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Summary

C++ is a general purpose language that supports objecttedgrogramming as well as
procedural and generic programming, but unfortunatelyfmottional programming. We
have developed a parser-translator program that traessateply typedi-term to equiva-
lent C++ statements so as to integrate functional programgumihe program parsesterms
and translate them into full language of C++. Our intentimoi upgrade this to an exten-
sion of the language of C++ by-types and -terms together with a parser program which
translates this extended language into native C++. Fopilnipose we introduce a syntax
for representing\-types and -terms in C++. We use functional style notatidherathan
overloading existing C++ notation, since we believe tha will improve readability and
acceptability of our approach among functional progranamer

The translated code generated by the parser-translatgrgmnouses the object-oriented ap-
proach of programming that involves the creation of clagsethe A-term. By using inher-
itance, we achieve that the translation of-abstraction is an element of a function type.

The most important advantage of our thesis is that we give thenaatical proof of the
correctness of the translation, and to our knowledge thiéicagion of the implementation
of A-calculus in C++ using a logical relation is new. We introee suitable fragment of
C++ with a precise denotational semantics. We give a formaaistation of\-terms into
this fragment and show that it preserves this semantics.hdie as well completeness, i.e.
essentially all programs in this fragment of C++ can be olatdiby translating terms of the
A-calculus. We develop a mathematical model for the evalnaif programs in this model,
and show that this evaluation is correct with respect to threthtional semantics.

We hope that our model of a fragment of C++ which includes mm&dmodel of the heap,
will have applications which go beyond the translation @& tipedA-calculus. We expect
that extensions of this model can be used to verify formakydorrectness of more complex
C++ programs, including programs with side effects. Weewelithat if our approach is
extended to cover full C++, we obtain a language in which tleldg of functional and
object-oriented programming are merged, and that we willreany examples where the
combination of both language concepts (such as the usegearins with side effects), will
result in interesting new programming techniques.
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Chapter 1

Introduction

Ever since their inception in the 1950’s [BG96], high-lepebgramming languages have
been a fascinating and productive area of study. Programemeliessly debate the relative
merits of their favourite programming languages, and mebeas are looking for ways to
design languages that combine expressive power with siityolind efficiency. Looking
at the history of programming languages we can clearly seeeaggnce of programming
paradigms (for example, object-oriented, logic, and fiemetl) despite the fact that a "uni-
versal” high-level programming language integrating laéide paradigms would be highly
desirable. Therefore, great efforts are being made to figbtdivergence by creating such
an integrated programming language. This thesis is not egption, in the sense that it in-
tegrates functional programming concepts into the C++uagg, with the longterm goal of
completely merging the functional and object-orientedgpamming paradigms. Undoubt-
edly, this will result in a wealth of interesting new progmaing techniques such as lazy
evaluation in C++ (see Chapter 4, section 4.6).

While the integration of functional and object-orientedgmamming concepts had been suc-
cessfully attempted before ([SS00], [FA0O0], [Kis98], [Ll9], [MS00], [Vel95], [JP0O0], our
thesis goes an important step further by giving a matheadaticingent proof of the correct-
ness of the integration, based on mathematical model ofganeat of C++. Our research
has produced four articles (jointly written by my supervisand myself) which were pub-
lished in the CIE 2006 ( informal proceedings and postproicess) [Ab06], [ABS08] and

in the TFP 2006 ( informal proceedings and postproceedihB§06a], [ABS06b].

Before explaining more details of the results of our thesisus discuss some fundamen-
tal aspects of programming languages as well as the hiatatevelopment of low- and
high-level programming languages. According to HerberMayer [May87], the primary
function of programming languages is to let the user comoaiaiwith the computer via a
common interface, where programming languages, togetitiitiveir compilers bridge the
gap between low level, binary instructions that machinegetstand, and the higher level
in which people express their thoughts. We can say that @anogring languages are the
medium through which users communicate with a computergrming languages have
a wide spectrum of levels spanning from the low-level maglind assembly languages to
the high-level machine independent languages.
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A low-level programming language is a machine dependerguage. This dependency
makes the program written not portable from one machine athan A low-level program-
ming language requires an additional transformation frbendonceptual idea to the actual
data structures and instructions. It takes a longer timeriteva program in a low-level
language than writing it in a high-level language. Althoublre are setbacks in coding a
program in a low-level language, the good thing about it & grogram written in a low-
level language runs faster than a program in high-leveldagg. This is because high-level
language programs need to be translated by means of a conmpdemachine language
[May87].

A high-level programming language allows the programmeexpress complex instruc-
tion sequences directly in the language used, and alsosatlusvprogrammer to ignore the
machine-specific details. The more the actual computer eagriored, the higher is the
language level, and the more convenient it becomes to camggms. Although we lose
some control over resource utilization, such as data and spdce, most of the time high-
level language is preferable because memory space and &f¢ends of machine time are
less precious than a programmer’s time.

In the following we will discuss the different levels of pmagnming languages in greater
detail and describe their development through the histbggragramming. We hope that
this will give the reader a better understanding and apatieai of the achievements of this
thesis.

1.1 A Brief History of Programming Languages

There are many kinds of programming languages on the maskéth sometimes make
people wonder why this is the case. Is it because of the ewdvieg machine that is
becoming more and more sophisticated or is it because ofaimadd of humans that needs
everything to be automated? To understand more of why thexggmming languages
spring out rapidly, we reconsider the development of pnogning languages, starting with
low-level languages and moving on to high-level languages.

1.1.1 Development of Low-Level Languages

There are five generations of programming languages rariginglow-level to high-level.
The five generations of programming languages start at thesilevel with the first gen-
eration which is the machine language. They then range wughrthe second genera-
tion - assembly language, third generation - high-levefleges (procedural language),
and the fourth generation - very high-level language (mbbriented language). At the
highest level are the fifth generation languages which aréatiguages close to natural lan-
guage. Beginning in 1945, the five generations have evolvedthbe years, as programmers
adopted the later generations. The birth of the generadiomas follows [WSO03]:

* First generation, 1945

« Second generation, early 1950's
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« Third generation, mid 1950's
 Fourth generation, early 1970’s

« Fifth generation, early 1980'’s

1.1.1.1 First Generation

The first-generation languages are machine languages. arbgyimitive languages where
the program consists of sequences of instructions calladhimeicode . This machine code
is addressed to the hardware of the computer and is writteimary notation which consists
of binary digits i.e. 0 and 1. The instructions are made afg# of binary digits which rep-
resents operations such as add, subtract and compare.r Aar®vement of the language
is allowing the use of octal, decimal or hexadecimal repregion of binary strings. Writ-
ing the machine language programs is tedious and error pBueto these impracticalities
of the language, a second generation language is intrododkd early 1950’s.

1.1.1.2 Second Generation

Second generation languages are called assembly or syniomjiuages. These languages
use mnemonics to represent operations such as ADD for addUBrf& subtract. The
assembly language program when compiled is translated ¢hin@language by an assem-
bler. All computers operate using a machine language. tinaros are written in other than
machine language, they have to be translated to a machigadga by a compiler or an
interpreter that is specific to that language.

One setback to this low-level language is that it is machiegeddent, which means that
each one only work on one specific type of computer.

1.1.2 Evolution of High Level Languages

Programs developed in the low-level language is too spenifiallowing the low-level de-
tails of computer’'s hardware and they lack portability begw different computers. These
disadvantages of low-level languages lead to the developafidigh-level languages. High-
level languages allow programmers to ignore low-levelitetd computer hardware and the
nearer the language resembling the 'natural languageettrelikely errors could be made
by the programmer.

1.1.2.1 Third Generation

In the mid 1950’s, the third generation of languages weresi urhey are algorithmic or
procedural languages that are used to solve a particulardfproblem. There are many
different kinds of high-level languages produced due todifferent attitude in solving the
problems involved [Hig73].
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The first high-level language is Fortran (FORmula TRANSsIa}i It was developed in 1956
by John Backus at the IBM Corp., for scientific and engineg@applications. The For-
tran compiler was not only the first compiler, but was alsoliest optimizing compiler in
years to come. Over the years, Fortan was developed intaRdit Fortran-1V, Fortran-66,
and Fortran-77 [May87]. In the early 1950’s, John McCarththa Masachusetts Institute
of Technology developed LISP (LISt Processing) and it waglémented in 1959. LISP
handled recursive algorithms better and become the sitalaguage for the artificial in-
telligence community. It began as a purely functional laggibut soon acquired some
important imperative features that increased its exeodfticiency. But, it is still the most
used functional languages. But, ML and Haskell have widsmprse. More on history
of functional programming in Chapter 3. However, LISP isdyaly being replaced or
challenged by Prolog in the artificial intelligence appiioas.

COBOL (COmmon Business Oriented Language) is the first laggudesigned for com-
mercial application and it is still widely used now. It wasvdlped in 1959 by a navy
programmer Captain Grace Mary Hopper and her committee wipater manufacturers
and users. It is used for a certain type of applications sscapplications that involved
processing of dollars and cents. It is advanced in the uséegirfbcessing and handling of
character string data.

In Europe at about 1958, ALGOL (ALGOrithmic Language) wagaleped as an improve-
ment over Fortran. It was redesigned and improved furthék itivas completed and pub-
lished in 1960 as ALGOL-60. Even though it was said to be thstrimgenious language
effort in the early days of programming languages, it newned widespread acceptance
[May87]. It is used primarily in mathematics and sciencesag\PL. APL (A Program-
ming Language) is published in the United States in 1962 hyniéth Iverson at Harvard
University.

In 1966, PL/1 (Programming Language 1) is introduced by IB&C It was intended as
a replacement for all previous programming languages asddaaures from all other pro-
gramming languages. Another important language is ADAn#isie was taken to honour
Ada Augusta, the countess of Lovelace. She was the biogragih@harles Babbage and
considered as the first computer programmer, since she wroggams for Babbage's ma-
chine. Ada was developed in 1981 by the U.S. Deptarment Céidef. It was designed as
a language for military applications, in order to have onidoum language in which most
software for US military applications should be written irfre.

BASIC (Beginner's All-purpose Symbolic Instruction Codes designed by two profes-
sors from Dartmouth College , John Kemeny and Thomas Kuri866 as an easy to learn
interactive programming language. It became the primarguage used in microcomputers
for a while, but has lost its importance. In 1971, a more $tmecl language for teaching
that was named Pascal after Blaise Pascal, a French matbieamatvas developed. It was
designed by Nicholas Wirth, a Swiss professor. It is one efflw very well designed lan-

guages which is widely used. Then in 1982, Wirth introducestiia-2. It is a Pascal-like

language for commercial and mathematical applications.dis2 is a general purpose
programming language which is also designed for systentgrgmming.

Around 1972, Dennis Ritchie of Bell Laboratories producddregyuage called C to imple-
ment the UNIX operating system. It is a general purpose lagguhat is mainly suited for
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operating system implementations. Systems written in Qreoee portable than the ones
written in assembly language. C++ is an extension of C isldpeel by Bjarne Stroustrup

of Bell Laboratories. C++ has become the most widely use@mgpurpose language be-
cause of its speed and its capabilities to deal with objéerted programming. Java is an
object-oriented language which was developed specifieallst network-oriented language
where writing programs can be safely downloaded from thermgt and can be executed
immediately without fear of any threat from computer virsise

1.1.2.2 Fourth Generation

Very high-level or problem-oriented languages, also ddtbirth generation language (4GLs),
are much more user-oriented and allow users to develop gregwith fewer commands
compared with procedural language, although they requaee rmomputing power. These
languages are called problem-oriented because they dgmdddo solve specific problems,
whereas procedural languages are more general purposetpy

There are three types of problem-oriented languages. Tiheyeaort generators, query
languages and application generators. A report generdtichws also called as report writer
is a language to produce a report, where the report can bataydrior a screen display in
a certain format specified by the user. A query language isaag-®-use language for
retrieving data from a database management system. Thg magr be expressed in the
form of a sentence or near-English command. An applicat@regator is the programmer’s
tool consisting of modules that have been programmed tonagiésh various tasks. The
benefit of this generator is that the programmer can geneggiécation programs from
descriptions of the problem rather than by traditional paogming, in which the processing
of the data have to be specified. Programmers use appliggiterators to help them create
parts of other programs such as to construct onscreen menyges of input and output
screen formats.

FORTH is the first fourth generation language developed ir018y the American As-
tronomer Charles Moore. FORTH is used in scientific and itvéaiscontrol applications.
Besides FORTH, NOMAD and FOCUS are database managemeatrsysthich include
application generators. Other examples of applicatioregears are Mathematica, MAT-
LAB, Progress 4GL, Maple SPSS (which are data manipulaioalysis and reporting lan-
guages) , APE, AVS ( are data-stream languages) and Caldfi{sa web development
language). RPGIII, Quest, Report Builder, GEMBase, Or&udports, PostScript are ex-
amples of report generators, and SQL, Informix-4GL, SBst&yBuilder, and Genero are
examples of query languages.

High-level, domain-specific programming languages werigeeaften mentioned as fourth-
generation languages, while expert systems were calléddgiheration programming lan-
guages. In later years this distinction has blurred, as meanyhigh-level general purpose
programming languages like Python, Haskell and Common hisfg emerged.

Domain-specific languages are languages tailored to afgpapplication domain. For a
specific domain, they offer substantial gains in expres&ige and ease of use compared
to general-purpose languages. They sacrifices generalitypeovides notations and con-
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structs tailored to a particular application domain. (EjBahd Excel are representatives of
domain-specific language which are for syntax specificaimhspreadsheet application re-
spectively [HMO7]. The term domain-specific language haobe popular in recent years
in software development to indicate a programming languagpecification language ded-
icated to a particular problem representation technigod/oa a particular palestine tech-
nigue. The concept isn’t new - special-purpose programrntanguage and all kinds of
modelling/specification languages have always existetlfHmiterm has become popular
due to the rise of domain-specific modelling. The opposite general-purpose program-
ming language, such as C or Java, or a general-purpose mgdelhguage such as the
UML. Creating a domain-specific language (with softwareuppmort it) can be worthwhile
if the language allows a particular type of problems or sohst to them to be expressed
more clearly than pre-existing languages would allow, dratype of problem in ques-
tion reappears sufficiently often. In comparison with thendn specific language with our
project we can clearly say that the main goal of our projetd develop a general purpose
language extension of C++ not a domain specific extensiohas We did not consider in
integrating the functional programming into C++ as crep@mdomain specific language.

1.1.2.3 Fifth Generation

Fifth generation language is an outgrowth of artificial ligence research. Artificial in-
telligence (Al) is a group of related technologies used ®rajoping machines to emulate
human qualities, such as learning, reasoning, commungasieeing and hearing. In the
early 1970s, PROLOG (PROgramming LOGic) was designed bgdRreomputer scien-
tist Alain Colmeraur and logician Philippe Roussel. PROL@BGseful for programming
logical processes and allows to automatically deduce progrfrom declarations. Prolog
received a major boost in 1981, when the Japanese for New&memeComputing Technol-
ogy selected logic programming as its enabling softwarertelogy, and launched a ten year
project to provide complementary hardware technology éstilape of fast logical inference
machine [Wat90].

Today, the main areas of artificial intelligence are virttgllity, robotics, natural language
processing, fuzzy logic, expert systems, neural netwag&agtic algorithms and cyborgs.
Virtual reality, a computer generated virtual reality @i a person into a sensation of three
dimensional space. Other than using virtual reality in deegype games, its more important
uses are in simulators for training. Robotics is the develeqt and study of machines that
can perform work normally done by people and natural langyargcessing is the study
of ways for computers to recognize and understand humamndagy LUNAR, developed
to help analyze moon rocks, answers questions about geologjye basis of an extensive
database is an example of natural language processingy kgie is a method of dealing
with imprecise data and uncertainty, with problems thathaany answers rather than one.
Unlike classical logic, fuzzy logic is more like human reaisg: it deals with probability
and credibility. Expert system is an interactive computegpam used in solving problems
that would otherwise require assistance of a human expech Srogram simulates reason-
ing process of experts in certain well-defined areas andocates not only the expert’'s
surface knowledge ("textbook knowledge”) but also deepieadge ("tricks of the trade”).
Artificial intelligence and fuzzy logic principles are bgimpplied to the development of
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neural networks. Neural networks use physical electroaidogs or software to mimic the
neurological structure of the human brain where they leam fexample and don't require
detailed instructions. A genetic algorithms is a prograat thses Darwinian principles of
random mutation to improve itself. As in Darwin’s rules ob&tion, many chunks of code
compete to see which can best fulfil the goal of the programreveeme chunks will be-
come extinct and the survived ones will combine with othevisars to produce offspring
programs.

Artificial intelligence research has led to many advancggoframming languages includ-
ing LISP and its dialects , Planner, Actor, the Scientific @mmity Metaphor, production
systems and rule-based languages. According to Hewitt i8gwPlanner was the first
language to feature procedural plans that were called bgrpadirected innovation using
goals and assertions. A subset called Micro Planner [Bawa2]implemented by Gerry
Sussman, Eugene Charnak, and Terry Winograd [Lig73] anduged in Winograd'’s natu-
ral language understanding program SHRDLU and other psoj&everal researches then
introduced other subsets of Planner such as PICO-PLANNERTA] and Popler [Dav73].
Bob Kowalski [Kow88], who had been one of the principal menskaf the logic paradigm
community, then adapted, in collaboration with Alain Cofmeer, some theorem proving
ideas into a form similar to a subset of Micro Planner calleald?). Using Prolog, Kowalski
hoped to save the logic paradigm as a suitable approachfioiakintelligence.

There may yet be a spring of a new discipline of programmiiag) ¢an be considered as the
sixth generation programming language. Trygve Reenskavesearcher at the University
of Oslo, created and explored a possible new discipline eff@mming in his BabyUML
project [Ree07] which is still experimental. He regard BadbiL [Ree04] as a sixth gen-
eration programming language because it combines theithigge capabilities of the third
generation with the semantic modelling of the fourth geti@nalanguage. BabyUML re-
places the idea of a closed application with an open modaleigrcreated within a running
context. Current programming technology involves a foagetprocess which includes
modelling, coding, loading and execution. But, BabyUML ges them into one, making
programming a question of dynamically modifying a runniggtem.

1.2 Languages Evolved from other Programming Languages

There are several programming languages that evolved ftbar programming languages
to improve the language in fulfilling the demands of systewetiimment where software
are becoming more and more complex. OCaml (Object Camlgigntiplementation of the
Caml dialect and of ML extended with class based object ameefal module system in
the style of SML. It is a general purpose programming langualich combines functional,
imperative and object oriented programming. It is suitech&aium advanced programmers
as a tool to boost their productivity through type inferene&aml does something similar
to what we aim at, but coming from the functional programmsigg. It is the extension of
ML by objects. It lacks the full power of C++ concepts, espbgipointers, a rich object-
oriented structure, explicit memory management. Howevisra very clean language. It
is like a functional programming language, with objectseatitb it, whereas the language,
this project was aiming at (we haven't achieved it in full y&it some steps towards it) we
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have in mind is an object-oriented (or in fact multi-paraditanguage) with features from
functional programming added to it. So OCaml is intendeddoctional programmers who
need some object orientation, whereas the program thiggirajas aiming at is intended
for imperative or object-oriented programmers, who needesgoncepts from functional
programming.

F# is the implementation of the core of the Caml programmamgjuage for the .Net frame-
work. Its aim is to work together with C#, Visual Basic SMLiNmd other .Net program-
ming languages. C# is derived from C and C++ and developedibsobkbft. It is a Java like
language for web programming and was specially designeperate within the .Net frame-
work. Pizza is an extension of Java with important featukesparametric polymorphism,
function pointers and algebraic types. However, its emapdif A-terms is extensive. But
the generic part of Pizza has been developed further to @mgrh of Java called Generic
Java (GJ). Most ideas of GJ have been incorporated into Java 1

Purely imperative programming languages such as C or Pdsaabt provide a satisfying
mechanism such as abstraction and data manipulation. Canr éxtended version of C
where it supports object-oriented programming and teraplggee Chapter 2). Purely object
oriented languages like SmallTalk are excellent with dyigaapplication but do not provide
static guarantees. Typed class based programming largygage as C# and Java contain a
very large number of constructs and it is sometimes difficulprogrammers to choose how
to model their program and sometimes one obtains a largeagofpr a simple problem.

1.3 Outline of Thesis

Since the beginning of evolution in software developmerdgmmmers or more precisely
computer scientists are trying to find ways or techniquesnproving how programs are
designed or structured. There are several approaches ignites programs. They are
known as programming paradigms. The most prominent onesrgrerative, procedural,
module-based, generic, declarative, functional and ofgjgented programming. These
programming paradigms are discussed in Chapters 2 and 3.

By combining the advantages of functional programming ajdai-oriented programming,

it is hoped that a general purpose object-oriented langlieg€++ can enhance the effi-
ciency of developing a program. Since functional prograntnis based on tha-calculus,

it is appropriate to embed the typedcalculus into C++. This extension of C++ is devel-
oped by creating a parser that can parse a C++ program arsthteany typed-terms in

it to equivalent C++ statements. This integration of fumeél programing into C++ is to
simplify the coding of the typed-terms so as making it a simple task to defiierms in
C++. The syntax of defining these typaderms was decided based upon simplification and
ease of use for programmers or users.

A discussion on the approach that we use in integrating ifmalt programming into C++
and the design, specification and development of the progmatrparses and translatés
terms into equivalent C++ code can be seen in Chapter 4. Tpleiinentation of the parser-
translator program is discussed in greater detail in Chdptdn this chapter, the parsing
and translation of the simply typettterms are discussed. The simply typederms are
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translated by using the object-oriented approach of progriag that involves the creation
of classes for tha-term. The translation of a-abstraction is an element of a function type,
where the concept of inheritance plays the main role. Theuwtian of the translated code
in C++ is discussed by showing how the classes and varialdeallacated on the heap in
the memory. The evaluation strategy of the translated codall-by-value.

One thing that is new in our approach is that we have correstpeoof of our C++ imple-
mentation of the\-calculus. We proof the correctness of our implementatigh mespect to
the usual (set-theoretic) denotational semantics of thelgitypedA-calculus and a mathe-
matical model of sufficiently large fragment of C++ using Kwpke-style logical relation.
Complete proofs are given in Chapter 6. Related work in natigg functional program-
ming into C++ is discussed in Chapter 7. Summary of the thesitscussed in Chapter 8
and future work is recommended. It becomes our believe thmtriapproach is extended
to cover full C++, we can obtain a language in which the wodtifunctional and object-
oriented programming are merged.

As mentioned earlier, we have produced papers from our nas&eich are both refereed
at usual journal standards and are quite different fromhksis. Papers in the Theory Of
Computing System (Appendix C) and Trends in Functional Raogning 2006 ( Appendix
D) use monadic concepts to define the model, and the latter §apP) added the lazy data
structures.



Chapter 2

From Imperative Programming to
Object-oriented and Generic
Programming

A programming paradigm is defined as a paradigmatic styleairamming. This can be
compared with the notion of programming methodology, wh&h paradigmatic style of
carrying out software engineering. A programming paradjgovides a view of how the
program is being represented. It determines the style andiebign method the programmer
would use in developing software.

Programming languages are tools for writing software. Tdreythe tools we use to commu-
nicate not only with computers but with people. They haventseactive field of computer

science throughout the decades. As discussed earlieg #nermany programming lan-
guages , beginning with the lowest to the higher hierarchyroframming languages (refer
to Chapter 1, section 1.1). Computer programmers or rasegicomputer scientists are

still trying to find a better programming language that cambed with ease in

writing software efficiently. The pros of different langusgare sometimes combined to
create a new language or an extension of an existing language

Just as different groups of software engineering, suppéfgrent methodologies, differ-

ent programming languages support different programirgdigms. There need not be
a one-to-one relationship between programming languagdstteeir paradigms. Some
languages are designed to support one particular paradigoth languages are called
paradigm-oriented, for example Java and Smalltalk suppugject-oriented programming
while Haskell and Scheme support functional programminfpe©programming languages
support multiple paradigms and are therefore paradignraidike C++, which is designed

to support elements of procedural programming, obje&rbeid programming and generic
programming. The design abstractions can easily be dit¢otprogram components if the
design method and the language paradigm are the same onthedge is paradigm-neutral
[GJ98].

10
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Many programming paradigms are well known for what techegthey forbid or enable.
For example, pure functional programming disallows theafsgde effects and structured
programming disallows the use of goto’s. Object-orientadagdigm is the most common
style of programming nowadays. It is certainly the key pamgming methodology for the
next decade [DDO1].

Before going further into the object-oriented paradigm migsgamming, we think that it
is important first to go through some of the paradigms in @ogning that is relevant to
this research. We discuss imperative programming firstusecd is the basis of most pro-
gramming not including functional programming. The projecthis thesis applied object-
oriented programming in developing the program and in thedlation of the\-expression.
Structured programming is also discussed because thetslijethe object oriented pro-
gramming have internal structures which is usually builngsstructured programming
techniques and also the manipulation of the objects is bgsessed with this technique.
The concept of generic programming make possible the existef Standard Template Li-
brary(STL) [STLOO]. Especially containers make use of tiiacept. We will use generic
programming when creating the translation of the functigretof a\-term. (see Chapters
4,5, 6)

2.1 Imperative Programming

The imperative programming paradigm is an abstractioneptinciples for executing pro-
grams in real computers which in turn are based on the Turexghine and the von Neuman
machine. A diagram of the von Neuman machine is given in [ei@ut [GJ98]. This archi-

tecture consists of a memory, that contains data and itigtngg a CPU and an 1/O unit.

[0 Memory CPU

efch
Execute
ore

S

Figure 2.1: A von Neumann computer architecture

The CPU is responsible for fetching instructions one at @& ti®ince machine instructions
are very low-level , they require the data to be taken out afiory and manipulated through
arithmetic and logic operations with the result being cdgiack to the memory. Execution
of instructions result in the change of the state of the nrachvhich is reflected by the
contents of the memory.

An abstraction is a model that highlights the relevant aspefca phenomenon and ignores
its irrelevant details [GJ98]. In other words, conventiopeogramming languages adopt
the underlying von Neumann architecture as their compmrtatimodel but abstract away
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from the details of each sequential step of execution. Thidehconsists of a sequential,
step by step execution of instructions which change the stiatomputation by modifying
the repository of values. Sequential execution of languafiects the sequential fetch and
execution of machine instruction performed by the hardwakevariable of the language
which can be modified by the assignment statements, refteetsehaviour of the memory
cells of the computer architecture. Higher levels of alesivas such as procedures and
functions, data types, exception handlers and classedeavedeveloped from time to time
until now by language designers to overcome the ever incgaseds of programmers.
Even though higher level languages have been designed t® pnagramming much easier,
the concept of the languages are still based on the von Neuarahitecture.

The state in an imperative language is the logical modelayhge which is an association

between memory locations and values. It consists of catledf names and the associated
values and the location of control in the program. In impgeegprogramming, a name may

be assigned to a value which in turn can be reassigned toenahie. The execution of a

program generates a sequence of states abbreviatedlae transition from one state to the
next is determined by assignment operations and sequecaingands that is abbreviated
asO in the expression below:

Imperative programs are characterized by sequences ahpmie. state changes. So, a
name has two bindings which is a binding to a location and tlaev The location is called
thel-valueand the value is called thevalue For example, the statement :

y=y+1

indicates that thg on the left{-value) denotes the location while thyeon the rightf-value)
denotes the value. Assignment changes the value at a locatiovariable and value are
bound by an assignment. The assignment statement typiaslyhe form :

V =E
Varieties of notations are used in a programming languagadioate the binding of a vari-
ableV and the value of an expressi@Examples are shown as follows :

Pascal V = E
C++ V = E
APL V <- E
Scheme (setq V E)

The assignment is not the same as a constant definition leeitgresmits redefinition. For
example,

y = 2;
y =y + 1

reads as: assignto 2 and then reassignto the value of the expressign + 1 which is 3.

Several kinds of assignments are possible. A multiple asséts
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VO =Vl = ..:=Vn = E

causes several names/variables to be assigned to the sameA/aimultaneous assignment
of the form:

VO, V1, ..., Vn = EO, E1, ..., En

causes several assignments of names to values to occuttasieauisly. This allows the
swapping of values without explicit use of an auxiliary edle.

For the point of view of denotational semantics, the assegmins a function from states to
states and for the point of view of operational semantias,asignment changes the state
of an abstract machine.

When imperative programming is combined with subprogranis calledprocedural pro-
gramming. An imperative programming can only be understood in terfriss@xecution
behaviour. This is because during the execution of the @eyariable maybe referenced,
control may be transfered to any arbitrary point and anyaiéei binding may changed.
Hence, the whole program need to be examined in order to stacher even a small portion
of the program. In view of this, sequence control are verydrtgnt in an imperative pro-
gramming. Considerable efforts have been given to find anogpiate control structures.
Figure 2.2 gives a minimal set of basic control structures.

command = identifier ;= expression
| command; command
| label : command
| GOTO label
| IF boolean_expression THEN GOTO label

Figure 2.2: A set of unstructured commands

The unstructured commands include the assignment comrsagdential composition of
commands, a provision to identify a command with a label, amdinconditional and con-
ditional GOT@ommands. The programs are flat without hierarchical stradhus making
the code difficult to read and understand. The set of unstredtcommands contain one
of the most powerful and highly criticized comma@®DTOQwhen used in abundance in a
program will result in a 'spaghetti’ like code which is diffit to understand and read. Due
to this, structured programming (known as programming auittGOT(Q comes into pic-
ture where structured programming provides control stinest that make it easier to reason
about imperative programs.

2.1.1 Structured Programming

Structured programming is a term that describe a style ojraraming that emphasizes
hierarchical program structures in which each has one @aint and a few clearly marked
exit points. Its goal is to produce a program that is easydd end understand hence easy
to maintain. A minimal set of structured commands are asgnei 2.3
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command := SKIP
| identifier := expression
| IF guarded_command [ [ ] guarded_command ] * Fl

| DO guarded_command [ [ ] guarded_command ] * DO
| command ; command

guarded_command ::= guard --> command

guard = boolean expression

Figure 2.3: A set of structured commands

At a low-level , structured programs are composed of simipierarchical program flow
structures. These structure can be regarded as singlemstatseor combination of simpler
statements that can be of primitive statements such asshgnasent statement or procedure
calls. Djikstra identified three types of structures i.eaaignation, selection and repetition.
Concatenation refers to a sequence of statements executaddr whereas selection is
alternatives or choices given in order to execute an omegrathich is usually expressed with
keywords such asif .. then [else} .. endif, switch or case . Repetition

is execution of a statement depending on the state of thegrog/here the statement can
be executed 0 or several times depending on the conditi@mgiv

The general structure of selection and repetition is shawhe Figure 2.3 a~..FI  and
DO..OD respectively. ThéF andDOcommands defined in the Figure 2.3 are in terms of
guarded commands.

IF guard — command FI is equivalent taf condition then command and
DO guard — commandis equivalent tovhile condition do command

A command preceded by a guard can only be executed if the gu#nae. Generally, the
semantics ofF - FI andDO - ODcommands require that only one command corre-
sponding to the guard is true be selected for execution. Dbeobmmand can be represented
with keywords such aghile, repeat orfor .

At a high level structure, programmers should break largerepof code into shorter sub-

routine (functions, procedures, blocks or others) thasarall enough to be understood and
maintained easily. In general, global variables shoulddsslsparingly and local variables
should be used instead by subroutines where the argumentsegaassed by value or ref-

erence. This is to make subroutines or small pieces of cosiere® understand without

having to go through the whole program.

Structured program is usually designed using the "top doapproach where large scale
structure of a program are mapped out into smaller opematidhis smaller operation are
implemented and tested and then tied together to form a wiroram.

Imperative programming languages have a rich assortmerdrafol structures, which rep-
resent Djikstra’s control structures.
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2.1.2 Sequential Composition

Sequential composition specifies a linear ordering of condrexecution. Usually it is in-
dicated by placing textual sequence separated by a line ymaa ( most commonly a
semicolon). This symbol usually used as a termination gointhe commands or a com-
mand separator(for example in C++). At an abstract levehpasition of commands is
indicated by using composition operator such as semicalgr(f;).

2.1.3 Selection or Alternation

Selection permits the specification of a sequence of comslapdases. The selection of a
particular sequence is based on the value of an expresdi@m®st common representative
of alternation are the commantds andCase. Forlf command the condition is a boolean
expression, whil&Case command permits any scalar expression. Taese statement is
best used when the selection is from many statements.

2.1.4 lteration

Iteration specifies that a sequence of commands may be exexero or more times (repeat-
edly). Most programming languages provide different loopstructs. This loop constructs
define an iteration of certain action which is called the lbogy. It also has an expression
which determines when the execution will ceased. Often,distinguishes between loop
based on whether the number of repetitions are known at éined$tthe loop or the repeti-
tions continue until a certain condition is met. The formadkof loop is usually called a
'for’ loop and the latter is often called the 'while’ loop.

The 'for’ loop define the control variable which takes on alues of a given predefined
sequence. For every value the loop body is executed. Theajexmpearance of a for loop
is shown as follows :

for loop_ctr_var := lower_bound to upper_bound do statemen t

The 'while’ loop describe any number of iterations of theddwody, including zero. The
semantics of this loop require the testing of the conditioexpression before the body is
executed. They have the following general form :

while condition do statement

Some languages provide a similar kind of loop as 'while’, vehiéhe condition is checked
at the end of the body (i.e. the loop body is executed at least)o In Pascal, the construct
has the following general form:

repeat statement until condition

In the 'repeat’ loop, the body is executed as long as the tiondis false. It will terminate
when the condition becomes true. C++ provides the 'do-Whkitement that behaves in a
similar way which has the following general form :

do statement while expression
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The body of the 'do-while’ statement is executed repeatadtil the value of the expression
becomes zero (i.e. the condition is false).

2.1.5 Side Effects

Side effects are a feature of imperative programming laggsidhat make the reasoning
of the program difficult. Side effects are used to provide gamication among program
units, but when undisciplined access to global variablegparmitted, the program becomes
difficult to understand. The whole program needs to be schttndetermine which program
unit that access and modify the global variables since acoaimand doesn't really reveal
which variables are affected by the call. The change to aafj\driable is calledide effect

For example:

integer f(a:integer)
{
b =Db +1
f=Db+ a

}

This function computes a value as well as changing the ghadrébleb. This causes side
effects. In addition of it changing the global variable, thection is difficult to reason with
itself. For example, if at some point in the program it is kmativat b = y = 0, then the call
f(y) will return a value 1. But, should the following expression:

1+ fly) = fly) + f(y)
occurs at that point in the program, then the expressionbeifalse.

2.1.6 Aliasing

Aliasing is another feature that makes programs harderdenstand and difficult to reason
about. Two names are aliases if they denote the same dat dbjéng a unit activation.
One way aliases occurs is when two or more arguments to acsyiiapn are the same. When
a data object is passed by reference, it is referenced batkh bgme in the calling environ-
ment and its parameter’'s name in the called environmentdridllowing subprogram, the
parameters are in-out parameters (which are parametdradisaas inputs and outputs for
the subprogram):

Aliasing(x, y : in out integer)

{
y =1
y =x+y
}
For the callAliasing(i, i) , the two parameters are used as different names for the
same object giving the value 2. But, in the calAliasing(a[i], alj]) , the result

will depend on the values of andj with aliasing occurring when they are equal. This later
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call illustrates that aliasing can occur at run time, so #tection of aliasing may be delayed
until run time, thus compilers cannot be relied on to detéasimg.

Aliasing interferes with the optimizing phase of a compil@ptimization sometimes re-
quires the reordering of steps or the deletion of unnecesdaps. The following assign-
ments which appear to be independent of each other illestirabrder of dependency.

X =a+b

If x andc are aliases for the same object, the assignments are ipgardient and the order
of evaluation is very important.

Other ways that aliasing can occur:

» A data object may be a component of several data objecerérfed through pointer
linkages)

» Formal and actual parameters share the same data object
» Procedure calls have overlapping actual parameters
« Aformal parameter and a global variable denote the sanzedljéct

Pointers are intrinsically generators of aliasing. Whenmr@mmming language requires
programmers to manage memory for dynamically allocateeatdjpnd the language permits
aliasing, an object returned to memory may still be accés#ilbough an alias and the value
may be changed if the memory manager allocates the samgestaraa to another object.
For example, in the following code, the pointeis left pointing to a non-existent value.

type pointer = * Integer
var r : pointer;

procedure FreePointer:
var s : Pointer;
begin;

new(s);

s* = 10;

r =s;

dispose(s)

end;

begin
new(r);
FreePointer(r)

Many times optimizers have to make conservative assungptbout variables in the pres-
ence of pointers. For example, a constant propagation ggosbich knows the value of
y is 1 will not be able to keep this information after an assigntre.g.*x = 2 because
maybe thatx is an alias ofy (in the case after an assignment suclk as &y). The value
of y will be changed as well after the effect of the assignmerttoThus, propagating the
information thaty is 1 to the statements followingx = 2 would be wrong if« x is indeed
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an alias ofy. However, if we have information about pointers, the camstaopagation
process could make a query like:yisan alias of x?. Then if the answer is no, thgn= 1
can be propagated safely.

Another optimization that is as an effect of aliasing is coderdering. If the compiler
decides thay is not an alias of x, then the code that uses and changes the valyecah

be moved before the assignment = 2, if this improves scheduling or enable more loop
optimizations to be carried out. In order to enable suchnuiptitions to be carried out in
a predictable manner, the ISO standard for the C languagsfisgethat it is illegal (with
some exceptions) for pointers of different types to refeeghe same memory location. This
rule is known as strict aliasing. It allows impressive irages in performance but has been
known to break some valid code.

The problem of aliasing arises as soon as language suppoiébies and assignments. |If
more than one assignment is allowed on the same variabléa¢héhatx = y cannot be
used at any other point in the program to infer a property fsbm a property ofy. The use
of aliasing and global variables magnifies the issue more.

Imperative constructs jeopardize many of the fundameetdirtiques for reasoning about
mathematical concepts. For example, the assignments aftiariomatic semantics is valid
only for languages without aliasing and side effects. Mudmtknwhas been tempted to ex-
plain the "referential opaque™ features of programminggaages in terms of well defined
mathematical constructs. By providing descriptions ofgpamming language features in
terms of standard mathematical concepts, programmingiégeytheory makes it possible
to manipulate programs and reason with them using rigoradspaecise techniques. But
the resulting descriptions are complex and the notatiorsadhimery is difficult to use. One
strong motivation for functional and logic programminghsat it avoids this complexity of
imperative programming.

2.2 Procedural Programming

In the history of computer programming, most programs wetigtem sequentially where
programs consist of series of steps that take place onethftether where these steps are
executed based on the condition determined by the programihe major setback in the
sequentially written program that does not involve any pdures, is that some part of the
program had to be rewritten in more that one place if the sasle lhas to be done in a
different part of the program. This involves duplicationsthtements. To overcome this,
programming languages allow methods to be used makingwyfitiograms becomes easier
because statements that are used frequently in the progremas the task of printing are
grouped together in a method. This method can be called weemeeded. Method in
programming languages are known as functions, procedmethods, subprograms, sub-
routines or simply routines.

For example the task of printing a message. In C++, this taskbe done by the statement :

cout<<message;
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where this message can be printed out depending on the taftdre variable message.
This statement can be a part of a functimtmessage shown below :

void prtmessage(string message){
cout<<"The message is "<<message<<end|;

}

So in the main program, the use of this functijmmessage can be seen as follows :

main(){

string messg;

messg = "good evening";
prtmessage(messg);
prtmessage("goodbye");

}

The output of the above segment program is

The message is good evening
The message is goodbye

As mentioned the use of functions in a program contributérircturing a program provided
the coding of the function follows the structuring techrégu

Procedural programming is a conventional programmingshat is based upon the concept
of modularity and scope of program code. Programs are dezseddnto computation steps
that perform complex operations. Routines are used as rdzation units to define the
computation steps. These modules are either coded by the meargrammer or precoded
by someone else and provided in the code library.

Each module consists of one or more subprograms whereby shéprograms can be com-
posed of procedures, functions, subroutines or methodsndigpy on the programming lan-
guage used. Most languages distinguish between two kindsutihes i.e procedures and
functions. A procedure is an abstract command that is catlelter some desired state
and it does not return a value, while functions are the masttieal counterparts which will
return a value when activated depending on the argumen@rameters passed.

An example of a function (AVERAGE) that averages three nuisibed a procedure (CAL-
CULATE) that calculates the total of three numbers and sggarwritten in Fortran are as
follows:

REAL FUNCTION AVERAGE(X, Y, Z)
REAL X, Y, Z

AVERAGE = (X + Y + Z) /] 3.0
RETURN

END

SUBROUTINE CALCULATE(A, B, C, TOTAL, TOTSQUARE)
REAL A, B, C, SUM, TOTSQUARE
TOTAL = A+ B + C
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TOTSQUARE = TOTAkx 2
RETURN
END

The function and subroutine defined above can be invokedaassbelow:

REAL A, B, C, TOTAL, TOTSQUARE, AVG
CALL CALCULATE(A, B, C, TOTAL, TOTSQUARE)
AVG = AVERAGE(A, B, C)

We can say that the function and procedure provides a sevvitey can be called a service
provider and the one that uses them is a client. If the seigigrovided as a function,

then the client has to use it in an expression. On the othat, hiithe service is provided

as a procedure, the client are forced to use an imperatile. stiyis also possible for a

procedural program to have multiple levels or scope, wittpsogram defined inside other
subprograms. Each scope can contain name that cannot bim segear scopes.

Procedural programming offers more benefit over a simpleesgtpl programming because
procedural code is easier to read hence more maintainaidanore flexible and facilitates

the practice of good program design. The canonical exanfgoocedural programming

language is ALGOL. Others are Fortran, PL/1, Modula-2 and.Ad

2.3 Generic Programming

Generics in computer science is defined as a construct thatsabne value to take different

data types as long as certain contracts such as subtypesgaatiiee are kept. Generic
programming is a programming style that emphasizes the fuddsotechnique. Generic

modules may be instantiated either during compile-timeuortime to create the entities
such as data structures, functions and procedures thaededeo build a program. This
programming approach encourages the development of bigt-&f generic abstractions as
units of modularity.

A simple example of using generic technique in creating tididy declaration the list
asList<T> , whereT represents the type of the list. When instantiated, one ceate
List<Integer> or List<String> . The list is then treated as whichever type speci-
fied.

Polymorphism is the fundamental mechanism for genericraragning. Generic program-
ming is best suited to parametric polymorphism where thengka on list given earlier is
an example of parametric polymorphism. More about polymism will be discussed in
the section 2.4.2.

The generic programming paradigm does not exist in isalatlbexists jointly with other
programming paradigm. For example it exists with objeceémted paradigm as in Eiffel
and later versions of Java, with functional programmingnalslL and also with languages
which provide more than one paradigm such as C++ and Ada.

However, it was , templates of C++ that popularized the cphoggenerics.
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2.3.1 Templates

As mentioned above, the concept of generics is populariggtiebtemplates of C++. Tem-
plates allow code to be written without concerning much efdhta type that eventually will
be used in the program. Template in C++ is of great utilitynogpammers especially when
it is combined with multiple inheritance and operator owading. The C++ Standard Tem-
plate Library provides many useful functions within thenfiwvork of connected templates.
For example , the C++ STL contains the function tempiagx(x,y)  which will returnx
ory whichever is larger. This template could be defined as :

template <class T>
T max(T x, Ty

{ ifly > x)
return vy;
else
return Xx;
8

It can be called just like a function such as :
cout<<max(24,80); /loutputs 80

The call tomax(24,80) makes the compiler examine the arguments to determine that
this call is a call tomax(int,int) and instantiate a version of the function where the
type T isint . The functionmax() works for all types of arguments as long as the type
is applicable to the conditiop > x. In the example function templateax accepts two
arguments of the same type but one can use a user defined platdftg user defined data
type is used, one can use the operator overloading to deénméaning of>’ so as the
max( ) function can be used. Even though the use of operator odngaeems to be

a minor benefit for this example, but in the context of a corhensive library like STL, it
allows the programmer to get extensive functionality foleavrata type just by defining a
few operators for it.

A class template extends the same concept to classes. iagkates are often used to cre-
ate generic containers such as vectors, lists, dequeksstad queues, sets and many more.
These containers have a set of standard functions assbeateit, which works well with
whatever matter that you put in between the brackets. Fanplain C++, has a container
class List which contains functions suchadd() ,detach() andgetiterms()

Previously, some uses of templates likex( ) function were filled by the function-
like preprocessor macros. Macros and templates are expahalimg compile-time where
macros are always expanded inline while templates can alsxfanded as inline function
when the compiler deems it appropriate. Therefore, botbtfon templates and function-
like macros have no runtime overhead.

However templates are considered far more better than md&cause of the following
reasons :

» Templates are type safe
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« Templates avoid some of the errors that occur for the codieuses many function-
like macros

« Templates were designed to be applicable to much largétgres than macros.

But, templates also have their disadvantages. There are thiawbacks to the use of tem-
plates which are:

« Historically, many compilers have very poor support fanfgates making the code
using them less portable. However, most modern compilens lrave fairly robust
and standard template support and the new C++ standard ,xCist@xpected to
further address the issue of portability.

« Almost all compilers produce confusing, unhelpful erroessages when errors are
detected in a template code, thus making the templatesutliffcdevelop.

« A C++ compiler uses the code specialization approach imstating its templates.
Every use of the template may cause the compiler to genexare @de for the in-
stantiation of the template leading to code bloat when theyraliscriminately used,
thus resulting an excessively large executables. Alsoxttra astantiation generated
by the templates can cause debuggers to have difficulty ngnkith templates. For
example, when setting a debug breakpoint within a temptata & source file where
this setting may be missed set in the actual instantiaticiret: or may set a break-
point in every place the template is instantiated. Notedbde bloat is not inevitable
in C++ and can generally be avoided by an experienced prageam

The term concept has emerged to denote specifically thddneedescription for templates
that are at the heart of C generic programming frameworks@dl Back then, although
concepts play an obviously critical role in generic prognmaing, they are typically used
implicitly since there is no language supporting it.

2.3.2 C++ Concepts

In C++, template classes and functions necessarily impsdgations on the types that they
take. In the case of the function, the requirement an argumest meet is clear, but in
the case of a template the interface an object must meet igitrip the implementation
of that template. Concepts provide a mechanism for codiftfire interface that a template
parameter must meet. The primary motivation of the intréidacof concepts is to improve
the quality of compiler error messages. If a programmengite to use a type that does not
provide the interface a template requires, the compildrgeiherate an error. However such
errors are often difficult to understand, especially forines. The two main reasons for
this are that error messages are often displayed with teenptaameters spelled out in full
which leads to extremely large error messages and that theiley does not immediately
refer to the actual location of the error. In an attempt tolkesthis issue, C++0x adds the
language feature of concepts [RS06]. Similar to how objeitnted programming use a
base-class to define restrictions on what a type can do, a&pbiga named construct that
sepecifies what a type must provide. Unlike object-orieqgeajramming, however, the
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concept definition itself is not always associated expjiaitith the type being passed into
the template, but with the template definition itself.

One example of the idea of concept is to avoid the problemibataw lots of times when for

instance Spirit (object-oriented parser generator, segdpe4.2) gives an unreadable error
messages. What actually happens is that somewhere in tleeactmmplate was wrongly

used, but the compiler doesn't see this wrong use of a tem@at instead starts to unfold
the templates until an error in the unfolded code is foundthWioncepts one can specify
the template parameter which has these properties. If ¢niplate is now applied to a

parameter which does not have these properties, an errcageshould be displayed at
this point. This will make the template mechanism of C++ miype safe. In Java these
problems have been avoided by demanding that for templasengders one has to specify
which interface they need to implement.

In some sense C++ Concepts make a similar step to what wasrddaea. This makes C++
superior to Java, because Concepts are more flexible, sieceam demand arbitrary logical
combinations of guards whereas the mechanisms in Java badtemplates mechanism
in object-oriented languages only demand that a certaerfatte is implemented by the
template parameter.

The first version of the concept checking system was devdlbpderemy Siek while work-
ing at SGI STL in their C++ Compiler and library group whicmisw part of the SGI STL

distribution [SLOO]. The definition of concept checkingsdas in the system originally in-
troduced in the Boost concept checking library was greathplfied at the price of less
helpful error messages. This differs from the concept cingdk SGI STL. At the moment,

concepts are planned to be added as a language constructtdMofe details on this can
be found in the articles [RS06] and [Str03].

2.3.3 Generic Programming Features in Other Languages

Some C++ based languages such as Java and C# left out tesghleteo the problems with
templates. These languages have adopted other methodsimgdeith these problems. C#
is currently adopting generic programming features comgarto templates. Java supports
generic as of J2SE 1.5.0. Generics in Java supports temptageamming as advanced as
C++ but less powerful. In Java, generics are checked at dertipie for type correctness,
and the generic type information is then removed throughoaqss called type erasure
which is unavailable at runtime. Ada’s generics predateptates. Ada has had generics
since it was designed in 1977-1980. The standard librarg gseerics to provide many
services.

In Haskell, some language extensions have been developgdreric programming and in
the language itself contains some generic aspects. In Hdke06] itself, for example, a
user-defined data type of binary trees with labels of yatached to the nodes and leaves
as follows :

data BinTree a = Leaf a | Node (BinTree a) a (Bintree a)
deriving (Eq, Show)
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The keywordderiving  followed by the two type class&x andShow, will make it possi-
ble for the programmer to automatically have an equalitctiom definedBinTree(==)

as well as a way to transform them into printable output. TlasKell compiler can in a
generic fashion generate instances of particular funstfon any given data type. Other
instances that can be generated@rd andRead.

PolyPwas the first generic programming extension for Haskell whiee generic functions
are called polytypic. This extension introduces a spe@abtruct in which such polytypic
function can be defined through structural induction overdtnucture of the pattern functor
of a regular datatype.Generic Haskells another extension to Haskell which is developed
at the Utrecht University. It provides type-indexed valubich are values indexed over
the various Haskell type constructors such as unit, prmitypes, sums, products and user
defined type constructors. The resulting type-indexed pesspecialized to any type like the
kind-indexed types, generic application, generic abstias and type-indexed types. The
Scrap your boilerplat@pproach is a lightweight generic programming approachifskell.

In this approach programmers can write generic functiooh s traversal scheme as well
as generic readyfead ), generic showdshow) and generic equalitygéq). This approach

is based on just a few primitives for type-safe cast and [@ging constructor applications.

2.4 Object-oriented Programming

Quotes from Samuel P. Harbisoifilfe surest way to improve programming productivity is
so obvious that many programmers miss it. Simply write lesk€dHS02]. One way

of achieving this is by implementing the object-orientedaoggm of programming where
emphasis is on generality and reusability. In object-aedmprogramming, reusability is
supported by inheritance and polymorphism. Object-og@mrogramming is characterized
by programming with objects, messages, and hierarchiebjetts [Cox86]. This section
will start off by giving a glimpse of the history of objectiented programming and what is
meant by object-orientation in programming before disicigsfurther on its concepts and
usage.

2.4.1 History of Object-oriented Programming

The first two object-oriented languages are SIMULA | and Sara¥ which were intro-
duced in the 1960s. The Simula languages were develope@ &tdiwegian Computing
Center in Oslo, Norway, by Ole-Johan Dahl and Kristen Nyda@imula 67 introduced
most of the key concepts of object-oriented programmindp sscobjects and classes, sub-
classes and virtual procedures, combined with safe ref@rgrand mechanisms for bringing
into a program collections of program structures descrilbader a common class heading
(prefixed blocks). SIMULA | got a reputation as a simulatianguage but it turned out to
be a general programming language due to it possessingstitey properties of a general
programming language.

Starting in the early 1970s, Simula concepts have been tanoin the discussion of ab-
stract data types and of models for concurrent program éeecuSimula was used as a
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platform for the development of Smalltalk extending objedented programming by the
integration of graphical user interfaces and interactiagmm execution. In 1980, "C with
Classes” was released as an enhanced version of C whiclléutctlasses for data abstrac-
tion. It was designed so that a preprocessor could maketdiogwersion from classes to
struct. In 1982, Bjarne Stroustrup began working on a betesion of "C with Classes”
which would be a more true object-oriented superset of C.9831 the first version of
C++ was released and more advanced object-oriented featere rapidly introduced until
1985, when the first commercial version was released. Matuffes including templates
were continually added until 1982, at which time C++ obtdiseme level of stability and
an ISO version of C++ was finalised in 1998. In the late 1990fat-oriented program-
ming became the dominant style for implementing complexgms with large number
of interacting components. A large variety of object-otéghprogramming languages have
been developed, among them are Eiffel, CLOS (object-agrnhanced version of LISP),
Object Pascal, Ada 95 (Ada2005 still in the process of endraeat) and particularly the
internet-related Java which has in particular gained pojiylnow.

Due to the initiative of programmers in searching bettersvay people working with com-
puters, object-oriented programming techniques havevedolrom procedural program-
ming technigues.

In procedural languages, object-oriented programmin@aigpas a form where data types
are extended to behave like a type of an object, similar tdbatract data type with an ex-
tension such as inheritance in object-oriented programn@nd each method is actually a
subprogram which is syntactically bound to a class. Olpeetrted programming is an ab-
straction and generalization of imperative programmimgpérative programming involves
a state and a set of operations that changes the state wbjeesoriented programming
involves collections of objects where each object has a stadl a set of operations to trans-
form the state. Thus, we can say that object-oriented pnogriag focuses on data rather
than on control. In an object-oriented language, programgmequires the programmer to
think in terms of a hierarchy of objects and the propertiesspesed by the objects where
emphasis is on generality and reusability. Object-orgp@gramming uses the metaphor
of message passing to capture the interaction of object®4l.aBefore going further, we
will first discuss concepts that are emphasized in objéented programming.

2.4.2 Concepts in Object-oriented Programming

An object models the entity of concern in an application. It encapesl#s structure and
behaviour through its data structure and functions. In entignal programming, an object
is referred to as a variable which is an instance of a types Ehsimilar to an object as
an instance of a class. A class describes a group of simifacisb It names and types
the components of data structure of each object in the clagsleclares the function that
can be applied to them [Eck00]. The structure of an objecegcdbed by member fields
and the behaviour is described by member functions. The rmaefabction and member
fields are not the description of an individual object but dogroup of similar objects or
class James Rumbaugh(1991) define a class as a group of objettsiwilar proper-

ties(attributes), common behaviour (operations), commatationships to other objects and
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common semantics(meaning). A class is depicted in a diagrddigure 2.4.

Class

member fields

member functions

Figure 2.4: Class Diagram

We can depict an object as a box which denotes the boundatie®sén the inside and out-
side of the object. Inside the box are the local variableghe&member fields and functions.
Everything that is completely inside the box is hidden frdma butside meaning they are
encapsulatedEncapsulationis one of the major features of object-oriented methods. By
hiding both the data and method within an object, a level @@psulation that no earlier
methods can approach is achieved, resulting in stability @ortability [Cox86] Stability
here means that future changes to the system designed hsingject techniques will only
involve in reusing the classes that have been defined anderfeydchanges to the reusable
objects. Portability is increased from the ability to reaselass in a new project or a new
platform. New fields or new methods are added to the objeaadt reuse making it more
and more reusable.

Fields and functions that extend outside the box make uplfexbinterface and are acces-
sible. Interface makes possible any access to the objeetishar features. All the variables
(functions and fields) that are declared under the keywaoitdlic in C++ are accessible.
An object is depicted in the Figure 2.5.

An example of a class is th®bjShapes class. It is a class of shapes that can consist
of circles, rectangles and etc. It contain shape and colbtheoobjects and has member
functionsprint  for printing the attributes of the shape objects aatfields for setting

the attributes of the objects. The coding of the class in Gtshbwn below :

class ObjShapes {
public:
string shape;
string colour;
void setfields(string s,c);
void print();
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ObjShapes

enape |

" oolour |

setfields >

print

Figure 2.5: Object Diagram

}

An object is referenced by a variable or a data field. Thereseveral ways in referencing
an object i.e. by :

 a variable that contain an object ,e@bjShapes objl whereobjl is an object
of a clasObjShapes .

 avariable that is a pointer to an object,@gjShapes *obj_ptr

< avariable that is a reference to an object, &pjShapes &obj _ref  where we
can say it is a second name of the object. A complete dedarafi this reference
variable example is

ObjShapes obj1;
ObjShapes &obj ref = obj1;

Inside object, computation is achieved by sending messageher objects which is called
"message passing”. An object executes one of its methodeeasith of receiving a message.
A message states what should be done by the object wheredha@dnegpresses how it will
be done. Message passing is similar to a function call in eatiwnal programming. In
order to print the attributes of the objgdbjShapes , the messagprint must be passed
to the object identifier or variable. If the object varialdeai complete objecibpjl ), the
message passing is executed by the statement

objl.print();

Message passing for a variable that is a poiotgr(ptr ) to an object can only be executed
after the object is created which is shown below:

obj_ptr = new ObjShapes;

The messagprint  is sent by the code:
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obj_ptr->print();

where the object react by executing the method print(). df message sent is coded in
the main program, so the main program is the sender of theagesdn responding to a
message sent, an object has to lookup the appropriate mefihedbinding of the method
name to it's body is done routinely by a compiler in convemiiioprogramming languages.
There are two types of binding i.static anddynamic binding where the former is done
during compile time whereas the latter is done during ruetj&J01]. If the method exist
during compile- and run-time, the result will be the samee itiference can be seen when
the method does not exist, where static binding will repadmpile error, whereas dynamic
binding will result in a run-time error. C++ is a strongly g programming language, so
if an object is of a certain class it will always be of that typeor exampleobjl will
always refer tdObjShapes . Thereforeobjl will not change its class between compile-
and run-time.

Dynamic binding plays an important part in the context ogslaierarchies where a class
inherits member functions from its superclass. Eventhagtamic binding incurs a per-
formance penalty due to an extra lookup at run-time, it idigiéde due to optimisations
carried out by the current object-oriented compiler tedbgy and also because of the rapid
increase in hardware performance.

Object-oriented programming languages use classes tgorete entities that occur in an
application. Related categories form hierarchies that’isaa” relationship. This idea of
relationship is used in relating classes in an object-tegprogramming languages. For ex-
ample a clas®©bjShapes can be a circle or rectangle. In other words, clagsle and
Rectangle are derived classes or subclasse®bjShapes makingObjShapes a su-
perclass or base clasSircle andRectangle inherits all the features ddbjShapes .
This concept is callethheritance which plays an important role in defining object-oriented
programming languages. The cla@bjShapes and its descendants are coded in C++ as
shown below:

class ObjShapes { //Class definition for ObjShapes
public:
string shape;
string colour;
/[consructor
Objshapes(){shape = " ";colour = " ";};
/[constructor
ObjShapes(string s,string c){shape = s; colour = c;};
/Imember function
void print();
%

void ObjShapes::print(){
cout<<"Shape is "<<shape<<end];
cout<<"and the colour is "<<colour<<endl;
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\\Class definition for the descendants Circle and Rectangl e
class Circle::public ObjShapes{
public:
real radius;
\\constructor
Circle(string shape, colour):0ObjShapes(shape,colour){ h
void setradius(float);
void print();
%
void Circle::setradius(float r){
radius = r;
%
void Circle::print()}{
ObjShapes::print();
cout<<"lt's radius is "<<radius<<endl;
}
class Rectangle::public ObjShapes{\\class definition fo r Rectangle
public:
float length, breadth, area;
\\constructor
Rectangle(string shape, colour):0ObjShapes(shape,colou N{};

void calcarea(float, float);

void print();

}

void Rectangle::calcarea(float I, float b){
length = I;
breadth = b;

area = length * breadth;

}

void Rectangle::print(){
ObjShapes::print();
cout<<"lt's sides are "<<length<<" and "<<breadth<<endl;
cout<<"lt's area is "<<area<<endl,

J

Inthe example above, cla€ircle andRectangle inherits the fieldshape andcolor
and the methogrint . In order to show how the message passing between objedie of t

classes above, consider the following program segment:

int main(){

Circle c1("circle","blue™;
cl.setradius(4.5);
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Rectangle rl("rectangle","green");
rl.calcarea(5.1,6.2);

cl.print();

rl.print();

}

The Figure 2.6 shows the message passing and method loakilne fabove code segment.

ObjShapes

rl

shape rectangle

colour | green

length

breadth
calcarea
-

calcarea print

YT
Objshapek N
S
(e | ] T
lookup
T} breadth
\_setradius | ]
ﬁ} < calcarea >
<lpint | o
print
Lo | > o
shape -_cwrcle
colour -_blue
radius
setradius
print
N -
lookup — pint

Figure 2.6: Message Passing and Method Lookup

The program declares two objectd, andrl , set the radius forl and calculate the area of
rl . The first invocation oprint  refers to thgprint  member function oCircle and
the second invocation gdrint  refers to theprint  member function oRectangle

The output of this program segment is the same whether wétit sir dynamic binding. If
one wants to express a member function to be bind dynamitilalymember function has to
be designated adrtual . The keywordvirtual signals the intention to use dynamic
binding for designated member function. For example to kendipnamic binding for the
member functiornprint  in classObjShapes , the declaration of the member function
print is coded as follows:

virtual void print();

Dynamic binding must be a major criterion in calling a langgian object-oriented program-
ming language. C++ supports dynamic binding making it aytaldject-oriented program-
ming language. Another kind of inheritancenmiltiple inheritance. Multiple inheritance
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is when a child class or subclass is derived from more tharbase class. Details of it will
not be discussed here.

Suppose a set of shape classes sudbiade, Triangle, Square and etc are de-
rived from base clasShape . Let say we need each shape classes to be treated generically
as objects of base claSfiape so that to draw a shape we could simply call functitvaw

in each of base classhape and let the program determine dynamically which derivedsla
draw function to use. Thus we should declataw in the base class as virtual function
and we overridedraw in each of the derived classes to draw the appropriate shape.
example,

virtual void draw() const;

may appear in base claSfiape which declares that functiodraw is a constant function
that takes no argument, returns nothing and is a virtualtiomc

A class that has direct instances are called a concreterlaasing that it has instances of
its class not of its subclasses. A class that does not haeet distances is called afbstract
class An abstract class serves as a common base but will not hgnviestances. A class is
made abstract by declaring one or more of its virtual fumgtito be "pure”. A pure virtual
function is one with an initializer of 0 in its declaration as shown below:

virtual void draw() const = 0; //pure virtual

The sole purpose of an abstract class is to provide an apat®fdrase class from which
classes may inherit interface and/or implementation. Tdreytoo generic to define real
objects.

A hierarchy does not need to contain any abstract class but #fre many good object-
oriented systems that have class hierarchies headed bystraditriass. An example is a
shape hierarchy where it is headed by abstract @aspe and the next level down the hier-
archy, there are two or more abstract base clagsDimenShape andThreedimShape .
The next level concrete classes are defined such as for twendional shapes will be circles
and squares and for three dimensional shapes will be spardesubes. The usage of the
concept of abstract classes and virtual function can beisdle translation of the function
types in C++ (see Chapter 4).

Polymorphism is another key concept in object-oriented programming.ofding to Web-
ster’s dictionary, the word polymorphism means "occuringvarious forms”. But in the
context of object-oriented programming, polymorphisnersfto behaviours that have the
same name and meaning but actually are different dependitigeoclass concerned. Poly-
morphism is the ability to write several versions of methioehCtion, subroutine) in different
classes of a subclass hierarchy with the same name and réhg abject-oriented environ-
ment to establish which version should be executed depgrafinthe class of the target
object when the method is invoked [DDO01]

Polymorphism means a behaviour may be inherited eitheranygd, or totally different
between the superclass and the subclass, or it is spediétiza particular subclass. Poly-
morphism is implemented through virtual functions. Wheeguest is made through a base
class pointer (or reference) to use a virtual function. Cheases the correct overridden
function in the appropriate derived class associated Wwelobject. Sometimes a non virtual
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function is defined in a base class and overridden in a dedlass. If such a member func-
tion is called through a base class pointer to the derivessabject, the base class version is
used. If the member function is called through a derivedsgtasnter, the derived class ver-
sion is used. As we can see from the example given, the mgitiold is coded specially
for certain subclasses which are Circle and Rectangle. ®ikodprint in Rectangle
andCircle class overrides the methgdint  in the superclas®bjShapes . Generally
we can say that the subclass version of an attribute or opefaethod is said toverride
the version from the superclass because it is executedfierpnee to the superclass version.

Through the use of virtual functions and polymorphism, omenber function call can cause
different action to occur depending on the type of the ohjectiving the call which gives
programmer tremendous expressive capability [DD01]. Wittual functions and poly-
morphism, it is possible to design and implement systemsategamore easily extensible.
Programs can be written to generically processed objeasisfing classes in a hierarchy
that derived from a base class objects. Classes that doisbtlexing program development
can be added with little or no modifications to the generid¢ pathe program as along as
those classes are part of the hierarchy that is being predegnerically .

There are two fundamentally different kinds of polymorphisvhich was originally de-
scribed informally by Christopher Strachey in 1967. They ail-hoc and parametric poly-
morphism. Ad-hoc polymorphism is when the range of actupésythat can be used is
finite and the combinations must be specified individuallppto use, while parametric
polymorhism is when all code is written without mention ofyapecific type and thus can
be used transparently with any number of new types. Ad-hdgnparhism is generally
supported in object-oriented programming through objeleceritance which was described
earlier. Parametric polymorhism is widely supported itictdly typed functional program-
ming languages and in the object-oriented community, progning using parametric poly-
morphism is often called generic programming (see secti8hn 2

2.5 C++ as an Object Oriented Programming Language

In the previous sections we have discussed thoroughly whdha concepts that are needed
in writing an object-oriented program. We also have goneubh the history of object-
oriented programming where we now know how it started. Herawe have not yet men-
tioned the definition of object oriented programming. Ttiadially, we can say a language
or technique is object-oriented if and only if it directlypports abstraction (providing some
form of classes and objects), inheritance (providing thkltyako build new abstractions out
of existing ones) and run-time polymorphism (providing goform of run-time binding).
This definition includes all major languages which are reféto as object-oriented such as
Ada95, Beta, CLOS, Eiffel, Simula, Smalltalk, Java and Ckaf§4]. As mentioned, C++
is a paradigm-neutral language meaning that it was desigmsdpport a range of styles
that are considered fundamentally good and useful. By shaicommon type system, a
common toolset and etc., significant benefits can arise ft@uoch as enabling groups with
moderately differing needs to share a language rather thsimdnto apply a number of
specialized languages.
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The range of facilities or properties that C++ supports Wwhethey were object-oriented or
otherwise, can be listed below:

i) Abstraction is the ability to represent concepts direitla program and hide incidental
details behind well defined interfaces. This ability is they ko every flexible and
comprehensible system of any significant size.

i) Encapsulation is the ability to provide guarantees tmaabstraction is used only ac-
cording to its specification which is crucial in defendingtthctions against corruption.
iii) Polymorphism is the ability to provide the same intedato object with differing im-
plementations. Polymorphism is crucial in simplifying eagsing abstractions.
iv) Inheritance is the ability to compose new abstractioosnfexisting ones. It is one of
the most powerful ways of constructing useful abstractions
v) Genericity is the ability to parameterize types and fiord by types and values. It is
essential for expressing type-safe containers and a povtedi for expressing general
algorithms.
vi) Coexistense with other languages and systems and #tisréeis essential for function-
ing in real world execution environments.
vii) Runtime compactness and speed which is essential &ssidal systems programming
viii) Static type safety is an integral property of langusgé the family to which C++ be-
longs to and it is valuable both for guaranteeing propedfesdesign and for providing
run-time and space efficiency.

The list of properties and facilities listed are taken fr@tr5]. These facilities and general
properties can be supported in several alternative ways asisupporting them in the core
language or in a library.

C++ supports all the facilities and properties that defimeslgect-oriented programming

language such as abstraction, encapsulation, polymongrisl inheritance, thus we can say
that C++ is truly an object-oriented programming languayen though it is also a general
purpose language due to its design which supports multiplessof programming.



Chapter 3

A-Calculus and Functional
Programming

Generally speaking, functional programming is a style aigpamming in which the basic
method of computation is the application of functions touangnts [BW88]. The defini-
tion of a function in functional programming is an expressiather than a sequence of
commands and execution of a functional program means tHeatim of the expression.
Expressions in a functional language can be constructedipuiated and reasoned about,
like any other kind of mathematical expression using morkess familiar algebraic laws
for the operators.

It has been said that functional programs do not use vagdhlethis is not exactly true be-
cause there are variables as arguments of functions anthdlswlet expressions. However,
variables get their value only once, so the value never @writhis avoids the aliasing prob-
lem. Furthermore, this applies only to pure functional pangming languages like Haskell.
In ML and Lisp, side effects do occur. The idea of executingie@mnds sequentially (like in
an imperative program) in functional programs is meanggk&ince the sequence of com-
mands does not make any difference because there is no gtatediate between them.
Functions in a functional program can be used in more sdphistl ways such as they can
be passed to other functions as arguments and returnedilis eesl generally can be calcu-
lated with. Functional languages use recursive functiumscions that are defined in terms
of themselves) instead of sequencing and looping.

Functional programming is declarative in the sense thatayenhat we want rather than
how to get it. A characteristic feature of functional pragraing is that if an expression pos-
sesses a well-defined value, then the order in which a commatg carry out the evaluation
does not affect the outcome [CM98]. However, this featurteuis only for pure functional
programming language such as Haskell but not for ML. We carthsst the meaning of an
expression is its value and the task of a computer is simpbptain it.

Functional programs correspond more directly to matheralatibjects making it easier to
reason about them. Most functional programming languagebased on a simple and ele-
gant mathematical foundation i.e. thecalculus. Alonzo Church [FH88] defined a calculus
that can express the behaviour of function as an effort ttucaphe computational meaning

34
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of mathematical functions. The history of functional pragming will be discussed in the
next section in which we will discuss the functional langesgince the beginning until now.
Then we will discuss details of-calculus, since it is, together with combinatory logiceon
of the roots of functional programming.

3.1 History of Functional Programming

One of the main roots of functional programming are Xhealculus and combinatory logic,
which were introduced by Alonzo Church, Haskell Curry andsiEl® Schonfinkel in the
1920s and 30s. Schonfinkel developed a simple theory otiinkcin the year 1924 and
at about ten years after that Church introducedXrmlculus and used it to formalize the
syntax of Whitehead and Russell's Principia Mathematinahé 1940's, Haskell introduced
combinatory logic which is a variable free theory of funago In the late 1950’s Church’s
A-notation for functions led to the first version of LISP by Mar@y. LISP was extremely
successful and is still being used. Dialects of LISP incl@denmon Lisp, Scheme and elisp
for emacs. LISP had many innovations which was influentiabath theoretic and practical
aspects of functional programming which include the useadbage collection as a method
of disposing of unused cells, implementing static scopipgising closures, invention of
conditional expression in writing recursive functions {@hinvolves lazy evaluation) and
the use of higher order operations on list. In 1978 BackusddfFP in his Turing Award
lecture. His lecture gave a significant impact on the fumetidanguage field [Tan04].

Modern functional languages have more advanced featucbsasistatic type systems, poly-
morphism, type inference, algebraic data type, patterchimag and lazy evaluation. These
features contribute a great deal in making functional @ogning more practical. Examples
of modern functional languages are ML, Miranda and Hask&ll.(meta language) was de-
fined by researches Gordon, Miller et al. for the use in dbsiproof search strategies.
Later (1978) they found out that ML could also be used as argepeogramming language.
ML was the first language to use the Hindley-Milner type systeow known as type in-
ference) which is the basis for the type system for most nofigrctional language. Now
there are two important dialects of ML that is Standard ML @#ML. Miranda [MV97]
was developed by David Turner in 1985. Turner implementethiMia using the idea of
combinators (fixed set of basic functions). Miranda is a legg with lazy evaluation. A
committee was formed in 1987 as an effort to define a standarctibnal language with
modern features resulting in the development of Haskellathafter the logician Haskell
B. Curry [Hug89]. Haskell has all the modern functional laage features such as higher-
order functions, type inference, lazy evaluation and uséndd data types.

3.2 \-Calculus

The A-calculus was developed by mathematicians before the @awvednt of computers in
order to obtain a notation for writing down functions. Oneyw# describing functions
mathematically is through their extension which can betafipairs of input, output values
or as a graph from one domain to the other. But not all funsteme computable even though
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they are describable\-calculus is an attempt to write down functions that coulidiaily be
evaluated in the real world. The following is the definitidn\ecalculus [Pau00]:

Definition: The terms of the\-calculus, known as-terms, are defined inductively from a
given set of variables, y, z, ... as follows:

z, wherez is a variable
c, wherec is a constant
(Az.r (abstraction), where is a term, and: is a variable,
(rs) (application), where ands are terms

We definelx, y.r := Ax. \y.r, similarly for Az, y, z.r and similar expressions. The symbol
A is completely arbitrary bearing no significance meaningt.toTihe symbol arose by a
completed process of evolution. Originally, the 'haf(notationt[z] is used by Principia
Mathematica for the function of yielding ¢[z]. Church modified it tac.¢[z], but it turned
out asAz.t[z] due to the fault of the typesetter which could not place theohaop of the
x. The symbol then mutated intoc.¢[x] [Har97].

3.2.1 Variable Binding

The A-term \z.r refers to a variable defined by surrounding context. For tiisn, the
A-abstraction defines a new function with argument variabbnd bodyr. We callx as
the bound variable to the abstraction. Any occurrences iof » is bound by the abstrac-
tion. For example, in the-abstraction\z, y.(xz y)z, x andy are bound variables because
they are bound to the abstraction whereasccurs free. A closed term is one which all
variables/identifiers are bound and we will consider a @ogm the\-calculus to be any
closed term.

The concept of free and bound variables can be defined asigbts) abstraction :

* The set of all bound variabld3V (r)) in r is given by:

BV (x) =0
BV(Az.r) = BV(r)U{z}
BV(rs) = BV(r)UBV(s)

* The set of all free variables i(FV (r)) is given by:

FV(z) = {z}
FV(Az.r) = FV(r)\ {z}
FV(r s) = FV(r)UFV(s)

A \-termr is calledclosedif it has no free variables, i.&'V(r) = (). Closed\-terms are
also calledcombinators
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The applicatiornr s defines the application of functianto the argument. An example of
this is shown below:

(A\r,y.y +2x)34
where\ abstraction\x, y.y + «x is first applied to 3 then to 4 i.e takes the value 3 ang

takes 4. The function application is left associative. Hboe application is evaluated will
be discussed in Section 3.2.4.

3.2.2 Substitution

The function f such thatf(z) = r is represented by th&-abstraction\z.r and when
applied tos yields the result of substituting for all free occurrences af by ». Examples
are as follows:

(Ax.z) The identity function which returns its argument unchanged is usually called I.
(Ax.y) A constant function that returnswhen applied to any argument.

Substitution of ternt for all free occurrences afin r, denoted-[t/y], is defined as follows:

[t fz=y
2lt/y] = { z otherwise
(Az.r) ifz=y

(Ax.r[t/y]) if 2 & {y} UFV(¢)
X' .r[a’ [x][t/y] otherwise, where' is "fresh”

(Az.r)[t/y]

(rs)lt/yl = (rlt/y] slt/v])

A-calculus would be inconsistent if we had defined substitufor A-abstractions (second
clause) naively, i.e. without replacingwith z’ in the last casex(-conversion). For instance,
the termAx, y.x when applied to an argumesnshould return the constant functidiy.s).
However, in case = y; if we carried out the substitution directly, we obtdixy.y) instead

, which is the identity function. The free occurrencerdbirns into a bound occurrence of
which is an example of variable capture. The substitutiariz| is safe provided the bound
variables ofr are disjoint from the free variables of

BV (r)[|FV(s) =0

In order to avoid a clash in variables, the bound variables might need to be renamed.
This renaming is calle@-conversion, and is defined in more detail in the next sulisect
For example, we could change.z into Az.z. Then an allowed substitutidp\z.z)[y/x] =
Az.y can be carried out. The result obtained is in this case aaon&inction.
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3.2.3 Conversion

A-calculus is based on three conversions which transforntemeinto another equivalent
term. The conversions areconversionjS-conversion ang-conversion. Each of these con-
versions can be applied as well to any subterm. The formatitlefi of these conversions
are as follows:

* a-conversion is the result of replacing a subterm of the farm- by A\y.r[y /x|, where
y might not occur free or bound in. We write thens —,, s’ if s is obtained by
applying this reduction te.

For example z.(z z)— o Ay.(y 2).

* A [-redex of a term is a subterm of the fofthe.r) s. A S-redex(Ax.r) s reduces to
rlz/s]. Atermt g-reduces ta’, written ast — g t/, if ¢’ is obtained by replacing a
[S-redex int by its reduct.

For example(A\z.(z z))(y 2)—3(y 2)(y 2).

* An n-redex of a term is a subterm of the fovm.r =, wherez ¢ FV (r). An n-redex
Az.r z reduces to. A termt n-reduces ta’, written ast —, t/, if ¢’ is obtained by
replacing am-redex int by its reduct. For example\z.((z y)z))—n (2 y)

Among the three conversiong-conversion is the most important since it represents the
evaluation of a function on an argument-conversion is just a technical device to change
the names of variables, whiteconversion is a form of extensionality. We do not consider
the a-conversion in the thesis.

We demonstrat@-reduction by using the following example:

(Az,y.y + )34
After the 1% 3-reduction , we will get:

(Ay.y+3)4

Applying anothers-reduction yields3 + 4 which gives the result 7.

3.2.4 Reduction

Reduction corresponds to a systematic attempt to evalu@ieraby repeatedly evaluating
combinationsf (x) wheref is a A-abstraction. We say that the term is in normal form when
no more reduction is possible except feconversion. For exampley, y.y and(x y)z are
normal form. But many\-terms cannot be reduced to normal form. As an example take
Q= (Az.z z)(A z.z x). The only reduction of? is to itself (2 — ), 5-reduction of(2
does not terminate arid does not have a normal form.

We define what it means for two terms to dea S and aSn-equivalent. For this we need
first the following auxiliary definitions:
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e r+—,sifandonly ifr — s
Ors —sqy 1

 similarly forr <—pg s, r <, s, 7 <=3 5, T sy S, Wherer — 3 s if and
only if r — sorr —g s, similarly forr — .z, s

Furthermore; —7% s means that = ro —pg 711 —g -+ —g ™, = s for some
0, ..., Tn, Which means that reduces tos in O or more steps. Notations like — s,
r <5 setc. are to be understood similarly. Byand s beinga (a8, afn) equivalent,
written asr =, s, (r =ag S,7 =apy 5), We mean that «—, s (r ap ST S hg s).
We identifyr ands, if they area-equivalent. Therefore we will omit in the following—,
steps, and write as a subscript-ef>, «+— 3 instead ofa3, 8n instead ofa51n.

There are two main reduction strategies freduction (note that we ignore intermediate
a-reduction steps):Normal-order reductionis the strategy, in which the leftmosuter
most redex, is chosen. In contrast, applicative-order reductions a sequential reduction
in which the leftmostinner-most redex is chosen first [Hug89]. Normal-order reduction
corresponds to the principle of passing the arguments taeti@in initially unevaluated,
whereas applicative-order strategy means that a funstiamgjuments are evaluated before
the function is applied.

The Church-Rosser Theorem states thateduction is confluent. The theorem says that
whenever we reduce &terms in two different ways (i.e: —* s, r —* 5’), then the
two reducts can be joined together (i.e. there exiétso thats —* s”, s’ —* s”). As a
consequence we obtain uniqueness of normal formshHs normal forms ands’ thens
ands’ are equal up ta-equality.

However, not every reduction strategy will find the normahio As an example of the dif-
ference between the applicative order reduction and thealeorder reduction we consider
the following example:

 Applicative-order reduction:

Azy)(Azzz)Azxzx) = Azy)((Azzz)(Azxx))

—
* Normal-order reduction:

Azy)(Azxz)Azox) = vy

From the example above, we can say that applicative-ordeiction is not always adequate
and the strongest completeness and consistency resultecachieved with normal-order
reduction.

Lett := y + x. The abstractioriAy.t) containsz as free and eachit stands for a function
overy. The abstractionz, y.t contains no free variables and when applied to the arguments
r ands, the result is obtained by replacingby » andy by s. In other words we perform
two -reductions which can be shown symbolically as follows:

((Az,y.t)r)s —p (\y.tlr/z])s — g t[r/x][s/y]
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This technique is called currying after Haskell B. Curry. é&tample would be the function
(Ax,y.z + y) which can be applied to 3 to yield the functiag.3 + y and then to 4 in order
to obtain3 + 4.

As mentioned previously, the order of reduction can be apfilie and normal. For a func-
tion application(Az. f)e, the normal-order reduction strategy will reduce the redex f)e

first before reducing (being a subterm of the reductiofjz/e] of (f e) to a value. Due

to this it is calledcall-by-name parameter passing. The applicative-order reduction-strat
egy will reducee to a valuev before carrying out the reductiop\z.f) v — 3 7]z /v].
Therefore it is calleatall-by-value parameter passing.

3.2.5 Lazy evaluation

In the previous subsection call-by-value and call-by-nameee introduced in terms of re-
duction strategies. In this section we will investigatd-bgtname in more detail. Evaluation
means reducing a-term until one obtains a normal form. There are two main vedyeval-
uating A-terms: call-by-name and call-by-value. Call-by-namel@aston corresponds to
lazy evaluation, where expressions are passed aroundluawa for as long as possible.
Therefore in lazy evaluation function arguments are noluetad, until needed in order to
compute the result of the functions. On the other hand lpallalue evaluation corresponds
to eager evaluation where all expressions are evaluatedebleéing passed as function ar-
guments. Hence call-by-value requires that function aepusbe reduced to values before
the function is processed.

In a call-by-value setting functions are strict, which me#rthe result of one of the argu-
ments is undefined, the result of applying this function saigument is undefined as well.
For instance, it is a constantiz.c applied to the undefined arguments undefined. In a
call-by-name setting functions can be non-strict, whickansethat they can have a defined
value even if one of its arguments is undefined. In call by name applied tof2 has the
defined result.

The evaluation order can have an effect not only on execi@ed but on program cor-
rectness as well. A program that encounters a dynamic sarenbr or an infinite loop
under applicative-order evaluation may terminate suéetgsinder normal-order reduc-
tion. Expressions in a strict language can safely be evaduatapplicative-order but not for
a non-strict language. A language is said to be strict ifquiges all functions to be strict.
It is a non-strict language, if it allows the definition and ws non-strict functions.

One possible problem of normal-order evaluation is inefficy, since we obtain duplication

of computation. But this inefficiency can be overcome withsacrificing its terminating
property by using pointers to arguments. The idea is whemciad an applicatiof\z.r)s,

we can first create a pointer to expressioand then reducé\z.r)s to r/, which isr with

all = replaced by the pointer te. If we need to reduce the pointer when reducihngwe

can reduce the expressianpointed by the pointer. The point here is that every time we
encounter this pointer irf, s need not to be reduced again since it has already been reduced
the first time. This strategy can also be called call-by-ngiade s is evaluated whenever
needed and it will be evaluated at the most once.
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Lazy evaluation gives the advantage of normal-order etialugnot evaluating unneeded
subexpression) while running within a constant factor ef¢heed of applicative-order eval-
uation for expressions in which everything is needed. Thecjple problem with lazy
evaluation is its behaviour in the presence of side effeésth(0]. When using constants
with side effects, the order of evaluation matters. Forainse if we allow the statement
x := x + 1, which has the side effect of incrementing the value of \deia by 1, the eval-
uation of another expressignwhich refers tar, depends on, whether it is evaluated before
or after the side-effect took place. When using call-bysgadvaluation, it is easy to predict
the evaluation order — the arguments of a function are etedufirst, then the function is
evaluated, whereas with call-by-name and call-by-needotter is difficult to predict. That
is the reason why constants with side effects are usuallysed in lazy languages.

The advantage of lazy evaluation is that it uses sometinseséeluction steps than applicative-
order reduction (although with more implementation andima cost) and that it guarantees
to find the normal form of an expression if there is one, wheesgyer evaluation might not
find the normal form even if it exists.

Lazy evaluation is particularly useful for infinite datalgtture such as infinite list. It is used
for all arguments in Miranda and Haskell and also availabl&cheme through explicit
use ofdelay andforce . The problem with side effects in lazy evaluation do no arise
in Miranda and Haskell because they are pure functionaluagg and Scheme leaves the
problem up to the programmer to tackle. ML provides no meismarior lazy evaluation,
but it can be encoded.

3.2.6 Recursion

Recursion is essential in functional programming. Rewarsr self-referential definitions
are not needed to write recursive functions in thealculus, since the functiol gives
the effect of recursion. Y is known as the paradoxical comitoinor as the fixed point
operator. This Y combinator is realized based on the Fixedpdheorem and its simple
proof. This theorem states that everyexpressiore has a fixed point’ such thate’ —

e €, in particular,e’ ande ¢’ are 3-equivalent. In fact we can definé := ¢y eg where
ep := Az.e (x z) for somex ¢ FV(e), and one immediately sees that—; ¢ ¢’

By replacinge with a variabley and A abstracting; we obtain the famous fixed-point com-
binator
Y = \y.(Az.y (z z))( Ay (x x))

which computes for every terma fixed pointY” e. Indeed,
Ye— (Az.e(zz))(Ax.e(xx)) — e ((Ar.e (zx))(Av.e (zx))) +— e (Y e),
soY e=qs¢e(Ye).

Any recursive function can be written nonrecursively ustdow is this done? Consider
the recursive functio¥ defined by

F=..F..
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which can be rewritten as
F=\f...f..0OF

The equation above essentially says thag a fixed point of the\-expressiof\f ... f ...),
but Y exactly computes that. Hence, the recursive equation caolized by the following
nonrecursive definition fof":

F =YW\ ...f...)

For example, the factorial function
F =M. if(n =0)thenlelsgn x F(n — 1))
can be written nonrecursively as

F = Y(\f,n. if (n = 0)thenlelsgn % f(n — 1)))

The ability of the-calculus to simulate recursion in this way is the key to itsver and
accounts for its persistence as a useful model of computafibis power is best expressed
in Church’s famous thesis which in its original form statesteffectively computable func-
tions from positive integers to positive integers are jisise definable in tha-calculus
Even though no proof can be given for his thesis but it gainggpsrt from Kleene who
in 1936 showed thak-definability was precisely equivalent tos@el and Herbrand’s no-
tions of recursiveness. In 1937 Turing showed that Turingmatability was also precisely
equivalent ta\-definability.

In parallel with the development of thecalculus, Schfinkel and Curry developed combi-
natory logic [Hug89]. Scbnfinkel discovered that any function could be expressedes th
composition of only two simple functiong and.S. Curry proved the consistency of a pure
combinatory calculus and along with Feys, elaborated teerthconsiderably [Hug89].
Combinatory calculus plays a big role in the implementatbfunctional languages.

3.2.7 Higher-order Functions

In functional programming, higher-order functions; i#mnctions which take other func-
tions as arguments, are treated as first class values, wéiicthen be stored in data struc-
tures, passed as arguments, and returned as results. Lemnsider the term for squaring
integers which is defined as follows:

t def AT * X

If we want to computer® then this could be achieved by squaring x three times: =
((z2)*)2. In the A-calculus, this can be defined as the 'power-8’ function:

P ™ aa(t(t )
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So we can see that taking a number to power 8 amounts to agphérsquaring function Q
three times. A\-term which applies any function three times can be definddlsvs:

N f (f (f 2)))

Sot’ f = Xx.f (f (f x)), which is the function which applieto x three times. The term
Ps can now be written as t' t, ansf is t' t 5.

3.2.8 Typed\-calculus

Types are a way of distinguishing different sorts of datehsag booleans, natural numbers
and functions so as to making sure that these distinctianseapected, for example by en-
suring that functions cannot be applied to arguments of ttemgvtype. There are several
reasons why types are addedXaalculus. The main reason for introducing the typed
calculus is that the typed-calculus is strongly normalizing, so every reduction ssue
terminates. From a logical point of view, one reason for @ering type is that we would
have a clearer picture of what sort of functiox$erms denote if we knew exactly what their
domains and codomains were, and only applied them to arggnretheir domains. These
considerations inspired Russell originally to introduggets in Principia Mathematica. An-
other reason for types is the fact that a compiler can gemenate efficient code, and use
storage more effectively by knowing more about a variable. tifne went by, types also
began to be appreciated more and more for their value ingirayiimited static checks on
programs. Moreover types often serve as a useful docunmmiatprogramming and also
they can be used to achieve better modularization and ddiaghby ’artificially’ distin-
guishing some data structure from its internal representat

The basic idea of a typeli-calculus is that every-term in the typed\-calculus has a type.
If A, B aretypes, theh — B is atype. Aterms can only be applied to a termif the type

of sis a a function typed — B and the type of is A. The results ¢ has then typ. This is
strong typing where termimust have exactly the typk; there is no notion of subtyping or
coercion. We will use : A to meary has typeA. This is the standard mathematical notation
where function spaces are concerned, becgusd — B means thajf is a function from
the setA to the sefB. One property of types is that a type cannot be the same asapgrp
syntactic subexpression of itself.

There are two approaches in defining typedalculus which are Church’s approach (ex-
plicit) and Curry’s approach (implicit). We will show botlpproaches of defining typed
A-calculus.

In Church’s approach variables are typed, i.e. they areefdtm v* which means a vari-
able is a pair consisting of a symbeland a typeA. In the case of constants, the type is
preassigned. The generation rules for valid tetns Church’s style, together with their
typesC, writtent : C, are:
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Constantc has type A
c: A

s:A—-B t:A

st:B
t:B
MAt:A— B

In contrast, in Curry’s approach to typing, the terms arecttxas in untyped case, and a
term may or may not have a type. But some purists would argaiettiis isn't properly
speaking typed\-calculus but rather untypekltcalculus with a separate notion of type as-
signment. Curry-style of type assignment does not merdipela relation of typability in
isolation but with respect to a context, i.e. a finite set pfrtg assumptions about variables.
We writeI" - ¢t : A to mean 'in context” , the termt can be given a typd’. The
elements of" are of the formv : A, that is they are themselves typing assumptions about
variables, typically those that are components of the t&massumé&’ never gives contra-
dictory assignments to the same variable; if preferred weltiak of it as a partial function
from the indexing set of variables into the set of types. Witedl* - » : A for » : A holds

in contextA. The Curry style typability rules are as follows:

Constantc has type A
c: A

I'Fs:A—=B I'+t:A
T'Fst:B

Fuf{v:A} - t:B
I'FXM.t:A— B

A special context is the empty contekt which makes no assumptions about the types of
variables. Note that a context is a set of expressions ofaime fv : A). So in the last rule,
I" might containv : A.

The rules above are to be regarded as an inductive definititypability relation, so a term
only has a type if it can be derived by the above rules. For @kathe identity function can
be typed by first looking at the rule for variables, we have

{z:A}Fz:A
and therefore by the last rule we get:

M.z A=A
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This example illustrates the need for context, becauseowitiht we could not deduce : B

for anyB. In the last step we derivellz.z : A — A without any context. Note that we
obtain\z.xz : A — A for any typeA, so a\-term can have many types. This problem does
not arise in Church typing, since in that either both vagaltave type\ or else the two
x’s are actually different variable, since their types di#f@d the types are a component of
the term. \z®.2B : A — B is reasonable foA = B, however in this termeB is a variable
different fromz : A, andz® occurs free. In fact the second termuigquivalent toxy”.zP.

Type preservation is the property that if a term reduces ¢ohem term, its type is preserved.
In the context of Curry typability it says that If + ¢ : A andt — t/, then we have
I' =t : A. The Curry typing system gives a form of polymorphism in thagiven term may
have different types. In polymorphism, all types bear aesysitic relationship to each other
and all types following the pattern are allowed. For examble identity function has types
A — A,B— Bor(A — B) — (A — B), but all instances have the same structure.

There exists a third style of typing which looks very similarCurry style typing, because
it uses contexts, but which is in fact rather a variant of Chustyle typing: The type of a
variable is declared in a context, but in the rule feabstraction, the type of the abstracted
variable was given by the context is kept in theabstraction. Hence, the rules as in the
Curry system, except for the abstraction rule which becomes

Fu{v:A} - t:B
'tM:At:A— B

It is this variant of the Church-style typing which is actyalsed in the next chapter.

3.3 Functional Programming as an Implementation of\-calculus

As we mentioned earliet\-calculus is the basis of functional programming. Throuugn t
history of functional programming, we can see how fraralculus evolved to a family of
modern functional programming languages that all have li@eacteristics of the calculus
we discussed. For example, LISP, which is one of the first najogramming languages
was inspired by tha-calculus. Many functional languages such as ML consigtttd more
than theM-calculus with additional syntaxA-calculus is important to functional program-
ming languages and computer science. Through it varialiéiig and scoping in block
structured languages can be modelled as well as severdidascalling mechanism such
as call-by-name, call-by-value and call-by-need. As dised earlier, tha-calculus is Tur-
ing universal, and probably the most natural model of comris and Church’s Thesis
asserts that the 'computable’ functions are preciselyehhbat can be represented in the
A-calculus.

The A-calculus notions of confluence (Church Rosser propergrnination and normal
form, can be used as notions in rewriting theory. Thealculus and its extensions can be
used to develop better type system, such as polymorphischtcaimvestigate theoretical
issue such as program synthesis. The two main implementat&thods , the SECD ma-
chines (for strict evaluation) and combinator reducti@zylevaluation) exploit properties of
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A-calculus. SECD machine was invented by Landin as an ird@p(byte code interpreter)
for the A-calculus in order to execute ISWIM (If you See What | Mearggrams. ISWIM
was the model for ML and it was designed to be extended witliggtipn-specific data and
operations. It consisted of thecalculus plus a few more additional constructs and could be
translated back into purk-calculus. Denotational semantics, which is an importasthod

for formally specifying programming languages, employes tkcalculus for its notation.

3.4 Denotational Semantics

Semantics is the assignment of meaning to the sentencesrof§e@mming language. Se-
mantic definition methods are valuable to implementors andmammers for they provide a
precise standard for a computer implementation, a useéuldscumentation and a tool for
design and analysis. The standard guarantees that theatzadsiimplemented exactly the
same on all machines. A formal semantic definitions can be Igaa trained programmer
and use it as a reference to answer subtle questions abdaintheage. The semantics of
programming languages is not as well developed as theiasyihis is because semantical
features are much more difficult to define and describe andralatd method for writing
semantics is still evolving. The first versions of programgnianguage semantics used ma-
chines and their actions as their foundation. There arethrain methods for semantics
specification: operational, denotational and axiomaticas#ics. In this thesis we will work
with denotational semantics. Before giving a detailed dtifim of denotational semantics,
we briefly give an overview of the other forms of semantics.

Operational semantics method uses an interpreter to deffamgiaage where the meaning of
a program is the evaluation history (a sequence of intentafpreter configurations) that the
interpreter produces. One of the disadvantage of this sénarthat there is no machine-
independent definition exists because the language carnbeniyderstood in terms of in-

terpreter configurations. Furthermore, if the interpretalgorithm is simple and written in

an elegant notation, the interpreter can give an insighheflanguage, but unfortunately,
interpreters for nontrivial languages are large and cory@ad the notation used to write
them is often as complex as the language being defined.

In axiomatics semantics, the properties of a language qneessed with axioms and rules
to construct a formal proof of the property. The charactearobxiomatic definition is de-
termined by the kind of properties that can be proved. Theningaof the program is not
explicitly given at all with the axiomatic semantics meth&@r example, a very simple sys-
tem may only allow proofs that one program is equal to anadhédra more complex system
allows proofs about a program’s input and output propertlegsomatic definitions are more
abstract than denotational and operational semanticsoteffhe properties proved about
a program may not be enough to completely determine the gmogrmeaning [AlI87].
The format in axiomatic semantics is best used to providénpireary specifications for a
language or to give documentation about properties thadfairgerest to the users of the
language.

Denotational semantics is an approach to formalizing timeasgics of computer systems
by constructing a mathematical object which expressesdimastics of these systems. The
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mathematical objects are called denotations or meaningthét elaboration of the denota-
tional semantics will be discussed in the next section.

Each of the three methods of formal semantics definition ifeereht areas of application,

and together they provide a set of tools for language dewsdop. Designers of a new pro-
gramming system might first supply a list of properties thmetytwish the system would

have. Since a user interacts with the system through an lapgtiage, an axiomatic defini-
tion is constructed in defining the input language and howthiteves the desired properties.
Then a denotational semantics is defined to give the meaifitige danguage where a for-

mal proof is constructed to show that the semantics contaiptoperties that the axiomatic
definition specifies. Finally the denotational definitioringlemented using an operational
semantics.

3.4.1 Definition of Denotational Semantics

Denotational semantics has traditionally been descrilseti@theory of true meanings for
programs, or as the theory of what programs denote. The a#mois usually a mathemat-
ical value such as a number or a function and a valuation ifumabhaps a program directly
to its meaning. A denotational definition is more abstraahthn operational definition, for
it does not specify computation steps.

Denotational semantics originated in the work of Christap8trachey and Dana Scott in
the 1960s. Denotational semantics originally develope&togichey and Scott interpreted
the denotation (meaning) of a computer program as a funttimnmapped input to output.
But for programs that included elements such as recursidefined functions and data
structures, the definition of denotation is limited. To @mne this, Scott introduced a
generalized approach to denotational semantics basednoaia®[SS71].

An effort to address difficulties with the semantics of cament system, researches later on
introduced approaches based on power domains. An altenaéw point for denotational
semantics is that it is seen as a translation from one foryséés to another. However, the
pragmatics of denotational semantics is essentially angftl by the foundational stance
one takes. The aims, hopes, and concrete uses of denoktatonantics are the same. We
can say that the purpose of denotational semantics areng dwit subtle issues in language
design, to derive new reasoning principles, and to devatdptaitive abstract model of the
programming language under consideration so as to aidgrogevelopment.

3.4.2 Semantic Algebra

Before studying the semantics of programming languagesnust establish a suitable col-
lection of meanings for programs. For this we need the natiba semantic algebra. A
semantic algebra is given by a semantic domain and a set oitages defined on elements
of the domain. Semantic domains are the sets that are useduasspaces in programming
language semantics. In practice not all of the set and skeligioperations are needed for
building domains. The set of operations are functions theg lements from the domain
to other elements of the domain. Operations are defined irpass: first the functionality
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of the operations is defined, then the description of theadjmers mapping is given. The
functionality of an operation is given by the operation’sydon and codomain. For an op-
erationf, its functionality f : D1 x Dy x ... x D, — A says thatf needs argument from
domainDy, D, until D,, to produce an answer in domaih The description of the opera-
tion’s mapping is usually an equational definition but a sapb, table or diagram may be
used as well.

A primitive domain is a set that is fundamental to the appiicabeing studied and its
elements are atomic and are used as answers or semantitsolpuexample the natural
numbers:

e DomainNat = N

e Operations

ZEro . Nat
one . Nat
two . Nat
add . Nat x Nat — Nat
subtract : Nat x Nat — Nat
multiply : Nat x Nat — Nat
div . Nat x Nat — Nat

Note that constants (herero, one, two, ...) are treated as functions with zero arguments,
andzero, one, two, . . . return the usual natural numbers. The operatiat subtract and
multiply are addition, subtraction and multiplication of naturaimhers, respectively and
they are written in infix format. Natural number subtractieds to be clarified further: if
the second argument is larger than the first, the result & adnerwise normal subtraction

is applied. add, multiply are defined as usual. By using the algebra, we can construct
expression that represent member®af. An example is as follows:

(two multiply five) subtract (one add three)

This expression computes as follows:

(two multiply five) subtract (one add three)
= (two multiply five) subtract four

= ten subtract four

= six

Other examples of primitive domains are truth values (BaokB), character stringg{) and
etc. Compound domains are domain building constructionsriating new domains from
existing ones. The four basic constructions of forming coomg domains from semantic
domainsA andB are :

» The product domairA x B has as members ordered pairs of the féanb), for (a € A
andb € B).
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* Sum domainsA + B has as members elements frémandB, labeled to mark their
origins. The classic representation of this labeling isdigered pail(zero, a) for an
a € A and(one, b) forab € B.

« The members of the function domah — B is the collection of functions from
domainA to domainB.

* The lifted domaingA | , has memberg\ | “Ay {L}. "L’ denotes an undefined
element (often standing for nontermination) or 'no valualBt If one wants to intro-
duce a functionf, which applied to an argument& A may yield an element i3
or no answer at all, then we can introdut@s having functionalitA — B, . Then
f(a) = L means thaf (a) is undefined.

Including 1 as a value is an alternative to using a theory of partial fonst A partial
function is a function that may not have a value associatéld@gch argument in its domain.

3.4.3 Denotational Definition

A denotational definition of a language consists of thre¢spas the abstract syntax defini-
tion of the language, the semantic algebra and the valufitiartion. The valuation function

is actually a collection of functions, one for each syntamdm. A valuation functiorD for

a syntax domain D is listed as a set of equations, one perrojstithe corresponding BNF
rule for D. For example, the denotational definition of binaumerals are shown in Figure
3.1.

In the algebra onlynultiply andadd are listed because the others are not used in the valua-
tion functions. From the denotational definition in Figurg,3ve can determine the meaning
of the binary numerg]101] as follows:
B(101) = (B(10) multiply two) add D(1)
B(1)multiply two) add D(0))multiply two)add D(1)
D(1) multiply two) add D(0)) multiply two) add D(1)
one multiply two) add zero) multiply two) add one

o~~~ ~

((
((
((

|
=N

ve

Thus we can see that the meaning of the binary numeral 101tfremerivation tree ifive.

We make use of denotational semantics in the proof shown aptéh 6 where we give the
denotational semantics for the functional programs andherobject-oriented programs.
Then we show that the semantics of the functional progrardsoathe programs obtained
from translating them into object-oriented program caieci The denotational semantics
of the functional program is constructed based on the atistgantax of the simply typed
A-calculus shown in the section 6.2.4.
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 Abstract syntax:
B € Binary-numeral
D € Binary-digit
B == BD|D
D == 0]1
The notatiorD := 0 | 1 means) := {0, 1} and the elements d are either elements
of D or an element € B followed by an elementl € D written asbd. Thus,
for instancel01 € B which is obtained by havingl € D, sol € B, 0 € D, so
10 € B, 1 € D s0101 € B. One then writes in the following for elements of3
andD for elements oD, soB(BD) stands for an element & applied to the result
concatenating an elemembf B to an elemend of D.
« Semantic Algebra
I.  Natural numbers
DomainNat = N
Operations
zero, one, two, ... : Nat
add, multiply : Nat x Nat — Nat

» Valuation Functions :
B : Binary-numeral— Nat

B(BD) = (B(B) multiply two) add D(D)

B(D) = D(D)

D : Binary-digit — Nat
D(0) = zero

D(1) = one

The operatiommultiply andadd are written in infix format.

Figure 3.1: Denotational definition of binary numeral



Chapter 4

Integrating Functional Programming
Into C++

C++ is a general purpose programming language which suppbjéct oriented program-
ming as well as procedural and generic programming. It israddgm-neutral language
[GJ98]. Unfortunately, C++ does not support functionalggeanming which can give great
benefits in developing a program especially in order to erezthematical functions. As
discussed in the previous chapter, functional programrhinge several features that made
it practical such as first class values, high-order funestitezy evaluation and other features
that are usually absent from imperative languages. By iiatem functional programming
into C++, the advantages of object oriented programmingfanctional programming can
combine making C++ a more powerful language.

We are using C++ code itself in order to integrate functiggragramming into C++. More

precisely we have written a C++ program, which parseéerms, which are given in a spe-
cific syntax, and translates them into their equivalent Ctatesnents. This is an important
step towards embedding functional programming into C+Higesthe)-calculus is the basis
of functional programming.

In this chapter we will discuss the approach that we use egiating functional program-
ming into C++ and the design, specification and developmithieqorogram that parses and
translates\-terms into equivalent C++ code.

4.1 Integration of Functional Programming into C++

Even though there are several approaches to integrateidoatiprogramming into C++
such as creating a special library for functional prograng(i#C++) [MS00], our approach
has the advantage that it is simple and allows for a correstpeoof. We also believe that
it is more flexible, since it allows for exampbeterms with side effects. Other approaches
will be discussed further in Chapter 7.

The translated code is produced based on the related ideavelied by Kiselyov [Kis98]

51
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and Laufer [Lau95] that can be used for functional programgnby representing higher
order functions using classes. The C++ code that is genki@tsimply typed\-terms uses
the object-oriented concepts of classes and inheritaniostrdct classes are used in defining
the function type of a-term with a virtual operator that is overloaded in the défniof the
A-term. The type itself is the type of pointers to an objecthid aibstract class. The concept
of inheritance is involved in the definition of)aterm where the function type abstract class
will be the base class for theterm. More details will be discussed in the next chapter.

In its most pure form, functional programs contain no sideatfat all [Hug89], (Note
that many functional programming languages such as ML afime effects). Programs
with no side effect will lessen the burden of debugging anéhtaming the program and
also hinder any accidental side effects that might occundutevelopment. Our translated
A-term follow this: the translated code has no assignmemersent. The evaluation of
the translatec\-term corresponds to call-by-value evaluation. Call-lajue evaluation has
been discussed earlier in the Chapter 3.

In C++ there are two ways of passing arguments in a functien through call-by-value
and call-by-reference [Eti94]. An argument passed to fonatising call-by-value will not
be changed by the function (eventhough changes to the arguareemade in the function)
because a copy of the value is made and passed to it. Any charige copy does not
affect the value of the original argument. In case of calréfgrence arguments, the caller
gives the called function the ability to access the callddta directly, and if any changes
or modification to the data will affect it directly. Argumeantr parameters that are passed
by reference in C++ make use of the symbol '&’ as a flag for mfiee. For example, the
declaration of the function headerwith reference parameterf{int &x) wherex is a
reference to amt . A reference argument must be laalue, not a constant or expression
that returns amvalue For example, the caf{t) is only allowed ift is a variable and
x is a reference td. Whatever happens to happens tx as well. Evaluation for call-
by-reference is not a problem because a variable is alrezdyated (a variable contains a
value).

Generally, for reasons of clarity and performance, many pregrammers prefer that mod-
ifiable arguments be passed to functions by using pointerall @sonmodifiable arguments
be passed call-by-value and large nonmodifiable argumentsgsed to functions by using
references to constants. The reference parameters caretbevith aconst to prevent
their values being modified. Theonst keyword can be used in several ways to prevent
values of arguments being changed. For example, the pseexample is changed using
theconst as follows:

void f(const int &x){
X = 1;

}

This code will not compile since we cannot changeoast variable. The use ofonst
with reference parameters will cause the parameters begagthout copying (in case of
large data will waste too much memory or take too long) bup stdrom being altered
or changed. Passing large objects such as structures usinggns to constant data, or
references to constant data will obtain the performancefiisrof call-by-reference and the
security of call-by-value.
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In call-by-name evaluation, the arguments to a functiomateevaluated at all, but are sub-
stituted directly into the function body using captureddirng substitution. If the argument
is not used in the evaluation of the function, it is never eatdd but if it is used several
times, it is reevaluated each time. For example, a function :

int f(int x){
return x + X;

}

and a callf(t)  will have the effect of computing to a valuenl and computing to

a valuen2, thennl + n2 is computed. This involves in computirtg twice since its
value is needed twice. Note that C++ has no call-by-nameuatiah, and the example
given is a code in C++ syntax but for a language which has abgatlame evaluation.
Call-by-name evaluation is rarely implemented directlyt toequently used in considering
theoretical properties of programs and programming laggsiaThus, real-world languages
with call-by-name semantics tend to be implemented usilicbganeed.

Call-by-need is a memoized version of call-by-name whétheifunction argument is eval-
uated, that value is stored for subsequent uses. For exati@linction given previously (
for call by name), if the calf(t) is call-by-needt is evaluated once since the evaluated
version is used for the second usetofln a "pure” (effect-free) setting, this produces the
same result as call-by-name. But when the function argunsemsed two or more times,
call-by-need is always faster. Sometimes evaluation ofesgions may happen arbitrarily
far into computation and due to this languages using cathdsyd generally do not support
computational effects (such as mutation) except througtuie of monads. This eliminates
any unexpected behaviour from variables whose values ehanagr to their delayed eval-
uation. Lazy evaluation or delayed evaluation is the teqimiof delaying a computation
until such time as the result of the computation is known todeded. Lazy evaluation also
means evaluation is done only once. Most realistic lazyuaggs such as Haskell use call
by need for performance reason.

By embedding\-calculus into C++, the task of creating a function espégialmathemat-

ical function, will be simpler. As we know in C++, in order toeate a function, we must
name the function, declare and define it before using itifgalt). But by using the syntax
that has been determined to embedalculus, we can have a nameless function and we can
omit the extra work of declaring and defining it. Thus, we camehan option of creating a
function on the fly even though a named function is encourfgedbcumentation purposes.
We use the variant of the Church style typedalculus discussed at the end of the previous
chapter, except that we have constants for arithmetic ifumgt rather than constants for ob-
ject of arbitrary types. Tha-calculus was introduced at page 35 and the typing rules for a
A-term is listed in the Chapter 6.

A \-term\z'™.t wheret is of the typent  will be written in our syntax asnt x.int t

where the function type is irtint. The reason why we typat to ¢ will be explained in
the Section 4.4.1. More details on how the function type iemeined are discussed in
Chapter 5. We have said previously that, creating a funatging the concept of calculus
will rid the task of defining and declaring the function. Feample, for creating a function
that squares any integer number in C++ , we need to give thdifuma name, declare and
define it as follows:
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\\declare the square function by giving its prototype
int square(int);

\\define the function
int square(int no){
return no *no;}

\\calling the function
int n = 50;
int square_number = square(n);

But by implementing the\-calculus, we can create the function above and apply itéo th
variablen in one expression which is shown as follows:

int n;
int square_number =(\int no.int no *N0)7"n;

We introduce the symbdl™ for the term application. In the expression above, Xhe
abstraction is applied to variable In this expression tha-abstraction is reduced to- n
and if n = 2, the variablesquare_number will have the value 4. This is called-
reduction. The\-calculus has only functions with one argument. Functioite more than
one arguments can be expressed with a function whose resatiother function and this
kind of function is known as aurried function Curried functions are functions that are
represented using nested lambdas. This technique hasvits fnam Haskell B. Curry. An
example of curried function written in our syntax is as folfo:

\int x.\int y\int z.int x+y+z;

When theX-abstraction above is applied to 3, 4, and 5, it will perfohree 5-reductions
resulting in the value 12. The result is obtained by replaainwith 3, y with 4 andz with
5. The application mentioned can be written as follows:

((int x.\int y.\int z.int x+y+z)~3)74)"5

This term which is written in our syntax, will then be trarisldinto its equivalent C++ code.
In the following sections we will discuss the design, speatfon and the development of
the Parser-Translator program. We will also show some elesmyd A-terms that we have
tested using our program.

4.2 Overview of the Parser-Translator Program

The Parser-Translator program or PTP was written in C++guSjpirit to generate a parser
that parses\-term based on the grammar that has been determined. The & &wmpiled
and executed using the C++ compiler with Boost librariese Bloost libraries work only
with modern C++ compilers which support modern C++ featgresh as templates and the
C++ Standard Library.

Spirit is part of the C++ Boost libraries [Bo02]. It is an obferiented recursive-descent
parser generator framework which was implemented usinglam meta-programming
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techniques where expression templates enable us to appatxithe syntax of Extended
Backus-Normal Form (EBNF) completely in C++. It enablesrggagrammar to be written
exclusively in C++ where it can mix freely with other C++ caaled the grammar is imme-
diately executable i.e. the inline EBNF grammar specificetido not need to undergo the
step of translation from the source EBNF code to C++ code mggRpirit the best choice to
be used for developing the PTP.

There are several files that are involved in the PTP. The axerof the files and the flow of
data is shown in the Figure 4.1.

GRAMMARLAMBAPP

TRANSLAMBDAEXP
LIST3VAR
‘Mctions in parsing the Interactions
Main lambda expression in managing the free
and bound variabl
ast
translated code
Lambdaexp
Input
strin LAMBTERM
0 Istnode translated code
pointer object to
Trans|ambdaexp the LTerm class
current
node
Translated Translated LAMBTYPE SETCONT
functiontype  lapbya term lass definitios
to the specified ~_
lambda term Interactions in
Trans- Trans- accessing and manipulating
lambtype lambterm pointer objects e lambda pe cbject
< to the Ltype class
\ Class definition to the
specified lambda type

Figure 4.1: Overview of the the files involved in the PTP

The files in the PTP can be divided into two parts i.e, the pgraind the translating part.
These files contain modules that execute certain taSkanslammbdaexp is the main
file which contains the main module for the PTP where contfohe program is executed.
The input string of the\-expression is entered to the main module where the inpdit wil
undergo the parsing phase which involves ginammarlambdaexp file. If the parsing
succeeds, the input will pass the translation part/phasthid part, the modules in the files
listvar , Setcont , Lambtype , andLambterm will go into action and the translated
A-term will be the output.

The grammar rules and the constructor of the classes in tRei$®Based on the concept of
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typed and untyped-term as explained in the previous chapter. This conceppgcted in
the Figure 4.2 by giving an example of\axpression.

typed typed
Merm \-term
Aintz(nt ( Aintxintx)3  + ( )\intxin’j)

e hpo :
tu UJE untyped

untyped
type typed)-term A= é)rm typed A-term  A-term

W typed A-term
type
typed\-term

typed A-term

Figure 4.2: Depiction of the concept of the typed and untyjpderm

4.3 Description of the Modules in the Parsing Phase

The input string of\-expression is entered through the main module iTtia@slambdaexp
file, where the string is parsed based on the grammar rulle filéGrammarlambdaexp .
The parsing is done here to ensure that the input is writtearding to the syntax that has
been determined. If the parsing succeeds i.e. the inputhesiwith theh-term grammar
rules, an abstract syntax tree (ast) is generated. We witlisouss the parsing process here
because details of it are discussed in the next chapter. wAewgll discuss the formation of
the grammar rules of the-term.

EBNF for the production rules in Figure 4.3, and Figure 4.4:

<lambstmt> -> (<lambtype>|<nativetype>) ' ' <identifier>
"'z <lambexp> ;
<lambexp> -> (<lambdaterm>|<untypedlamterm>)
<lambdaterm> -> (<lambabstract>|<lambapp>)
<lambabstract> -> \ (<lambtype>|<nativetype>) ' ' <identi fier>

' <lambabstract>|<lambtype>|<nativetype>)
' <untypedlamterm>

<lambapp> -> '(" <lambabstract> )’ "
(<lambapp>|<digit>|<identifier>)
<untypedlamterm> -> (<digit>|<identifier>|<lambdaterm >)

*{(<infixoperator>|"")
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(<untypedlamterm>|<lambdaterm>)}
| <identifier> ’(’
(<untypedlamterm>|<lambdaterm>)
*{ ') (<untypedlamterm>|<lambdaterm>)}

'y
<infixoperator> -> '='|"-'|'| *
<digit> -> +{{0]1|2|3]4]5]6|7|8]|9}}
<btype> -> (nativetype|lambtype
I'( <btype> "))
<nativetype> -> ('int’|'’char’|'string’|'double’

|'float’|'long’|'short’
|'bool’|'signed’|'unsigned”)

<nondigit> > (-lalb’crd|e’l..|'z’
A'I'B|'CI'D'IE|F..|'Z)

<lambtype> ->  x{<btype> '->' } <btype>

<identifier> -> <nondigit> * {(<nondigit>|<digit>)}

Iambstm«—»—[mmbtypel—" " identifier__ " "=t lambexp— -
nativetyp
Iambe><;+>—E Iambdaterml_,

untypedlamter

IambdateerIambabstrac{——»

lambapp———

IambabstraéL» e —[ Iambtypj" " — identifier B @
nativety| lambtype—

nativetyp

(a)——" "— untypedlamterm—»

Iambapp—lr (e lambabstraet—) " — """ —

digit

identifie——

Figure 4.3: Syntax diagram of theterm grammar
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From the syntax diagram shown in Figure 4.3, we can see tkat-txpression can be a
typed ) term or an untyped one. The grammar for théerm is divided into\-abstraction
and\-application. The grammar rule for thembdaterm is for the building ofA-abstraction
and application while the rule famtypedlamterm  (Figure 4.4) is for the body of the-
term or a standalone untypeeterm. Other variables that made up the grammar otarm
are shown in the Figure 4.4. Note that in the syntax diagramsymbol '*' and ‘+’ is the
indication that whatever is associated with them will beeagpd zero or many times (‘*")
and one or more times (‘+'). To assist in understanding tlangnar given in the syntax
diagram, we give the Extended Backus Naur Form (EBNF) fogtaenmar. We will not go
through the precise syntax of theterm because we can see it clearly from the syntax dia-
gram. The complete grammar of theterm written in Spirit are enclosed in the appendix.
We only would like to mention some of the directives and pfiegel parser in Spirit that we
used in the grammar rules such@af_node_d ,root_node_d ,digit_p ,alpha_p

and etc. Inthe Figure 4.4, the directivdigit p  andalpha_b is used instead in the pro-
duction rule fordigit andnondigit . digit p  recognizes the digits from 1 to 0 and
alpha_b recognizes all the characters in the alphabet whether ierlowupper case. Since
we are building an abstract syntax tree, directives lidaf _node_d , root node d ,
no_node_d andinner_node_d are beneficial in simplifying the structure of the tree
thus making the traversing and processing of the abstrattsyree formed more easier.
Usually every character in a string will be taken as a nodetieey buteaf node_d  will
take all the characters it is formed from as one node — thistoact will for instance be used
for identifiers. Other directives will be discussed and egkes for their usage in building
the abstract syntax tree will be given in the next chapteerfetoken in the grammar rule is
given an identification (id) which is an integer value. Thdss used to identify each node
in the abstract syntax tree.

4.4 Description of Modules in the Translation Phase

The abstract syntax tree generated will be passed to theletzsiubdaexp where this
module will pass the beginning node of the tree to the mothaleslambaterm  to be
processed. Here every node including the children nodéeifirocessed until the end node
of the tree. The tree will be traversed from the beginningentudthe end node using the
tree iterator which is a special facility from Spirit. Evargde and its children are tested for
their token id in the grammar rule. When the node is identifggebcific module in the file
Translambdaexp is called which in turn will call the module in the fillambterm or
Lambtype to translate it to its equivalent C++ code.

The file Lambtype consists of lambda type cladsType ) with constructors for function
type and native type, and methods for generating the C++ faydine function type and
native type. For example if the node islanbtype or a nativetype , the module
translambdatype is called which in turn will instantiate the constructor fhe function
type or native type in the fileambtype and execute the appropriate method to translate it
to its equivalent C++ code.

The file Setcont is associated with filekambtype , Listvar andLambterm . The
involvement of these files are discussed in the coming setio
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4.4.1 Description of the Lambterm File and its Associated Hes

The file Lambterm contains the declaration and the definition of the tydetiefm) and
untypedA-term UntypedLTerm ) objects along with the definition of their methods. As
mentioned PTP is developed using the object-oriented apprthat involves inheritance
where the typed-term form a subclass of the untypgeterm. Constructors are built based
on all possible terms that can occur for the class and subelad a method is defined to
create a pointer to each constructor. There is a speciatrootex in LTerm class that
gives a type to an untypes-term where a method callddft creates a pointer to this
constructor. Thus any untypedterm will become typed using this method.

ThelListvar file manages the bound and free variables oferm. It consists of a class
Listvariable with constructors for empty list of variables and addingj disvariables.
The clasdListvariable has methods that are responsible in displaying arguments fo
the A\-term and also a method that will not allow the same variallme to be listed as
arguments for the-term which indirectly minimizes or disallow aliasing.

The methods of the class of typaeterm are for the purpose of translating the typetérm

to its equivalent C++ code. The same thing applies to the odstof the class of untyped
A-term. The translated code produced uses the object-edgwbgramming technology. A
class is created for eachterm and the translatedtterm is by inheritance an element of the
translated function type. Here the function type is an albsitlass which is the base class
for the class of\-terms of this type.

The type checking in the translated code is done by the typtisyof C++. The type
system of C++ has decidable type checking not type inferékeén Haskell. In C++ we
check whether a termhas a certain type but not type inferencing because atteem have
multiple types. For example a terhx™. 3.14 can be of type int:float or int-double and
by inheritance a term can be an element of many types. Indhslation we added the type
to the body of the term because we need to know the type of tthe dfthe A-term. But if
we apply ai-termt to (s t) and we know the type o, ¢t : ¢ — 7 thens : o, we do not
demand to assign a typet@and in some examples we can even omit the type.

Why do we need to use inheritance in the translation? To exgtés, consider the terms
given as follows:
g:=Az.x :int—int

g == Ar.x+x :int—int
h: (int — int) — int
h(f) = f(5)

Given the expressionk(g) + h(g’), without using inheritance, the lefit needs to use the
class defining; and the right: needs to use the class definigig Assumingg is defined by
classlambdal andg’ is defined by claseembda2 andh has methods as follows:

int operator() (lambdal g){
return g(5);

}
int operator() (lambda2 g) {
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return g(b5);
}

In general, it is not possible to predict all possible amgilans ofh since arguments might
be defined dynamically. One might suggest thathould have templated method of the
form:

template operator() <A> (A g){
return g(5);
}

But this can only work if we know at compile time thés to which i is applied. Thus the
use of inheritance seems to be the only type method whichsniorgeneral.

The translation of a-term will create various classes. The general form of thediated
code is as follows:

[ Classes of the function types are defined here

]

{Classes of the lambda-term are defined here

}

[Lambda expression is written here ]

If the A-term is a simple\-abstraction, the class defined is just a single class ttaiha
function type as the base class. As an example we give the déitions for the\-term
Az'™.z + 5. The function type is intsint which is translated as follows:

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0;};
typedef Cint_intD_aux * Cint_intD;

The class definition for th&-term is as follows:

class lambdaO : public Cint_intD_aux{
public:

lambdaO() {};

virtual int operator () {int x}

{ return x + 5;};

I

TheA-term itself is translated intonew lambdaO() . We are aware that the useraw is
expensive. In many simple examples, one could avoid the fusewo by replacing pointers
to objects by objects. For instance, we could replace a @oiotan object of the class
representing a-term by the object of this class itself, and then would nac generate
the object dynamically. However we do not know how to deahwfite general situation.
In general, it seems that we need inheritance. For instaheeC++ class representing
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(\(int->int) f.int )"0 could without inheritance only applied to)aterm of
type (int—int) which is translated into one particular object, anddfi@re not be applied to

an arbitrary element of type (irtint). One could create several instances of this method to
cater for different objects representing differerterms which are all of type (irbint), but
only if those objects are known at compile time. If we gerethbse)-terms dynamically

at run time, then this is no longer possible. So, in the gesération we require the use of
inheritance, although many special cases would be optimize

If the term is a curried function or a nestaeerm, a series of class definition and function
type will be generated. The name of the class is automatiggherated: it starts with
lambda followed by an integer that corresponds to the sequenceastet generated. If
a curried function or a nestedabstraction that involves three arguments like the exampl
given previously is translated, three classes will be eckaind the name of the class will
belambdaO , lambdal andlambda2 . Details of the translation is discussed in the next
chapter. Here we only give some examples.

The statements declaringterms that will be accepted by our parser have the following
form:

(nativetype|lambdatype) identifier "=" (lambdaterm
| untyped lambdaterm);

nativetype  refers to tha native or basic type in C++ suchrats , char anddouble ,
while lambdatype refers to the function type AB where A is the input type and B is
the result type of the function. The general processing ®fatbstract syntax tree is shown
in the pseudocode below:

1. Begin with the 1st node
2. Execute the module for translation of the type whether it’ s
a native type or a lambda type to the children of the node
stringl = Translation of type
Next node (identifier)
string2 = identifier
Skip node (for '=
Test the next node
a. if = lambda term
Execute the module for translation of the lambda
term to the children of the node
string3 = class definition of the lambda term and its
function type
stringd = expression of the lambda term
b. if = untyped lambda term
Execute the module for translation of the untyped
lambda term to the children of the node
string3 = translation of the untyped lambda term
stringd = expression of the untyped lambda term
8. Output string3 + stringl + string2 + '=" + string4
9. End

No o~
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In step 2, the children of the node is passed to get the objdloedype pointer which points
to the appropriate constructor of the clastype L Type ). This object pointer then invoke
the method that creates the classes of the function typeclaksLType and its methods
are in the fileLambtype . An associative container is applied to manage the sequence
A-type objects. We make use of it because we can ordekilgpe objects in a container
following a sorting criterion that is predefined in the praxgrand also due to its iterator that
offer a common interface for any arbitrary container typdie Tterator makes it possible
for us to avoid any duplication of th&-type objects. The container mentioned is defined
in the file Setcont . Once the object pointer &fType is determined, it is checked in the
container using the iterator whether it exists or not. Ikists it will be discarded, otherwise
it will be added to the container. Then the class definitiorthef function type will be
created where the sequence of class definitiok-tyfpes are based on thetype objects in
the container.

In step 7, the children of the node is passed to the end to geblifect of type pointer
that points to the constructor of the cldserm where this object pointer will invoke the
appropriate methods to generate the class definitions gamdssion of the\-term. Similarly
for the untypedi-term, the same process will be executed to get the classtitefiand
expression for the untypexterm. The modules responsible for these tasks reside ifilehe
Lambterm and these modules will invoke the modules in thelfigvar  to manage the
bound and free variables of theterm. The modules in the filkambtype are also invoked
to get the class definition of the function type. The stringlags definition of function type
and class definition of a term as well as the expression okitegm are each assigned to a
string variable which are concatenated to produce the wtwigpleted translation.

4.5 Examples of the translation ofA-term expressions

The Parser-Translator program was tested with severalsfafm-term and the translated
code was compiled and run. The result then was compared hdthresult that we got
manually. Here we will give some examples)eferms that were tested and their translated
code.

1) input:
int->int f =\int y.int (\int x.int X *X)"3
+ (\int x.int x *X)73 +y;
and the translated code is:
class Cint_intD_aux

{

public : virtual int operator() (int x) = O; };
typedef Cint_intD_aux *  Cint_intD;

class lambdal : public Cint_intD_aux{
public :

lambdal( ) { };

virtual int operator () (int x)
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{ return x =*x; };

I3

class lambdaO : public Cint_intD_aux{

public :

lambdaO( ) { };

virtual int operator () (int y)

{ return ( *( new lambdal( )))(3) +

(*( new lambdal( ))(3)+y; }

3

Cint_intD f = new lambdaO( );
We can apply this term to an integer value which is shown devis:
int g = ( *f)(4);

and the result is the value 22.

2) Input:
int g =(\int->int f.int ( *O)(  *()(2))
“(\int x.int 2+x);

The translated code is as follows:

class Cint_intD_aux

{

public : virtual int operator() (int x) = O; };
typedef Cint_intD_aux *  Cint_intD;

/[Definition of type : ((int->int)->int)
class CCint_intD_intD_aux

{
public : virtual int operator() (Cint_intD x) = 0; };

typedef CCint_intD_intD_aux *  CCint_intD_intD;

class lambdaO : public CCint_intD_intD_aux{
public :

lambdaO( ) { };

virtual int operator () (Cint_intD f)

}{ return (- *(M)( =)@ k

class lambdal : public Cint_intD_aux{

public :

lambdal( ) { };

virtual int operator () (int Xx)

{ return 2 + x; };

%

inty = ( =*( new lambdaO( )))( new lambdal( ));
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The A-expression in the second example can be writtexrimotation as :

M 2)(Az.2 + x)

and it can be evaluated as:
A2+ 2)(A\z.2 +2)2) = (A\x.2 +z)4

resulting in the value 6.
3) Input:
int k =(((\((int->int)->(int->int)) g.\int->int f.
int->int g~°g™f)

“(\int->int f\int x.int f7f7x))
“(\int x.int 2+x))™"3;

and the translated code is:

class Cint_intD_aux

{

public : virtual int operator() (int x) = 0; };
typedef Cint_intD_aux *  Cint_intD;

/IDefinition of type : ((int->int)->(int->int))
class CCint_intD_Cint_intDD_aux

{
public : virtual Cint_intD operator() (Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux *  CCint_intD_Cint_intDD;

/[Definition of type : (((int->int)->(int->int))

/I ->((int->int)->(int->int)))

class CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD_

{

public : virtual CCint_intD_Cint_intDD operator()
(CCint_intD_Cint_intDD x) = 0; };

typedef CCCint_intD_Cint_intDD_CCint_intD_Cint_intDD
CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD;

class lambdal : public CCint_intD_Cint_intDD_aux{
public :CCint_intD_Cint_intDD g;

lambdal( CCint_intD_Cint_intDD g) { this-> g = g;};
virtual Cint_intD operator () (Cint_intD f)

}{ return (- * (@) *(@)H):

class lambdaO : public
CCCint_intD_Cint_intbD_CCint_intD

aux

D_auxx
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_Cint_intDDD_aux{
public :
lambdaO( ) { };
virtual CCint_intD_Cint_intDD operator ()
(CCint_intD_Cint_intDD Q)
{ return new lambdal( g); }

h

class lambda3 : public Cint_intD_aux{
public :Cint_intD f;

lambda3( Cint_intD f) { this-> f = f};
virtual int operator () (int x)

}{ return (- *(O)(C  * )X )

class lambda2 : public CCint_intD_Cint_intDD_aux{
public :

lambda2( ) { };

virtual Cint_intD operator () (Cint_intD f)

{ return new lambda3( f); }

I3

class lambda4 : public Cint_intD_aux{

public :

lambdad( ) { };

virtual int operator () (int x)

{ return 2 + x; };

¥

int k = ( *(( *(( x( new lambdaO( )))( new lambda2( ))))
( new lambda4( ))))(3);

In the above example, the function type farabstraction represented bgmbdal is
(((int—int)—(int—int))—((int—int)—(int—int)) where the class definition for this func-
tion type is built from series of function types. The functiype will not be duplicated even
though we have othet-abstractions in the expression of the same function typlesiiseries

of function types. This is the advantage of using a contdioen-type objects. We have
tested this program with many mokeexpressions. Only a few of them are shown here. The
implementation of the Parser-Translator Program in irtidgg functional programming is
discussed in greater detail in the next chapter.

We have mentioned previously that lazy evaluation is ondefdaharacteristics of a func-
tional program. After introducing the extended syntax ifirdeg a A-term in C++, we
can represent lazy evaluation in C++ by using the extendethsy Further details will be
discussed in the next section.
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4.6 Lazy Evaluationin C++

We represent lazy evaluation in C++ by translating Haskedlecusing infinite list such

as for computing Fibonaci numbers. This example [ABS06aB306b] requires that we

have infinite streams of natural numbers and rely heavilyaay kvaluation. The standard
technique for replacing call-by-value by call-by-namedsiklay evaluation. The code in
Haskell that will be translated into efficient C++ code iswhas follows:

fib = 1:1:(zipWith (+) fib (tail fib))

In order to delay evaluation, we replace typeby () — A where() is the empty type (i.e.
void ). Lazy evaluation not only delay evaluation, but it evahsaa term only once. So, to
obtain this, we define a new typazy(A) which delays evaluation of an element of type
A in such a way that evaluation will be carried out when needed, it is done only once.
Once the value is computed, the result is stored in a varfablater reuse. The definition
for the clasdazy is a general definition which is not restricted to lazy streawle use the
extended C++ syntax fox-terms,\-types and especially”t  for application,\ for A and

-> for — which has been discussed in Chapter 5 in the translated dddedefinition of
the clasdazy is as follows:

template<typename X> class lazy{
bool is_evaluated;
union {X result;
() -> compute_function;};
public:
lazy(() -> X compute_function){
is_evaluated = false;
this->compute_function = compute_function;};
X eval() {
if (not is_evaluated){
result = comput_function ™ ();
is_evaluated = true;};
return result;};};
#define Lazy(X) lazy<X> *

The definition given would be much longer and considerabipmacated without support
from the extended syntax. Using the cléssy we can easily define lazy streams of natural
numbers. Possibly terminating streams such as lazy lisbeatefined similarly but require
the usual technique based on the composite design pattefarfoalising algebraic data
types as classes by introducing a main class for the mainayeh has subclasses for each
constructor, each of which stores the arguments of the artst.

template<typename X> class lazy_ stream{
public: Lazy(X) head;
Lazy(lazy_stream<X>  «) tail;
. Constructor as usual... }
#define Lazy_ Stream(X) lazy_stream<X> *
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An operation which takes a function of type — X and returns the corresponding element
of typelLazy(X) is defined as:

template<typename X> Lazy(X)
create_lazy(()-> X compute_function)
{ return new lazy<X>(compute_function);};

We need to define operators that will be used in the above tefirof fib which is listed
as follows:

e lazy_cons_lazy<X>  computes the cons-operation on streams and returns lazily
a lazy stream:

template<typename X>Lazy(Lazy Stream(X))
lazy_cons_lazy(Lazy(X) head,
Lazy(Lazy_Stream(X)) tail){
return create_Lazy
(\ ) X.new lazy_stream<X>(head,tail))};}

* lazy_tail<X> computes tail of a stream lazily where only its type is definere:

Lazy(Lazy_Stream(X)) lazy_tail<X>(
Lazy(Lazy(Lazy_Stream(X)) s)

* lazy_zip_with<X> computes the usualp_with  function (i.e.zip_with  (f,
[a,b,...],[c,d,...]) =[fac fbd,...];wedefineonly its type:

Lazy(Lazy_Stream(X)) lazy_zip_with<X>
X > X -> X f,
Lazy(Lazy_Stream(X)) sO,
Lazy(Lazy Stream(X)) sl)

The definition oflazy_tail andlazy_zip_with is straightforward, once one has
introduced a few combinators which deals wlithizy(X) . After introducing the operators
that are involved in defining Fibonacci numbers, the streBRimnacci numbers is defined
as follows:

()-><Lazy_Stream(int)> fib_aux =
\() x.Lazy_Stream(int)
eval(
lazy_cons_lazy(
one_lazy,
lazy_cons_lazy(
one_lazy,
lazy_zip_with(
plus,
create_lazy(this),
lazy tail(create_lazy(this))))));
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Lazy Stream(int) fib = eval(create_lazy(fib_aux));

plus isAx,y.xz+y,one_lazy isthe numeral 1 converted into an elemernitaty(int) ,
create_lazy transforms element of tyg@ -> A intoLazy(A) ,andeval evaluates
an element of typdazy(A) to an element of typé\. The keywordthis is used in the
definition of fib_aux . If we usefib_aux , C++ will first instantiatefib_aux as an
empty class and use this value when evaluating the right biled We can only obtained
a truely recursive definition usirtpis . When evaluated, one sees that thie element of
fib computes tgfib(n) and this computation is the efficient one in which previouts
fib(k) are memoized. Replacingazy(X) by () -> X , results in an implementation of
the fibonacci numbers which is still correct, but requiregaential space since memoiza-
tion is lost.

Lazy evaluation in C++ has been studied extensively in teediure (eg. [Sch00], [MS00],
[Kel97]) where all implementations are restricted to laizysl We introduce a general type
of lazy elements of an arbitrary type, which not only cormgs to call-by-name (usually
achieved by replacing a typé by () — A), but also guarantees that elements are evaluated
once, as required by true lazy evaluation. There is no neadhew delay construct to C++
since our implementation of laziness makes use of the egiftnguage of C++ only.
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Figure 4.4: Continuation of syntax diagram of theéerm grammar



Chapter 5

Implementation of The
Parser-Translator Program

In the previous chapter, we have discussed the design ofdteePTranslator program.
Now we describe the implementation. We write in the follogvlATP as reference to our
Parser-Translator program. The PTP does two jobs whichaasing and translating. When
an expression representing a simply typeterm is input to the PTP, it parses the input
and translates it to a sequence of C++ statements. An owenfibow the PTP works are
shown in the Figure 5.1. More details of the parsing and tasios done by the PTP will
be discussed in the coming sections. We will also give an pil@of a simply typed\-term
input to the PTP, and discuss the translation and executitiredranslated code along with
the representation of the memory allocation. This inforamats important in proving the
correctness of the translated code because we build thematital model from the formal
semantics.

Parser-Translator Program
input Parsing and translatin output Translated code
Aterm ————> ( 9 o) written in a C++

e(éﬁgﬁa)sion source file

compiled

C++ Compiler

of the implementation of
the PTP. Just to show that

the translated code with other
c++ statements can be compiled

to produce an output
Machine Language

Figure 5.1: Overview of the Implementation of the PTP

This section is not part L

70
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5.1 Parsing Phase

PTP creates a parser that parse an input-ekpression following a specific syntax. The
parser calls the scanner to obtain the tokens of the inpuigsand assembles the tokens
into a parse tree. The tree is then passed to the transldiesepvhere a sequence of C++
statements, equivalent to the inpi\texpression, will be generated. Before explaining in
detail the parsing phase, it is important to introduce sofmih@ concepts needed in the
discussion of this section. A precise definition of what itame for a sequence of C++
statements to be equivalent td.derm as well as a rigorous proof that equivalence holds for
the code generated by the PTP will be given in the next chapter

5.1.1 General Concepts in Scanning and Parsing

The purpose of scanning and parsing is to recognize thetsteuof the code disregarding
the meaning of it. Scanning which is also known as lexical analysis simplifies the task
of the parser by reducing the size of the input. It reads tpatias single characters and
groups them into tokens ( the smallest meaningful units irognam).Tokensare the basic
building blocks of a program such as identifiers, digits,vkesds and other symbols. We
use the notation of regular expression to specify tokenseeghilar expressiongenerates a
regular set where regular sets are sets of strings that cdafiveed using three operations:
concatenation, alternation and Kleene star. Concatenetiased when a regular expression
generates two regular expressions next to each other wherstong is followed by (con-
catenate with) another string. Alternation provides cadiom a finite set of alternatives for
the regular expression usually using the symiol Kleene star is used for arbitrary (pos-
sibly zero) many repetitions of a regular expression. FarmgXe in C++, a digilsequence
can be generated by the following regular expression:

digit-->0]1]2|3|4]|5]|]6]|7]8]29
digit_sequence --> digit digit *

Notice that in the above regular expression, the three areapplieddigit  is defined as
being a digit, and theigit_sequence makes use of concatenation and Kleene star to
generate integers like 11, 12, 19 and so on. To generatedastrlig, the regular expression
is scanned from left to right choosing alternatives andtitpes.

Regular expressions are suitable for defining tokens but@trable to specify nested con-
structs which is important in programming languages. Telame translated by thearser

into a parse tree. Thigarse treerepresents higher-level constructs in terms of their con-
stituents which are combined based on a set of potentiallyrs&ve rules known as a
context-free grammar. Every rule in a context free grammar is known asraduction.
The symbol on the left hand side of a production is known asriali@ ornon terminal.
Terminals are the symbol that make up a string derived from a grammattaycannot
appear on the left hand side of a production. Bit@rt symbol names the construct defined
by the overall grammar and it is usually the non terminal anfifst production.

Context free grammars use notation calkatkus-Naur Form or BNF in honour of John
Backus and Peter Naur . BNF when augmented with extra operstich as concatenation
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(D, Kleene star(*), Kleene plus (+) and meta-level parenthe$ regular expressions is
calledextended BNF(EBNF) [ISO96]. For example, a C++ identifier can be generéig
the following production rules:

identifier --> nondigit | identifier nondigit | identifier digit
nondigit --> _ | a|b]c|d]| ..]|z
| A|B|C|D] ..|Z
digit-->0]1]2|3]|]4]|5|6]|7]|8]29
Using the production rules above, we can generate idestgiech asame, first_name
rooml and so on. The non terminal identifier is the start symbol. piozluction rule
for identifier make use of the recursive construct and adtigon to define it. The parser

will organize the tokens such as identifier, digit and noitdigo a parse tree based on the
grammar above. For example the parse tree for identdi@nl is shown below:

identifier

digit

[EEN

nongigit nondigi

r 0
Figure 5.2: Parse tree for identifier room1

The grammar is parsed using the LL parsing technique. LLepgrarses input frorh eft

to right and constructs Befmost derivation of the expression. An LL parser is callad a
LL(k) parser if it uses k tokens of look-ahead when parsingagesment. Among the LL(Kk)
grammars, LL(1) grammar is very popular because the carrelipg parser need only to
look at the next token to make their parsing decision. As ioaatl in the previous chapter,
PTP is developed using the Spirit. The Spirit parser franmmkvi® an object oriented re-
cursive descent parser generator framework where therpebets are composed through
operator overloading and the result is a backtracking-k) that is capable of parsing rather
ambiguous grammars.
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5.1.2 Parsing a statement

Spirit allows us to approximate the syntax of EBNF completrlC++. So, the grammar
given above can be written as:

identifier = nondigit >> * (nondigit | digit);
nondigit = ch_p(_") | alpha_p;
digit = +digit_p;

Notice that from the grammar written above, left recursmavoided in the rule for identi-
fiers by making use of the sequence operater) @nd the Kleene star instead. Grammars
using Spirit should eliminate direct and indirect left resian to avoid the parser entering an
infinite loop. To simplify the digit and nondigit rule we malee of the predefined parser in
Spirit such agligit p ,alpha_p andch_p. digit p parses digitalpha_p parses
alphabetical characters aoti_p parses any single character. The Kleene plus(+) in the
digit rule means that the digit can appear one or more timesoverview of how a state-
ment is parsed is shown in the Figure 5.3

STAR END

Linear Input ~ Stream
(int=>int) k =\int x.int x*x;

> SCANNER [—| PARSER ——| TREE_MATCH

L .| ABSTRACT

SYNTAX
TREE

Translated

TRANSLATIO code

MODULE

Figure 5.3: Overview of how parsing is executed

In the Figure 5.3, the linear input stream of data is read esatiplly by the scanner from

the start to the end. The parser does the work of recogniniedniput read by the scan-
ner by attempting to match the input with the grammar rulelse parser reports the suc-
cess or failure of the match through a tm@atch object, which we use in order to gen-
erate a parse tree. More precisely, in the PTP, we generaabsiract syntax tree (ast)



5.1 Parsing Phase 74

[Bo02], which is similar to a parse tree. The only differerigdhat it has the advantage
of having more directives which can reduce your code in msiog the abstract syntax
tree. When the match is successful, an abstract syntaxsrgenierated where the trans-
lation module will traverse or parses the tree to get thesteded code. The input stream
(int->int) k=\int x.int x *X; when parsed will generate the abstract syntax tree
shown in Figure 5.4.

lamb tmx\

lambtype nondigt /\/aT fract
nativetype \ "
N \ nofkigt N lambabstract
/ | \
int natiectype | infixoperator
na (type K

nativetype

int int

norfdigit  nonigi

X X

Figure 5.4: An abstract syntax tree for the input statemefigi5.3

Notice that in the Figure 5.4, the arrows symbol in thdambtype and thanfixoperator

is considered the root. The arrow symbol is the rootl&onbtype (int—int) and the
infixoperator (*)is the root for its operands. This is due to the directivet_node_d

used to enforce the symbols mentioned as the root node. Alg®iabstract syntax tree in
Figure 5.4, brackets for the function type (imint) are not considered as a node in the tree.
This is because the directimener_node_d directs the parser to just take the expression
in the brackets as the node inthe tree. Tdw_node_d andinner_node_d directives
are directives that only effect the abstract syntax trewiello not use theoot_node_d
andinner_node_d directives in the grammar, the structure of the abstradbsytnee will

be different where brackets in (irtint) will be taken as nodes in the tree and ldumbtype

will have three children of the same level. Similarly, theession X* x) would have as
syntax tree the variables and the symbol * at the same lebe sfructure of the the abstract
syntax tree without using directivésner_node_d androot node_d can be seen in
Figure 5.5.
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lambstmt

lambtype nondigi

[ naivetype | nativetype
->

it int k

i  naivepe | infaoperator

nondigi
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Figure 5.5: An abstract syntax tree without the directiveginode and roahode

These directives are useful in simplifying the structuréhef tree so as to ease the process
of traversing and transforming the tree to get the trandlatele. The complete grammar
for the A-term coded in Spirit is shown in Appendix A.

Thetree_match class has an operatbool() that we can test for a successful match.
When a full match meaning the parser has successfully patstt input, the translation
module for processing the tree is executed to get the tri@astade. This phase is called
translation phase.

5.2 Translation phase

The translation follows the object-oriented method of pamgming where classes and the
concept of inheritance are involved in producing the tratesl code. We also use pointers
and dynamic allocation of the classes in the memory.

Translation is executed by the PTP in three stages :
1. Translation of the function type.
2. Translation of the\-term.

3. Translation of the expression.
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When the expression representing\derm is input to the PTP following the syntax dis-
cussed earlier, it undergoes several stages of transtatifmoduce the translated code. First,
the function type is determined and the abstract class &fuhction type is defined. The
A-term is then defined as a derived class for the function tygséract class where the vir-
tual operator() is overloaded in theterm class. Finally, tha-expression is translated as an
expression that involves instantiating theéerm class.

As mentioned in the previous chapter, there are two categai\-terms i.e. the typed
and untyped\-term. There are two tasks that need to be done for the ttaorsliee. class
definition and\-expression generation. Thus there are two kinds of metbothé typed
and untyped\-term that correspond to the two tasks. We call these modidssdef() and
termexp(), which correspond to class definition akxpression respectively. Shown in
Figure 5.6 and Figure 5.7 is the general idea of how sevenadof the typed and untyped
A-term are translated.

Typed\-term class definition| term expression

abstraction Xz - r) | r.classdef() r.termexp()

application ¢ s) r.classdef() C+™*+°C+ rtermexp()+) +)
+s.classdef() | +'(C + s.termexp() +°)

applicationt ) r.classdef() C+*+C+ rtermexp()+°) '+
+u.classdef() | +'(C + u.termexp() +°)

Figure 5.6: Translation of the typedterm

Untyped\-term class definition term expression

number — number

identifier — identifier

r infixoperators r.classdef() r.termexp() + infixoperator
+ s.classdef() + s.termeexp()

r infixoperatoru r.classdef() r.termexp() + infixoperator
+ u.classdef() + u.termexp()

t infixoperatoru t.classdef() t.termexp() + infixoperator
+ u.classdef() + u.termexp()

t infixoperators t.classdef() t.termexp() + infixoperator
+ s.classdef() + s.termeexp()

functionsymbol{;, ts,...,t,) | t1.classdef() +t,.classdef() | functionsymbol + (" +
+ ...+ t,.classdef() t1.termexp(H-to.termexp()

o F tytermexp() + )

Figure 5.7: Translation of the untypedterm

The method ternexp() and classlef() is not the actual method used in the PTP to execute
the translation. They are just as representatives of theadstthat are involved in the men-
tioned tasks. In the Figure 5.6 and Figure 5.7, variablest andu represents typed and
untypedX-terms. Typed\-terms are represented by variableand s, whereas andu rep-
resent untyped-terms. The symbol+’ means concatenation. r.cladef() + u.classdef
means the string of class definitions fgproduced by the mentioned method is concatenated
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with the string of class definitions far. Characters that are enclosed in a single quotation
are just strings such as ™’ and (..

5.2.1 Translation of the Function Type

For each)-term input to the PTP, the type is defined first. In PTP theeet@o kinds of
type that is basic C++ type (egnt, char ) and the arrow type or function type (eg.
(int—int)). The type of the term or function is determined basedhenleft type and the
right type of the term. How the type of the term is determinethie PTP can be shown in
the Figure 5.8.

Subterm type = (int—>int)

Left t;//pe = int Right type = int

/

Right type = Subterm type

Term type = (Left type —> Right type)
= (int=>(int—>int))

Figure 5.8: How the type of a two argument term are determinyeithe PTP

In the figure 5.8 we have a two argumengbstraction\z™, 3" - where the term- is of
the type int. The type int for the variableis the left type for the term and the type for
the subterm\y™ r is the right type for the term. The left type is the input type the
term and the right type (subterm type) is the output type lerterm. The type for the
subterm is determined similarly giving an arrow type {iht) where the type int foy is
the left type and the type int for the termis the right type. Finally the type of the term is
determined as (irt(int—int)) where the left type is int and the right type is (mint). For
each function type an abstract class is defined with a vidpafator that will be overloaded
in the definition of the\-term and the type itself is the type pointers to an objecthis t
abstract class. In general, the abstract class of the amttpe is defined as follows :

class type_cl assnanme_aux
{ public : virtual out put _t ype operator()

(input type x) = 0; };
\\ =0 means it is a pure virtual function

typedef type_cl assnane_aux*
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type_cl assnane;

For thetype classnameave make use of letteiS andD to represent open and close brackets
respectively, and an underscore for an arrow. For exangilg, Cint_intDD means
(int—(int—int)). The inputtype and theoutputtype make up thetypeclassnameof a
function type which can be a basic type or an arrow type. Fampte, theype classname
Cint_intD  represents the function type where thput typeisint and theoutputtype
isint . Similarly for Cint_Cint_intDD , theinput.typeis int and theouputtypeis
Cint_intD . The definition of the function type is represented in stagéthe function
type (int—(int—int)) is to be defined, the definition will be as follows :

\\This is the definition of (int->int)
class Cint_intD_aux
{ public : virtual int operator() {int x} = 0;};

typedef Cint_intD_aux * Cint_intD;

\This is the definition of (int->(int->int))
class Cint_Cint_intDD_aux
{public : virtual Cint_intD operator() {int x} = 0};

typedef Cint_Cint_intDD_aux * Cint_Cint_intDD;

We could use C++ templates in the definition of the functigretgo as to make the classes
generic. It would be easier definingtype by hand using a general C++ template for the
class corresponding to the arrow type. But we are not usiagtim the generated code
(translated code) in order to obtain a much faster compildir the code and also making
the task of correctness proof less complicated.

5.2.2 Translation of the \-term

The concept of inheritance is involved in the definition af Mterm where the function type
abstract class will be the base class for Yaerm class. A general definition of theterm
class is as follows:

class
t ermcl assnane:public type_cl assnane_aux {

public : [declaration of free variable in the
term;

constructor with/w thout arguments;

virtual out put _t ype operator() ( i nput _type
bound_vari abl e)

{ return body of term };

¥

The members of the class are free variables of the term (i€ tiseany) and the overloaded
virtual operator. The virtual operator in the function tygass is overloaded here with the
bound variable as argument and the return statement hezediepn the body of the term. If
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the body of the term is a subterm, then the return statemantiisstantiation of the subterm
class. Otherwise, the return statement is just returniegafplication of the body of the
term. The instantiation of the subterm class is done by usiagperatonew followed by
the constructor of the subterm class whithundvariable as argument.

For each\-term or subterm, a class will be defined as an instance ofimgtibn type class
and it will be translated in stages. Xterm can be translated into one or more classes
depending on the arguments of the term such as for a two argulabstraction, two
classes will be defined, one for the term and one for the subt&he translation of a two
argument\-abstractiomz™, 3" 2 « y can be pictured as in Figure 5.9.

Abstract class of type (int—>(int—=int)) Abstract class of type (int—=int)

Definition of class Definition of class

Cint_Cint_IntDD Cint_IntD

Definition of class
lambdaO

Definition of class

. lambdal
X is pagsed as an
argument to

constructor lambdal

Class for subterm

Class for term S
Ay int x*y

n t
A X -)\ymx*y

Figure 5.9: The translation of a two argumenabstraction

In the Figure 5.9, the\-abstraction is translated by defining two classes thitrigoda0
andlambdal wherelambdaO is the class for the term aldmbdal is the class for the
subterm. Each class for the term has a function type abstiass as a base class and the
virtual operator is overloaded in the term class. For thater™, 4" z « y, there is no free
variable and its bound variable iswhich means: is bound in the entire abstraction. This
term or function accepts an int type argument and returngetifin of the type (int>int).

So the definition of the termz'™, M. % y is:

class lambdaO:public Cint_Cint_intDD_aux{
public:
lambdaO( ) { };
virtual Cint_intD operator ( ) (int Xx)
{return new lambdal(x);};

h

The returned function is the internal abstraction or subtey™.z * 5. In the subtermy is
bound andr is free. In the subterm class the virtual operator is ovelddaby accepting an
argumenty of type int and return the expressian« y where it is also of the type int. The
definition of the subterm class is:
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class lambdal : public Cint AintD _aux {
public : int x;
lambdal(int x) { this->x = x; };
virtual int operator ( ) (int y)
{return x * vy; };

}

5.2.3 Translation of the expression

Finally, at this stage the expression input to the PTP issta@d into a C++ expression
which involves instantiation oh-term classes and pointers. In the case of tHerm as
an application term, tha-term involved in the application is translated in a similay as
described above, and it is instantiated by dynamicallycaling the memory for tha-term
class using operatarew (eg. new lambdaO() ). This means that tha-term class is
allocated an address in memory and to reference it we makefus@ointer. We use the
dereference operatfr ) to the constructor of the-term class(eg: (new lambda0O()) )

to access the function of the class. For example, tabstraction above when applied
to 3 and 2 written in our syntax géint x.\int y.int x *y)"3)72; , Which is
equivalent ta((Az"™, 4.z * 11)3)2 will be translated as :

(*(( *(new lambda0()))(3)))(2)
Here are a few examples of the translation of Xkexpression :

1) (int->int) k =\int x.int x *X;
translated toCint_intD k = new lambda0();

2) int | =(\int x.int x *X)"3;
translated toint | = ( *(new lambda0()))(3);

3) (int->int) m =(\(int->int) flint x.int £"x)™"(\int y.in t y+y);
translated toCint_intD m = (= (new lambda0()))(new lambda2());

5.3 The Execution of the Translated Code

There are several areas of the memory that are used duriegahetion of a\-expression.
Local variables and function parameters are stored on #uk,stvhile instruction code in
the code space and global variables are in the global spamgistBrs are used as internal
housekeeping functions such as keeping track of the topeoftiaick and the instruction
pointer. Almost all of the remaining memory is given to theyhe The heap [GJ98] is a
dynamic memory area allocated by the commagnd/ and freed bydelete . When using
new, memory for the data the pointer is pointing to is allocatadh® heap, and the pointer
is assigned the address of the location on the heap. The mogiany of the heap is that the
memory that is reserved is still available until it is exjilicfreed. In the translated code,
the instantiation of the\-term class is by dynamically allocating them on the heap.

We use an example in order to explain the execution of theslated code. We choose a
more complex term as an example so as the discussion coveesaspects in explaining
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the execution of the translated code.
The statement to be executed is written as follows in ourasynt

int k =((\(int->int) f\int x.int f7(f"x))
“(\int x.int x+2))"3

This corresponds to theterm: :

int k= (A0 2 f(f 2)) (A 2+ 2)3

The function types determined for theterms involved in the expression are defined as
follows:

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux *  Cint_intD;

//Definition of type : ((int-> int) (int-> int))
class CCint_intD_Cint_intDD_aux
{ public : virtual Cint_intD operator() (Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux *  CCint_intD_Cint_intDD;
The classes defined when translating Xherm :

(\int->int)f.\int x.int f7(f"x)

in the statement above are as follows:

class lambdal : public Cint_intD_aux{

public :Cint_intD f;

lambdal( Cint_intD f) { this-> f = f;};

virtual int operator () (int x)
\ { return (. +(O)N(  *()X); }
class lambdaO : public CCint_intD_Cint_intDD_aux{

public :

lambdaO( ) { };

virtual Cint_intD operator () (Cint_intD f)

{ return new lambdal( f); }
h
In the translation above theterm is translated as the definition of the clagaesda0 (for
the term\(int->int) f\int x.int f(f"x) ) andlambdal (for the sub-
term\int x.int f(f"x) ). The expressioffi"(f"x) in the body of the sub-
term is also translated &4s (N)((  * (f))(X)) using the dereference operator(*) where
the functionf is applied twice.

The A-term\int X.int x+2 is translated as follows :
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class lambda2 : public Cint_intD_aux{
public :
lambda2( ) { };
virtual int operator () (int x)
{ return x + 2; };

The )\ statement above will be finally translated as an expressi@mndpelow :
int k = ( *=(( *( new lambdaO( )))( new lambda2( ))))(3);

The statemerint k = ( *(( *( new lambdaO( )))( new lambda2( ))))(3);
is equivalent to sequence of statements shown below:

CCint_intD_Cint_intDD k1 = new lambdaO();
Cint_intD k2 = new lambda2();
Cint_intD k3 = (= (k1))(k2);
int k4 = ( *(k3))(3);
For a better explaination of how the expresshois evaluated, we based our explaination on

the sequence of statements above so as to show the stageduattion. The execution of
the statement can be pictured in the figure 5.10:

The parts of the memory such as the stack for variables aruneders, code space and the
heap is pictured separately from each other in Figure 5\Eh though we know they are in
the same part of the memory. The reason for this is to showaa ¢lew of the execution of
the translated code.

First, the classes of th&-term are dynamically allocated on the heap by the expnessio
k1 andk2 where the operator method lafmbda0 creates an instance &mbdal . In

the expressiok3, the application of the twa-terms invokes the operator() method that is
overloaded inambda0O with the instance of variablgé set to the instance dambda2 .
The result of the application ddmbda0 tolambda2 is the instance dambdal with f
bound tok2 . Expression 3 is evaluated to 3. Then the evaluation comiéetstage where
the expression of the body Efmbdal i.e. (*())(( * (H))(X)) is evaluated.

This evaluation can be shown clearly if we break down the gyession as:

(=M
( =®)y);

int yl1
int y2

In the expressioyl, the operator() method ddmbdal is called. This will make a call
to the operator() method d&f which is bound to the instance tf#mbda2 and apply it to
3(wherex takes the value 3). This will evaluate to 5. Then the expoesg2 , will make the
operator method df to be called again, which is still bound to the instancdaofibda2
and apply it toyl which evaluates to 5 giving the result 7. The evaluation efdkpression
discussed follows the call-by-value evaluation strateflyis evaluation strategy has been
discussed in the Chapter 3.

We did not include memory management in the translated ctis.is due to the difficulty
of doing memory management when using nestéerms because we cannot really predict
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Heap

Code Space
AN xA(fx)

operator(f) {

return newh x. f(f x) }

M x.f(fx)
f

operator (x) {y1=fx '; | B

y2 =ty retun y2;} \ 3 ! i
' Stacks for local variables
\ and parameters i

\ : \ y2 7 \'

T |k | applieditwice

xinké i (once in yl and

i secondiny2

operator(x) { k3 " /’ : ¥2)
retunx +2; } \ 0 /, _,"

\ \ , xink3 / !
N -/ finkl N

Figure 5.10: Memory representation of the execution of thedlated code

when the memory are in use or free. But we did mention in ouepathat we wanted to
rely on a garbage collected version of C++.

5.4 Testing of the Translated Code

How do we know that what has been translated is correct andllaws the functional
method of programming? We answer this question in two wagsChapter 6 we give
a formal correctness for the translation program. Howets, proof is carried out with
respect to a mathematical model of a fragment of C++ and there formal proof that this
model actually reflects the behaviour of C++ correctly @ligh it is fairly obvious that it
does). Therefore there is is still a demand for testing tlogam correctness. In addition,
testing allows us to assess the efficiency of the program.

Well, first the PTP that has been developed was tested onasdypes of A-terms from

simple to complex ones. This was discussed in the previoaptehand it was found that
the result given by the program are correct when compareu thit manual evaluation of
the terms. Before discussing further, we need to define @hwimerals as they are part of
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the testing samples.

Church numerals are the representations of natural numbdes Church encoding. Church
numerals 0, 1, 2, .., n, are defined as follows inXhealculus:

0O = Xflz.zx

1 = Mfldz fx

2 = AMNfdzx f(fx)

3 = Afas f(f(fa)
.n. = ANfAixz ffx

The natural numben is represented by the church numeralwhich has property that for
any A-termsF andz,
nktax =B "z

In the following we describe the testing of the translatedecavith more advanced and
harder examples. The testing examples are chosen to tefillihwing correctness and
performance aspects of the programs:

* Correctness:
— Bound renaming

All examples requirex-conversion, that is renaming of bound variables, when
computed via term rewriting. Our program doesn’'t@aonversion explicitly,
but only implicitly through the implementation of classéhe tests show that
this implicit a-conversion is done correctly.

— Higher-types

In order to test that higher types are implemented correalflgxamples involve
higher-types, that is variables of a function type. The bi&jhypes occur when
a Church numerah is applied to a Church numerat: nm. In that casen =

A f Az f™ 2 wheref is of type (Int—Int)—(Int—Int) andzx is of type Int-—Int.
Consequently the termhas type ((Int>Int)—(Int—Int))—((Int—Int)—(Int—Int)).
Even higher types are needed to typem m etc..

« Efficiency
— Large results
Evaluating, for example the teravn succ 0 (wherew m are Church numerals)
yields the numbem™. In this way one easily obtains results that go to the limit

of the range of floating point number. More dramaticdlly m succ O evaluates
tom™" .

— Long computations
If in the example above one replaces the successor funatmmby the identity
function (A z.z), then the results will always 0, yet the computation talel®ag

as with the successor function. In this way pure performastested without
limitations given by the size of the output.
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These tests are based on the execution time of the translatiedof theh-terms shown in
the Figures 5.11, 5.12, and 5.13. We usgds, . . ., t,, to represent the church numeral 2, 3
.- .., hand succ to represent a function successor. The Churchrals?, 3, 4, 5 and 6 are
applied to a successor functioh ¢. = + 1) and applied again to 0. The term:

k

n

‘= tn(... (tp succ...)0 =nk

——
k

S

If succ function is replaced by the identity function, themds defined as follows:

i¥ = t,(... (t, identity ...)0 =0
—_————

Other computations of the Church numeral are also testethartdrm is defined as follows:

shika . g (o (b suce .. ) (Eny (o . (fny suce)...)0) = nkt 4 nyk2
—_—— —_————

kl k2

When a Church numeral (eg, ) applied to a function square\{.z * z) and applied to 2
will give 2% which is represented in the Figure 5.13sa$. If the termsg; is applied twice
will give (24)%.

Based on the execution time of theterms, the computation of the Church numerals is
limited up to a certain exponent given as follows:

Church numeral Exponent
30
19
15
14
11

O Uk, WN

We say this is because the value of the computation for tne £, s3°, s16, si° ands}?
'does not make sense’ (0 or negative value) and the exectntienis quite long (sometimes
o0). This is due to the complexity increasing as the exponerreases. The range of an
integer value for the compiler can also be the cause of thigaliion of the computation of
the term.

If one looks at the translated code naively, it seems quigdfigient to introduce a new
element for each\-term arising. But if one looks at what is really going on, @ees that
not the\-term is stored , but only the free variables. If we look\at. x + y, the code for

the class\ z. x + y is stored as part of the source code and what is stored on dpeitithe

information that we are referring to the class referring\te. « + y.

A more reliable way of verifying that the translation codedsrect, is by modeling a sim-
plified C++ compiler that executes the translated code. Byrttodeling we can prove that
the translation code is correct for all kindseterms. The next chapter will give a proof of
the correctness of the translation.
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No. | A-terms| Output Execution time(sec
1. | si? 4096 0

2. | s 8192 0

3. | si? 16384 0

4. | sb 32768 0

5. | sif 65536 0

6. | si’ 131072 0

7. | s 262144 0

8. | s’ 524288 0

9. |3 1048576 0.046
10. | s3! 209152 0.093
11. | s2? 4194304 0.187
12. | 53 8388608 0.39
13. | s 16771216 | 0.765
14. | 5P 33554432 | 1.531
15. | 526 67108864 | 3.031
16. | s37 134217728 | 6.078
17. | s 268435456 | 12.14
18. | s3° 536870912 | 24.375
19. | 530 1073741824 | 48.562
20. | s3t -2147483648) 97.109
21. | s32 0 194.218
22. | 5§ 6561 0

23. | 59 19683 0

24. | si0 59049 0

25. | sit 177147 0.015
26. | 32 531441 0.031
27. | s 1594323 0.062
28. | si? 4782969 0.156
29. | siP 14348907 | 0.484
30. | sif 43046721 | 1.421
31. | si7 129140163 | 4.265
32. | si® 387420481 | 12.812
33. | s3Y 1162261467 | 38.453
34. | 530 -808182895 | 115.281
35. | 5] 1024 0

Figure 5.11: Table of Execution Time for the Samplesdérms
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No. | A-terms| Output Execution time(sec
36. | s§ 4096 0

37. | s} 16384 0

38. | s§ 65536 0

39. | s 262144 0015
40. | si0 1048576 0.031
41. | sit 4194304 0.109
42. | s 16777216 | 0.453
43. | sP3 67108864 | 1.859
44. | sit 268435456 | 7.422
45. | sp 1073741824 | 29.672
46. | si° 0 118.687
47. | si7 0 00
48. | s: 625 0

49. | s3 3125 0

50. | s¢ 15625 0

51. | st 78125 0

52. | s§ 390625 0.015
53. | s2 1953125 0.046
54. | si0 9765625 0.25
55. | sit 48828125 | 1.218
56. | si? 244140625 | 6.14
57. | si3 1220703125 | 30.671
58. | sit 1808548329 | 153.406
59. sé‘r’ 0 00
60. | s¢ 1296 0

61. | sp 7776 0

62. | 8 46656 0

63. | s& 279936 0.015
64. | s§ 1679616 0.031
65. | sg 10071696 | 0.234
66. | s’ 60466176 | 1.437
67. | sit 362797056 | 8.609
68. | sgZ -2118184960| 51.609
69. | sJ 20195 0

70. | s3° 59561 0

Figure 5.12: Continuation of the Table of Execution Timetfog Samples ok-terms
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No. | A-terms| Output Execution time(sec
71, | 1V 177659 0
72. | s1¥ 531953 0.31

73. | s1¥ 1594835 | 0.46
74. | si¥ 4783481 | 0.171
75. | 58 14349419 | 0.484
76. | 58 43047233 | 1.468
77. | si7 129140675 | 4.375
78. | s1¥ 387421001 | 13.125
79. | sl 1162261979 39.359
80. | 53 0 00

8l. | sI¥" [ 1162263515 38.796
82. | si¥° | 1162265563 38.812
83. | si3° | 1162310619] 39.218
84. | si3” | 1166242779] 39.39

85. | si, 4721 0

86. | st 94509 0.015
87. | s 456161 0.015
88. | s2 2215269 | 0.062

89. | s | 10814201 |0.281
90. | sl | 33022429 | 1.343
01. | s}?" | 260917841 | 6.609
92. | si3” | 1287811989| 32.546
93. | s1*” | 1875657193 155.281

94. | sq3 65536 0

95. | (s¢H)* |0 0

96. [l |0 38.802
97. |82 |0 38.913
98. [ |0 39.39
99. | ifi] 0 0.014
100. | 4§ i 0 0.015
101. | 42 i 0 0.0612

Figure 5.13: Continuation of the Table of Execution Timetfog Samples ok-terms



Chapter 6

Correctness Proof

In order to prove the correctness of the translation we gifiggraal semantics of the trans-
lated code by building a mathematical model of it. The matitéral model is based on
the execution of the translated code. First we give a daoattsemantics of the typekt
calculus. Then the correctness of the implementation diytieed \-calculus by C++ classes
is proved with respect to the denotational semantics. Thecmess proof of the translated
code is based on a Kripke-style logical relation betweenesl(the results of evaluating
expressions) and denotations (elements of the model).

The approach of using denotational semantics and logitatioe in proving program cor-

rectness has been used before by researchers such as fR@Kir], and many others. The
method of logical relation can be traced back at least to [Taii67] and has been used
for a large variety of purposes (eg. Jung and Tiuryn [JT98jtr8an [Sta85], and Plotkin
[Pl080]).

Before we start building a mathematical model of the traedla@ode, we list some of the
mathematical preliminaries that will be frequently usedhis chapter. The presentation of
the proof follows the style of Winskel [Win93].

6.1 Mathematical preliminaries

Mappings

i) If X,Y are sets, thenalist = (21 : y1),..., (2, : yn) € liSt(X xY) is considered as
a finite mapm from X to Y which is defined as follows: It € X, z = x; andx # x;
for j > i, thenm(z) :=y;. If © # z; foralli = 1,...,n, thenm(z) is undefined.
i) We definedom(m) as the domain ofn which is, if m is as above{z1,...,z,}.
i) If z € X,y €Y, thenmlz — y] := m,(z,y), i.e.the extension of the lisk by
(z,y). Since in the way we have defined lists to denote finite funstio:, (x, y) will
denote the function whih mapsto y and all other variables to what they are mapped

89
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to by m. Note thatdom(m|[z +— y|) = dom(m) U {z} and

"n_ Y, if ' = x,
mlz — yl(z') = { m(z'), otherwise

6.2 Definition of the TypedA-calculus

We briefly recall the syntax of the simply typedcalculus which was discussed in detail in
Chapter 3. The syntax is similar to the one given in Secti@B3church style), but differs
slightly because we have a single base type of integers,eant$tinclude the construct of
applying function names to argument terms.

6.2.1 Types

The sefTyp of types is inductively given by :
i) Int € Typ.
i) if A, B € Typ,thenA — B € Typ.

An alternative way of defining the sdtyp is by means of a recursive domain equation :
Typ={Int }+TypxTyp

Remark: Note that in the clause ii) of the 3gp of types, the “»” is a syntactic symbol of
the object language in the domain equation given above. Fieahd "x” are symbols of
the metalanguage denoting the set theoretic operatiorisjofrd sum and cartesian product
respectively. The definition of types above is essentidlly same as that given in Section
3.2.8. There the\-calculus was based on base types, of which we use in thigerhaply
the typelnt of integers.

6.2.2 Terms

The Terms of the A\-calculus are defined as follows:
i) nisaterm f € N).
i) zisaterm{ € Var, whereVar = String).
i) rsisaterm, ifr, s areterms. (Term is applied to termns).
iv) Ax: A.risaterm, ifx € Var, A € Typ, r is a term. f-abstraction).

V) flri...r,]is aterm (abbreviated 847)), if f € F andr; are terms. Heré is a set
of names for computable functions @). The function denoted by is written as

[71.
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The above can be written as a domain equation as follows:

Term=N+Var+Term x Term+Var x Typ x Term + F x List(Term)

This definition of terms corresponds to the definition of tergiven in the page 36. In
addition is the fifth term which is a function applied to a titterms.

6.2.3 Typing

A ContextI' is a map from variables to types i.e. a list of variables amdt type :
Context=list(Var x Typ)
Contexts will be denoted d8= 1 : A1,..., 2, : A,

The typing rules below correspond to the third style of tgpdescribed in Section 3.2.8.
The Typing rules of the simply typed-calculus are :

i)
Fzx:Akx: A
i)
T'n:int
iii)
I'z:AFr:B
T'FXx:Ar: A— B
iv)
I'r:A— B I'kFs: A
I'krs: B
V)

fiInt x ... x Int — Int I'kFry:Int...TFr,: Int
Tk flry,...,ra] s Int

The first rule says that in the conteAt the variabler can be given a typd, provided it is
assigned this type in the context. The constahtis preassigned tyfet. The third rule is
for an abstraction where we follow the variant of churcHestyping discussed on the page
45. If in contextIl’, extended by: : A we haver : B, then\z : A.r has typeA — B (in
contextI’). For an application term s we have the following rule: it in contextI” is of
type A — B ands in the same context is of the typg then the termr s has typeB in the
context. The fifth rule is an additional rule to the typablilitles on the page 44. The rule
involves a function with a list of arguments or terms, wheeeagsume the list of arguments
or terms is of typdnt. Then the type of the resulting termlist.
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6.2.4 Denotational Semantics

The sets ofunctionals of type A denoted as DA) are defined as follows :
i) D(Int) = N
i) D(A — B) = {f|f : D(4) - D(B)}
i) D := {1y D(A) wherels denotes disjoint union.

A Functional Environment is a finite mapping
¢:Var - D

We defineFEnv := Var —g, D to be the set of all functional environment. Iifis a
context, thert : I' meansvz € dom(I').{(z) € D(I'(z)).

For every typed\-termT" F r : A and every functional environmett: T" the denotational
value[r]¢ € D(A) is defined as follows:

@ [nlE=n

(i)  [2]€=¢&(=)

(i) [rs[€=[rl&([s]€)

(iv) [rz: Ar]é(a) = [r)¢[z — a
v)  [f[A] = [FICrTE)

An Implementation of the typedA-calculus is an (implementation of an) algorithm com-
puting for every closed term: Int the value[r] € N.

6.3 Implementation by C++ Classes

As mentioned in the previous chapter, théerm that was input to the parser, will be trans-
lated to C++ statements which involves the creation of C-ass#s for the\-term. The
created classes depend on #hteerm. The more complex the term is the more classes will
be created. When the class is instantiated, an address dégsewill be stored on the heap.
Further instantiations of other classes will create furthtgects on the heap. Variables will
be assigned addresses of the objects created on the heap.

Every class is instantiated by calling the constructor efdhject i.e. the name of the class
with or without any arguments. The body of thaderm is associated with the application
in the syntactic sets of this translated code. Based on theusyf this translated code we
distinguish each entity of the syntax by grouping them iptatactic sets.

The list of syntactic sets associated with C++ classes islks\:

e Addr =Int
These are addressesddr) of classes or variables on the heap.

« Constr = String
An element of Constr) is a constructor or name of a class.
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e Val = Int + Addr
A value (Val) is either an integer or an address on the heap.

e App = Int+ Var + Fx list(App) + App x App + Constr x list(App)
This is the same as the definition Térm above.
An application App) can be any of the following:

— Int

— Var

— F xlist(App) e.q. f(z,y, 2)

— App x App e.g.r s.

— Constr x list(App) e.g. new lambdal(x) or new lambda0()

¢ Abst = VarxTyp x Context x App
An abstraction Abst) corresponds to the body of a class. Classes occurrings$n thi
setting consist of instance variables and one metipedtator()(A x){ ... }
They are therefore given by the variable bound by the opleramhod the type of
that variable, an application term which is the body of therapr method, and a
context which describes the instance variables of the .class
Types such akt — Int, which is an arrow type, will be represented in C++ as strings
such aLCint_intD

e Env =list(Var x Val)
An environment Env) is a list of variables and their values, or a finite map from
variables to values.

» Heap = list(Addr x Constrx list(Val))
Heap consists of a list of addresses of class names (constrjetodsa list of values
of the instance variables of that class. It is therefore aefimap from addresses to
pairs consisting of constructors and a list of values of tistaince variables.

* Class = list(Constr x Abst)
The setClassof classes consists of list of names of classes (constg)ctord the
abstraction term describing the body of that class. It isethoee a finite map from
constructors ta\bst.

We assume that every € F is given by a side effect free C++ function.

6.3.1 The Evaluation of the\-terms in C++

When a\-termr is evaluated in an environmeBnv, then for all\-termss which are-
abstractions involved in the evaluationsgfelements on the heapi€ap) will be created.
They will contain the constructor of the class representirggtranslated-term, and values
for all the free variables of. Therefore the evaluation will take an elemenitafv, and an
application term (element dipp), and compute a value (elementél) and an extended
heap.
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If a value is an address, the meaning of that address will bleelb up in the given class
environment C:Class.

Thus the functionality of the evaluation functioev@l) is as follows:

eval : Class—Heap—Env—App—Val xHeap

In case of function application, where one value is appl@énother, again, during the
computation, the heap will be extended. So the applicationtfon takes a heap, two values,
and returns a value and an extended heap. Thus the fundijoofathe application function
(apply) is as follows:

apply : Class —+Heap—Val—Val—Val xHeap

Note that the functioreval and apply depend on the class environment, but theyndo
change it. Moreover in the recursive definition of eval andiapthe argument C:Class is
not changed in the recursive calls. Therefore we drop trese@egument in order to simplify
the notation. We write

evaln a instead of eval’ na

and

applyH n a instead of apply' H v w

The reason why the class environméhtloes not change is that classes are built during the
parsing phase only (see Section 6.3.3). In the evaluatiasgthey are only looked up but
not modified.

In presenting the evaluation rules we will follow the contien that
* nrange over numbend
* Xrange over variablegar
* a, brange over applicatioApp
e vV, wrange over value¥al
» krange over addregsddr
* H ranges oveHeap
 crange over construct@@onstr
» (C'range oveClass
* A, B range oveiType

* 7 range oveEnv
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The meta variables we use to range over the syntactic caésgoain be primed or sub-
scripted. For example{, H', H", H;, stand for heaps;, C’, C”, C stand for classes and
vy, 7’ stand for values.

The recursive rules for the evaluationoterms are as follows:

Evaluation of an applicative term which is a number
evalHnn = (n,H) (6.1)
Thus any number is evaluated to itself without any changhddeap.
Evaluation of an applicative term which is a variable
evalHnz = (n(x),H) (6.2)

Thus a variable evaluates to its content in an environmevithout any change to the heap.

Evaluation of an applicative term which is a function with a list of arguments
evalH n fla] = ([f](77), H') (6.3)
where
(7, H') = eval*Hna

The auxiliary function eval* is defined by

eval*H n (ay,az,...a;) = ((n1,n9,...,n4), H')

where
evaIHna,1 = (nl,Hl)

evalH; nas = (ng, HQ)

evalH,_ nay = (nk, H/)

A function f with a list of arguments evaluates 6] applied to the result of evaluating the
arguments. The arguments need to evaluate to numbers, @edatuation will result in an
extended heapl’. H' is unchanged becaugec F has no side effect.

Evaluation of an applicative term which is the application d one term to the other

evalH n (ab) = applyH" vw = (', H") (6.4)
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where
evalH n a= (v,H)

evalH' n b= (w,H")
Thus an application of one termto another ternb is evaluated by first evaluating the
application terma giving a valuev on the extended heafi’. Then the second application

termb is evaluated with the value on the hedpgiving a valuew on the extended hedp” .
Then the functiorapply is used which computes the result of applyintp w.

The definition ofapply in detail is shown as follows :

applyH k v=-evalH 1 a (6.5)
where H(k) = (c,w),

C(¢)=(z: A;ij: B;a)  (assuminge € dom(C))

domna = {z, 7}
n(z) = v
n(yi) = wi

Soapply is only defined if the first value is an addrés®n the heap. Assume it is, and

its class isc, and the values of the instance variables@reAssume the class namss in

the domain of the class environmefit and the corresponding class denotes the abstraction
(x : Ay - B; a). Then theoperator() method of this class is to be applied to the
second value (argument ofapply). This is done by evaluating in the environment where

the variabler is mapped tas, and the instance variables are mapped to the values given on
the heap for addregds This will result in an extension of the heap.

Evaluation of A-term where the applicative term is a constructor with a list of argu-
ments

evalH ncld) = (k, H'[k — c[7]) (k € Addr,v € Val) (6.6)
where eval*H nd = (v, H')
and k =newH’) (new( H') is an address not in damil’))

Thus the evaluation of a constructovith its arguments will result in first evaluating the
arguments of the constructor in sequence. Then a new elémemated on the heap with
constructor name set toand the instance variables set to the evaluated argumetite of
constructor. The value returned is the new address creatdtedieap.

In all other cases for the application, it is termed invaiid @n error will be returned.
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Lemma 1:

i) evalHna= (v,H')=— H C H’
i) apply Hvw = (v/,H') = H C H’
i)y eval* Hna = (n,H") = H C H'

Proof of i) ii) iii) by simultaneous induction on the definitionefal andapply.
i) Proof by induction on the definition adval:
Cases

1) a = n (when the applicative term is a number):
evalHnn = (n,H)
2) a = x (when the applicative term is a variable):
evalHnz = (n(z), H)
3) a = f[a] (when the applicative term is a function with a list of argums:
eval H n f[d) = ([f1(7), H')
where
eval* Hna = (i, H')
By induction hypothesis (ii)7Z C H'.
4) a = a1, as (When one applicative term is applied to another applieairm):
evalH n (a1 ag) = (v', H")
where
evalHna, = (v, H'),
evalH' nas = (w, H"),
applyH" nvw = (v', H")
By induction hypothesis () C H’ C H” and by induction hypothesis (ii),
H// C H///
5) a = c[a] (when the applicative term is a constructor with a list ofiengnts):
evalH n cld] = (k, H'[k — c[i7]])

where
eval* Hna = (ni, H')
k =new H’)

By induction hypothesis (ii)H C H' C H'[k — c[f]]
ii) Proof of apply by giving the detailed definition of apply :
applyH kv = (v',H')
where k € dom(H),
evalH (z,§ — v,W)a = (v', H')
We know : H(k) = (¢,w)and
Cle) = (x: 4;§: Bsa)
By induction hypothesis () C H’
iif) Proof by induction on the definition ofval*.

Cases
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1) @ =[] (when the list of arguments is an empty set, i.e, no argurjients
eval* Hn|[] = ([], H), thereforeH = H' C H'

2)d=a:b: .
eval* Hnla : bl = ([n: 7], H")
where

eval* Hna = (n,H')
eval* H' nb = (i, H")

By induction hypothesis ()7 C H'’and by induction hypothesis (iitl’ C H”.
Thus we conclude Lemma 1.

Recall that the true signatures of eval and apply are asislio

eval : Class—Heap—Env—App—Val xHeap

apply : Class—Heap—Val—Val—Val xHeap

We write evat: H na and apply: H v w if the argumentC:Class is to be made explicit.

6.3.2 Modelling the Parser-Translator Program

The parser-translator program (PTP) described in Chaptakds as input a string repre-
senting a typed-term and outputs corresponding C++ class definitions. demto simplify
things and to concentrate on the most important aspect®gifrtiblem we assume that the
input is given as an abstract term rather than a string. Trerupafrom a string to a term is
a traditional parsing problem which is of no interest herédnhai\is interesting is the process
of creating a system of C++ classes that represeitseam.

In order to give a recursive description of this process, wstnrassume that the term in
question is not the first term being parsed, but other termsulterms) have been parsed
before having created a system of classes. Furthermote tetm has free variables, then
the types of these variables must be fixed by an appropriatexto Therefore, the parser
(corresponding to the parser-translator program) hasoltewiing functionality:

P : Class—Context—Term — App xClass

In the recursion definition of £T" ¢ above, we do a case analysis on the possible forms of
the termt:

Parsing when the term is a number:
PcT'n=(n,C) (6.7)

Thus the parsing of a number will give the value of the numiperan unchanged clags

Parsing when the term is a variable
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PeT = (z,C) (6.8)

Thus the parsing of a variable will give the variable and amged clasg’.

Parsing when the term is a function with a list of arguments:
Pc T f[7] = (fla], ") (6.9)

where

Thus the parsing of a term that has a function with a list ofiargnts will result in the
extended class of the function with the list of applicatiartsere the list of applications will
be parsed recursively first.

The recursive definition of P* is:
P*c T (r1,ro,...,1%) = ([a1, as, ..., ax],C")

where
PcT'ry = (a1,Ch)

Pc, I' rg = (az,Cy)

Po, ,T'rp = (ag,C")

Parsing of an application:

PoT (rs)=(ab,C") (6.10)
where
PocTr = (a,C")
P,C I's= (b, C”)

Thus in the case of parsinghaterm which is an application, the first term will be parsesitfir
giving a resulting terna and an extended claés. Then the second term with extended class
C’ (from the parsing of the former) will be parsed giving a résgl termb with extended
classC”. The resulting term will be: b and the class will be”.

Parsing of a A-abstraction:

PoT (A\z: Ar) = (c[g], C'[e = (z : A;T5a))) (6.11)

wherey = dom(T"), Pc T [z — A] r = (a,C"), andec = newC’ meaning that is a name
of a class that is "new” i.e. has not been used before.
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Remark : we only generatgz] € App with & € list(Var) and notc|a] with arbitrary
a € list(App)

Lemma 2:

i) PcTr=(a,C") = C C '
i) P*eT7=(3,C") —CCC

Proof of Lemma 2 by induction onr respectivelyr.
i) Proof by induction orm\-termr.
Cases on the termr:

1) » = n (when the term is a number):

PC I'n= (n, C)
2) r = x (when the term is a variable):
Pelr=(z,C)

3) r = f[7] (when the term is a function with a list of arguments):
Po I fr] = (fla), C")
where
P*«T 7= (a,C")
By induction hypothesis (i} € C’
4) r = r1,ro (When the term is an application):
PC T (7“1 7“2) = (a b, Cl)
where
PC T T = (a, Cl)
PC’ T ro = (b, C”)
By induction hypothesis (i) applied twic€; € C’ andC’ C C”
5) » = Az : A.r (when the term is an abstraction):
PoT (Az: Ar) = (c[y],C’'[c — (x : A,T;a)])
where
y=domT), Po (I'[x — A])r = (a,C") andc = new(C’
By induction hypothesis (i)' € €’ and because ¢ domI"),C’ C C'[c — (x :
A, T;a)]

i) Proof by structural induction ol
Cases on7':

1) ¥ =[] (when#is an empty list:)
Pe T[] = ([,C)

2) r:7:
P*«T flr:7] = ([a:d],C")
where
PeTr=(a,C")

P*c I'[r] = ([a], C")
Thus by induction hypothesis (if;y, € C C (¢’ and by induction hypothesis (ii),
C/ g C//

Therefore Lemma 2 is proven.



6.3 Implementation by C++ Classes 101

6.3.3 The Correctness of The Translated Code

The correctness proof of the translated code is based ornpaeksityle logical relation be-
tween the C++ representation of the terenal x Heap) and its denotational value (
D(A)). The relation is indexed by the class environménhtind the typeA of the term.

Since in the case of an arrow typé, — B, extensions off andC have to be taken into
account, this definition has some similarity with Kripke netsd The relation

~GC (Val x Heap x D(A) whereA € Typ,C € Class

is defined by recursion oA as follows:

(v, H) ~yn: <= v=n
(v,H)~S .5 f: < VYCCC'VHC H' Y(w,d) € Val x D(A) :
(w, H') ~§ d = applye, H'vw ~F f(d)

We also setn, H) ~§ ¢ :=Vx € domT(n(z), H) N(Fj(w) ¢(x) € D(T(z))

Lemma 3:

!

(v,H) ~§ d,CCC'HCH — (v,H) ~§ d

Proof of Lemma 3 by induction onA.

Cases:
1) A=Int:
By definition
(v,H) ~fyn: = wv=n
= (?),H,) Nln; n
2) A—» B
Assume
(v, H) ~S .5 f, (6.12)
c'cc’" H CcH'
and let

(w,d) € Val x D(A) : (w,H") ~§" d
We have to show : apply, H"vw ~%" f(d)
SinceC C ¢' C C" andH C H' C H”, this holds by the assumption (6.12).

Therefore the Lemma 3 is proven.

Our main theorem, which corresponds to the usual "Fundaah&emma” or "Adequacy
Theorem” for logical relations, reads as follows:

Adequacy Theorem: If n : Env,¢ : FEnvI' - r : A )¢ : T,Pc'r = (a,C"),C" C
C" (n, H) ~&" ¢,andH C H', then evabn H'na ~§ [r]¢
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Proof:; Let us assume :
n:Env, £:FEnv, Tkr: A &:T, Pel'r = (a,C’),
Cc'cC” (n,H)~C" ¢ HCH

We have to show :
evab// Hl 7’] a Ng [[T'Hf

We prove this by induction on the typing judgemdnt- r : A
Cases :

1) TVz: Ak z: A
Since, by definition,
Pec (Tyz: Az = (z,0),

we know ¢ = z andC’ = C

Furthermore, by the definition @f), H) N(CF/:x:A) §,
we know :
(n(z), H) ~5" () (6.13)

Since evaly H' nx = (n(z), H') and[z]§ = £(x),
we have to show :

(n(z), H') ~F" &(x)
But this follows from (6.13) using Lemma 3 and the fact tiét= ¢’ € C” and
HCH
2) T'F n:int
Since by the definition of the parser,

Pcl'n= (n’ C),

we knowa =n and C = C’

Since, evalv H' nn = (n,H')

and, by definition  [n]¢ =n

we have to show:  (n, H') ~$/ n

This hold by definition of~/;

3)
Ix:AFr: B

I'FXe:Ar:A— B
Since, by definition,

Po T (Az : Ar) = (c[dom(D)], Clc + (z : A;T;4d")])

where R T [z~ Alr = (a,C), and
c =new(C
We knowa = ¢[dom(T')jand C CC' CC”
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where C' =Clec— (z: A;T;d)]
We have to show :
evapr H' na ~S 5 [Mxr]¢

Assume
evakbr H' na = (v,ﬁ)
= (k,H"[k s c[7]])
Hence,
v = k
H = H'"k — c[v]]
where
eval*cr H’ndom(l“) = (17,H//)
k = newH”

Assume C” C C, HC Hand (w,H) ~§ d
We have to show that :

applys Hvw ~5 f(d)

We know
f=[ xr]¢ and deD(A)

f(d) = [Az : Ar]€(d) = [r]€[z — d]
sinceH (k) = H (k) = c[7]
andC(c) = C'(c) = (z : A;T;d)
We have : _ _
apply: Hkw= evaly H(z;dom(I") — w;7) d’

We have to prove that :

evak H (z:dom(I’) v wid) a' ~§ f(d) (6.14)

Using the induction hypothesis fdr, z : A+ r: B, H,

/

o=z w,

¢ = ¢z,

I = Tz~ A, ( where donfl"”) = dom(T") U {z})
PeT'r = (d,C).

CcC ¢ holds becaus& coco"c 5

We have to show :

(77/7 ﬁ) N?" §/
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4)

i)

Let y € dom(I"), we have to show :

This follows from assumption :
(n,H) ~§" ¢

and Lemma 3 provided we can shafir C H (sinceC” C C holds by assumption)

Proof of H C H:

We haveH C H', by assumption.

Since evalr H' na= (v, H),

we have H' C HbylLemmal.
Furtrlermo[e?[ C H by assumption. HencH C H.

(w, H) ~§ d holds by assumption.

All conditions for applying the induction hypothesis ard¢isféed and we conclude
(6.14).

I'r:A— B I'kFs: A
I'trs: B
By definition, N
PcT(rs) = (eb, C~’)
where N
PC F?“ = (G,C)
P=Ts = (b,C)

we know thata = e band ¢/ = C
Hence,C C C C C”
Assume

(n,H) ~{" ¢

We have to show

evalr H' n(eb) ~5  [r]&([s]€) (6.15)

Since, by definition ,

evalr H' n(e b) = applyq j-NVI v w

where

and

evalw H' ne = (v, H)

eval ﬁnb = (w,ﬁ)

[r s]€ = [r1&([s]€)
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Hence we have to show :

applyos How ~§' [r]e([s]€) (6.16)

We use the induction hypothesis for- r : A — B and R:.I'r = (e, 0)

C C ¢”, (holds becaus€ C C C C” by Lemma 2)
(U’H) Ng” g)H - H'
thus, evatr H' ne ~S . 5 [r]¢
We got : N
(v, H) ~55 [r]¢
We use the definition of  ~G", 5 [r]¢,
we know f = [r]¢,

C'CC’".HCH holdby Lemmal,antw, H) ~§" [s]¢ is proved by induction
hypothesis fol" - s : A
Hence, we conclude that (6.16) holds.

°) f:Intx...x Int—Int I'try:int,...,T'F 7, Int
C'E flri...rp] : Int
By definition
Po T f1i] = (f[¢),C) (6.17)
where

P T 7 = (2.0)
The detail definition of P& T 7 = (&, C) are :

PcT'ri = (e1,Ch)

PC1 r ro = (62,02)

Pc, . I'ri = (ex, Ck)

We know that”, = C', henceC; € C C " N
We know from (6.17)a = f[é],C’ = C', henceC C C C C”
Assume

(n, H) ~F" ¢
we have to show:
evabr H' nfe] ~i [f1([7]€) (6.18)
Since, by definition
evalr H' nf(e] = ([f](7), H")
where
eval*c» H' ne = (i, H")

H" unchanged becaugec F has no side effect.
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The definition
eval*c H' ne = (i, H")

is elaborated as follows :
evalcu H' ney = (nl, H{)

evalr Hi nex = (ng, Hj)

evalr Hy,_y ney, = (nk, Hy,)

whereH; = H”
Hence HC H' C H| CH, C ... CH)
Therefore, by induction hypothesis ,

evabr Hi ne; ~fn [rill¢
that is
(ni, Hi) ~ie [rilé
= n; = [ri]¢
We have to show :
evakr H' nf[e] ~n [£1([r]€)
Since, by definition of,
([f16@), H") ~ie L)
and
[F1() = [f1(7)
Therefore (6.18) holds.
This completes the proof of the Adequacy Theorem.
Corollary (Correctness of the implementation):

If =7 : Int,Pcr = (a,C"),C’" C C”, then for any heaf, eval» Hna = ([r], H') for
someH’' D H

Proof: This is a special case of the Adequacy Theorem Witk (). Note that(n, H) Ng” £
holds trivially.



Chapter 7

Related Work

It has been discovered by several researches[Kis98], fJahat C++ can be used as func-
tional programming by representing higher-order funciosing classes. Our representa-
tion in the translated code is based on similar ideas. Therether approaches that have
made C++ a language that can be used for functional progragsuich as the FC++ library
[MS00], FACT! [SS00], [FAQO0], Lambda Library [JP0O0], Funikiary [Hal02] and creating
macros that allow creation of single-macro closure [Kis38¢ will discussed briefly these
approaches below.

There are other fragments of object-oriented languageseiiterature which are used to
prove the correctness of programs such as the well knowrh&eatight Java [AIW99].
The model of this language avoids the use of a heap, sinceodgtto not modify instance
variables. However our model of C++ does make use of a heaghvidcloser to the actual
implementation of C++.

7.1 FC++ Library

FC++ is a library for doing functional programing in C++. Tltgrary comprises of a gen-
eral framework or functoids and about 100 common/usefuttions. FC++ is claimed to
be different from other libraries which provide either spnsupport (such as "lambda” op-
erator for anonymous functions) or a framework for expregsiigher-order function-type
[MSO03] due to its powerful type system. FC++ offers complat@port for manipulating
polymorphic functions where passing them as argumentshter dunctions and returning
them as results. For example FC++ supports higher ordenmolghic operators such as
compose() which is a function that takes two arguments(possibly palgphic) and re-
turns a possibly polymorphic result.

FC++ also can be used to embed a lot of the capabilities of mddactional programming
languages (such as Haskell or ML) in C++. It also comes withtaf useful predefined
function which is a large part of the Haskell Standard Prelandd supports lazy evaluation.
It has lazy list data structure and several functions tharatp on this lazy list. It has a
number of support functions for transforming FC++ datacitmee into data structures of the

107



7.1 FC++ Library 108

#include<assert.h>
#include<string>
#include "prelude.h"

int main(){
int x=1, y=2, z=3;
std:string s="foo", t= "bar", u="qux";

List<int> li = cons(x, cons(y,cons(z,NIL)));
List<std:string> Is = cons(s,cons(t,cons(u,NIL)));

assert( head(li) == 1);
/Nist_with makes short_list
assert( tail(li) == list_with(2,3));

Is = compose(tailtail)(Is);

assert( head(ls) == "qux");
assert( tail(Is) == NIL);
}

Figure 7.1: List and compose

C++ Standard Template Library and vise versa. Also, it hasaiprs for promoting normal
functions into FC++ functoids and supplies indirect fuigsd.e. runtime variables that can
refer to any functoid with a given monomaorphic type signatur

FC++ implementation relies heavily on C++ templates andXthe type system. It does not
focus on improving the syntax using either the preproce@@&pr#define ) or overloading
techniques (eg., expression templates). Its value liegsotype system for polymorphic
function providing a nicer syntactic front-end for definifupctions.

An example [MS01] of manipulations of list written in C++ ngithe FC++ library is shown
in Figure 7.1

The example given in Figure 7.1 demonstrates the capabiliti FC++ manipulating poly-
morphic functions. The List is parametrized by the type kiements where in the Figure
7.1, we see both the list of integers and strings. fEil€ function takes a "list of T" and
returns a "list of T” where T can be of any typeompose(f,g)  yields a new function

h such thath(x) is the same a§g(x)) . Thecompose operator composes two unary
functions where it can take polymorphic functions as patarseand return a polymorphic
function as a result. As a resuttpmpose(tail,tail) is a polymorphic function with
the same signature &&il . FC++ lists are lazy: elements of a list is evaluated onlynvhe
they are requested. Operations can be performed lazilyeolistrsuch as using the function
filter() defined in the library. For example:

List<int> evens = filter(even, integers);

creates a list of even integemven is another function defined in FC++.
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FC++ functoids supports currying. For examples is curryable i.e.plus(2) yields

a new functionf(x) , wheref(x) = 2 + x . Currying is supported by the FC++ op-
erators that are themselves (higher-order polymorphicgthids. Using the operator (eg.
ptr_to_fun() ) can transform regular C++ functions or methods into fuitist@o that
they can be used with the predefined functionality, inclgdmgher-order operators like
currying andcompose.

The functoids that we have seen are direct functoids becealb¢o them are statically
bound. FC++ also supports indirect functoids throughRhaN classes. These functoids
are dynamically bound and thus can change their "functidimegd by assignmnent. Indirect
functoids are described by their monomorphic type sigesdnd variables of typeunN can

be bound to any function with the right signature. For examplnl<int,bool> de-
scribes a one argument function that takesan and returns &ool , whereag-un2<int,
int,string> describes a two-argument function which takes iwb s and return a
string . The functionmakeFunN() converts a direct functoid into an indirect one. More
examples of the use of FC++ library in [MS01] and [MSO00].

FC++ allows higher-order polymorphic function types to Bpressed and used; type sig-
nature are explicitly declared unlike Haskell and ML whefgets can be inferred. The type
language (building blocks fd8ig template classes) is awkward eventhough it will not be
a problem in learning to use it. There is a bound in the numbarguments that the func-
toids can support but it can be remedied by adding templaithsrmore parameters in the
framework. The naming of the base classes in FC++Hikal andFunimpl , as well as
operatoranakeFunl andFunllimpl encode in their names the number of arguments of
the functions they manipulate.

Compiler error messages can be verbose when a user of FC+gsmadype error where
the compiler typically reports the full template instatita stack, resulting in many lines
of error messages. Another limitations to FC++ is that itncarully prevent side effects in
user code. Nevertheless, by declaring a method twhbst can prevent it from modifying
the state of the enclosing object. This is what FC++ try tamd in order to have "side-
effect freedom”. Even though the indirect functoids aresffect free because any class
inheriting fromFunNImpl classes have to havecanst operator() , but users could
decide to add methods which is not side effect free to thelaspofFunNImpl .

7.2 FACT!

FACT! (Functional Addition to C++ through Templates and $3les) is a C++ library that
offers several aspects of functional programming to C+gr@mmmers. It provides methods
to get curried representations of C++ functions/class negrfumctions, functional compo-
sition, A-expression, and has basic support for lazy evaluationougir currying FACT!
allows for partial application of C++ functions making itgsible to pass less than n argu-
ments to a n-ary function giving a valid result.

The currying approach of FACT! offers a more consistent aexilile way to bind argu-
ments of a function to some specific values. Template liesasiich as STL contain several
generic algorithms that expect functions as argumentfi@nigrder functions), resulting in
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a frequent use of function objects. User-defined functiosasekward because they need to
be declared as a class in namespace scope before being tsqubiit of use and the point
of definition may get more and more dispersed making codeshémdead and understand.
Using FACT!A-notation point of use and point of definition can be keptelugjether. Thus
functions can be define on the fly which is common in functigmraljramming languages.

The lambda function takes a list of variables which is called thdist, an expression
(called A-expression) that can contain any of this list of variabled eeturns a function
which usually has the same number of arguments as the elginghe list. For example:

lambda(x, y, x + V)

wherex, y formed thel list, andx + y is the A-expression. A binary function is re-
turned from thdambda function since the\ list has two members. Functions returned by
lambda are polymorphic, thug andy may be bound to values of typet , complex ,
string  or any other type that is compatible with theexpression. A\-expressions may
contain calls to other functions, for example:

lambda(x, y, z, sqgrt(sqr(x) + sqr(y) + sqr(z)))
lambda(x, y, sin(x)/cos(y))

A-variables may be bound to functions dachbda functions may return a function, which
in turn will return a function as well, which are shown as dolk:

lambda(f, x, y, f(x, y))// f is a placeholder for a function
lambda(x, lambda(y, x + y))

Functions returned blambda are presented in curried form, making them capable of tak-
ing arguments one at a time and thereby offers the oppoytahfiartial application. Expres-
sion templates [Vel95] are a way to handleexpression. Expression templates are nested
template structures, used to represent the parse tree apegssion. They are built during
compile time through overloaded arithmetic operators winstead of immediately apply-
ing an operation, it returns objects that incrementallycbup the parse tree. The parse tree
is represented as a type tree (expression template treasanimee of objects (the expression
object which is an instance of expression template tree).

A-variables become part of the the expression template yrasibg the expression template
technique. The expression template tree emphasizes sped#ferenti-variables must be
of different types enabling template meta programs to dcsthmstitution during compile
time. ThusA-variables need to be of unlimited types whaiRGis a suitable representation
because it can be used to formameric_limits<int>::max() of different types.
The structure oARGis as follows:

template <int>
struct ARG {};

FACT! has a large number of predefinedvariables which are defined in the scope of
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namespace LAMBDA A user just writesusing LAMBDA::x to make the\-variable

x visible in the current scope. Expressions templates caorbeefd out of expressions con-
taining instances AARGby using PETE (Portable Expression Templates Engine). PETE
lows for the easy integration of expression template fametiity to user defined classes. By
building A-expressions on top of PETE, the user can use his expressigidte functional-
ity aware classes within &expression by still taking benefit of all the related optiation.
More on building-expression with PETE can be seen in [SS00]. Even though ting/ C
function is claimed to be powerful as its functional coupget, there are still limitations
with A\-expression and lazy evaluation.

7.3 Lambda Library (LL)

The Lambda Library (LL) is a C++ template library implemeggia form of \-abstraction
for C++. It is designed to work with the Standard Templateraif(STL) which is now
a part of the C++ Standard Library. Therefore the librarysdoe language extensions or
preprocessing. The LL consists of rich set of tools for dafjninnamed functions which
works with the STL algorithms. It offers significant imprawents in terms of generality
and ease of use compared to the binders and functors in thes@mdard library. We will
show some examples of the use of LL taken from [JP0O].

« |nitialize the elements of a container to the value 1:

list<int> v(10);
for_each(v.begin(), v.end(), _1 = 1);

The example abovel = 1 creates a\-function which assigns the value 1 to every
element irv. The variable 1 is a placeholder with an empty slot which will be filled
with a value at each iteration. We call = 1 a A-expression and a function object
created by a\-expression is a-functor.

» Create a container of pointers and make them point to tiaezies in the container.

list<int *>  vp(10);
transform(v.begin(), v.end(), v.begin(), & 1);

The address of each elemenvifwith & 1) are assigned to the corresponding element
invp.

« For each element im, a functionfoo is called, passing the original value of each
element as an argumentftmo .

int foo(int);
for_each(v.begin), v.end(), _1 = bind(foo, _1));

« The elements ofp are sorted and output:

sort(vp.begin(), vp.end(), * 1> % 2);
for_each(vp.begin(), vp.end(), cout<< * 1 <<endl);
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The call tosort , sorts the elements by their contents in descending ordes AT
expression-_1 > *_2 contains two different placeholderl and_2 creating bi-
nary A-functor. When this functor is called the first argument ibstituted for_1
and the second argument fo?. Finally the sorted content af is output.

In A-calculus and in functional programming languages, then&brparameters are com-
monly named within the\-expression such as:

Ax,y.x +y

But the LL counterpart of the above expression is written s+ 2 where the place-
holder variables have predefined names. The use of a plaegha@riable in an expression
implicitly turns the exppression intd-expression. There is no explicit syntactic construct
for A\-expression. The LL supports the placeholdets 2 and_3 which means\-functors
can take not more than three arguments passed in by STLthigoaind zero parameter is
possible too. The third placeholder is a necessity in ordémplement all the features of
the current library.

The LL provides typedefs for the placeholder types, makiegsy to define the placeholder
names to your liking. A placeholder leaves the argumentlyotgen, including the type,
meaning that the lambda functor can be called with argumeitiisany type for which the
underlying function makes sense. Since the type of the ptdder remains open, the return
type of theA-functor is not known either. The LL has a type deductionaysthat figures
out the return type when thefunctor is called where it covers operators of built-inegp
and operators of user-defined types.

For an ordinary function call, an explicit syntactic constris needed. In this case the
bind function template serves the purpose. The syntak-ekpression created with the
bind function is :

bind(target-function, bind-argument-list)

In a bind expression, tHend-argument-list must be a valid argument list fearget-
function , except that any argument can be replaced with a placeholdgenerally, with

a \-expression. When a placeholder is used in place of an aatgament, the argument
is said to be unbound. Tharget-function can be a pointer to function, a reference
to a function or a function object. Examples of bind exp@s$JP00] is shown as follows.
Supposeé), B,C andX are some types:

X foo(A, B, C); A a; B b; C c;

bind(foo, _1, 2, c);
bind(&foo, 1, 2, c¢);
bind(foo, _1, 1, 1);
bind(_1, a, b, ¢);
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The first and second bind expression returns a binafynctor but the second bind ex-
pression uses a function pointer instead of a referencesthEdhird bind expression, the
argument will be duplicated in each place the placeholdesésl, and for the expression to
make sense and to compile, the argument to the resultingy Wwaimctor must be implic-

itly convertible toA, B andC. The fourth bind expression shows the case where the target
function is left unbound where the resultingfunctor takes one parameter, the function to
be called with arguments, b andc. More examples of bind expression with member
functions as targets and other uses of the overloaded opeiatLL are shown in [JP0O].

Even though LL overloaded almost every operator¥axpressions based on the basic rule
that any operand of any operator can be replaced with a pidehor with a\-expression,
there are some special case and restrictions; the retues tgnnot be chosen freely while
overloading operators>, new, delete, new]] anddelete[]] , thus these cannot
be overloaded directly fok-expressions; it is not possible to overload the *, and?:
operators in C++; the assignment and subscript operatoss mewdefined as member func-
tions which creates some asymmetryXexpressions (egint i; 1 = i; is valid
A-expression but nat = 1 ); the return type deduction system may not handle all user-
defined operators.

The Lambda Library (LL) allows generic function objects te diefined on the fly. This
library does not focus on functional programming styleheatit emphasizes on imperative
programming allowing multiple assignments, while loops] aeveral imperative constructs
within an expression that defines a function object. The Lésdaot have support for n-arity
functions, because it is meant to be used with STL algorittuinish do not accept ternary
functions. It only supports for the generation of nullargaty, binary and ternary function
objects. However the LL provides good means to define evgnoaenplex function objects
through expressions.

7.4 Kiselyov’'s Functional Style in C++

The definition of a local class, within a function, method krdk is permitted in C++ where
this feature makes nested functions and closures possiitdested functions and nested
methods are actually compiled inline unless they are irtddocal class follows regular
lexical scoping rules. For example, a variable of an outeclbkcan be declared visible or
modifiable within the inner scope. Also, to some extent, allecope can be captured and
a closure is return as the value of a function. Returning gecblas the result of a function
involves deep copying of the object to and from temporariégkvcan be costly for big
objects such as matrices and images. Therefore an alternathis is the lazy construction
where objects themselves are never returned from funciistsad yield a "recipe” on how
to make an object. The construction of the object will ocaiell when it is needed. For
example [Kis98]:

Matrix haar = haar_matrix(5);

harr_matrix  is a class not a simple function. It constructs an objeay matrix . A
special constructoMatrix(const Lazymatrix& recipe) follows the recipe and
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makes the matrikiaar right in place without any intermediary temporaries.

The following code segment [Kis98] is the representatiom-@xpression which is C++
standard-compliant.

main(void){

MakeTestFunction("cos(x) - x",
Lambda((const double x), double,
return cos(x)-x)) fcos;

/ffunction is instantiated

fcos.run(2.0,3.0); //run the function with two values

MakeTestFunction("HUMPS function zerodemo.m",
Lambda((const double x), double,
return 1/(sgr(x - 0.3) + .01)
+ 1/(sqr(x - 0.9) + .04)
-6))().run(0.4,1.6,1.299954968);
/function is instantiated and run.

}

MakeTestFunction  is a subclass oATestFunction  which has a methodun for
running a test and making sure the result is correct. Botbetlfienctions andlambda are
defined in the LinAlg: a Numerical Math Class Library [LA96MakeTestFunction
has arguments that consists of:

i) the title of the test case
i) the test’s body itself specified as anonymous functiambda (genuineX-abstraction)

Lambda consists of three arguments: input argument, return tyddtambody of the func-

tion/abstraction. In the code segment above, exampleswee ig testing two computations
titled "cos(x) -x" and"HUMPS function zerodemo.m" and these computa-
tions are defined bambda. The wholeMakeTestFunction  clause is subsequently
instantiated and run.

Kiselyov introduces the features of closures, late bindind-abstraction in incorporating
the functional style in C++.

7.5 Funk: A Framework for Functional Style in C++

All Funk code is based around evaluating or aggregatingr akgression templates (ET).
ETs are template instantiations that represent recuysoaistructed expressions. All ETs
are formed around atomic ET variables or ETs that contain @#etion pointers. ET
variables are defined by instantiations of struct temdtear which needs two parameters
for instantiation: name variables and type variable. Namwgables are just a character
template parameter which are limited to a single charactlyr @he definition ofETvar is
as follows:
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template<char n, classT>
struct ETvar{ };

Variables can be define using the definitionEdfvar . For example defining variabke of
typeint is:

ETvar<’a',int> a;

ET can also define algebraic expressions, for example apl&&T can be define by com-
bining two other ETs:

template<class LHT, class RHT>
struct plus{};

where LHT and RHT are expression templates.
An algebraic expressiofu + b) x (¢ + d) are defined as:

times<plus<ETvar,<'a’,int>,
ETvar<,b,,int>>,
plus<ETvar<’c’,int>,ETvar<'d’,int>>>

wheretimes is an ET that is defined similar adus .

Funk implements partial application of functions using tyygeslambda andapply and
several utility metaprogramsapply is used to hold the values of arguments to which
functions have been applied, wherd@msibda is used to specify the need for and type of a
function’s parameter. The definition Embda andapply is:

template<class V, class ET> lambda{ };
template<class V, class ET> apply{ };

Any Funk M-expression that has tydambda<A,ET> corresponds to tha-expression
Aa.et wherea has typeA andet has typeET. Expression template can be turned into
expressions by embedding them into a series of instami@tidlambda template. Thus
the following structure represents theexpressioma.(Ab.(a + b)):

lambda<ETvar<’a’,int>’
lambda<ETvar<’b’,int>,
plus<ETvar<'a’,int>,
ETvar<’b’,int>>>>

lambda ’s first template parameter holds information about thealdei it manages and the
body of the\-expression is represented by the second template paramében a Funk
A-expression is partially applied to an arguments, the tasutype of the application is
apply instantiated with the same argument as the fortagrbda is instantiated with.
Thus if ai-expression given above is applied to an argument, its tymddbecome:

apply<ETvar<’a’,int>, //note the apply instead of the lamb da
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lambda<ETvar<’b’,int>,
plus<ETvar<'a’,int>,
ETvar<’b’,int>>>>

and after application to another argument, its type becomes

apply<ETvar<’a’,int>,
apply<ETvar<’b’,int>,
plus<ETvar<’a’,int>,
ETvar<’b’,int>>>>

Since the type of this-expression is fully applied, it must be reduced to dhexpression’s
ET’s final type i.e. int in order to be usable for computation. There are mechanisms
that perform type translations of Funkexpressions into their applied state [Hal02]. An
example of a\-expression applied to two values 3 and 4:

(Aa,b.a 4+ )34

is represented using expression templates is given asvillo

apply_lambda_to_arg(
apply_lambda_to_arg(
lambda<ETvar<’a’,int>,
lambda<ETvar<’b’,int>,
plus<ETvar<’a’,int>,
ETvar<’b,’,int>,3),4)

How the application of the.-expression is evaluated is shown in [Hal02].

Funk has a type resurrection system which is set up by makiegtperclass actually a
structure template with one template parameter. All exgioestemplates inherit from this
superclass instantiated with the type of the expressioplegm When the type of an expres-
sion template is slicédupon being passed as an argument to a restrictive functioplage,
it's original type can be resurrected from the template &tar of the sliced object. Thus
the necessary parts of the system is redefined to allow tyqueretion.The base structure
is defined as :

template<class>
struct ET{ };

ETvar andplus are redefined so they derive themselves fiemxT> [Hal02]. To pre-
serve data information and type information, but still héwe class match as a superclass,
an argument type dT<T>&must be used for the parameters of function and operator tem-
plates that will resurrect type. When an argument is a ratereslicing only affects the
object’s type and not its data allowing casting the argurbank to its original type and still
retain its data integrity. The definition of operator +:

template<class E1, class E2>

Yslicing occurs when data members exclusive to a subclagsupeated as an object instance is cast as its
superclass
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plus<El,E2> operator + (ET<E1>& lhs, ET<E2>& rhs){
return plus<El,E2(static_cast<E1&>(lhs),
static_cast<E2&>(rhs));

Thus by the definitions above things like+ b can be written and the result will be an
expression template\-expressions are created by making comma separated liggsah-
eters followed by the- and> operators followed by the expression template represgntin
the body of the Funk-expression. The following code is legal C++ code once thekFu
libraries are loaded.

X-->(X  *X);
(a, b, c)-->((a+b)/c);

Functions are partially applied arguments through the Gisperator<<.

For example:

((xy)-->((x+y)/(x *y))) <<3 <<4;

Funk currently does not offer support for polymorphic typesxpression templates. Even-
though Funk does provide some nice feature to the C++ prageapit has its limitations.
Naming an expression template is not possible withoutrgjats entire type in the decla-
ration. It is possible to state an expression’s template,tippt it's not worthwhile because
typenames for ETs get very complicated very fast.

7.6 Comparisons

What have been discussed above are approaches that aed telatir project where advan-
tages and limitations of these approaches are also givessellorks are too extensive in
comparison with our project since our project is still nevd dpoung”. Many things have

not been covered such as polymorphic higher-order funetibat have polymorphic argu-
ments (in FC++ library) and type inference. But one thing @&e say is that the novelty of
our project is that it provides a correctness proof thatdkitay in all of the approaches. Our
project provides a simple way of creating a function on th€ Xhexpression) with a syntax
that is easily read and understand which is similar to thalusmotation. This\-expression

is translated into C++ statements that can be compiled wighCa-+ compiler. We uses the
usual C++ statements without overloading any operator fio@an anonymous functions.

To compare other approaches discussed above with our a@ppimdefining a\-term, we
will compare them based on an example. The example is a sikgean:

(N AyAzoz+y=2)3)2)5

o FC++ Library:

#include "prelude.h”

#define FCPP_ENABLE_LAMBDA

/lto get the lambda portion of the library
LambdaVar<1>x; //declare variable x
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LambdaVar<2>y; //declare variable y
LambdaVar<3>z; //declare variable z
cout<<lambda(x,y,z)[multiplies[plus[x,y],z](3,2,5);

LambdaVar is for declaring variables used in theexpression.
lambda(LambdaVar)[lambdaExp] creates a lambda on the fly.

e Lambda Library:

int x = 3;
inty = 2;
int z =5;
1 =x
2 =Y,
3 =1z
1+ 2+« _3

It makes use of a placeholder for a variable and the Lambdatyitonly supports 3
placeholders, meaning thatfunctors cannot take n-arity arguments which is quite
difficult if we want to have nested-terms. We can see here Lambda Library makes
use of the imperative way in defining theterms where assignments are used and it
is not side effect free proof.

* FACT!
lambda(x, y, z, x+y *7) (3,2,5);

The A-expression is handled by expression templates which & tosrepresent the
parse tree of the expression. As mentioned previouslyi¢sect2), PETE is used
to form expression templates from expression containistainces ofARGand the

evaluation of the application is also done by PETE. UsersA&F are not required

to know about PETE.

e Funk
((X,y,2)-->(x+y x7)) <<3 <<2 <<5;

One of Funk’s goal is to become a self contained sublangua@z®. Operator>
converts the list created by the comma operator and an esxpneemplate into an
actual Funk\-expression.

Using our syntax in writing the--expression above is given as follows:
(\int x\int y\int z.int x+y *7)"37275;

FACT! and Funk make use of template meta programming for thexpression, and the
difference between the two; Funk has its own syntaxX@xpression where the operators
involved in the expression are overloaded in the Funk libraing expression templates.
FC++ and Lambda Library make use of C++ templates in theitempntation. Comparing
other approaches with our approach in writing fgerm, we can say that our way is much
simpler is much closer to the originakterm. Even though the type of the function is
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explicitly declared, the type checking is done by the C++etggstem. The translation of
the A-term uses classes and inheritance in an essential way vwh&mpler and easier to
understand.

The other approaches deal only with simpléderms, but are they much more efficient,
since they don't use inheritance, so theéerms are not dynamically generated. All these
approaches have been optimised for performance rathefdhgenerality. The other ad-
vantage of those approaches is that they don't require amsixin of C++ but are just a
library used in addition to C++. In general it is always dable to add new feature by using
libraries rather than by extending a language, since eaghamguage extension makes the
language more complicated, and the language of C++ is glt@eather complex language.



Chapter 8

Summary and Outlook

In this chapter we will summarize our project and give somesaterations for future work
in extending and improving our project.

8.1 Summary

The objective of this project was to extend C++ languagedieoto enhance its existing sup-
port for different paradigm such as object-oriented, pdocal and generic programming.
The additional support that we implemented is functionalgpamming. We developed a
parser-translator program that translates typadrms into C++ classes so as to integrate
functional concepts into C++.

We introduced a syntax for representirgypes and -terms in C++. In that extended lan-
guage, we writéd -> B for the function typed — B, r"s for the application of r to s,
and\A x.B s for \z?.sif s : B. We use functional style notation rather than overloading
existing C++ notation, since we believe that this will impeareadability and acceptabil-
ity by functional programmers. Thg-abstraction is interpreted as a function of its free
variables in the fornfnew T( z1,...x,)). Hence, the evaluation of &abstraction in an
environment for free variables is similar to a "closure” mglementations of functional
programming languages.

The translated code uses the object-oriented approachogfgmnming that involves the
creation of classes for thieterm. By using inheritance, we achieved that the trarmsiati
of a A-abstraction is an element of a function type. Mabstraction is represented as a
new instance of its corresponding class. Even if the claksesvo occurrences of the
same)\-abstraction coincide, for each occurrence a new instaceeated. Therefore, if
a variable occurs as the same name, but with different mgfiafaneaning in two identical
A-expression, it will not be a problem.These features haea lbested on severalterms.

The correctness of our implementation is proved with respmethe usual (set-theoretic)
denotational semantics of the simply typedalculus and a mathematical model of a suffi-
ciently large fragment of C++. The proof is based on a Kripigde logical relation between
C++ values and denotational values.

120
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We model only the fragment of C++ that is involved in the ttatisn of the simply typed
A-calculus. We assume that classes translated foi#teem have instance variables, one
constructor, and one method which corresponds t@gesator() method. The method
has one argument, and the body consist of an applicative t€harefore, a class is given
by a context representing its instance variables, the atistt variable of the method and
its type, and an applicative term. Applicative terms are bers, variables, function terms
applied to applicative term, the application of one appiNeaterm to another, or a con-
structor applied to the applicative terms. When a congtruwdll of a class is evaluated, its
arguments are first evaluated. Then the memory is allocatetieoheap for the instance
variables, where they are set to the evaluated argumenésaddiress to this memory loca-
tion is the result returned by evaluating the constructtir e only possible result of the
evaluation of the applicative term is a number, so valuesddeesses or numbers.

The syntactic sets are groups of each entity of the syntaxenttanslated code. The
syntactic sets described above are defined in the sectionMalicative term which we

write asn, z, flai,...,a,],(a b) andclay,...,a,], corresponds to the C++ constructs
n, x, f(ai,...,an), ( *(a))(b) andnew c(al,...,a2) The class written
in the form(T; z : A;b) withT' = 24 : Ay,...,z, : A,, corresponds to the C++ translated

code discussed in Chapter 5.

During the execution of a-term, a class address of the application (App) of Xierm is
created on the heap (Heap) and with respect to the envirdrn(idew), a\-term is evaluated
to the value (Val) and extended heap (which contains theeaddsf the value that has been
evaluated for the\-term). For a function application, the heap which contdhs class
address of the two terms with the values evaluated from eaxch is evaluated to a value
and an extended heap.

The recursive description of the process in creating a sysfeC++ classes that represents
a A-term is based on the assumption that Meerm is not the first term being parsed, but
other terms (subterm) have been parsed before creatingearsg$ classes, and if the term
has free variables, the types of these variables are fixeg@opriate context.

After going through the definitions of the evaluation funateval, the implementation of
the C++ classes do coincide with the denotational semanttite simply typed\-calculus.
An integern is evaluated by itself and a variable is evaluated by retgrits value in the cur-
rent environment). The application of a native C++ functions to argumentsas, . . . , a,

is carried out by evaluating the arguments in sequence firsl then apply the functiof

to those evaluated arguments. The application) corresponds to the construgt(a))(b)
wherea andb is evaluated first and due to the type correctnessust be an element of the
type of pointers to a class. Therefore the value: afill be an address on the heap. The
information about the class used and the values of the iosteariables are stored on the
heap.(x(a))(b) is then computed by evaluating the body of the method of #&sdh the en-
vironment where the instance variables have values asistorthe heap, and the abstracted
variables has the result of evaluatibigThis is what is computed bywal which makes use
of the auxiliary functionapply. The expressior|a], which stands for the C++ expression
new c(ao, ..., a,), is evaluated by first computing, ..., a,, in sequence. What the func-
tion eval carried out is the intended behaviour of C++ which is therimi@tion about the
class used and the result of evaluating. . . , a,, is stored on the heap. Therefore, we can
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say that our implementation is proven correct.

8.2 Conclusion

Through the discussion of related works (Chapter 7) we ceeddthat there are researchers
who were very keen in merging the functional programmingagim to C++ language
with their pros and cons in doing so. The advantages of ouroapp/solution is that it
is simple and it uses classes and inheritance in an esswatyal Another advantage that
is quite significant is that our approach is really integiateéo C++, which avoids having
strange error message like the unnecessary error mesdagesar making a type error in
using FC++. Furthermore in applying functional programgiimo C++ , one does not have
to learn and use new constructs (like in FC++ and FACT!). Mwgiortantly, we have a
formal correctness proof and to our knowledge the verificatif the implementation of the
A-calculus in C++ (and related object-oriented languagsiiguogical relations is new. A
correctness proof of other implementations (such as Larhltimtary and FC++) would have
been difficult, since the libraries are very big, and makeafiske C++ template mechanism.
In our case we had complete control over the code generatédhwade it much easier to
carry out the proof.

The idea behind my thesis is to make established modellinigpaoof technology from
mathematics and logic available for the analysis of sthfograms. We address the fol-
lowing technology; Denotational semantics for higher gypéich is first set theoretic then
domain-theoretic (the latter is not worked out in the thekis to lack of time), logical
relations which provides powerful means to prove propentithigher type programs and
Kripke semantics to deal with states.

The fact that it is possible to have a denotational semaatics description level where
pointers are manipulated explicitly entails that the welbwn benefits of denotational se-
mantics, extensionality and compositionality, are stiflitable at that level. This has been
proven where we were able to give a short and concise proafra 6+ fragments using the
denotational semantics instead of a complicated opesdtamgument. More benefits are to
be expected when it comes to verifying programs written is @+ fragment.

Our original goal was to extend at reasonable fragment of B#x-terms. Unfortunately
this turned out to be too long, especially because using pirit Sarsing library turned out
to be complicated. Spirit is difficult to use since it is a nesive descendent parser, which
would have required to substantially modify the grammar efrCwhereas, using Lex or
Yacc would have been much easier. Apart from this, Spiritaffisult to use because of the
expansion of templates. But the advantage of using Spthisthe grammar is directly part
of the code instead of (when using Lex and Yacc) generating €tle from the grammar.
If we would start the project again, it would be advisablettotsvith Lex/Yacc, we realised
the difficulty unfortunately too late.

We believe that if our approach is extended to cover full Gae will obtain a language that
merges the worlds of functional and object-oriented pnognéng, and we will see many
examples, where the combination of both language concegtstfie use of-terms with
side effect) will result in interesting new program techrdg. We have introduced a general
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technique for introducing lazy evaluation into C++ [ABSQ6lbis illustrated by computing
the Fibonacci numbers efficiently in C++ (with the extendeet+Gyntax) using infinite
streams and lazy evaluation.

The ideal system for our approach would be an extensionseofulhlanguage C++ with
A-terms in addition of other constructs from functional pagming such as data types.

8.3 Future Work

We have shown how the functional concepts are introducedGrt+ in a provable correct
way. This work has lent itself to a number of extensions, sagthe integration of recursive
higher-order functions, polymorphic and dependent tygtesys, as well as the combination
of larger parts of of C++ with the-calculus. The accurate description of these extensions
would require more sophisticated, eg. domain theoretistroations and a more systematic
modelling of C++.

The proofs of theorems and how the functidhseval, andapply are defined is rather low
level since it mentions and manipulate the class enviromraad the heap explicitly. It
would be desirable to lift the proofs and definitions to thetedct monadic level. A frame-
work for carrying this out might be provided by suitable vens of Moggi’'s Computational
A-calculus [Mog91], Pitt’s evaluation logic [Pit91] and s logical relations for monads
[JGLNO2].

We intend to upgrade this to an extension of the language-types and\-terms together
with a parser program which translates this extended laggyudo native C++. We would
like to extend our implementation to support polymorphissing C++ templates since our
implementation does not support polymorphism specifiqadisametric polymorphism. Our
implementation deduces the function type of\derm based on the function type of its
subterms and it depends on the C++ type system for type clgeckihus, to give great
value to our implementation, we would extend it to suppopetynference. It would be
interesting to expand our fragment of C++ to deal with sideat$. This would allow for
instance in proving that our lazy construct shown in theisect.6 actually gives rise to an
efficient implementation of the Fibonacci function.

We would like to include memory management in our implemtigonao eliminate runtime
crashes and memory leaks. We intend to use garbage coliec@at+ i.e. using thdéibgc
library. Usinglibgc automatically protects your program against memory leaksws
writing program without callingdelete of free , allows fixing premature frees in the
code and provides a fast non-fragmenting memory allocator.



Appendix A

Grammar of A-terms Coded in Spirit

lambstmt = (lambtype | nativetype)
>> no_node_d[ch_p(' )]
>> jdentifier
>> no_node_d[ch_p( )]
>> no_node_d[ch_p('=")]

>> lambexp

>> ch_p(’y);
lambexp = lambdaterm | untypedlamterm;
lambdaterm = lambabstract | lambapp;
lambabstract = chlit<>("\\')

>> (lambtype | Nativetype)

>> ch_p(" ')
>> jdentifier
>> ch_p(.)

>> (lambabstract
| (lambtype | Nativetype)
>> ch_p( ")
>>untypedlamterm);

lambapp = no_node_d[ch_p(()]
>> |ambabstract
>> no_node_d[ch_p())]
>> (root_node_d[str_p("™)]
>> (lambapp |digit | identifier);

untypedlamterm = longest_d[(digit | identifier | lambdate rm)
>> * (root_node_d[(infixoperator | "]
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>> (untypedlamterm | lambdaterm)]
| identifier >> ch_p(()
>> (untypedlamterm | lambdaterm)

>> *(ch_p(,)
>> (untypedlamterm | lambdaterm);
infixoperator = ch_p('+)
| ch_p(-)
| ch_p(C =)
| ch_p(/);
digit = leaf_node_d[lexeme_d[+digit_p]];
lambtype = *(btype >> root_node_d[str_p("->")])
>> btype;
btype = longest_d[Nativetype

| inner_node_d[ch_p('() >>lambtype >> )]
linner_node_d[ '(" >>btype >>)7];

nativetype = str_p("int")
| str_p("char")

| str_p("string™)

| str_p("double™)

| str_p(“float")

| str_p("long")

| str_p("short")

| str_p("bool")

| str_p("signed")

| str_p("unsigned");

identifier = leaf_node_d[nondigit
>>x (nondigit|digit)];
nondigit = ch_p(.)

| alpha_p;



Appendix B

Integration of Functional
Programming into
C++:Implementation and Verification



Appendix C

A Provably Correct Translation of
the Lambda-Calculus into a
Mathematical Model of C++



Appendix D

Functional Concepts in C++
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