
CS_226 Computability Theory
http://www.cs.swan.ac.uk/∼csetzer/lectures/computability/

08/index.html

Course Notes, Michaelmas Term 2008

Anton Setzer
(Dept. of Computer Science, Swansea)

http://www.cs.swan.ac.uk/∼csetzer/index.html

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-1

http://www.cs.swan.ac.uk/~csetzer/lectures/computability/08/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/computability/08/index.html
http://www.cs.swan.ac.uk/~csetzer/index.html

The Topic of Computability Theory
A

:::::::::::::::

computable
::::::::::::

function is a function

f : A → B

such that there is a mechanical procedure for
computing for every a ∈ A the result f(a) ∈ B.

::::::::::::::::::

Computability
:::::::::

theory is the study of computable
functions.

In computablitity theory we explore the limits of the
notion of computability.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-2

Examples
Define exp

:::

: N → N, exp(n) := 2n,

where N = {0, 1, 2, . . .}.
exp is computable.
However, can we really compute
exp(10000000000000000000000000000000000)?

Let String
::::::

be the set of strings of ASCII symbols.

Define a function check
:::::

: String → {true, false} by

check(p) :=

true if p is a syntactically correct
Java program,

false otherwise.

Is check computable or not?

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-3

Examples (Cont.)
Define a function terminate

::::::::::
: String → {true, false},

terminate(p) :=

true if p is a syntactically correct
Java program with no input and outputs,
which terminates;

false otherwise.

Is terminate computable?

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-4

Answer

(To be filled in during the lecture)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-5

Examples (Cont.)
Define a function issortingfun

::::::::::::

: String → {true, false},

issortingfun(p) :=

true if p is a syntactically correct
Java program, which has as input
a list and returns a sorted list,

false otherwise.

Is issortingfun computable?

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-6

Explanation
Assume issortingfun were computable.

Then we can construct (compute) a program which
computes terminate as follows:

Assume as input a string p.
Check whether it is a syntactically correct Java
program with no input and outputs.
If no, terminate(p) = false, so return false.
Otherwise, create from p a program q(p) which is a
potential sorting function as follows:

q(p) takes as input a list l.
Then it executes p.
If p has terminated, then it runs a known sorting
function on l, and returns the result.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-7

Explanation
If p terminates, then q(p) will be a sorting function, so
issortingfun(q(p)) = true = terminate(p).
If p does not terminate, then q(p) does not terminate
on any input, so
issortingfun(q(p)) = false = terminate(p).
Our program returns now issortingfun(q(p)) which is
the result of terminate(p).

So we have obtained by using a program for issortingfun

a program which computes terminate.

But terminate is non-computable, therefore issortingfun

cannot be computable.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-8

Problems in Computability
In order to understand and answer the questions we have to

Give a precise definition of what computable means.
That will be a mathematical definition .
Such a notion is particularly important for showing
that certain functions are non-computable.

Then provide evidence that the definition of
“computable” is the correct one.

That will be a philosophical argument .

Develop methods for proving that certain functions are
computable or non-computable.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-9

Three Areas
Three Areas are involved in computability theory.

Mathematics.
Precise definition of computability.
Analysis of the concept.

Philosophy.
Validation that notions found are the correct ones.

Computer science.
Study of relationship between these concepts and
computing in the real world.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-10

Questions Related to The Above
Given a function f : A → B, which can be computed,
can it be done effectively?
(Complexity theory .)

Can the task of deciding a given problem P1 be
reduced to deciding another problem P2?
(Reducibility theory).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-11

More Advanced Questions
The following is beyond the scope of this module.

Can the notion of computability be extended to
computations on infinite objects
(e.g. streams of data, real numbers,higher type
operations)?
(Higher and abstract computability theory).

What is the relationship between computing (producing
actions, data etc.) and proving.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-12

Idealisation
In computability theory, one usually abstracts from
limitations on

time and

space.

A problem will be computable, if it can be solved on an ide-

alised computer, even if it the computation would take longer

than the life time of the universe.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-13

Remark on Variables
In this lecture I will often use i, j, k, l, m, n for variables
denoting natural numbers.

I will often use p, q and some others for variables
denoting programs.

I will use z for integers.

Other letters might be used as well for variables.

These conventions are not treated very strictly.
Especially when running out of letters.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-14

History of Computability Theory
Gottfried Wilhelm
von Leibnitz (1646 – 1716)

Built a first mechanical
calculator.

Was thinking about a
machine for
manipulating symbols in
order to determine truth
values of mathematical
statements.

Noticed that this requires
the definition of a precise
formal language.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-15

History of Computability Theory
David Hilbert
(1862 – 1943)

Poses 1900 in his
famous list
“Mathematical
Problems” as 10th
problem to decide
Diophantine
equations.
Jump over Explanation
Diophantine Equations

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-16

Diophantine Equations
Here is a short description of Diophantine Equations.

This is the question, whether an indeterminate
polynomial equation has solutions where the variables
are instantiated as integers.

Examples:
Solve for integers a, b the equation ax + by = 1 using
integers x, y.
Solve for given n the equation xn + yn = zn.

For n ≥ 3 this is unsolvable by Fermat’s Last
Theorem.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-17

Decision Problem

Hilbert (1928)
Poses the Entscheidungsproblem (German for
decision problem).
The decision problem is the question, whether we
can decide whether a formula in predicate logic is
provable or not.

Predicate logic is the standard formalisation of
logic with connectives ∧,∨,→,¬ and quantifiers ∀,
∃.
Predicate logic is “sound and complete”.
· This means that a a formula is provable if and

only if it is valid (in all models).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-18

Decision Problem
So the decidability of predicate logic is the
question whether we can decide whether a
formula is valid (in all models) or not.
If predicate logic were decidable, provability in
mathematics would become trivial.

“Entscheidungsproblem ” became one of the few
German words which have entered the English
language.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-19

History of Computability Theory
Gödel, Kleene, Post, Turing (1930s)
Introduce different models of computation and prove
that they all define the same class of computable
functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-20

History of Computability Theory

Kurt Gödel (1906 – 1978)
Introduced the (Herbrand-Gödel-)

recursive functions
in his 1933 - 34 Princeton lectures.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-21

History of Computability Theory

Stephen Cole Kleene
(1909 – 1994)
Probably the most influential
computability theoretist up to now.
Introduced the partial recursive
functions.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-22

History of Computability Theory

Emil Post
(1897 – 1954)
Introduced the Post problems.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-23

History of Computability Theory

Alan Mathison Turing
(1912 – 1954)
Introduced the Turing machine.
Proved the undecidability
of the Turing-Halting problem.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-24

Gödel’s Incompleteness Theorem
Gödel (1931) proves in his first incompleteness
theorem:

Every reasonable primitive-recursive theory is
incomplete, i.e. there is a formula s.t. neither the
formula nor its negation is provable.

The theorem generalises to recursive
i.e. computable theories.
The notions “primitive-recursive” and “recursive”
will be introduced later in this module.
For the moment it suffices to understand
“recursive” informally as intuitively computable.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-25

Gödel’s Incompleteness Theorem
Therefore no computable theory proves all true
formulae.
Therefore, it is undecidable whether a formula is true
or not.

Otherwise, the theory consisting of all true
formulae would be a complete computable theory.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-26

Undecidability of the Decision Problem
Church, Turing (1936) postulated that the models of
computation established above define exactly the set of
all computable functions (Church-Turing thesis).

Both established independetly undecidable problems
and proved that the decision problem is undecidable ,
i.e. unsolvable .

Even for a class of very simple formulae we
cannot decide the decision problem.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-27

Undecidability of the Decision Problem
Church shows the undecidability of equality in the
λ-calculus.
Turing shows the unsolvability of the halting
problem .

It is undecidable whether a Turing machine (and
by the Church-Turing thesis equivalently any
non-interactive computer program) eventually
stops.
That problem turns out to be the most important
undecidable problem.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-28

History of Computability Theory

Alonzo Church (1903 - 1995)

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-29

History of Computability Theory
Post (1944) studies degrees of unsolvability. This is the
birth of degree theory.

In degree theory one devides problems into groups
(“

::::::::::

degrees ”) of problems, which are reducible to each
other.

:::::::::::::

Reducible means essentially “relative computable”.

Degrees can be ordered by using reducibility as
ordering.

The question in degree theory is: what is the structure
of degrees?

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-30

Degrees

computable

Degree

Reducible to

problems

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-31

History of Computability Theory

Yuri Vladimirovich
Matiyasevich (∗ 1947)

Solves 1970 Hilbert’s
10th problem nega-
tively: The solvability
of Diophantine equa-
tions is undecidable.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-32

History of Computability Theory

Stephen Cook(Toronto)

Cook (1971) intro-
duces the complexity
classes P and NP
and formulates the
problem, whether
P 6= NP.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-33

Current State
The problem P 6= NP is still open. Complexity theory
has become a big research area.

Intensive study of computability on infinite objects (e.g.
real numbers, higher type functionals) is carried out
(e.g. U. Berger, Jens Blanck and J. Tucker in Swansea).

Computability on inductive and co-inductive data types
is studied.

Research on program synthesis from formal proofs (e.g.
U. Berger and M. Seisenberger in Swansea).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-34

Current State
Concurrent and game-theoretic models of computation
are developed (e.g. Prof. Moller in Swansea).

Automata theory further developed.

Alternative models of computation are studied
(quantum computing, genetic algorithms).

· · ·

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-35

Name “Computability Theory”
The original name was recursion theory, since the
mathematical concept claimed to cover exactly the
computable functions is called “recursive function”.

This name was changed to computability theory during
the last 10 years.

Many books still have the title “recursion theory”.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-36

Administrative Issues
Lecturer :
Dr. A. Setzer
Dept. of Computer Science
University of Wales Swansea
Singleton Park
SA2 8PP
UK
Room: Room 211, Faraday Building
Tel.: (01792) 513368

Fax: (01792) 295651

Email: a.g.setzer@swansea.ac.uk

Home page: http://www.cs.swan.ac.uk/∼csetzer/index.html

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-37

mailto:a.g.setzer@swan.ac.uk
http://www.cs.swan.ac.uk/~csetzer/index.html

Assessment:
80% Exam.

20% Coursework.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-38

Course Home Page
Located at
http://www.cs.swan.ac.uk/∼csetzer/lectures/
computability/08/index.html

There is an open version,

and a password protected version.

The password is _____________.

Errors in the notes will be corrected on the slides and
noted on the list of errata.

In order to reduce plagarism, coursework and solutions
to coursework will not be made available in electronic
form (e.g. on this web site).

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-39

Plan for this Module
1. Introduction.

2. Encoding of data types into N.

3. The Unlimited Register Machine (URM) and
the halting problem.

4. Turing machines.

5. The primitive recursive functions.

6. The recursive functions and the equivalence theorem.

7. The recursion theorem.

8. Semi-computable predicates.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-40

Aims of this Module
To become familiar with fundamental models of
computation and the relationship between them.

To develop an appreciation for the limits of
computation and to learn techniques for recognising
unsolvable or unfeasible computational problems .

To understand the historic and philosophical
background of computability theory.

To be aware of the impact of the fundamental results of
computability theory to areas of computer science
such as software engineering and artificial
intelligence .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-41

Aims of this Module
To understand the close connection between
computability theory and logic .

To be aware of recent concepts and advances in
computability theory.

To learn fundamental proving techniques like induction
and diagonalisation .

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-42

Literature
Cutland: Computability. Cambridge University Press,
1980.

Main text book.

Thomas A. Sudkamp: Languages and machines. 3rd
Edition, Addison-Wesley 2006.

George S. Boolos, Richard C. Jeffrey, John Burgess:
Computability and logic. 5th Ed. Cambridge Univ.
Press, 2007

Lewis/Papadimitriou:
Elements of the Theory of Computation. Prentice Hall,
2nd Edition, 1997.

Sipser: Introduction to the Theory of Computation.
PWS Publishing. 2nd Edition, 2005.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-43

Literature
Martin: Introduction to Languages and the Theory of
Computation. 3rd Edition, McGraw Hill, 2003.

Criticized in Amazon Reviews. But several editions.

Daniel E. Cohen: Computability and Logic. Ellis
Horwood, 1987.

Contains some interesting material.

John E. Hopcroft, R. Motwani and J. Ullman:
Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 3rd Ed, 2007.

Excellent book, mainly on automata theory context
free grammars.
But covers Turing machines, decidability questions
as well.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-44

Literature
Velleman: How To Prove It. Cambridge University
Press, 2nd Edition, 2006.

Book on basic mathematics.
Useful if you need to fresh up your mathematical
knowledge.

Griffor (Ed.): Handbook of Computability Theory. North
Holland, 1999.

Expensive. Postgraduate level.

CS 226 Computability Theory, Michaelmas Term 2008, Sect. 1 1-45

	
	The Topic of Computability Theory
	Examples
	Examples (Cont.)
	Answer
	Examples (Cont.)
	Explanation
	Explanation
	Problems in Computability
	Three Areas
	Questions Related to The Above
	More Advanced Questions
	Idealisation
	Remark on Variables
	History of Computability Theory
	History of Computability Theory
	Diophantine Equations
	Decision Problem
	Decision Problem
	History of Computability Theory
	History of Computability Theory
	History of Computability Theory
	History of Computability Theory
	History of Computability Theory
	G{"o}del's Incompleteness Theorem
	G{"o}del's Incompleteness Theorem
	Undecidability of the Decision Problem
	Undecidability of the Decision Problem
	History of Computability Theory
	History of Computability Theory
	Degrees
	History of Computability Theory
	History of Computability Theory
	Current State
	Current State
	Name ``Computability Theory''
	Administrative Issues
	Assessment:
	Course Home Page
	Plan for this Module
	Aims of this Module
	Aims of this Module
	Literature
	Literature
	Literature

