathbb{N}.$
- $D = C_n$ will be violated at element n:
	- If $n\in C_n$, we add n not to D , therefore $n \in C_n \wedge n \notin D$.
	- If $n \notin C_n$, we add n to D , therefore $n \notin C_n \wedge n \in D$.
- On the next slide we take as an example some function $C : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ and show how to construct a set D s.t.
 $C \subseteq \mathbb{N}$ for all $\mathfrak{g} \in \mathbb{N}$ $C_n \neq D$ for all $n \in \mathbb{N}$.

$$
C_0 = \{ (0, 1, 2, 3, 4, ... \})
$$

$$
C_0 = \{ \begin{array}{c} \boxed{0,} & 1, 2, 3, 4, \dots \end{array} \}
$$

$$
D = \{ \begin{array}{c} \boxed{0,} & 1, 2, \dots \end{array} \}
$$

$$
C_0 = \{ (0, 0, 1, 2, 3, 4, ... \}
$$

\n
$$
C_1 = \{ (0, 0, 2, 4, ... \}
$$

\n
$$
D = \{ (0, 0, 0, 0, ... \})
$$

$$
C_0 = \{ (0, 0), 1, 2, 3, 4, ... \}
$$

\n
$$
C_1 = \{ (0, 0), 2, 4, ... \}
$$

\n
$$
D = \{ (0, 0), (1, 0), ... \}
$$

We were going through the diagonal in the above matrix.

We were going through the diagonal in the above matrix. $\bm{\tau}$ Therefore this proof is called a <u>diagonalisation argument.</u> ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Proof

So we define

$$
D := \{ n \in \mathbb{N} \mid n \notin C_n \} .
$$

We have $D\neq C_n$ for all n :
Assume $D=\overline{C}$ Assume $D = C_n$.

- If $n\in D$, then by the definition of D we have $n\not\in C_n,$ therefore by $D = C_n$ we get $n \not\in D$, a contradiction.
- If $n \not\in D,$ then by the definition of D we have $n \in C_n,$ therefore by $D=C_n$ we get $n\in D,$ a contradiction.

Therefore we obtain a contradiction in both cases, $D \neq C_n.$

Therefore D is not in the image of $C,$ so C is not a surjection,

a **contradiction.**

Formal Proof $(A=\mathbb{N})$

In short, the above argument for $A=\mathbb{N}$ reads as follows:
Acquires $G\subset\mathbb{N}$ Assume $C: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$ is a surjection.
Define Define

 $D := \{n \in \mathbb{N} \mid n \notin C_n\}$.

Since C is surjective, D must be in the image of $C.$ Assume $D=C_n.$ $\overline{2}$ hr Then we have

General Situation

For general $A,$ the proof is almost identical: Assume $C: A \rightarrow \mathcal{P}(A)$ is a surjection.
We define a set D, a t, D, C is viak We define a set D , s.t. $D=C_a$ is violated for a :

$$
D := \{ a \in A \mid a \notin C_a \}
$$

Since C is surjective, D must be in the image of C .
Assume D Assume $D=\,$ $C_a.$ Then we have

 $\frac{\mathcal{P}(A)$ and $A \rightarrow$ \rightarrow Bool

Lemma 2.9 For every set ^A

$$
\mathcal{P}(A) \approx (A \to \text{Bool}) \approx (A \to \{0, 1\})
$$

Remark: Note that we can identify the set of Booleans Bool with $\{0,1\}$ by identifying

- true **with** 1,
- false **with** 0.

Therefore we get $(A$ $A \rightarrow \text{Bool}$ $\approx (A \rightarrow \{0, 1\})$.

Proof

Let for $B \in \mathcal{P}(A)$

$$
\begin{array}{rcl}\nX_B & : & A \to \{0,1\} \\
X_B(x) & : = & \begin{cases}\n1 & \text{if } x \in B, \\
0 & \text{if } x \notin B.\n\end{cases}\n\end{array}
$$

- χ_{B} is called the <u>characteristic function of B </u>.
- If we consider 0 as false and 1 as true, then we get

$$
\chi_B(x) = \begin{cases} \text{true} & \text{if } x \in B, \\ \text{false} & \text{if } x \notin B. \end{cases}
$$

Therefore $\chi^{}_{\!B}$ is the function, which determines
whather ite ergument is in B er not whether its argument is in B or not.

Example: ^B **⁼ set of Odd Numbers**

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b) 2 -64

Proof

- χ is a function from $\mathcal{P}(A)$ to $A \to \{0,1\}$, where we write
the enaligation of a to an element B as χ -instead of the application of χ to an element B as χ_B instead of $\chi(B)$.
- We show that χ is a bijection.
	- Then it follows that $\mathcal{P}(A) \approx (A \rightarrow \{0,1\}).$ [Jump](#page-82-0) over rest of proof

$$
\chi_B(x) := \begin{cases} 1 & \text{if } x \in B, \\ 0 & \text{if } x \notin B. \end{cases}
$$

•
$$
\chi
$$
 has an inverse: Define

$$
\chi^{-1} : (A \to \{0, 1\}) \to \mathcal{P}(A) \chi^{-1}(f) := \{x \in A \mid f(x) = 1\}
$$

$$
\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}
$$

$$
\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}
$$

We show that χ and χ^{-1} are inverse:

$$
\bullet \ \chi^{-1} \circ \chi \text{ is the identity:}
$$

If $B \subseteq A$, then

$$
\chi^{-1}(\chi_B) = \{ x \in A \mid \chi_B(x) = 1 \}
$$

= $\{ x \in A \mid x \in B \}$
= B

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (b) 2 -67

$$
\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}
$$

$$
\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}
$$

\n- $$
\chi \circ \chi^{-1}
$$
 is the identity:
\n- If $f : A \to \{0, 1\}$, then\n $\chi_{\chi^{-1}(f)}(x) = 1 \iff x \in \chi^{-1}(f)$ \n $\iff f(x) = 1$ \n
\n

$$
\chi_B(x) := \begin{cases} 1 & x \in B, \\ 0 & \text{otherwise.} \end{cases}
$$

$$
\chi^{-1}(f) := \{x \in A \mid f(x) = 1\}
$$

and

$$
\chi_{\chi^{-1}(f)}(x) = 0 \iff x \notin \chi^{-1}(f)
$$

$$
\iff f(x) \neq 1
$$

$$
\iff f(x) = 0.
$$

Therefore $\chi_{\chi^{-1}(f)}=f.$

It follows that χ is bijective and therefore

```
\mathcal{P}(A) \approx (A \rightarrow \{0,1\}).
```
(c) Countable Sets

Definition 2.10

- A set A is **countable**, if it is finite or $A \approx \mathbb{N}$.
- A set, which is not countable, is called **uncountable**. ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
- **Intuitively**
	- uncountable sets are very big
	- countable sets are finite or small infinite sets.
		- Countable sets have at most the size of the $\mathbb N.$

Relationship to Cardinality

- Intuitively (this can be made mathematically precise) \bullet the cardinalities of sets start with the finite cardinalities $0, 1, 2, \ldots$ corresponding to finite sets having $0, 1, 2, \ldots$ elements.
	- All these cardinalities are different (for finite sets A, B we have $A \approx B$ iff A and B have the same number of
clemente) elements).
- Then the next cardinality is that of $\mathbb N.$
- **•** Then we have higher cardinalities like the cardinality of $\mathcal{P}(\mathbb{N})$ (or $\mathbb{R}).$

Relationship to Cardinality

- Countable sets are the sets having cardinality less thanor equal the cardinality of $\mathbb N.$
	- Which means they have cardinality of N or finite
cardinality cardinality.

Examples of (Un)countable Sets

 $\mathbb N$ is countable.

$$
\bullet \quad \mathbb{Z}:=\{\ldots,-2,-1,0,1,2,\ldots\} \text{ is countable.}
$$

We can enumerate the elements of Z in the following way:

$$
0, +1, -1, +2, -2, +3, -3, +4, -4, \ldots
$$

So we have the following map:

 $0\mapsto 0,\,\,\,1\mapsto +1,\,\,\,2\mapsto -1,\,\,\,3\mapsto +2,\,\,\,4\mapsto -2,$ etc.
This man can be described as follows: This map can be described as follows:

$$
g:\mathbb{N}\to\mathbb{Z},
$$

$$
g(n) := \begin{cases} \frac{-n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

 $\bm{\mathsf{Exercise:}}$ Show that g is bijective.

Illustration ofZ **is Countable**

Examples of (Un)countable Sets

- $\mathcal{P}(\mathbb{N})$ is uncountable.
	- \bullet $\mathcal{P}(\mathbb{N})$ is not finite.
	- $\mathbb{N} \not\approx \mathcal{P}(\mathbb{N}).$
- $\mathcal{P}(\{1,\ldots,10\})$ is countable.
	- Since it is finite.

Characterisation of Countable Sets

Lemma 2.11

A set A is countable, if and only if there is an injective map $g: A\to\mathbb{N}$.

Remark 2.12

 Intuitively, Lemma 2.11 expresses: A is countable, if we can assign to every element $a \in A$ a unique code $f(a) \in \mathbb{N}$.
Llaveres it is not securical that angle alament of \mathbb{N} and However, it is not required that each element of N occurs as ^a code.

The code $f(a)$ can be considered as a finite description of $a.$ So A is countable if we can give a unique finite dependence of its alomant description for each of its element.

"⇒":

Assume A is countable.

Show that there exists an injective function $f : A \rightarrow \mathbb{N}.$

- Case A is finite:
Let Λ Let $A=\,$ We can define $f : A\rightarrow\mathbb{N}, \, a_i\mapsto i.$ $\{a_0, \ldots, a_n\}$, where a_i are different. f is injective.
- $\mathsf{Case}\;A$ is infinite:

 A is countable, so there is a bijection from A into $\mathbb N,$
which is therefore injective which is therefore injective.

"⇐": Assume $f : A \rightarrow \mathbb{N}$ is injective.
Chause 1 is seuptable. Show A is countable. If A is finite, we are done.
Acquires, 4 is infinite. The Assume A is infinite. Then f is for instance something like
the following: the following:

Proof of Lemma 2.11, " \Leftarrow **"**

In order to obtain a bijection $g: A\rightarrow\mathbb{N},$ we need to jump over the gaps in the image of $f\colon$

 $f(a)=1,$ which is the element number 0 in the image of \overline{f} . g should instead map a to $0.$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c) $2\frac{1}{2}$ 2-81

 $f(b)=4,$ which is the element number 1 in the image of \overline{f} . g should instead map b to $1. \;$ Etc.

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c) $2\text{-}82$

1 is element number 0 in the image of f , because the number of elements $f(a\,$ $\overline{}$) below $f(a)$ is 0 .

 4 is element number 1 in the image of f , because the number of elements $f(a\,$ $\overline{}$) below $f(b)$ is $1.$

So in general we define $g : A \rightarrow \mathbb{N}.$

 $g(a) := |\{a$ $' \in A \mid f(a)$ $\overline{}$ $) < f(a)\}$

$$
g(a) := |\{a' \in A \mid f(a') < f(a)\}|
$$

 g is well defined, since f is injective, so the number of $a' \in A$ s.t. $f(a') < f(a)$ $' \in A$ s.t. $f(a)$ $\overline{}$ $) < f(a)$ is finite.

$$
g(a) = |\{a' \in A \mid f(a') < f(a)\}|
$$

We show that g is a bijection:

 g is injective: Assume $a,b\in A,$ $a\neq b.$ Show $g(a)\neq g(b).$ $h \sim h^{-1}$ By the injectivity of f we have $f(a) \neq f(b)$. Let for instance $f(a) < f(b).$

Then

$$
\{a' \in A \mid f(a') < f(a)\} \stackrel{\subset}{\neq} \{a' \in A \mid f(a') < f(b)\} \enspace ,
$$

therefore

 $g(a) = |\{a$ $' \in A \mid f(a)$ $\overline{}$ $) < f(a) \} < | \{ a$ $' \in A \mid f(a)$ $\overline{}$ $) < f(b)\}$ $=g(b)$,

therefore

 $g(a) = |\{a$ $' \in A \mid f(a)$ $\overline{}$ $) < f(a) \} < | \{ a$ $' \in A \mid f(a)$ $\overline{}$ $) < f(b)\}$ $=g(b)$,

 $g(a)\neq g(b).$

$g(a) = |\{a$ $' \in A \mid f(a)$ $\overline{}$ $) < f(a)$ }

 g is surjective: We define by induction on k for $k\in\mathbb{N}$ an element $a_k\in A$ s.t. $g(a_k) = k$. Then the assertion follows: Assume we have defined already $a_0,\ldots,a_{k-1}.$

There exist infinitely many a must be at least one $a'\in A$ s. $^{\prime}\in A,$ f is injective, so there $' \in A$ s.t. $f(a)$ $\overline{}$) > $f(a_{k-1})$.

There exists a $' \in A$ s.t. $f(a)$ $\overline{}$) > $f(a_{k-1})$.

Let n be minimal s.t. $n=$ $f(a)$ for some $a \in A$ and $n >$ $f(a_{k-1}).$

 n minimal s.t. $n=$ $f(a$ $\overline{}$) for some a $' \in A$, $n > f(a_{k-1})$

Let a be the unique element of A s.t. $f(a) = n$.

 n minimal s.t. $n=$ $f(a)$ for some $a\in A,$ $n>f(a_{k-1})$ $f(a)=n$

$$
\{a'' \in A \mid f(a'') < f(a)\} = \{a'' \in A \mid f(a'') < f(a_{k-1})\} \cup \{a_{k-1}\} .
$$
Proof of Lemma 2.11, "⇐**"**

Therefore $g(a) = |\{a'' \in A \mid f(a'') < f(a)\}|$ $\mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L} \times \mathcal{L}$ = $= |\{a'' \in A \mid f(a'') < f(a_{k-1})\}| + 1$ $= g(a_{k-1}) + 1 = k -1+1=k$.

Let $a_k := a$.

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c) $2\text{-}90$

Corollary

Corollary 2.13

- (a) If B is countable and $g : A \rightarrow B$ injective,
then A is countable then A is countable.
- (b) If A is uncountable and $g : A \to B$ injective,
then B is uncountable then B is uncountable.
- (c) If B is countable and $A\subseteq B$, then A is countable.

Proof:

- (a) If B is countable, there exists an injection $f : B \to \mathbb{N}.$ Rut then $f \circ a : A \to \mathbb{N}$ is an injection as well, therefore But then $f \circ g : A \to \mathbb{N}$ is an injection as well, therefore
⊿ is countable A is countable.
- (b): By (a). Why? (Exercise).
	- (c): By (a). (What is g ?; exercise).

Corollary (Cont.)

Corollary 2.13

- (d) If A is uncountable and $A\subseteq B$, then B is uncountable.
- (e) If $A \approx B$, then A is countable if and only if B is countable.

Proof:

- \bullet (d): By (c). Why? (Exercise).
- (e): By (a). Why ?

Remark:

A corollary is ^a lemma/theorem which is ^a direct consequence of ^a more difficult lemma or theoremshown before.

Injection and Size

- **O** Intuitively we can say:
	- **•** That there exists an injective function

 $f: A \rightarrow B$

means that the size of A is less than or equal to the
size of B size of $B.$

- That $A\subseteq B$ means that there is an injection from A into $B.$
	- So the size of A is less than or equal to the size of B.

Characterisation of Count. Sets, II

Lemma 2.14

A set A is countable, if and only if $A=\emptyset$ or there exists a puriodion I surjection $h:\mathbb{N} \rightarrow A$.

Remark: This explains the notion "countable": ^A non-emptyset is countable if we can enumerate its elements(repetitions are allowed).

2nd Remark: The empty set ∅ is countable, but there exists no surjection $h : \mathbb{N} \to \emptyset$ – in fact there exists no function
 $h:\mathbb{N}\rightarrow \emptyset$ at all.

[Jump](#page-117-0) over Proof.

"⇒": Assume A is countable. If A is empty we are done.
Ce essume 4 is non-ampty. So assume A is non-empty.
Show there exists a suriacti Show there exists a surjection $f: \mathbb{N} \rightarrow A.$

 $\mathsf{Case}\ A$ is finite. Assume $A=\,$ Define $f : \mathbb{N} \to A$, $\{a_0, \ldots, a_n\}.$

$$
f(k) := \begin{cases} a_k & \text{if } k \leq n, \\ a_0 & \text{otherwise.} \end{cases}
$$

 f is clearly surjective.

 $\mathsf{Case}\;A$ is infinite.

 A is countable, so there exists a bijection from $\mathbb N$ to $A,$ which is therefore surjective.

"⇐":

- If $A=$ \emptyset , then A is countable.
- So assume A and

 $h : \mathbb{N} \rightarrow A$ is surjective

Show A is countable.

C Define

$$
g : A \to \mathbb{N} ,
$$

$$
g(a) := \min\{n \mid h(n) = a\} .
$$

- $g(a)$ is well-defined, since h is surjective:
	- There exists some n s.t. $h(n)=a,$ therefore the minimal such n is well-defined.

$$
g : A \to \mathbb{N} ,
$$

$$
g(a) := \min\{n \mid h(n) = a\}
$$

It follows that for $a\in A$ we have

$$
h(g(a))=a.
$$

- Therefore g is injective:
	- If $g(a) = g(a)$ $\overline{}$) then

$$
a = h(g(a)) = h(g(a')) = a'
$$

Therefore $g : A \rightarrow \mathbb{N}$ is an injection, and by Lemma
3.44 . A is sountable 2.11, A is countable.

Corollary

Corollary 2.15

- (a) If A is countable and $g : A \rightarrow B$ surjective,
then B is countable then B is countable.
- (b) If B is uncountable and $g : A \rightarrow B$ surjective,
then A is uncountable then A is uncountable.

Proof of Corollary 2.15 (a)

- To be shown: If A is countable, $g: A \rightarrow B$ is surjective,
then B is sountable as well. then B is countable as well.
- So assume A is countable, $g: A \rightarrow B$ is surjective.
- If A is empty, then B is empty as well and therefore
equatoble countable.
	- (We need to treat $A=\emptyset$ as a special case, since in that case there exists no surjection $f : \mathbb{N} \to A$ as
easy read in the next step, even as A is severtable) A is co assumed in the next step, even so A is countable).

Proof of Corollary 2.15 (a)

• Otherwise there exists a surjection

$$
f:\mathbb{N}\to A
$$

But then

$$
g \circ f : \mathbb{N} \to B
$$

is ^a surjection as well, therefore B is countable.

Proof of Corollary 2.15 (b)

• Follows by (a). Why?

Surjectivion and Size

O Intuitively we can say:

• That there exists a surjective function

 $f: A \rightarrow B$

means that the size of A is greater than or equal to
the size of B the size of $B.$

Examples of Uncountable Sets

Lemma 2.16

The following sets are uncountable:

(a)
$$
F := \{f | f : \mathbb{N} \to \{0, 1\}\}.
$$

(b) $G := \{f \mid f : \mathbb{N} \to \mathbb{N}\}.$

(c) The set of real numbers $\R.$

- $\begin{array}{l} {\bf Proof\,\, of\,\, (a):} \ {\rm By\,\, Lemma\,\, 2.9\,\,}P(\mathbb{N})\approx(\mathbb{N}\rightarrow\{0,1\}). \ \displaystyle \Delta(\mathbb{N})\ \ \text{is measurable, therefore}\ \ \mathbb{N}\qquad (0,1)\ \ \text{as well}. \end{array}$ \mathbf{L} \mathbf{L} $\mathcal{P}(\mathbb{N})$ is uncountable, therefore $\mathbb{N} \to \{0,1\}$ as well.
- **Proof of (b):** $F ⊆ G$, F is uncountable, so G is uncountable. uncountable.

Idea of Proof of Lemma 2.16 (c)

- In order to show \R is uncountable, it suffices to show
that the half anamintary of [0, 1] that the half open interval $[0,1[\,$ $(i.e. \{x \in \mathbb{R} \mid 0 \leq x < 1\})$ is uncountable).
- \bullet Elements of $[0, 1]$ are in binary representation of the form

 $(0.a_0a_1a_2a_3\cdots$ $\big)_2$

where a_i $i \in \{0, 1\}.$

- $(a_n)_{n\in\mathbb{N}}$ $_N$ is a function $\mathbb{N} \to \{0,1\}$.
- If the function mapping sequences $(a_n)_{n\in\mathbb{N}}$ to R were injective, then we could conclude from
N (0.1) uncountable that [0.1] and therefore **F** $\mathbb{N}: \mathbb{N} \to \{0, 1\}$ $\mathbb{N} \to \{0,1\}$ uncountable that $[0,1[$ and therefore $\mathbb R$ are uncountable.

Idea of Proof of Lemma 2.16 (c)

- **However this function is not injective since** $0.a_0a_1a_2\cdots a_n011111\cdots$ and $0.a_0a_1a_2\cdots a_n100000\cdots$ are
the same number the same number.
	- **Phis is similar to decimal representation, where** $0.a_0a_1a_2\cdots a_n099999\cdots$ and $0.a_0a_1a_2\cdots a_n100000$ are the same. $0 \cdots$
- This problem can be overcome with some effort.
- **•** The detailed proof will be omitted in the lecture. [Jump](#page-131-0) over Proof.

Show $\mathbb R$ is uncountable.

 \bullet By (b),

$$
F = \{f \mid f: \mathbb{N} \to \{0, 1\}\}
$$

is uncountable.

A first idea is to define ^a function

$$
f_0
$$
 : $F \to \mathbb{R}$,
\n $f_0(g) = (0.g(0)g(1)g(2) \cdots)_2$

Here the right hand side is ^a number in binary format.

If f_0 were injective, then by F uncountable we could conclude $\mathbb R$ is uncountable.

Show $\mathbb R$ is uncountable.

• The problem is that

 $(0.a_0a_1\cdots a_k01111$ $\overline{1}$... $\big)_2$ $_2$ and $(0.a)$ $_0a_1\cdots a_k10000$ \cup \cdots $\big)_2$

denote the same real number, so f_0 is not injective.

We modify f_0 so that we don't obtain any binary numbers of the form

> $(0.a_0a_1\cdots a_k01111$ $\overline{1}$... $\big)_{2}$.

O Define instead

$$
f : F \to \mathbb{R} ,
$$

$$
f(g) := (0.g(0) 0 g(1) 0 g(2) 0 \cdots)_2 ,
$$

 \bullet So

$$
f(g)=(0.a_0a_1a_2\cdots)_2
$$

where

$$
a_k := \begin{cases} 0 & \text{if } k \text{ is odd,} \\ g(\frac{k}{2}) & \text{otherwise.} \end{cases}
$$

If two sequences

$$
(b_0, b_1, b_2, \ldots)
$$
 and (c_0, c_1, c_2, \ldots)

do not end in

$$
1,1,1,1,\ldots\;\;,
$$

i.e. are not of the form

$$
(d_0, d_1, \ldots, d_l, 1, 1, 1, 1, 1, \ldots) ,
$$

then one can easily see that

$$
(0.b_0b_1\cdots)_2=(0.c_0c_1\cdots)_2\Leftrightarrow (b_0,b_1,b_2,\ldots)=(c_0,c_1,c_2,\ldots)
$$

Therefore

$$
f(g) = f(g')
$$

\n
$$
\Leftrightarrow (0.g(0) 0 g(1) 0 g(2) 0 \cdots)_2 = (0.g'(0) 0 g'(1) 0 g'(2) 0 \cdots)_2
$$

\n
$$
\Leftrightarrow (g(0), 0, g(1), 0, g(2), 0, \ldots) = (g'(0), 0, g'(1), 0, g'(2), 0, \ldots)
$$

\n
$$
\Leftrightarrow (g(0), g(1), g(2), \ldots) = (g'(0), g'(1), g'(2), \ldots)
$$

\n
$$
\Leftrightarrow g = g'
$$

 f is injective.

More Uncountable Sets

Lemma 2.17

If A is infinite, then $\mathcal{P}(A)$ and $\{f$ function $\mid f:A\rightarrow\{0,1\}\}$ are uncountable.

Proof: Exercise (reduce it to Lemma 2.16 (a)).

Countable and Complement

Lemma 2.18

- (a) If A , B are countable, so is $A\cup B$.
- (b) If A is uncountable and B is countable then $A\setminus B$ is uncountable.
- Here $A\setminus B=$ so $A\setminus B$ is A without the elements in $B.$ ${a \in A \mid a \notin B},$
- • Note that
	- (a) reads: If two sets are small, their union is small as well.
	- (b) reads: If one removes from ^a big set ^a small set, then what remains is still big.

- To be shown: If A, B are countable, so is $A\cup B.$
- We will use the fact that a set X is countable if and only
if it is empty or there exist a suriective function if it is empty or there exist ^a surjective function $f : \mathbb{N} \to X$.
- Therefore we need to treat the special cases when A or
Beracements B are empty.
- Case 1: A is empty. Then $A\cup B=B$ which is countable.
- Case 2: B is empty.
Then $A \cup B = A \cup b$ Then $A\cup B=A$ which is countable.

Case 3: A, B are not empty.

By A,B countable there exist surjective functions

$$
f : \mathbb{N} \to A \qquad g : \mathbb{N} \to B
$$

Define $h : \mathbb{N} \to A \cup B$,

$$
h(n):=\left\{\begin{array}{ll} f(\frac{n}{2}) & \text{if } n \text{ is even,} \\ g(\frac{n-1}{2}) & \text{if } n \text{ is odd.} \end{array}\right.
$$

- So $f(n) = h(2n)$ and $g(n) = h(2n + 1)$.
- Therefore

$$
A\cup B=f[\mathbb{N}]\cup g[\mathbb{N}]\subseteq h[\mathbb{N}]
$$

\overline{f} is surjective.

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c) $2 \cdot 115$

Assume $f: \mathbb{N} \rightarrow A, \, g: \mathbb{N} \rightarrow B.$

 $h(2n) = f(n), h(2n + 1) = g(n)$:

Jump over the [alternative](#page-149-0) proof.

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (c) $2\frac{1}{2}$ 2-117

Alternative Proof of Lemma 2.18 (a)

- To be shown: If A, B are countable, so is $A\cup B.$
- So assume A, B are countable.
- Then there exist (by Lemma 2.11) injective functions

$$
f: A \to \mathbb{N}
$$
, $g: B \to \mathbb{N}$.

C Define

$$
h : A \cup B \to \mathbb{N}
$$

$$
h(x) := \begin{cases} f(x) \cdot 2 & \text{if } x \in A \\ g(x) \cdot 2 + 1 & \text{if } x \in B \setminus A \end{cases}
$$

- h is injective.
- Therefore, by Lemma 2.11, $A \cup B$ is countable.

- **•** To be shown: If A is uncountable and B is countable, then $A\setminus B$ is
uncountable uncountable.
- Assume A is uncountable, B is countable and $A\setminus B$ were countable.
- Then $A\cap B$ is countable (since $A\cap B\subseteq B$).
- Therefore $A = (A \setminus B) \cup (A \cap B)$ is countable as well, a contradiction contradiction.

Continuum Hypothesis

Remark:

- One can show $\mathcal{P}(\mathbb{N})\approx\mathbb{R}.$
- Both these sets are uncountable, so they have sizebigger than $\mathbb N.$
- **Question:** Is there a set *B* which has size (cardinality)
between N and ^{m?} between $\mathbb N$ and $\mathbb R?$
	- I.e. there are injections $\mathbb{N} \to B$ and $B \to \mathbb{R}$,
	- \Box D nor D but neither bijections $\mathbb{N} \to B$ nor $B \to \mathbb{R}$.
- <u>— III III</u> ✿✿✿✿✿✿✿✿✿✿✿✿✿✿**Continuum**✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿**Hypothesis**: There exists no such set.
- Continuum Hypothesis is **independent of set theory**, i.e. it is neither provable nor is its negation provable.
	- **•** This was one of the most important open problems in set theory for ^a long time.

Paul Cohen

Paul Cohen(1934 – 2007)

 Showed 1963 that the continuum hypothesis isindependent of set theory.

(d) Reducing Computability toN

Goal: Reduce computability on some data types A to
esmautability on N computability on $\mathbb N.$

A could be for instance the set of strings, of matrices, of
trace, of liste of strings, ats trees, of lists of strings, etc.

- **If we can do this, then there is no need for a special** definition of computability on $A,$ we can concentrate on the notion of computability on $\mathbb N.$
- We can reduce computabiliy on A to computability on \mathbb{R}^n if we have two intuitivaly assemble functions. $\mathbb N,$ if we have two intuitively computable functions
	- encode_A $A: A \rightarrow \mathbb{N},$
	- $\mathrm{decode}_A : \mathbb{N} \to A.$

- encode_A $_A: A \to \mathbb{N}$, decode $_A: \mathbb{N} \to A$.
- Assume we have such functions encode $_{A}$, decode $_{A}$, encode $_B$, decode $_B$ $_B$ for A and B .
- Then from an intuitively computable $f : A \rightarrow B$ we can
abtain an intuitively computable function obtain an intuitively computable function

 $\widetilde{f}:=\text{encode}_B \circ f \circ \text{decode}$ $_A:\mathbb{N}\rightarrow\mathbb{N}$:

Furthermore from a computable $g : \mathbb{N} \to \mathbb{N}$ we can
shain an intuitively computable function e functio obtain an intuitively computable function $\widehat{g} := \mathrm{decode}_{B} \circ g \circ \mathrm{encode}$ $\displaystyle {\it A}$ $_A: A \rightarrow B$:

- We would like to take the computable functions g : ^N→N as representations of **all** computable functions $f : A \rightarrow B$.
	- \sim \sim In the sense that f represents the function $\widehat{g}:A\rightarrow B.$
- **•** This is possible if for any intuitively computable $f: A \to B$ we find a $g: \mathbb{N} \to \mathbb{N}$ s.t. $\widehat{g} =$ f .
- We want to use $g=f$, wh $\widetilde{f},$ which is computable, if f is computable.
- But then we need $\widehat{}$ \widetilde{f} = f .

$$
\widetilde{f} = \text{encode}_B \circ f \circ \text{decode}_A : \mathbb{N} \to \mathbb{N},
$$

$$
\widehat{g} = \text{decode}_B \circ g \circ \text{encode}_A : A \to B,
$$

want $\widehat{f} = f.$

In order to obtain $\widehat{}$ \widetilde{f} = f , we need

$$
\widehat{\widetilde{f}} = \operatorname{decode}_{B} \circ \widetilde{f} \circ \operatorname{encode}_{A}
$$

=
$$
\operatorname{decode}_{B} \circ \operatorname{encode}_{B} \circ f \circ \operatorname{decode}_{A} \circ \operatorname{encode}_{A}
$$

=
$$
\underline{\underset{=}{\overset{!}{\vdots}}} f
$$

(follow by the definition). ! = $\dot{=}$ is the equality we need, whereas the other equalities
allow by the definition)

 $\mathrm{decode}_{B} \circ \mathrm{encode}$ $_B \circ f \circ \text{decode}$ $_A \circ \text{encode}$ $A=$!f

• This is fulfilled if we have

 $\mathrm{decode}_A \circ \mathrm{encode}_A \ = \ \mathrm{id}_A$ $\mathrm{decode}_{B} \circ \mathrm{encode}_{B} = \mathrm{id}$ $\, B \,$ $B = id$ $\, B \,$

where id A $_A$ is the identity on A , i.e. $\lambda x.x$ similarly for id $B\cdot$ This means that

> $\forall x \in A$.decode_A(encode_A(x)) = x $\forall x \in B$.decode_B(encode_B(x)) = x

$\forall x \in A$.decode_A(encode_A(x)) = x $\forall x \in B$.decode_B(encode_B(x)) = x

- This is ^a natural condition: If we encode an element of ^A, and then decode it, we obtain the original element of A back, similarly for B.
	- Note that relationship to cryptography: if we encrypt ^a message and then decrypt it, we should obtain theoriginal message.

• Note that we don't need

 $\mathrm{encode}_{A}(\mathrm{decode}_{A}(x)) = x$

- Such a condition would mean: every element $n\in\mathbb{N}$ is a code for an element of A (namely $\operatorname{decode}_A(n)$) $_A(n)$).
- In cryptography this means: not every element of thedatatype of codes is actually an encrypted message.

Computable Encodings

Informal Definition

 A data typeA has ^a if there exist in an intuitive sense computable functions✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿**computable**✿✿✿✿✿✿✿✿✿✿✿✿✿ **encoding**✿✿✿✿✿✿ **into** ✿✿N,

> encode_A $_A: A \rightarrow \mathbb{N}$, and decode $_A:\mathbb{N}\to A$

such that for all $a\in A$ we have

 $\mathrm{decode}_A(\mathrm{encode}_A(a)) = a$

Computable Encodings

$\mathrm{decode}_A(\mathrm{encode}_A(a)) = a$

Note that by the above we obtain \rm{encode} A $_A$ is injective.

- In general we have for two functions $f : B \rightarrow C,$ en f is $g: C \to D$ that if $g \circ f$ is injective, then f is injective
as well **WE** as well.
- Therefore if A has a computable encoding into N, then
there exists an injection there exists an injection $\mathrm{encode}_{A}: A \rightarrow \mathbb{N},$ therefore A $\displaystyle {\it A}$ $_A: A \rightarrow$ $\mathbb N,$ therefore A is countable.

Extension of the Encoding

- We want to show that we have computable encodings of more complex data types into $\mathbb N.$
- Assume A and B have computable encodings into $\mathbb N$.
- Then we will show that the same applies to
	- $A\times B,$ the product of A and $B,$
	- A^k , the set of k -tuples of $A,$
	- $A^{\ast},$ the set of lists (or sequences) of elements of $A.$
- The proof will show as well that if $A,$ B are countable, ∞ so are

$$
A \times B \, , \quad A^k, \quad A^* \, .
$$

(e) Encod. of Data Types intoN

In order to show that $A\times B$, A^k encodings into $\mathbb N,$ if $A,$ B have, it suffices to show that k , A^\ast have computable

```
N \times N, N^n^n , \mathbb{N}^*
,
```
have computable encodings into $\mathbb N.$

Note that $\mathbb{N}^2=\mathbb{N}\times\mathbb{N}.$

In order to see this assume we had already shown that

 \mathbb{N}^n , \mathbb{N}^* ,

have computable encodings, so we have computableinjections

> $\begin{array}{ccc} \mathrm{encode}_{\mathbb{N}^n} & : & \mathbb{N}^n \rightarrow \mathbb{N} \ , \ \end{array}$ $encode_{\mathbb{N}^*} : \mathbb{N}^* \to \mathbb{N}$.

with corresonding computable decoding functions.

Assume $A, \, B$ have computable with encodings

encodeA : ^A [→] ^N , encode_B : $B \to \mathbb{N}$.

• Then we obtain a computable encoding

In short

 $\text{encode}_{A \times B}((a, b)) = \text{encode}_{\mathbb{N}^2}((\text{encode}_A(a), \text{encode}_B(b)))$

$\textsf{Exercise:}$ Define $\mathrm{decode}_{A \times B}$, show $\mathrm{decode}_{A \times B}(\mathrm{encode}_{A \times B}(x)) = x$ and verify that $\mathrm{decode}_{A \times B}$ is intuively computable.

We obtain a computable encoding

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{138}{2}$

Encoding of Pairs

- The first step is to give a computable encoding of \mathbb{N}^2 into $\mathbb N.$
- In fact our encoding will be a bijection.
- We will define intuitively computable functions

$$
\begin{array}{rcl} \pi & : & \mathbb{N}^2 \to \mathbb{N} \\ \pi_0 & : & \mathbb{N} \to \mathbb{N} \\ \pi_1 & : & \mathbb{N} \to \mathbb{N} \end{array}
$$

s.t. π and

$$
\lambda n.(\pi_0(n),\pi_1(n)): \mathbb{N} \to \mathbb{N}^2
$$

are inverse to each other.

Encoding of Pairs

- π : $\mathbb{N}^2 \to \mathbb{N}$
- π_0 : $\mathbb{N} \rightarrow \mathbb{N}$ $_0$: $\mathbb{N} \rightarrow \mathbb{N}$
- π_1 : $\mathbb{N} \rightarrow \mathbb{N}$ $_1$: $\mathbb{N} \rightarrow \mathbb{N}$
- Therefore we obtain a computable encoding of $\mathbb{N}\times\mathbb{N}$ into $\mathbb N$ with

$$
\begin{array}{rcl}\n\text{encode}_{\mathbb{N} \times \mathbb{N}} & := & \pi \\
\text{decode}_{\mathbb{N} \times \mathbb{N}} & := & \lambda x.(\pi_0(x), \pi_1(x)) \quad \colon \ \mathbb{N} \to \mathbb{N}^2\n\end{array}
$$

Encoding of Pairs

 π will be called the pairing $\mathbf{pairing}\ \mathbf{function}\ \mathbf{and}\ \pi_i\ \mathbf{the}$ ✿✿✿✿✿✿✿✿✿✿✿✿✿ **projection**✿✿✿✿✿✿✿✿✿✿✿✿✿ **functions** or short ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ **projections**. π is a computable encoding of \mathbb{N}^2 into $\mathbb{N}.$

Pairs of natural numbers can be enumerated in thefollowing way:

$$
\pi(0,0) = 0, \pi(1,0) = 1, \pi(0,1) = 2,
$$

$$
\pi(2,0) = 3, \pi(1,1) = 4, \pi(0,2) = 5, \text{ etc.}
$$

Attempt which fails

Note, that the following naïve attempt to enumerate thepairs, fails:

 $\pi(0,0)=0, \, \pi(0,1)=1, \, \pi(0,2)=2,$ etc.

 $\bm{\mathsf{W}}$ e never reach the pair $(1,0)$.

Devel. of ^a Formula for Defining π

- In the following we are going to develop ^a mathematical formula for $\pi.$
- In the lecture this material was omitted and we give directly the definition of $\pi.$ Jump over [Development](#page-193-0) of $\pi.$

For the pairs in the diagonal we have the property that $x+y$ is constant.

For the pairs in the diagonal we have the property that $x+y$ is constant. The first diagonal, consisting of $(0,0)$ only, is given by

 $x + y = 0.$

For the pairs in the diagonal we have the property that $x+y$ is constant.

The second diagonal, consisting of $(1,0), (0, 1)$, is given by

 $x + y = 1$.

For the pairs in the diagonal we have the property that $x+y$ is constant. The third diagonal, consisting of $(2,0),(1,1),(0,2)$, is given by $x + y = 2$.

For the pairs in the diagonal we have the property that $x+y$ is constant. The third diagonal, consisting of $(2,0),(1,1),(0,2)$, is given by $x + y = 2$.

Etc.

If we look in the original approach at the diagonals we seethat following:

The diagonal given by $x+y=n$, consists of $n+1$ pairs:

- The diagonal given by $x + y = n$, consists of $n + 1$ pairs:
	- The first diagonal, given by $x + y = 0$, consists of $(0,0)$ only, i.e. of 1 pair.

- The diagonal given by $x+y=n$, consists of $n+1$ pairs: The second diagonal, given by $x + y = 1$, consists of
	- $(1, 0), (0, 1)$, i.e. of 2 pairs.

- The diagonal given by $x + y = n$, consists of $n + 1$ pairs:
	- The third diagonal, given by $x + y = 2$, consisting of $(2,0),(1,1),(0,2)$, i.e. of 3 pairs.

- The diagonal given by $x + y = n$, consists of $n + 1$ pairs:
	- The third diagonal, given by $x + y = 2$, consisting of $(2,0),(1,1),(0,2)$, i.e. of 3 pairs.
	- e etc.

We count the elements occurring before the pair $\left(x_{0},y_{0}\right) .$

- We have to count all elements of the previous diagonals. These are those given by $x+y=n$ for $n < x_0 + y_0.$
	- In the above example for the pair $(2,1)$, these are the diagonals given by $x + y = 0$, $x + y = 1$, $x + y = 2$.

- The diagonal, given by $x + y = n$, has $n + 1$ elements, so in total we have $\sum_{i=0}^{x+y-1} (i+1) = 1 + 2 + \cdots + (x+y) = \sum_{i=1}^{x+y} i$ elements in those diagonals.
- A often used formula says $\sum_{i=1}^n i = \frac{n(n+1)}{2}$. Therefore, the above is $\frac{(x+y)(x+y+1)}{2}$.

- Further, we have to count all pairs in the current diagonal, which occur in this ordering before the current one. These are y pairs.
	- Before $(2,1)$ there is only one pair, namely $(3,0)$.
	- Before $(3,0)$ there are 0 pairs.
	- Before $(0,2)$ there are 2 pairs, namely $(2,0),(1,1)$.

C Therefore we get that there are in total $\frac{(x+y)(x+y+1)}{2}$ $\frac{x+y+1)}{2}+y$ pairs before (x,y) , therefore the pair (x,y) is the pair number $(\frac{(x+y)(x+y+1)}{2}$ $\frac{x+y+1)}{2} + y$) in this order.

Definition 2.19

$$
\pi(x, y) := \frac{(x + y)(x + y + 1)}{2} + y \quad (=\left(\sum_{i=1}^{x + y} i\right) + y)
$$

Exercise: Prove that
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$
.

π **is Bijective**

Lemma 2.20

 π is bijective.

[Omit](#page-199-0) Proof

We showπ **is injective:**

We prove first that, if $x+y < x'+y$ $^{\prime}$, then $\pi(x, y) < \pi(x)$ 1 , y^{\cdot} \prime):

$$
\pi(x, y) = \left(\sum_{i=1}^{x+y} i\right) + y \le \left(\sum_{i=1}^{x+y} i\right) + x + y + 1 = \sum_{i=1}^{x+y+1} i
$$

$$
\le \left(\sum_{i=1}^{x+y'} i\right) + y' = \pi(x', y')
$$

We show π is injective:

Assume now $\pi(x,y) = \pi(x)$ We have by the above1 , y^{\cdot} \prime) and show $x=x$ $^{\prime}$ and $y=y$ $^{\prime}$.

$$
x + y = x' + y' .
$$

Therefore

$$
y = \pi(x, y) - (\sum_{i=1}^{x+y} i) = \pi(x', y') - (\sum_{i=1}^{x'+y'} i) = y'
$$

and

$$
x = (x + y) - y = (x' + y') - y' = x'.
$$

We showπ **is surjective:** Assume $n\in\mathbb{N}.$ Show $\pi(x,y)=n$ for some $x,y\in\mathbb{N}.$ The sequence $(\sum$ Therefore there exists a k s.t. $\,$ $\overline{}$ $\sum\limits_{i=1}^n i$ $i)_{k'\in\mathbb{N}}$ $_{\mathbb{N}}$ is strictly existing.

$$
a := \sum_{i=1}^{k} i \le n < \sum_{i=1}^{k+1} i
$$

 $n\in\mathbb{N}$ Show $\pi(x,y) = n$ for some x, y

$$
a := \sum_{i=1}^{k} i \le n < \sum_{i=1}^{k+1} i \tag{*}
$$

So, in order to obtain $\pi(x,y)=n$, we need $x+y=k.$ By $y=\pi(x,y)-\sum_{i=1}^{x+y}i,$ we need to define $y:=n$ \overline{z} By $k=x+y$, we need to define $x:=k-y.$ $\sum_{i:}$ $\, + \,$ $\displaystyle{\sup_{i=1}^{x+y}i},$ we need to define $y:=n-a.$ By $(*)$ it follows $0 \le y < k+1$,
therefore ≥ 0 therefore $x,y\geq 0$. Further, $\pi(x,y) = (\sum_{i=1}^x$ $\, + \,$ $_{i=1}^{x+y}i)+y=(\sum_{i=1}^{k}i$ $\binom{\kappa}{i=1}i + (n \sum_{i:}^k$ $\sum\limits_{i=1}^{\kappa}i)=n$.

Definition of π_0 , π_1

Since π is bijective, we can define $\pi_0,\,\pi_1$ as follows:

Definition 2.21

Let $\pi_0 : \mathbb{N} \to \mathbb{N}$ and $\pi_1 : \mathbb{N} \to \mathbb{N}$ be s.t.

$$
\pi_0(\pi(x, y)) = x
$$
, $\pi_1(\pi(x, y)) = y$.

π , π_i are Computable

Remark

 $\pi, \, \pi_0, \, \pi_1$ are computable in an intuitive sense.

"Proof:"

- π is obviously computable.
- In order to compute $\pi_0,\,\pi_1,$ first observe that $x, y \leq \pi(x, y)$.
	- Follows from $\pi(x, y) = (\sum_{i=1}^{x+y} i) + y$.
- Therefore $\pi_0(n)$, $\pi_1(n)$ can be computed by
	- searching for $x,y\leq n$ s.t. $\pi(x,y)=n$,
	- and then setting $\pi_0(n) = x$, $\pi_1(n) = y$.

Remark 2.22

Remark 2.22For all $z\in\mathbb{N}$,

$$
\pi(\pi_0(z),\pi_1(z))=z\enspace.
$$

Proof:Assume $z \in \mathbb{N}$ and show

$$
z=\pi(\pi_0(z),\pi_1(z)) .
$$

 π is surjective, so there exists x,y s.t.

$$
\pi(x,y)=z\enspace.
$$

Then

$$
\pi(\pi_0(z), \pi_1(z)) = \pi(\pi_0(\pi(x, y)), \pi_1(\pi(x, y))) = \pi(x, y) = z.
$$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{160}{2}$

Encoding of \mathbb{N}^k

- We want to encode \mathbb{N}^k into $\mathbb{N}.$
- $(l,m,n)\in\mathbb{N}^3$ can be encoded as follows
	- First encode (l,m) as $\pi(l,m) \in \mathbb{N}$
	- . Then encode the complete triple as

 $\pi(\pi(l,m),n) \in \mathbb{N}$.

• So define

$$
\pi^3(l,m,n) := \pi(\pi(l,m),n) .
$$

Similarly $(l,m,n,p)\in\mathbb{N}^{4}$ can be encoded as follows:

$$
\pi^4(l, m, n, p) := \pi(\pi(\pi(l, m), n), p) .
$$

Decoding Function

• If
$$
x = \pi^3(l, m, n) = \pi(\pi(l, m), n)
$$
, then we see

$$
\bullet \ \ l = \pi_0(\pi_0(x)),
$$

$$
\bullet \ \ m = \pi_1(\pi_0(x)),
$$

$$
\bullet \ \ n = \pi_1(x).
$$

So we define

•
$$
\pi_0^3(x) = \pi_0(\pi_0(x)),
$$

$$
\bullet \ \pi_1^3(x) = \pi_1(\pi_0(x)),
$$

$$
\bullet \ \pi_2^3(x) = \pi_1(x).
$$

Decoding Function

- Similarly, if $x=\pi$ 4 $\pi^4(l,m,n,p)=\pi(\pi(l,m),n),p)$, then we see
	- $l=\pi_0(\pi_0(\pi_0(x))),$
	- $m=\pi_1(\pi_0(\pi_0(x))),$
	- $n=\pi_1(\pi_0(x)).$
	- $p=\pi_1(x)$.
- **So we define**
	- π 4 $_{0}^{4}(x)=\pi_{0}(\pi_{0}(\pi_{0}(x))),$
	- \overline{A} and \overline{A} and \overline{A} π 4 $_{1}^{4}(x)=\pi_{1}(\pi_{0}(\pi_{0}(x))),$
	- \overline{A} and \overline{A} and \overline{A} π 4 $_{2}^{4}(x)=\pi_{1}(\pi_{0}(x)).$
	- \overline{A} and \overline{A} and \overline{A} π 4 $\textstyle{\frac{4}{3}}(x)=\pi_1(x).$

Definition for General k

In general one defines for $k\geq1$

$$
\pi^k : \mathbb{N}^k \to \mathbb{N} ,
$$
\n
$$
\pi^k(x_0, \dots, x_{k-1}) := \pi(\dots \pi(\pi(x_0, x_1), x_2) \dots x_{k-1}),
$$
\nand for $i < k$

$$
\pi_0^k : \mathbb{N} \to \mathbb{N} ,
$$
\n
$$
\pi_0^k(x) := \pi_0(\cdots \pi_0(x) \cdots) ,
$$
\n
$$
k - 1 \text{ times}
$$
\nand for $0 < i < k$,\n
$$
\pi_i^k(x) := \pi_1(\underbrace{\pi_0(\pi_0(\cdots \pi_0(x) \cdots))}_{k - i - 1 \text{ times}}) .
$$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{164}{2}$

Formal definition of π $\,k$ **,**π $\,k$ \boldsymbol{i}

Then π k and

$$
\lambda x.(\pi_0^k(x),\ldots,\pi_{k-1}^k(x))
$$

are inverse to each other.

A formal inductive Definition of π Jump over formal [definition](#page-209-0) of π k and π $\,$ $\frac{k}{i}$ is as follows:

Definition 2.23 of π $\,k$ **,**π $\,k$ \boldsymbol{i}

(a) We define by induction on k for $k\in\mathbb{N}$, $k\geq1$

$$
\pi^{k} : \mathbb{N}^{k} \to \mathbb{N}
$$
\n
$$
\pi^{1}(x) := x
$$
\nFor $k > 0$ $\pi^{k+1}(x_0, \dots, x_k) := \pi(\pi^{k}(x_0, \dots, x_{k-1}), x_k)$
\n(b) We define by induction on k for $i, k \in \mathbb{N}$ s.t. $1 \leq k$, $0 \leq i < k$

$$
\pi_i^k : \mathbb{N} \to \mathbb{N}
$$

\n
$$
\pi_0^1(x) := x
$$

\n
$$
\pi_i^{k+1}(x) := \pi_i^k(\pi_0(x)) \text{ for } i < k
$$

\n
$$
\pi_k^{k+1}(x) := \pi_1(x)
$$

Omit [Examp](#page-209-0)les.

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{1}{2}$ 2-166

Examples

\n- \n
$$
\pi^2(x, y) = \pi(\pi^1(x), y) = \pi(x, y).
$$
\n
\n- \n
$$
\pi^3(x, y, z) = \pi(\pi^2(x, y), z) = \pi(\pi(x, y), z).
$$
\n
\n- \n
$$
\pi^4(x, y, z, u) = \pi(\pi^3(x, y, z), u) = \pi(\pi(\pi(x, y), z), u).
$$
\n
\n- \n
$$
\pi_0^4(u) = \pi_0^3(\pi_0(u)) = \pi_0^2(\pi_0(\pi_0(u))) = \pi_0^1(\pi_0(\pi_0(u)))) = \pi_0(\pi_0(\pi_0(u))).
$$
\n
\n- \n
$$
\pi^4(u) = \pi^3(u) = \pi^3(u) = \pi^2(u) = \pi^4(u) = \pi^
$$

$$
\bullet \ \pi_2^4(u) = \pi_2^3(\pi_0(u)) = \pi_1(\pi_0(u)).
$$

Lemma 2.24

(a) For
$$
(x_0, ..., x_{k-1}) \in \mathbb{N}^k
$$
, $i < k$, $x_i = \pi_i^k(\pi^k(x_0, ..., x_{k-1}))$.
\n(b) For $x \in \mathbb{N}$, $x = \pi^k(\pi_0^k(x), ..., \pi_{k-1}^k(x))$.

[\(Omit](#page-213-0) Proof)

Proof

Induction on $k.$ *Base case* $k=0$ *:* Proof of (a): Let $(x_0)\in \mathbb{N}^1$. Then $\pi_0^1(\pi^1(x_0)) = x_0$. Proof of (b): Let $x\in\mathbb{N}.$ Therefore 1 (Then $\pi^1(\pi^1_0(x)) = x$.

Proof of Lemma 2.24

Induction step $k\to k+1$:

Assume the assertion has been shown for $k.$ Proof of (a):

Let $(x_0, \ldots, x_k) \in \mathbb{N}^{k+1}$ Then.

$$
\begin{aligned}\n\text{for } i < k \quad \pi_i^{k+1}(\pi^{k+1}(x_0, \dots, x_k)) \\
&= \quad \pi_i^k(\pi_0(\pi(\pi^k(x_0, \dots, x_{k-1}), x_k))) \\
&= \quad \pi_i^k(\pi^k(x_0, \dots, x_{k-1})) \\
\text{H} \quad & x_i\n\end{aligned}
$$

and
$$
\pi_k^{k+1}(\pi^{k+1}(x_0, ..., x_k))
$$

= $\pi_1(\pi(\pi^k(x_0, ..., x_{k-1}), x_k))$
= x_k

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{170}{2}$

Proof of Lemma 2.24

Induction step $k\to k+1$: Assume the assertion has been shown for $k.$ Proof of (b): Let $x\in\mathbb{N}.$

$$
\pi^{k+1}(\pi_0^{k+1}(x), \dots, \pi_k^{k+1}(x))
$$
\n
$$
= \pi(\pi^k(\pi_0^{k+1}(x), \dots, \pi_{k-1}^{k+1}(x)), \pi_k^{k+1}(x))
$$
\n
$$
= \pi(\pi^k(\pi_0^k(\pi_0(x)), \dots, \pi_{k-1}^k(\pi_0(x))), \pi_1(x))
$$
\nHem. 2.22

\n
$$
x
$$

Encoding of ^N[∗]

- We want to define an encoding $\mathrm{encode}_{\mathbb{N}^*} : \mathbb{N}^* \to \mathbb{N}$ (which will he a hijection) (which will be ^a bijection).
- $\mathrm{N}^* =$ $=\mathbb{N}^0\cup\bigcup_{k\geq 1}\mathbb{N}^k.$
- $\mathbb{N}^0 =$ $= \{()\},\$ We can encode $()$ as 0 .
- Encoding of $\bigcup_{k\geq 1}\mathbb{N}^k$:
	- We have an encoding

$$
\pi^k : \mathbb{N}^k \to \mathbb{N} .
$$

Encoding of ^N[∗]

- Note that each $n\in\mathbb{N}$ is a code for elements of \mathbb{N}^k for every $k.$
	- So if we encoded (n_0,\ldots,n_{k-1}) as $\pi^k(n_0,\ldots,n_{k-1})$ we couldn't determine the length k of the original sequence from the code.
- So we need to add the length to the code for (n_0,\ldots,n_{k-1}) (considered as an element of \mathbb{N}^*).
- Therefore encode a sequence $(n_0,\ldots,n_{k-1})\in\mathbb{N}^*$ for $k > 0$ as

$$
\pi(k-1,\pi^k(n_0,\ldots,n_{k-1}))\enspace.
$$

- In order to distinguish it from code of $()$, add 1 to it.
- **In total we obtain a bijection.**

Definition 2.25 of $\langle \rangle$, lh, ($\mathcal{X}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ $\Big) i$

(a) Define for $x\in\mathbb{N}^*$ $^*, \langle x \rangle : \mathbb{N}$ as follows:

$$
\langle \rangle := \langle \langle \rangle \rangle := 0 ,
$$

\nfor $k > 0$
\n
$$
\langle n_0, \dots, n_{k-1} \rangle := \langle (n_0, \dots, n_{k-1}) \rangle
$$

\n:= 1 + \pi(k - 1, \pi^k(n_0, \dots, n_{k-1}))

(b) Define for $x \in \mathbb{N}$, the length lh $(x) \in \mathbb{N}$ as follows:

$$
\begin{array}{rcl}\n\text{lh} & : & \mathbb{N} \to \mathbb{N} \;, \\
\text{lh}(0) & := & 0 \;, \\
\text{lh}(x) & := & \pi_0(x-1) + 1 \text{ if } x > 0 \; .\n\end{array}
$$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{174}{2}$
Definition 2.25 of $\langle \rangle$, lh, ($\mathcal{X}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ $\Big) i$

(c) We define for $x\in\mathbb{N}$ and $i<$ lh (x) , the i th component

 $(x)_i\in\mathbb{N}$

of a code x for a sequence as follows:

$$
(x)_i := \pi_i^{\mathsf{lh}(x)}(\pi_1(x-1)) \ .
$$

For lh $(x)\leq i,$ let

$$
(x)_i := 0 .
$$

Remark

- lh (x) , $(x)_i$ are defined in such a way that Lemma 2.26 (a), (b) given below hold.
- This shows that lh, $(x)_i$ together form the inverse of the forming of $\langle x_0, \ldots, x_{k-1}\rangle$.

 (x_0, \ldots, x_{k-1}) vs. $\langle x_0, \ldots, x_{k-1}\rangle$

Remark:

- (a) Note that (x_0,\ldots,x_{k-1}) is a tuple, which is an element of \mathbb{N}^k , whereas $\langle x_0, \ldots, x_{k-1}\rangle$ is the code for this tuple, which is an element of N.
- (b) Especially $() \in \mathbb{N}^0$ is the empty tuple, whereas $\langle \rangle = 0 \in \mathbb{N}$ is the code for the empty tuple.

Lemma 2.26

Lemma 2.26

\n- (a)
$$
\ln(\langle \rangle) = 0
$$
, $\ln(\langle n_0, \ldots, n_k \rangle) = k + 1$.
\n- (b) For $i \leq k$, $(\langle n_0, \ldots, n_k \rangle)_i = n_i$.
\n- (c) For $x \in \mathbb{N}$, $x = \langle (x)_0, \ldots, (x)_{\ln(x)-1} \rangle$.
\n

Remark

If we define

$$
\langle \rangle^{-1} : \mathbb{N} \to \mathbb{N}^*
$$

$$
\langle \rangle^{-1}(x) = ((x)_0, \dots, (x)_{\mathsf{lh}(x)-1})
$$

Then we have by Lemma 2.26

$$
\langle \rangle^{-1}(\langle x_0,\ldots,x_{n-1}\rangle)=(x_0,\ldots,x_{n-1})
$$

so $\langle \rangle^{-1}$ is the inverse of $\vec{x} \mapsto \langle \vec{x} \rangle$. (Omit Proof of [Lemma](#page-224-0) 2.26)

Proof of Lemma 2.26 (a)

Proof of (a):Show: $lh(\langle\rangle) = 0$: $\mathsf{lh}(\langle\rangle) = \mathsf{lh}(0) = 0.$

Show: $\textsf{lh}(\langle n_0, \ldots, n_k \rangle) = k + 1$:

$$
\begin{array}{rcl} \mathsf{lh}(\langle n_0, \ldots, n_k \rangle) & = & \pi_0(\langle n_0, \ldots, n_k \rangle - 1) + 1 \\ & = & \pi_0(\pi(k, \cdots) + 1 - 1) + 1 \\ & = & k + 1 \end{array}
$$

Proof of Lemma 2.26 (b)

Proof of (b):Show $(\langle n_0, \ldots, n_k\rangle)_i=n_i$. $\mathbf{1}$ $\mathbf{$ $\mathsf{lh}(\langle n_0, \ldots, n_k\rangle) =k+1.$

Therefore

 $(\langle n_0, \ldots, n_k \rangle)_i$ = π $k{+}1$ $\binom{k+1}{i}(\pi_1(\langle n_0,\ldots,n_k\rangle-1))$ $=$ π $k{+}1$ $\frac{k+1}{i}(\pi_1(1+\pi(k,\pi^{k+1}$ $^{1}(n_0,\ldots,n_k))$ $(-1))$ = π $k{+}1$ $\frac{k+1}{i}(\pi$ $k{+}1$ $1(n_0,\ldots,n_k))$ Lem 2.24 (a)= n_i

Proof of Lemma 2.26 (c)

Proof of (c):Show $x=\,$ $Case x = 0.$ $\langle (x)_0, \ldots, (x)_{\mathsf{lh}(x)-1} \rangle.$ lh $(x)=0$. Therefore $\langle (x)_0, \ldots, (x)_{\mathsf{lh}(x)-1} \rangle$ = $=\langle\rangle = 0 = x.$ **Case** $x > 0$. Let $x-\,$ Then $\ln(x) = l + 1$, $(x)_i = \pi$ $-1 = \pi(l, y).$ $l{+}1$ $i^{t+1}(y)$ and therefore $\langle (x)_0, \ldots, (x)_{\mathsf{lh}(x)-1} \rangle$ $=$ $\langle \pi$ $l{+}1$ $_{0}^{l+1}(y),\ldots,\pi_{l}^{l+1}% (y)=\left(\frac{y}{y}\right) ^{l+1}\left(\frac{y$ $_{l}^{l+1}(y)\rangle$ = $\pi(l,\pi^{l+1}% (\mathbb{R}^{2n})\times\mathbb{R}^{2n})=\mathbb{Z}^{l}(\mathbb{R}^{2n})$ $^{1}(\pi$ $l\!+\!1$ $_0^{l+1}(y),\ldots,\pi_l^{l+1}$ $\binom{l+1}{l}(y)) + 1$ Lem 2.24 (b)= $\pi(l,y)+1$ = \mathcal{X}

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (e) $2\frac{182}{2}$

Encoding of Finite Sets, Strings

Informal Lemma

If A is a finite non-empty set, then A and A^\ast have computables encoding into $\mathbb N.$

Proof of the Informal Lemma

Assume

$$
A = \{a_0, \ldots, a_n\}
$$

where $a_i\neq a_j$ for $i\neq j,$ $n\geq 0.$

O Define

$$
\begin{array}{rcl}\n\text{encode}_{A} & : & A \to \mathbb{N} \\
\text{encode}_{A}(a_{i}) & = & i \end{array}
$$

Define

$$
\begin{array}{rcl}\n\text{decode}_{A} & : & \mathbb{N} \to A \\
\text{decode}_{A}(i) & : & a_{i} \text{ if } i \leq n \\
\text{decode}_{A}(i) & : & a_{0} \text{ if } i > n.\n\end{array}
$$

Proof of the Informal Lemma

encode $_{\c{A}}$ computable, and $_A$ and decode A $_{A}$ are in an intuitive sense

```
\mathrm{decode}_A(\mathrm{encode}_A(a)) = a
```
- Therefore A has a computable encoding into $\mathbb N,$
- Therefore A^* has as well a computable encoding into $\mathbb N.$

Remark: One easily sees that the encoding obtained bythis proof is

 encode_{A^*} : A^* $\text{encode}_{A^*}(a_0, \ldots, a_n) \;\; = \;\; \langle \text{encode}_A(a_0), \ldots, \text{encode}_A(a_n)\rangle$ $^* \to \mathbb{N}$ \cdots ,

Theorem 2.27

Theorem 2.27

- (a) \mathbb{N}^k and \mathbb{N}^* are countable.
- (b) If A is countable, so are A^k $^{\kappa}$, A^* .
- (c) If A, B are countable, so is $A \times B$.
- (d) If A_n are countable sets for n $_n$ are countable sets for $n\in\mathbb{N},$ so is $\bigcup_{n\in\mathbb{N}}A_n.$
- (e) $\mathbb Q,$ the set of rational numbers, is countable.

Proof of Theorem 2.27 (a)

- \mathbb{N}^0 $\frac{1}{\sqrt{2}}$ $\{()\}$ is finite therefore countable.
- For $k > 0$

$$
\pi^k:{\mathbb N}^k\to{\mathbb N}
$$

is ^a bijection.

• The function

$$
\lambda x.\langle x \rangle : \mathbb{N}^* \to \mathbb{N}
$$

is ^a bijection.

Proof of Theorem 2.27 (b)

- To be shown: If A is countable, so are A^k $^{\kappa}$, A^* .
- Assume A is countable.
- We show first that A^{\ast} is countable:
- There exists encode $\displaystyle {\it A}$ $_A: A \rightarrow \mathbb{N}$, encode_A $_A$ injective.

O Define

$$
f : A^* \to \mathbb{N}^*,
$$

$$
f(a_0, \dots, a_{k-1}) := (\text{encode}_A(a_0), \dots, \text{encode}_A(a_{k-1}))
$$

 f is injective as well, \mathbb{N}^* is countable, so by Corollary 2.13 A^{\ast} is countable.

•
$$
A^k \subseteq A^*
$$
, so A^k is countable as well.

Proof of Theorem 2.27 (c)

- Assume A, B countable.
- **•** Then there exist injections

 encode_A A : $A \rightarrow \mathbb{N}$ encode_B : $B \to 0$ $B : B \to \mathbb{N}$

$$
f : (A \times B) \to \mathbb{N}^2 ,
$$

$$
f(a, b) := (\text{encode}_A(a), \text{encode}_B(b))
$$

 f is injective, \mathbb{N}^2 is countable, so $A\times B$ is countable as well.

Proof of Theorem 2.27 (d)

Assume A_n $_n$ are countable for $n\in\mathbb{N}.$

Show

$$
A := \bigcup_{n \in \mathbb{N}} A_n
$$

is countable as well.

If all A_n $_n$ are empty, so is

> \bigcup n ∈N $A_n\,$

and therefore countable.

Assume now A_{k_0} is non-empty for some $k_0.$

Proof of Theorem 2.27 (d)

 $A_{n}% (n+1)A_{n}A_{n}(n+1)A_{n}A_{n}(n+1)A_{n$ Show $\bigcup_{n\in\mathbb{N}}A_n$ $_n$ are countable $_n$ is countable.

- By replacing empty A_l by $A_{k_0},$ we get a sequence of non-empty sets $(A_n)_{n\in\mathbb{N}}$, s.t. their union is the same as A .
- So we can assume without loss of generality $A_n\not=\emptyset$ for all $n.$
- $A_n\,$ $f_n : \mathbb{N} \to A_n$ $_n$ are countable and non-empty, so there exist $_n$ surjective.

Proof of Theorem 2.27 (d)

 $f_n : \mathbb{N} \to A_n$ $\operatorname{\mathsf{Show}}\bigcup_{n\in\mathbb{N}}A_n$ $_n$ surjective $_n$ is countable.

C Then

$$
f : \mathbb{N}^2 \to \bigcup_{n \in \mathbb{N}} A_n ,
$$

$$
f(n,m) := f_n(m)
$$

is surjective as well.

 \mathbb{N}^2 is countable, so by Corollary 2.15 A is countable as well.

Proof of Theorem 2.27 (e)

- To be shown: Q is countable.
- We have $\mathbb{Z}\times\mathbb{N}$ is countable, since $\mathbb Z$ and $\mathbb N$ are countable.

Let

$$
A := \{(z, n) \in \mathbb{Z} \times \mathbb{N}, n \neq 0\} .
$$

 $A\subseteq\mathbb{Z}\times\mathbb{N},$ therefore A is countable as well.

• Define

$$
\begin{array}{rcl} g & : & A \rightarrow \mathbb{Q} \end{array},
$$

$$
g(z,n) & := & \frac{z}{n} \end{array}.
$$

 g is surjective, A countable, therefore by Corollary 2.15
 \circ is seughble as well $\mathbb Q$ is countable as well.

(f) Partial Functions

- A partial function $f : A \stackrel{\sim}{\text{--}}$ $\Gamma(a)$ min $\stackrel{\sim}{\rightarrow} B$ is the same as a function $f: A \rightarrow B$, but $f(a)$ might not be defined for all $a \in A$.
- Key example: function computed by ^a computerprogram:
	- Program has some input $a \in A$ and possibly returns
seme $l \in B$ some $b\in B.$ \sim \sim \sim (We assume that program does not refer to global variables).
	- If the program applied to $a\in A$ terminates and
returns between $f(x)$ is defined and agual to b returns b , then $f(a)$ is defined and equal to $b.$
	- If the program applied to $a\in A$ does not terminate,
then $f(x)$ is undefined then $f(a)$ is undefined.

Examples of Partial Functions

Other Examples:

- $f : \mathbb{R} \stackrel{\sim}{-}$ Δ 10 $\stackrel{\sim}{\rightarrow} \mathbb{R}, f(x) = \frac{1}{x}$ $\hspace{.1cm} f(0)$ is undefined. $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$:
- g : R $\stackrel{\sim}{-}$ \cdot 1 1 $\stackrel{\sim}{\rightarrow} \mathbb{R}, \, g(x) = \sqrt{x}$: $g(x)$ is defined only for $x\geq 0.$

Definition of Partial Functions

Definition 2.28

Let A , B be sets. A partial function f from A to B , written $f : A\stackrel{\sim}{\rightarrow} B$, is a function $f : A'\rightarrow A'$ $A'\subseteq A$. \longrightarrow B, is a function $f : A' \to B$ for some A' is called the **domain of** f , written as $A' = \text{dom}(f)$.

• Let
$$
f : A \overset{\sim}{\rightarrow} B
$$
.

- . ic $f(a)$ is defined, written as $f(a) \downarrow$, if $a \in \text{dom}(f)$.
- Let $b\in\mathbb{N}$. $f(a) \simeq b$ ($f(a)$ is partially equal to b) \Rightarrow $f(a) \downarrow \land f(a) = b$.

Terms formed from Partial Functions

- We want to work with terms like $f(g(2), h(3))$, where f,g,h are partial functions.
- $\bm{{\mathsf{Question:}}}$ what happens if $g(2)$ or $h(3)$ is undefined?
	- There is a theory of partial functions, in which $f(g(2), h(3))$ might be defined, even if $g(2)$ or $h(3)$ is undefined.
	- Makes senses for instance for the function $f:\mathbb{N}^2$ ∼ $\stackrel{\sim}{\rightarrow}$ N, $f(x, y) = 0$.
	- \sim \sim ry Theory of such functions is more complicated.

Strict vs. Non-strict Functions

- **•** Functions, which are defined, even if some of its arguments are undefined, are called **non-strict**. ✿✿✿✿✿✿✿✿✿✿✿✿
- Functions, which are defined only if all of its arguments are defined are called**strict**.✿✿✿✿✿✿✿

Call-By-Value

- **Strict** function are obtained by "**call-by-value**"evaluation.
	- ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ **Call-by-value** means that before the value of ^a function applied to arguments, is computed, thearguments of the function are evaluated.
	- **If we treat undefinedness as non-termination, then** all functions computed by call-by-value will be strict.
		- **C** There is as well finite error, e.g. the error if a division by 0 occurs. This kind of undefinedness will be handled in ^a non-strict way by manyprogramming languages.
	- Most programming languages (including practially all imperative and object-oriented languages), usecall-by-value evaluation.

Call-By-Name

- **Non-strict** functions are obtained by "**call-by-name**"evaluation:
	- The arguments of a function are evaluated only if they are needed in the computation of $f.$
	- **Haskell** uses **call-by-name-evaluation**.
	- **Therefore functions in Haskell are in general non-strict**.

Example

Let
$$
f : \mathbb{N}^2 \xrightarrow{\sim} \mathbb{N}
$$
, $f(x, y) = x$.

- Let t be an undefined term, e.g. $g(0)$, where $g : \mathbb{N} \stackrel{\sim}{\to} \mathbb{N}$,
 $a(x) := a(x)$ $g(x) := g(x).$
	- So the recursion equation of $g(x)$ doesn't terminate.
- With call-by-name, the term $f(2,t)$ evaluates to 2, since
we never pood to evaluate t we never need to evaluate $t.$
- With call-by-value, first t is evaluated, which never terminates, so $f(2,t)$ ↑.
- In our setting, functions are strict, so $f(2,t)$ as above is undefined.

Terms formed from Partial Functions

- **In this lecture, functions will always be strict.**
- Therefore, a term like $f(g(2), h(3))$ is defined only, if $g(2)$ and $h(3)$ are defined, and if f applied to the results of evaluating $g(2)$ and $h(3)$ is defined.
- $f(g(2), h(3))$ is evaluated as for ordinary functions: We first compute $g(2)$ and $h(3)$, and then evaluate f applied to the results of those computations.
- ✿✿⊥ (pronounced ✿✿✿✿✿✿✿✿✿ **bottom**) is ^a term which is always undefined.
- ${\sf So} \perp \downarrow {\sf does}$ not hold.

⊥

Terms formed from Partial Functions

Definition 2.29

- For expressions t formed from constants, \bot , variables and partial functions we define whether $t\downarrow$, and whether $t\simeq b$ holds (for a constant b):
	- If $t=a$ is a constant, then $t\downarrow$ holds always and $t \simeq b :\Leftrightarrow a=b.$
	- If $t=\bot$, th \bot , then neither $t\downarrow$ not $t\simeq b$ do hold.
	- If $t=x$ is a variable, then $t\downarrow$ holds always, $t\simeq b :\Leftrightarrow x=b.$

$$
f(t_1, ..., t_n) \simeq b \quad \Rightarrow \quad \exists a_1, ..., a_n \cdot t_1 \simeq a_1 \land \cdots \land t_n \simeq a_n
$$

$$
\land f(a_1, ..., a_n) \simeq b
$$

$$
f(t_1, ..., t_n) \downarrow \quad \Rightarrow \quad \exists b \cdot f(t_1, ..., t_n) \simeq b
$$

Remark

• Note that variables are always considered as being defined:

 $x\downarrow$

One can easily observe

 $t\downarrow \Leftrightarrow \exists x.t \simeq x$

Terms formed from Partial Functions

$s\uparrow :\Leftrightarrow \neg (s\downarrow).$

We define for expressions s,t formed from constants and partial functions

 $s \simeq t : \Leftrightarrow (s \downarrow \leftrightarrow t \downarrow) \land (s \downarrow \rightarrow \exists a, b.s \simeq a \land t \simeq b \land a = b)$

- \sim t**istotal** meanst↓.✿✿✿✿✿✿✿✿✿
- A function $f : A \stackrel{\sim}{\--}$ atlv dan $\stackrel{\sim}{\rightarrow}$ B is total, iff $\forall a \in A.f(a) \downarrow$ (or, equivalently, dom $(f)=A$).

Remark:

Total partial functions are ordinary (non-partial) functions.

Quantifiers

Remark:

 Quantifiers always range over defined elements. So by $\exists m.f(n) \simeq m$ we mean: there exists a defined m s.t.
 $f(x)$ at m $f(n) \simeq m$.

So from $f(n) \simeq g(k)$ we cannot conclude $\exists m.f(n) \simeq m$ unless $g(k) \downarrow$.

Remark 2.30

Remark 2.30

- (a) If a, b are constants, $s \simeq a, s \simeq b$, then $a = b$.
- (b) For all terms we have $t \downarrow \Leftrightarrow \exists a.t \simeq a.$

(c)
$$
f(t_1,...,t_n) \downarrow \Leftrightarrow \exists a_1,...,a_n.t_1 \simeq a_1 \wedge \cdots
$$

\n $\wedge t_n \simeq a_n$
\n $\wedge f(a_1,...,a_n) \downarrow$.

Examples

- Assume $f : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(f) = \{n \in \mathbb{N} \mid n > 0\}$.
 $f(n) := n 1$ for $n \in \text{dom}(f)$. $f(n) := n - 1$ for $n \in \text{dom}(f)$.
- Let $g : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(g) = \{0, 1, 2\}$, $g(n) := n + 1$.
Then Then:
- $f(1) \downarrow$, $f(0) \uparrow$, $f(1) \simeq 0$, $f(0) \not\simeq n$ for all $n \in \mathbb{N}$.

 $g(f(0))$ $)\uparrow$, since $f(0)\uparrow$.

- $g(f(1))$ $\simeq\!\!0$ $f(x) \downarrow$, since $f(1) \downarrow$, $f(1) \simeq 0$, $g(0) \downarrow$.
- $g(f(4))$ $\simeq\!\!3$)↑, since $f(4) \downarrow$, $f(4) \simeq 3$, but $g(3)$ ↑.

Examples

 $f : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(f) = \{n \in \mathbb{N} \mid n > 0\}$, $f(n) := n - 1$ for $n \in \text{dom}(f)$ $n\in\mathsf{dom}(f).$

 $g : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(g) = \{0, 1, 2\}$, $g(n) := n + 1$.

- $g(f(0))$ ↑ $\simeq f(0)$, since both expressions are undefined.
- $g(f(1))$ $\simeq\!1$ equal to ¹. $\simeq \underbrace{f(g(1))}$ $\simeq\!1$, since both sides are defined and
- $g(f(0))$ ↑ the right hand side is defined. $\not\simeq \underbrace{f(g(0))}$ ↓, since the left hand side is undefined,
Examples

 $f : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(f) = \{n \in \mathbb{N} \mid n > 0\}$, $f(n) := n - 1$ for $n \in \text{dom}(f)$ $n\in\mathsf{dom}(f).$

 $g : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(g) = \{0, 1, 2\}$, $g(n) := n + 1$.

 $\underbrace{f(f(2))}$ $\simeq\!\!0$ (defined) values. $\neq f(2)$
 ≥ 1 , since both sides evaluate to different

Examples

 $f : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(f) = \{n \in \mathbb{N} \mid n > 0\}$, $f(n) := n - 1$ for $n \in \text{dom}(f)$ $n\in\mathsf{dom}(f).$ $g : \mathbb{N} \stackrel{\sim}{\rightarrow} \mathbb{N}$, dom $(g) = \{0, 1, 2\}$, $g(n) := n + 1$.

- $+,\cdot$ etc. can be treated as partial functions. So for instance
	- $f(1)$ $+\underbrace{f(2)}_{\downarrow}$ \downarrow , since $f(1)\downarrow$, $f(2)\downarrow$, and $+$ is total.

$$
\bullet \underbrace{f(1)}_{\simeq 0} + \underbrace{f(2)}_{\simeq 1} \simeq 1.
$$

$$
\bullet \underbrace{f(0)}_{\uparrow} + f(1) \uparrow, \text{ since } f(0) \uparrow.
$$

Definition

Assume $f : \mathbb{N}^n \overset{\sim}{\rightarrow} \mathbb{N}$.

(a) The \mathbf{range} of f , in short $\mathsf{ran}(f)$ is defined as follows:

$$
\mathsf{ran}(f) := \{ y \in \mathbb{N} \mid \exists \vec{x}. (f(\vec{x}) \simeq y) \} .
$$

(b) The **graph of** f is the set G_f defined as

$$
\mathsf{G}_f := \{(\vec{x}, y) \in \mathbb{N}^{n+1} \mid f(\vec{x}) \simeq y\} .
$$

Remark on ^G^f

- The notion "graph" used here has nothing to do with the notion of "graph" in graph theory.
- The graph of a function is essentially the graph we draw when visualising f_\ast

Remark on ^G^f

Example:

$$
f : \mathbb{N} \xrightarrow{\sim} \mathbb{N}
$$
, $f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ even,} \\ \perp, & \text{if } x \text{ is odd.} \end{cases}$

We can draw f as follows:

Remark on ^G^f

In this example we have

$$
\mathsf{G}_f = \{(0,0), (2,1), (4,2), (6,3), \ldots\}
$$

These are exactly the coordinates of the crosses in thepicture:

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f) $2\cdot 217$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f) $2\cdot 218$

CS₋226 Computability Theory, Michaelmas Term 2008, Sec. 2 (f) $2\text{-}219$