CS_226 Computability Theory

http://www.cs.swan.ac.uk/∼[csetzer/lectures/computabi](http://www.cs.swan.ac.uk/~csetzer/lectures/computability/08/index.html)lity/[08/index](http://www.cs.swan.ac.uk/~csetzer/lectures/computability/08/index.html).[h](http://www.cs.swan.ac.uk/~csetzer/lectures/computability/08/index.html)tml

Course Notes, Michaelmas Term 2008Anton Setzer(Dept. of Computer Science, Swansea)

[http://www](http://www.cs.swan.ac.uk/~csetzer/index.html).[cs](http://www.cs.swan.ac.uk/~csetzer/index.html).[swan](http://www.cs.swan.ac.uk/~csetzer/index.html).[ac](http://www.cs.swan.ac.uk/~csetzer/index.html).[uk/](http://www.cs.swan.ac.uk/~csetzer/index.html)∼csetzer/index.html

The Topic of Computability Theory

A **computable**✿✿✿✿✿✿✿✿✿✿✿✿ **function** is ^a function ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

$f: A \rightarrow B$

such that there is a *mechanical procedure* for computing for every $a\in A$ the result $f(a)\in B.$

- ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿**Computability theory** is the study of computable functions.
- In computablitity theory we explore the *limits* of the \bullet notion of computability.

Examples

• Define
$$
\exp : \mathbb{N} \to \mathbb{N}
$$
, $\exp(n) := 2^n$,

where $\mathbb{N} = \{0, 1, 2, \ldots\}$. exp is *computable*. However, can we really computeexp(10000000000000000000000000000000000)?

Let <u>Strin</u>g be the set of strings of ASCII symbols. \sim $\textsf{Define a function } \textsf{check} : \textsf{String} \rightarrow \{\textsf{true}, \textsf{false}\}$ by

> $\mathsf{check}(p) :=$ $\left\{\begin{array}{rl} \text{true} & \text{if } p \text{ is a syntactically correct} \\ \text{Java program,} \\ \text{false} & \text{otherwise.} \end{array}\right.$

Is check computable or not?

Examples (Cont.)

 $\textsf{Define a function } \textsf{teminate} : \textsf{String} \rightarrow \{\textsf{true}, \textsf{false}\},$

$$
\text{terminate}(p) := \left\{ \begin{array}{ll} \text{true} & \text{if } p \text{ is a syntactically correct} \\ & \text{Java program with no input and out} \\ & \text{while} \quad \text{which terminates;} \\ \text{false} & \text{otherwise.} \end{array} \right.
$$

ls terminate *computable*?

(To be filled in during the lecture)

Examples (Cont.)

 $\textsf{Define a function } \underline{\mathsf{is} }{ \mathsf{sorting} }{ \mathsf{fun}} : \textsf{String} \rightarrow \{\mathsf{true},\mathsf{false}\},$

$$
\text{is} \text{sorting}\text{fun}(p) := \left\{ \begin{array}{r} \text{true} & \text{if } p \text{ is a syntactically correct} \\ & \text{Java program, which has as input} \\ & \text{a list and returns a sorted list,} \\ & \text{false} & \text{otherwise.} \end{array} \right.
$$

Is issortingfun *computable*?

Explanation

- Assume issortingfun were computable.
- **•** Then we can construct (compute) a program which computes terminate as follows:
	- Assume as input a string $p.$
	- Check whether it is ^a syntactically correct Javaprogram with no input and outputs.
	- If no, terminate (p) = false, so return false.
	- Otherwise, create from p a program $q(p)$ which is a
potential serting function as follows: potential sorting function as follows:
		- $q(p)$ takes as input a list $l.$
		- Then it executes p .
		- If p has terminated, then it runs a known sorting function on l , and returns the result.

Explanation

- If p terminates, then $q(p)$ will be a sorting function, so is sortingfun $(q(p)) = \mathrm{true} = \mathsf{terminate}(p).$
- If p does not terminate, then $q(p)$ does not terminate on any input, so is sortingfun $(q(p)) = \text{false} = \mathsf{terminate}(p).$
- Our program returns now issortingfun $(q(p))$ which is the required in the set of the result of terminate(p).
- So we have obtained by using ^a program for issortingfun^a program which computes terminate.
- But terminate is non-computable, therefore issortingfun cannot be computable.

Problems in Computability

In order to understand and answer the questions we have to

- Give a precise definition of what *computable* means.
	- That will be ^a **mathematical definition**.
	- Such ^a notion is particularly important for showingthat certain functions are *non-computable*.
- **•** Then provide evidence that the definition of "computable" is the correct one.
	- That will be ^a **philosophical argument**.
- Develop methods for proving that certain functions are computable or non-computable.

Three Areas

Three Areas are involved in computability theory.

Mathematics.

- **Precise definition of computability.**
- Analysis of the concept.
- **Philosophy.**
	- Validation that notions found are the correct ones.

Computer science.

Study of relationship between these concepts and computing in the real world.

Questions Related to The Above

- Given a function $f : A \rightarrow B$, which can be computed, ettectivi can it be done *effectively*? (**Complexity theory**.)
- Can the task of deciding a given problem $P1$ be reduced to deciding another problem $P2?$ (**Reducibility theory**).

More Advanced Questions

The following is beyond the scope of this module.

- Can the notion of *computability* be extended to computations on *infinite objects* (e.g. streams of data, real numbers,higher typeoperations)?(**Higher and abstract computability theory**).
- What is the relationship between *computing* (producing actions, data etc.) and *proving*.

Idealisation

In computability theory, one usually abstracts fromlimitations on

- **o** time and
- space.

A problem will be computable, if it can be solved on an *ide*alised computer, even if it the computation would take longer than the life time of the universe.

Remark on Variables

- In this lecture I will often use i , j , k , l , m , n for variables denoting natural numbers.
- I will often use p , q and some others for variables denoting programs.
- I will use z for integers.
- **Outher letters might be used as well for variables.**
- **•** These conventions are not treated very strictly.
	- Especially when running out of letters.

Gottfried Wilhelmvon Leibnitz (1646 – 1716)

- Built a first *mechanical* calculator.
	- Was thinking about ^amachine formanipulating symbols in order to determine truth values of mathematical statements.
	- Noticed that this requires the definition of ^a preciseformal language.

David Hilbert(1862 – 1943)

Poses 1900 in his famous list "MathematicalProblems" as 10th problem to decide**Diophantine** equations.Jump over [Explanat](#page-17-0)ion[Diophantine](#page-17-0) Equations

Diophantine Equations

- Here is a short description of Diophantine Equations.
- **•** This is the question, whether an indeterminate polynomial equation has solutions where the variablesare instantiated as integers.
- **C** Examples:
	- Solve for integers a,b the equation $ax+by=1$ using
integence \ldots integers $x,\,y.$
	- Solve for given n the equation x^n $n+y^n$ $n=z^n$.
		- For $n\geq3$ this is unsolvable by Fermat's Last σr Theorem.

Decision Problem

Hilbert (1928)

- Poses the *Entscheidungsproblem* (German for
decision problem) decision problem).
- The *decision problem* is the question, whether we
can decide whether a fermula in prodicate legic is can decide whether ^a formula in predicate logic isprovable or not.
	- Predicate logic is the standard formalisation of logic with connectives ∧, ∨, →, ¬ and quantifiers ∀,
¬ ∃.
	- Predicate logic is "sound and complete".
		- · \cdot This means that a a formula is provable if and only if it is valid (in all models).

Decision Problem

- So the decidability of predicate logic is the question whether we can decide whether ^aformula is valid (in all models) or not.
- **If predicate logic were decidable, provability in** mathematics would become trivial.
- "**Entscheidungsproblem**" became one of the fewGerman words which have entered the Englishlanguage.

Gödel, Kleene, Post, Turing (1930s)

Introduce different *models of computation* and prove that they all define the same class of computablefunctions.

Kurt Gödel (1906 – 1978) Introduced the (Herbrand-Gödel-)recursive functionsin his 1933 - 34 Princeton lectures.

Stephen Cole Kleene(1909 – 1994)

 Probably the most influential computability theoretist up to now. Introduced the partial recursivefunctions.

Emil Post (1897 – 1954)Introduced the Post problems.

Alan Mathison Turing(1912 – 1954)

 Introduced the Turing machine. Proved the undecidabilityof the Turing-Halting problem.

Gödel's Incompleteness Theorem

- **Gödel (1931)** proves in his first incompletenesstheorem:
	- Every reasonable primitive-recursive theory is incomplete, i.e. there is ^a formula s.t. neither theformula nor its negation is provable.
		- The theorem generalises to recursive i.e. computable theories.
		- The notions "primitive-recursive" and "recursive"will be introduced later in this module. For the moment it suffices to understand"recursive" informally as intuitively computable.

Gödel's Incompleteness Theorem

- **Figure 10 Computable theory proves all true** formulae.
- Therefore, it is undecidable whether ^a formula is trueor not.
	- Otherwise, the theory consisting of all trueformulae would be ^a complete computable theory.

Undecidability of the Decision Prob

- **Church, Turing (1936)** postulated that the models of computation established above define exactly the set of all computable functions (Church-Turing thesis).
- Both established independetly undecidable problems and proved that the **decision problem** is **undecidable**, i.e. **unsolvable**.
	- Even for ^a **class of very simple formulae** we cannot decide the decision problem.

Undecidability of the Decision Prob

- Church shows the undecidability of equality in the λ -calculus.
- Turing shows the unsolvability of the **haltingproblem**.
	- It is undecidable whether ^a Turing machine (andby the Church-Turing thesis equivalently any non-interactive computer program) eventuallystops.
	- **That problem turns out to be the most important** undecidable problem.

Alonzo Church (1903 - 1995)

- **Post (1944)** studies degrees of unsolvability. This is thebirth of degree theory.
- **In degree theory one devides problems into groups** ("<mark>degrees</mark>") of problems, which are reducible to each other.
	- **Reducible** means essentially "relative computable".
- Degrees can be ordered by using reducibility as ordering.
- **•** The question in degree theory is: what is the structure of degrees?

Yuri VladimirovichMatiyasevich (∗ **1947)**

• Solves 1970 Hilbert's 10th problem negatively: The solvability of Diophantine equations is undecidable.

Stephen Cook(Toronto)

Cook (1971) introduces the complexity classes**P** and **NP** and formulates the problem, whether $P \neq NP$.

Current State

- The problem P ≠ NP is still open. Complexity theory
bas became a big research area has become ^a big research area.
- **Intensive study of computability on infinite objects (e.g.** real numbers, higher type functionals) is carried out (e.g. U. Berger, Jens Blanck and J. Tucker in Swansea).
- Computability on inductive and co-inductive data typesis studied.
- Research on program synthesis from formal proofs (e.g. U. Berger and M. Seisenberger in Swansea).

Current State

- Concurrent and game-theoretic models of computation are developed (e.g. Prof. Moller in Swansea).
- Automata theory further developed.
- Alternative models of computation are studied(quantum computing, genetic algorithms).

· \cdot ·

Name "Computability Theory"

- The original name was *recursion theory*, since the mathematical concept claimed to cover exactly thecomputable functions is called "recursive function".
- This name was changed to *computability theory* during the last 10 years.
- Many books still have the title "recursion theory".

Administrative Issues

Lecturer:

Assessment:

- **80% Exam.**
- **20% Coursework.**

Course Home Page

C Located at

http://www.cs.swan.ac.uk/∼csetzer/lectures/computability/08/index.html

- **•** There is an open version,
- and a password protected version.
- \bullet The password is $__$
- **E**rrors in the notes will be corrected on the slides and noted on the list of errata.
- **In order to reduce plagarism, coursework and solutions** to coursework will **not** be made available in electronicform (e.g. on this web site).

Plan for this Module

- **1.** [Introducti](#page-0-0)on.
- **2. Encoding of data types into** $\mathbb N.$
- **3.** The Unlimited Register Machine (URM) andthe halting problem.
- **4.** Turing machines.
- **5.** The primitive recursive functions.
- **6.** The recursive functions and the equivalence theorem.
- **7.** The recursion theorem.
- **8.** Semi-computable predicates.

Aims of this Module

- To become familiar with fundamental **models ofcomputation** and the relationship between them.
- To develop an appreciation for the **limits of computation** and to learn **techniques** for **recognising unsolvable** or unfeasible **computational problems**.
- To understand the **historic** and **philosophical background** of computability theory.
- To be aware of the **impact** of the fundamental results of computability theory **to** areas of **computer science** such as **software engineering** and **artificial intelligence**.

Aims of this Module

- To understand the close **connection** between **computability theory** and **logic**.
- To be aware of **recent concepts** and **advances** in computability theory.
- To learn fundamental proving techniques like **induction**and **diagonalisation**.

Literature

- Cutland: *Computability*. Cambridge University Press, 1980.
	- Main text book.
- **Thomas A. Sudkamp: Languages and machines. 3rd** Edition, Addison-Wesley 2006.
- George S. Boolos, Richard C. Jeffrey, John Burgess: Computability and logic. 5th Ed. Cambridge Univ. Press, 2007
- **C** Lewis/Papadimitriou: Elements of the Theory of Computation. Prentice Hall, 2nd Edition, 1997.
- Sipser: Introduction to the Theory of Computation. PWS Publishing. 2nd Edition, 2005.

Literature

- Martin: Introduction to Languages and the Theory of Computation. 3rd Edition, McGraw Hill, 2003.
	- Criticized in Amazon Reviews. But several editions.
- Daniel E. Cohen: Computability and Logic. Ellis Horwood, 1987.
	- Contains some interesting material.
- **John E. Hopcroft, R. Motwani and J. Ullman:** Introduction to Automata Theory, Languages, andComputation. Addison Wesley, 3rd Ed, 2007.
	- Excellent book, mainly on automata theory context free grammars.
	- **But covers Turing machines, decidability questions** as well.

Literature

- Velleman: *How To Prove It*. Cambridge University Press, 2nd Edition, 2006.
	- Book on basic mathematics.
	- Useful if you need to fresh up your mathematical knowledge.
- **Griffor (Ed.): Handbook of Computability Theory. North** Holland, 1999.
	- Expensive. Postgraduate level.