
Integrating Functional Programming
Into C++

Rose Hafsah Binti Ab. Rauf BSc. (Malaysia) MSc. (Malaysia)

A thesis submitted to the University of Wales in
candidature for the degree of Philosophiae Doctor

Department of Computer Science
University of Wales, Swansea

September 2007

Summary

C++ is a general purpose language that supports object-oriented programming as well as
procedural and generic programming, but unfortunately notfunctional programming. We
have developed a parser-translator program that translates simply typedλ-term to equiva-
lent C++ statements so as to integrate functional programming. The program parsesλ-terms
and translate them into full language of C++. Our intention is to upgrade this to an exten-
sion of the language of C++ byλ-types and -terms together with a parser program which
translates this extended language into native C++. For thispurpose we introduce a syntax
for representingλ-types and -terms in C++. We use functional style notation rather than
overloading existing C++ notation, since we believe that this will improve readability and
acceptability of our approach among functional programmers.

The translated code generated by the parser-translator program uses the object-oriented ap-
proach of programming that involves the creation of classesfor theλ-term. By using inher-
itance, we achieve that the translation of aλ-abstraction is an element of a function type.

The most important advantage of our thesis is that we give a mathematical proof of the
correctness of the translation, and to our knowledge the verification of the implementation
of λ-calculus in C++ using a logical relation is new. We introduce a suitable fragment of
C++ with a precise denotational semantics. We give a formal translation ofλ-terms into
this fragment and show that it preserves this semantics. We show as well completeness, i.e.
essentially all programs in this fragment of C++ can be obtained by translating terms of the
λ-calculus. We develop a mathematical model for the evaluation of programs in this model,
and show that this evaluation is correct with respect to the denotational semantics.

We hope that our model of a fragment of C++ which includes a formal model of the heap,
will have applications which go beyond the translation of the typedλ-calculus. We expect
that extensions of this model can be used to verify formally the correctness of more complex
C++ programs, including programs with side effects. We believe that if our approach is
extended to cover full C++, we obtain a language in which the worlds of functional and
object-oriented programming are merged, and that we will see many examples where the
combination of both language concepts (such as the use ofλ-terms with side effects), will
result in interesting new programming techniques.

Declaration

This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap-
pended.

Signed .. (candidate)

Date ..

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside organi-
sations.

Signed .. (candidate)

Date ..

Acknowledgements

This thesis would not have been possible without the supportof many people. I would
like to express my heartiest gratitude to both of my supervisors, Dr. Ulrich Berger and Dr.
Anton Setzer. They were abundantly helpful and offered invaluable assistance, support and
guidance. Without their guidance and knowledge, this thesis will not have been successful.

Special thanks also to my colleagues and friends who gave their support and assistance
throughout my duration of study. I would also like to convey my thanks to the Department
of Computer Science for their cooperation and facilities, and not forgetting to my sponsor,
Department of Training and Scholarship, University of Technology MARA, Malaysia for
their financial means.

I wish to express my love and infinite gratitude to my beloved family especially my husband,
Abd. Ghafar and my children, Najwa, Nawal, Nadia, Nazira, Najat, Najla and Abd. Hafiz
for their support and sacrifices. Also, my love to my parents for their endless support and
love.

Finally, I would like to thank every individual that was involved directly and indirectly
throughout the process of my thesis.

Contents

1 Introduction 1
1.1 A Brief History of Programming Languages 2

1.1.1 Development of Low-Level Languages2
1.1.1.1 First Generation . 3
1.1.1.2 Second Generation . 3

1.1.2 Evolution of High Level Languages 3
1.1.2.1 Third Generation . 3
1.1.2.2 Fourth Generation . 5
1.1.2.3 Fifth Generation . 6

1.2 Languages Evolved from other Programming Languages 7
1.3 Outline of Thesis . 8

2 From Imperative Programming to Object-oriented and Generic Programming 10
2.1 Imperative Programming .11

2.1.1 Structured Programming . 13
2.1.2 Sequential Composition . 15
2.1.3 Selection or Alternation . 15
2.1.4 Iteration . 15
2.1.5 Side Effects . 16
2.1.6 Aliasing . 16

2.2 Procedural Programming .18
2.3 Generic Programming . 20

2.3.1 Templates . 21
2.3.2 C++ Concepts . 22
2.3.3 Generic Programming Features in Other Languages 23

2.4 Object-oriented Programming .. . 24
2.4.1 History of Object-oriented Programming 24
2.4.2 Concepts in Object-oriented Programming 25

2.5 C++ as an Object Oriented Programming Language 32

3 λ-Calculus and Functional Programming 34
3.1 History of Functional Programming 35
3.2 λ-Calculus . 35

3.2.1 Variable Binding . 36
3.2.2 Substitution . 37

v

CONTENTS vi

3.2.3 Conversion . 38
3.2.4 Reduction . 38
3.2.5 Lazy evaluation . 40
3.2.6 Recursion . 41
3.2.7 Higher-order Functions . 42
3.2.8 Typedλ-calculus . 43

3.3 Functional Programming as an Implementation ofλ-calculus 45
3.4 Denotational Semantics .. 46

3.4.1 Definition of Denotational Semantics 47
3.4.2 Semantic Algebra . 47
3.4.3 Denotational Definition . 49

4 Integrating Functional Programming into C++ 51
4.1 Integration of Functional Programming into C++ 51
4.2 Overview of the Parser-Translator Program 54
4.3 Description of the Modules in the Parsing Phase 56
4.4 Description of Modules in the Translation Phase 58

4.4.1 Description of the Lambterm File and its Associated Files 59
4.5 Examples of the translation ofλ-term expressions 62
4.6 Lazy Evaluation in C++ . 66

5 Implementation of The Parser-Translator Program 70
5.1 Parsing Phase . 71

5.1.1 General Concepts in Scanning and Parsing 71
5.1.2 Parsing a statement . 73

5.2 Translation phase . 75
5.2.1 Translation of the Function Type 77
5.2.2 Translation of theλ-term . 78
5.2.3 Translation of the expression .. 80

5.3 The Execution of the Translated Code 80
5.4 Testing of the Translated Code .. . 83

6 Correctness Proof 89
6.1 Mathematical preliminaries 89
6.2 Definition of the Typedλ-calculus . 90

6.2.1 Types . 90
6.2.2 Terms . 90
6.2.3 Typing . 91
6.2.4 Denotational Semantics . 92

6.3 Implementation by C++ Classes .. 92
6.3.1 The Evaluation of theλ-terms in C++ 93
6.3.2 Modelling the Parser-Translator Program 98
6.3.3 The Correctness of The Translated Code 101

7 Related Work 107
7.1 FC++ Library . 107
7.2 FACT! . 109

CONTENTS vii

7.3 Lambda Library (LL) . 111
7.4 Kiselyov’s Functional Style in C++ 113
7.5 Funk: A Framework for Functional Style in C++ 114
7.6 Comparisons . 117

8 Summary and Outlook 120
8.1 Summary . 120
8.2 Conclusion . 122
8.3 Future Work . 123

A Grammar of λ-terms Coded in Spirit 124

B Integration of Functional Programming into C++:Implemen tation and Verifi-
cation 126

C A Provably Correct Translation of the Lambda-Calculus into a Mathematical
Model of C++ 137

D Functional Concepts in C++ 174

Bibliography 175

Chapter 1

Introduction

Ever since their inception in the 1950’s [BG96], high-levelprogramming languages have
been a fascinating and productive area of study. Programmers endlessly debate the relative
merits of their favourite programming languages, and researchers are looking for ways to
design languages that combine expressive power with simplicity and efficiency. Looking
at the history of programming languages we can clearly see a divergence of programming
paradigms (for example, object-oriented, logic, and functional) despite the fact that a ”uni-
versal” high-level programming language integrating all these paradigms would be highly
desirable. Therefore, great efforts are being made to fight this divergence by creating such
an integrated programming language. This thesis is not an exception, in the sense that it in-
tegrates functional programming concepts into the C++ language, with the longterm goal of
completely merging the functional and object-oriented programming paradigms. Undoubt-
edly, this will result in a wealth of interesting new programming techniques such as lazy
evaluation in C++ (see Chapter 4, section 4.6).

While the integration of functional and object-oriented programming concepts had been suc-
cessfully attempted before ([SS00], [FA00], [Kis98], [Lau95], [MS00], [Vel95], [JP00], our
thesis goes an important step further by giving a mathematical stringent proof of the correct-
ness of the integration, based on mathematical model of a fragment of C++. Our research
has produced four articles (jointly written by my supervisors and myself) which were pub-
lished in the CIE 2006 (informal proceedings and postproceedings) [Ab06], [ABS08] and
in the TFP 2006 (informal proceedings and postproceedings)[ABS06a], [ABS06b].

Before explaining more details of the results of our thesis,let us discuss some fundamen-
tal aspects of programming languages as well as the historical development of low- and
high-level programming languages. According to Herbert G.Mayer [May87], the primary
function of programming languages is to let the user communicate with the computer via a
common interface, where programming languages, together with their compilers bridge the
gap between low level, binary instructions that machines understand, and the higher level
in which people express their thoughts. We can say that programming languages are the
medium through which users communicate with a computer. Programming languages have
a wide spectrum of levels spanning from the low-level machine and assembly languages to
the high-level machine independent languages.

1

1.1 A Brief History of Programming Languages 2

A low-level programming language is a machine dependent language. This dependency
makes the program written not portable from one machine to another. A low-level program-
ming language requires an additional transformation from the conceptual idea to the actual
data structures and instructions. It takes a longer time to write a program in a low-level
language than writing it in a high-level language. Althoughthere are setbacks in coding a
program in a low-level language, the good thing about it is that program written in a low-
level language runs faster than a program in high-level language. This is because high-level
language programs need to be translated by means of a compiler into machine language
[May87].

A high-level programming language allows the programmer toexpress complex instruc-
tion sequences directly in the language used, and also allows the programmer to ignore the
machine-specific details. The more the actual computer can be ignored, the higher is the
language level, and the more convenient it becomes to code programs. Although we lose
some control over resource utilization, such as data and code space, most of the time high-
level language is preferable because memory space and a few seconds of machine time are
less precious than a programmer’s time.

In the following we will discuss the different levels of programming languages in greater
detail and describe their development through the history of programming. We hope that
this will give the reader a better understanding and appreciation of the achievements of this
thesis.

1.1 A Brief History of Programming Languages

There are many kinds of programming languages on the market,which sometimes make
people wonder why this is the case. Is it because of the ever evolving machine that is
becoming more and more sophisticated or is it because of the demand of humans that needs
everything to be automated? To understand more of why these programming languages
spring out rapidly, we reconsider the development of programming languages, starting with
low-level languages and moving on to high-level languages.

1.1.1 Development of Low-Level Languages

There are five generations of programming languages rangingfrom low-level to high-level.
The five generations of programming languages start at the lowest level with the first gen-
eration which is the machine language. They then range up through the second genera-
tion - assembly language, third generation - high-level languages (procedural language),
and the fourth generation - very high-level language (problem-oriented language). At the
highest level are the fifth generation languages which are the languages close to natural lan-
guage. Beginning in 1945, the five generations have evolved over the years, as programmers
adopted the later generations. The birth of the generationsare as follows [WS03]:

• First generation, 1945

• Second generation, early 1950’s

1.1 A Brief History of Programming Languages 3

• Third generation, mid 1950’s

• Fourth generation, early 1970’s

• Fifth generation, early 1980’s

1.1.1.1 First Generation

The first-generation languages are machine languages. Theyare primitive languages where
the program consists of sequences of instructions called machine code . This machine code
is addressed to the hardware of the computer and is written inbinary notation which consists
of binary digits i.e. 0 and 1. The instructions are made of strings of binary digits which rep-
resents operations such as add, subtract and compare. A later improvement of the language
is allowing the use of octal, decimal or hexadecimal representation of binary strings. Writ-
ing the machine language programs is tedious and error prone. Due to these impracticalities
of the language, a second generation language is introducedin the early 1950’s.

1.1.1.2 Second Generation

Second generation languages are called assembly or symbolic languages. These languages
use mnemonics to represent operations such as ADD for add or SUB for subtract. The
assembly language program when compiled is translated to machine language by an assem-
bler. All computers operate using a machine language. If programs are written in other than
machine language, they have to be translated to a machine language by a compiler or an
interpreter that is specific to that language.

One setback to this low-level language is that it is machine dependent, which means that
each one only work on one specific type of computer.

1.1.2 Evolution of High Level Languages

Programs developed in the low-level language is too specificin following the low-level de-
tails of computer’s hardware and they lack portability between different computers. These
disadvantages of low-level languages lead to the development of high-level languages. High-
level languages allow programmers to ignore low-level details of computer hardware and the
nearer the language resembling the ’natural language’ the less likely errors could be made
by the programmer.

1.1.2.1 Third Generation

In the mid 1950’s, the third generation of languages were in use. They are algorithmic or
procedural languages that are used to solve a particular type of problem. There are many
different kinds of high-level languages produced due to thedifferent attitude in solving the
problems involved [Hig73].

1.1 A Brief History of Programming Languages 4

The first high-level language is Fortran (FORmula TRANslation). It was developed in 1956
by John Backus at the IBM Corp., for scientific and engineering applications. The For-
tran compiler was not only the first compiler, but was also thebest optimizing compiler in
years to come. Over the years, Fortan was developed into Fortran-II, Fortran-IV, Fortran-66,
and Fortran-77 [May87]. In the early 1950’s, John McCarthy at the Masachusetts Institute
of Technology developed LISP (LISt Processing) and it was implemented in 1959. LISP
handled recursive algorithms better and become the standard language for the artificial in-
telligence community. It began as a purely functional language but soon acquired some
important imperative features that increased its execution efficiency. But, it is still the most
used functional languages. But, ML and Haskell have widespread use. More on history
of functional programming in Chapter 3. However, LISP is gradually being replaced or
challenged by Prolog in the artificial intelligence applications.

COBOL (COmmon Business Oriented Language) is the first language designed for com-
mercial application and it is still widely used now. It was developed in 1959 by a navy
programmer Captain Grace Mary Hopper and her committee of computer manufacturers
and users. It is used for a certain type of applications such as applications that involved
processing of dollars and cents. It is advanced in the use of file processing and handling of
character string data.

In Europe at about 1958, ALGOL (ALGOrithmic Language) was developed as an improve-
ment over Fortran. It was redesigned and improved further until it was completed and pub-
lished in 1960 as ALGOL-60. Even though it was said to be the most ingenious language
effort in the early days of programming languages, it never gained widespread acceptance
[May87]. It is used primarily in mathematics and science as is APL. APL (A Program-
ming Language) is published in the United States in 1962 by Kenneth Iverson at Harvard
University.

In 1966, PL/1 (Programming Language 1) is introduced by IBM Corp. It was intended as
a replacement for all previous programming languages and has features from all other pro-
gramming languages. Another important language is ADA. Itsname was taken to honour
Ada Augusta, the countess of Lovelace. She was the biographer of Charles Babbage and
considered as the first computer programmer, since she wroteprograms for Babbage’s ma-
chine. Ada was developed in 1981 by the U.S. Deptarment Of Defence. It was designed as
a language for military applications, in order to have one uniform language in which most
software for US military applications should be written in future.

BASIC (Beginner’s All-purpose Symbolic Instruction Code)was designed by two profes-
sors from Dartmouth College , John Kemeny and Thomas Kurtz in1966 as an easy to learn
interactive programming language. It became the primary language used in microcomputers
for a while, but has lost its importance. In 1971, a more structured language for teaching
that was named Pascal after Blaise Pascal, a French mathematician, was developed. It was
designed by Nicholas Wirth, a Swiss professor. It is one of the few very well designed lan-
guages which is widely used. Then in 1982, Wirth introduced Modula-2. It is a Pascal-like
language for commercial and mathematical applications. Modula-2 is a general purpose
programming language which is also designed for systems programming.

Around 1972, Dennis Ritchie of Bell Laboratories produced alanguage called C to imple-
ment the UNIX operating system. It is a general purpose language that is mainly suited for

1.1 A Brief History of Programming Languages 5

operating system implementations. Systems written in C aremore portable than the ones
written in assembly language. C++ is an extension of C is developed by Bjarne Stroustrup
of Bell Laboratories. C++ has become the most widely used general purpose language be-
cause of its speed and its capabilities to deal with object-oriented programming. Java is an
object-oriented language which was developed specificallyas a network-oriented language
where writing programs can be safely downloaded from the internet and can be executed
immediately without fear of any threat from computer viruses.

1.1.2.2 Fourth Generation

Very high-level or problem-oriented languages, also called fourth generation language (4GLs),
are much more user-oriented and allow users to develop programs with fewer commands
compared with procedural language, although they require more computing power. These
languages are called problem-oriented because they are designed to solve specific problems,
whereas procedural languages are more general purpose languages.

There are three types of problem-oriented languages. They are report generators, query
languages and application generators. A report generator which is also called as report writer
is a language to produce a report, where the report can be a printout or a screen display in
a certain format specified by the user. A query language is an easy-to-use language for
retrieving data from a database management system. The query may be expressed in the
form of a sentence or near-English command. An application generator is the programmer’s
tool consisting of modules that have been programmed to accomplish various tasks. The
benefit of this generator is that the programmer can generateapplication programs from
descriptions of the problem rather than by traditional programming, in which the processing
of the data have to be specified. Programmers use applicationgenerators to help them create
parts of other programs such as to construct onscreen menus or types of input and output
screen formats.

FORTH is the first fourth generation language developed in 1970 by the American As-
tronomer Charles Moore. FORTH is used in scientific and industrial control applications.
Besides FORTH, NOMAD and FOCUS are database management systems which include
application generators. Other examples of application generators are Mathematica, MAT-
LAB, Progress 4GL, Maple SPSS (which are data manipulation,analysis and reporting lan-
guages) , APE, AVS (are data-stream languages) and Coldfusion (a web development
language). RPGIII, Quest, Report Builder, GEMBase, OracleReports, PostScript are ex-
amples of report generators, and SQL, Informix-4GL, SB+/SystemBuilder, and Genero are
examples of query languages.

High-level, domain-specific programming languages were earlier often mentioned as fourth-
generation languages, while expert systems were called fifth-generation programming lan-
guages. In later years this distinction has blurred, as manyvery high-level general purpose
programming languages like Python, Haskell and Common Lisphave emerged.

Domain-specific languages are languages tailored to a specific application domain. For a
specific domain, they offer substantial gains in expressiveness and ease of use compared
to general-purpose languages. They sacrifices generality and provides notations and con-

1.1 A Brief History of Programming Languages 6

structs tailored to a particular application domain. (E)BNF and Excel are representatives of
domain-specific language which are for syntax specificationand spreadsheet application re-
spectively [HM07]. The term domain-specific language has become popular in recent years
in software development to indicate a programming languageor specification language ded-
icated to a particular problem representation technique, and/or a particular palestine tech-
nique. The concept isn’t new - special-purpose programminglanguage and all kinds of
modelling/specification languages have always existed, but the term has become popular
due to the rise of domain-specific modelling. The opposite isa general-purpose program-
ming language, such as C or Java, or a general-purpose modelling language such as the
UML. Creating a domain-specific language (with software to support it) can be worthwhile
if the language allows a particular type of problems or solutions to them to be expressed
more clearly than pre-existing languages would allow, and the type of problem in ques-
tion reappears sufficiently often. In comparison with the domain specific language with our
project we can clearly say that the main goal of our project isto develop a general purpose
language extension of C++ not a domain specific extensions. Thus we did not consider in
integrating the functional programming into C++ as creating a domain specific language.

1.1.2.3 Fifth Generation

Fifth generation language is an outgrowth of artificial intelligence research. Artificial in-
telligence (AI) is a group of related technologies used for developing machines to emulate
human qualities, such as learning, reasoning, communicating, seeing and hearing. In the
early 1970s, PROLOG (PROgramming LOGic) was designed by French computer scien-
tist Alain Colmeraur and logician Philippe Roussel. PROLOGis useful for programming
logical processes and allows to automatically deduce programs from declarations. Prolog
received a major boost in 1981, when the Japanese for New Generation Computing Technol-
ogy selected logic programming as its enabling software technology, and launched a ten year
project to provide complementary hardware technology in the shape of fast logical inference
machine [Wat90].

Today, the main areas of artificial intelligence are virtualreality, robotics, natural language
processing, fuzzy logic, expert systems, neural networks,genetic algorithms and cyborgs.
Virtual reality, a computer generated virtual reality projects a person into a sensation of three
dimensional space. Other than using virtual reality in arcade-type games, its more important
uses are in simulators for training. Robotics is the development and study of machines that
can perform work normally done by people and natural language processing is the study
of ways for computers to recognize and understand human language. LUNAR, developed
to help analyze moon rocks, answers questions about geologyon the basis of an extensive
database is an example of natural language processing. Fuzzy logic is a method of dealing
with imprecise data and uncertainty, with problems that have many answers rather than one.
Unlike classical logic, fuzzy logic is more like human reasoning: it deals with probability
and credibility. Expert system is an interactive computer program used in solving problems
that would otherwise require assistance of a human expert. Such program simulates reason-
ing process of experts in certain well-defined areas and incorporates not only the expert’s
surface knowledge (”textbook knowledge”) but also deep knowledge (”tricks of the trade”).
Artificial intelligence and fuzzy logic principles are being applied to the development of

1.2 Languages Evolved from other Programming Languages 7

neural networks. Neural networks use physical electronic devices or software to mimic the
neurological structure of the human brain where they learn from example and don’t require
detailed instructions. A genetic algorithms is a program that uses Darwinian principles of
random mutation to improve itself. As in Darwin’s rules of evolution, many chunks of code
compete to see which can best fulfil the goal of the program where some chunks will be-
come extinct and the survived ones will combine with other survivors to produce offspring
programs.

Artificial intelligence research has led to many advances ofprogramming languages includ-
ing LISP and its dialects , Planner, Actor, the Scientific Community Metaphor, production
systems and rule-based languages. According to Hewitt [Hew06], Planner was the first
language to feature procedural plans that were called by pattern-directed innovation using
goals and assertions. A subset called Micro Planner [Bau72]was implemented by Gerry
Sussman, Eugene Charnak, and Terry Winograd [Lig73] and wasused in Winograd’s natu-
ral language understanding program SHRDLU and other projects. Several researches then
introduced other subsets of Planner such as PICO-PLANNER [And72] and Popler [Dav73].
Bob Kowalski [Kow88], who had been one of the principal members of the logic paradigm
community, then adapted, in collaboration with Alain Colmerauer, some theorem proving
ideas into a form similar to a subset of Micro Planner called Prolog. Using Prolog, Kowalski
hoped to save the logic paradigm as a suitable approach to artificial intelligence.

There may yet be a spring of a new discipline of programming that can be considered as the
sixth generation programming language. Trygve Reenskaug,a researcher at the University
of Oslo, created and explored a possible new discipline of programming in his BabyUML
project [Ree07] which is still experimental. He regard BabyUML [Ree04] as a sixth gen-
eration programming language because it combines the algorithmic capabilities of the third
generation with the semantic modelling of the fourth generation language. BabyUML re-
places the idea of a closed application with an open module that is created within a running
context. Current programming technology involves a four stage process which includes
modelling, coding, loading and execution. But, BabyUML merges them into one, making
programming a question of dynamically modifying a running system.

1.2 Languages Evolved from other Programming Languages

There are several programming languages that evolved from other programming languages
to improve the language in fulfilling the demands of system development where software
are becoming more and more complex. OCaml (Object Caml) is the implementation of the
Caml dialect and of ML extended with class based object and powerful module system in
the style of SML. It is a general purpose programming language which combines functional,
imperative and object oriented programming. It is suited tomedium advanced programmers
as a tool to boost their productivity through type inference. OCaml does something similar
to what we aim at, but coming from the functional programmingside. It is the extension of
ML by objects. It lacks the full power of C++ concepts, especially pointers, a rich object-
oriented structure, explicit memory management. However it is a very clean language. It
is like a functional programming language, with objects added to it, whereas the language,
this project was aiming at (we haven’t achieved it in full yet, but some steps towards it) we

1.3 Outline of Thesis 8

have in mind is an object-oriented (or in fact multi-paradigm language) with features from
functional programming added to it. So OCaml is intended forfunctional programmers who
need some object orientation, whereas the program this project was aiming at is intended
for imperative or object-oriented programmers, who need some concepts from functional
programming.

F# is the implementation of the core of the Caml programming language for the .Net frame-
work. Its aim is to work together with C#, Visual Basic SML.Net and other .Net program-
ming languages. C# is derived from C and C++ and developed by Microsoft. It is a Java like
language for web programming and was specially designed to operate within the .Net frame-
work. Pizza is an extension of Java with important features like parametric polymorphism,
function pointers and algebraic types. However, its encoding of λ-terms is extensive. But
the generic part of Pizza has been developed further to an extension of Java called Generic
Java (GJ). Most ideas of GJ have been incorporated into Java 1.5.

Purely imperative programming languages such as C or Pascaldo not provide a satisfying
mechanism such as abstraction and data manipulation. C++ isan extended version of C
where it supports object-oriented programming and templates (see Chapter 2). Purely object
oriented languages like SmallTalk are excellent with dynamic application but do not provide
static guarantees. Typed class based programming languages such as C# and Java contain a
very large number of constructs and it is sometimes difficultfor programmers to choose how
to model their program and sometimes one obtains a large program for a simple problem.

1.3 Outline of Thesis

Since the beginning of evolution in software development, programmers or more precisely
computer scientists are trying to find ways or techniques in improving how programs are
designed or structured. There are several approaches in designing programs. They are
known as programming paradigms. The most prominent ones areimperative, procedural,
module-based, generic, declarative, functional and object-oriented programming. These
programming paradigms are discussed in Chapters 2 and 3.

By combining the advantages of functional programming and object-oriented programming,
it is hoped that a general purpose object-oriented languagelike C++ can enhance the effi-
ciency of developing a program. Since functional programming is based on theλ-calculus,
it is appropriate to embed the typedλ-calculus into C++. This extension of C++ is devel-
oped by creating a parser that can parse a C++ program and translate any typedλ-terms in
it to equivalent C++ statements. This integration of functional programing into C++ is to
simplify the coding of the typedλ-terms so as making it a simple task to defineλ-terms in
C++. The syntax of defining these typedλ-terms was decided based upon simplification and
ease of use for programmers or users.

A discussion on the approach that we use in integrating functional programming into C++
and the design, specification and development of the programthat parses and translatesλ-
terms into equivalent C++ code can be seen in Chapter 4. The implementation of the parser-
translator program is discussed in greater detail in Chapter 5. In this chapter, the parsing
and translation of the simply typedλ-terms are discussed. The simply typedλ-terms are

1.3 Outline of Thesis 9

translated by using the object-oriented approach of programming that involves the creation
of classes for theλ-term. The translation of aλ-abstraction is an element of a function type,
where the concept of inheritance plays the main role. The execution of the translated code
in C++ is discussed by showing how the classes and variables are allocated on the heap in
the memory. The evaluation strategy of the translated code is call-by-value.

One thing that is new in our approach is that we have correctness proof of our C++ imple-
mentation of theλ-calculus. We proof the correctness of our implementation with respect to
the usual (set-theoretic) denotational semantics of the simply typedλ-calculus and a mathe-
matical model of sufficiently large fragment of C++ using theKripke-style logical relation.
Complete proofs are given in Chapter 6. Related work in integrating functional program-
ming into C++ is discussed in Chapter 7. Summary of the thesisis discussed in Chapter 8
and future work is recommended. It becomes our believe that if our approach is extended
to cover full C++, we can obtain a language in which the worldsof functional and object-
oriented programming are merged.

As mentioned earlier, we have produced papers from our research which are both refereed
at usual journal standards and are quite different from the thesis. Papers in the Theory Of
Computing System (Appendix C) and Trends in Functional Programming 2006 (Appendix
D) use monadic concepts to define the model, and the latter paper (TFP) added the lazy data
structures.

Chapter 2

From Imperative Programming to
Object-oriented and Generic
Programming

A programming paradigm is defined as a paradigmatic style of programming. This can be
compared with the notion of programming methodology, whichis a paradigmatic style of
carrying out software engineering. A programming paradigmprovides a view of how the
program is being represented. It determines the style and the design method the programmer
would use in developing software.

Programming languages are tools for writing software. Theyare the tools we use to commu-
nicate not only with computers but with people. They have been an active field of computer
science throughout the decades. As discussed earlier, there are many programming lan-
guages , beginning with the lowest to the higher hierarchy ofprogramming languages (refer
to Chapter 1, section 1.1). Computer programmers or researchers/computer scientists are

still trying to find a better programming language that can beused with ease in

writing software efficiently. The pros of different languages are sometimes combined to
create a new language or an extension of an existing language.

Just as different groups of software engineering, support different methodologies, differ-
ent programming languages support different programing paradigms. There need not be
a one-to-one relationship between programming languages and their paradigms. Some
languages are designed to support one particular paradigm.Such languages are called
paradigm-oriented, for example Java and Smalltalk supportobject-oriented programming
while Haskell and Scheme support functional programming. Other programming languages
support multiple paradigms and are therefore paradigm-neutral like C++, which is designed
to support elements of procedural programming, object-oriented programming and generic
programming. The design abstractions can easily be directed to program components if the
design method and the language paradigm are the same or the language is paradigm-neutral
[GJ98].

10

2.1 Imperative Programming 11

Many programming paradigms are well known for what techniques they forbid or enable.
For example, pure functional programming disallows the useof side effects and structured
programming disallows the use of goto’s. Object-oriented paradigm is the most common
style of programming nowadays. It is certainly the key programming methodology for the
next decade [DD01].

Before going further into the object-oriented paradigm of programming, we think that it
is important first to go through some of the paradigms in programming that is relevant to
this research. We discuss imperative programming first because it is the basis of most pro-
gramming not including functional programming. The project in this thesis applied object-
oriented programming in developing the program and in the translation of theλ-expression.
Structured programming is also discussed because the objects in the object oriented pro-
gramming have internal structures which is usually built using structured programming
techniques and also the manipulation of the objects is best expressed with this technique.
The concept of generic programming make possible the existence of Standard Template Li-
brary(STL) [STL00]. Especially containers make use of thisconcept. We will use generic
programming when creating the translation of the function type of aλ-term. (see Chapters
4, 5, 6)

2.1 Imperative Programming

The imperative programming paradigm is an abstraction of the principles for executing pro-
grams in real computers which in turn are based on the Turing machine and the von Neuman
machine. A diagram of the von Neuman machine is given in Figure 2.1 [GJ98]. This archi-
tecture consists of a memory, that contains data and instructions, a CPU and an I/O unit.

Fetch
Execute
Store

Bus

I/O Memory CPU

Figure 2.1: A von Neumann computer architecture

The CPU is responsible for fetching instructions one at a time. Since machine instructions
are very low-level , they require the data to be taken out of memory and manipulated through
arithmetic and logic operations with the result being copied back to the memory. Execution
of instructions result in the change of the state of the machine which is reflected by the
contents of the memory.

An abstraction is a model that highlights the relevant aspects of a phenomenon and ignores
its irrelevant details [GJ98]. In other words, conventional programming languages adopt
the underlying von Neumann architecture as their computational model but abstract away

2.1 Imperative Programming 12

from the details of each sequential step of execution. This model consists of a sequential,
step by step execution of instructions which change the state of computation by modifying
the repository of values. Sequential execution of languagereflects the sequential fetch and
execution of machine instruction performed by the hardware. A variable of the language
which can be modified by the assignment statements, reflects the behaviour of the memory
cells of the computer architecture. Higher levels of abstractions such as procedures and
functions, data types, exception handlers and classes havebeen developed from time to time
until now by language designers to overcome the ever increasing needs of programmers.
Even though higher level languages have been designed to make programming much easier,
the concept of the languages are still based on the von Neumann architecture.

The state in an imperative language is the logical model of storage which is an association
between memory locations and values. It consists of collection of names and the associated
values and the location of control in the program. In imperative programming, a name may
be assigned to a value which in turn can be reassigned to another value. The execution of a
program generates a sequence of states abbreviated asS. The transition from one state to the
next is determined by assignment operations and sequencingcommands that is abbreviated
asO in the expression below:

S0
O0−−→ S1..... −→ Sn−1

On−1

−−−→ Sn

Imperative programs are characterized by sequences of bindings i.e. state changes. So, a
name has two bindings which is a binding to a location and to a value. The location is called
the l-valueand the value is called ther-value. For example, the statement :

y := y + 1

indicates that they on the left(l-value) denotes the location while they on the right(r-value)
denotes the value. Assignment changes the value at a location. A variable and value are
bound by an assignment. The assignment statement typicallyhas the form :

V := E

Varieties of notations are used in a programming language toindicate the binding of a vari-
ableV and the value of an expressionE. Examples are shown as follows :

Pascal V := E
C++ V = E
APL V <- E
Scheme (setq V E)

The assignment is not the same as a constant definition because it permits redefinition. For
example,

y := 2;
y := y + 1;

reads as: assigny to 2 and then reassigny to the value of the expressiony + 1 which is 3.

Several kinds of assignments are possible. A multiple assignments

2.1 Imperative Programming 13

V0 := V1 := ... := Vn := E

causes several names/variables to be assigned to the same value. A simultaneous assignment
of the form:

V0, V1, ..., Vn := E0, E1, ..., En

causes several assignments of names to values to occur simultaneously. This allows the
swapping of values without explicit use of an auxiliary variable.

For the point of view of denotational semantics, the assignment is a function from states to
states and for the point of view of operational semantics, the assignment changes the state
of an abstract machine.

When imperative programming is combined with subprograms,it is calledprocedural pro-
gramming. An imperative programming can only be understood in terms of its execution
behaviour. This is because during the execution of the code,any variable maybe referenced,
control may be transfered to any arbitrary point and any variable binding may changed.
Hence, the whole program need to be examined in order to understand even a small portion
of the program. In view of this, sequence control are very important in an imperative pro-
gramming. Considerable efforts have been given to find an appropriate control structures.
Figure 2.2 gives a minimal set of basic control structures.

command ::= identifier := expression
| command; command
| label : command
| GOTO label
| IF boolean_expression THEN GOTO label

Figure 2.2: A set of unstructured commands

The unstructured commands include the assignment command,sequential composition of
commands, a provision to identify a command with a label, andan unconditional and con-
ditional GOTOcommands. The programs are flat without hierarchical structure thus making
the code difficult to read and understand. The set of unstructured commands contain one
of the most powerful and highly criticized commandGOTO, when used in abundance in a
program will result in a ’spaghetti’ like code which is difficult to understand and read. Due
to this, structured programming (known as programming without GOTO) comes into pic-
ture where structured programming provides control structures that make it easier to reason
about imperative programs.

2.1.1 Structured Programming

Structured programming is a term that describe a style of programming that emphasizes
hierarchical program structures in which each has one entrypoint and a few clearly marked
exit points. Its goal is to produce a program that is easy to read and understand hence easy
to maintain. A minimal set of structured commands are as in Figure 2.3

2.1 Imperative Programming 14

command ::= SKIP
| identifier := expression
| IF guarded_command [[] guarded_command] * FI

| DO guarded_command [[] guarded_command] * DO
| command ; command

guarded_command ::= guard --> command
guard ::= boolean expression

Figure 2.3: A set of structured commands

At a low-level , structured programs are composed of simple,hierarchical program flow
structures. These structure can be regarded as single statements or combination of simpler
statements that can be of primitive statements such as the assignment statement or procedure
calls. Djikstra identified three types of structures i.e concatenation, selection and repetition.
Concatenation refers to a sequence of statements executed in order whereas selection is
alternatives or choices given in order to execute an operation which is usually expressed with
keywords such asif .. then [else} .. endif, switch or case . Repetition
is execution of a statement depending on the state of the program where the statement can
be executed 0 or several times depending on the condition given.

The general structure of selection and repetition is shown in the Figure 2.3 asIF..FI and
DO..OD respectively. TheIF andDOcommands defined in the Figure 2.3 are in terms of
guarded commands.

IF guard → command FI is equivalent toif condition then command and

DO guard → commandis equivalent towhile condition do command .

A command preceded by a guard can only be executed if the guardis true. Generally, the
semantics ofIF - FI andDO - ODcommands require that only one command corre-
sponding to the guard is true be selected for execution. TheDOcommand can be represented
with keywords such aswhile, repeat or for .

At a high level structure, programmers should break larger piece of code into shorter sub-
routine (functions, procedures, blocks or others) that aresmall enough to be understood and
maintained easily. In general, global variables should be used sparingly and local variables
should be used instead by subroutines where the arguments can be passed by value or ref-
erence. This is to make subroutines or small pieces of code easier to understand without
having to go through the whole program.

Structured program is usually designed using the ”top down”approach where large scale
structure of a program are mapped out into smaller operations. This smaller operation are
implemented and tested and then tied together to form a wholeprogram.

Imperative programming languages have a rich assortment ofcontrol structures, which rep-
resent Djikstra’s control structures.

2.1 Imperative Programming 15

2.1.2 Sequential Composition

Sequential composition specifies a linear ordering of command execution. Usually it is in-
dicated by placing textual sequence separated by a line or a symbol (most commonly a
semicolon). This symbol usually used as a termination pointfor the commands or a com-
mand separator(for example in C++). At an abstract level, composition of commands is
indicated by using composition operator such as semicolon (C0;C1).

2.1.3 Selection or Alternation

Selection permits the specification of a sequence of commands by cases. The selection of a
particular sequence is based on the value of an expression. The most common representative
of alternation are the commandsIf andCase. For If command the condition is a boolean
expression, whileCase command permits any scalar expression. TheCase statement is
best used when the selection is from many statements.

2.1.4 Iteration

Iteration specifies that a sequence of commands may be executed zero or more times (repeat-
edly). Most programming languages provide different loop constructs. This loop constructs
define an iteration of certain action which is called the loopbody. It also has an expression
which determines when the execution will ceased. Often, onedistinguishes between loop
based on whether the number of repetitions are known at the start of the loop or the repeti-
tions continue until a certain condition is met. The former kind of loop is usually called a
’for’ loop and the latter is often called the ’while’ loop.

The ’for’ loop define the control variable which takes on all values of a given predefined
sequence. For every value the loop body is executed. The general appearance of a for loop
is shown as follows :

for loop_ctr_var := lower_bound to upper_bound do statemen t

The ’while’ loop describe any number of iterations of the loop body, including zero. The
semantics of this loop require the testing of the condition or expression before the body is
executed. They have the following general form :

while condition do statement

Some languages provide a similar kind of loop as ’while’, where the condition is checked
at the end of the body (i.e. the loop body is executed at least once). In Pascal, the construct
has the following general form:

repeat statement until condition

In the ’repeat’ loop, the body is executed as long as the condition is false. It will terminate
when the condition becomes true. C++ provides the ’do-while’ statement that behaves in a
similar way which has the following general form :

do statement while expression

2.1 Imperative Programming 16

The body of the ’do-while’ statement is executed repeatedlyuntil the value of the expression
becomes zero (i.e. the condition is false).

2.1.5 Side Effects

Side effects are a feature of imperative programming languages that make the reasoning
of the program difficult. Side effects are used to provide communication among program
units, but when undisciplined access to global variables are permitted, the program becomes
difficult to understand. The whole program needs to be scanned to determine which program
unit that access and modify the global variables since a callcommand doesn’t really reveal
which variables are affected by the call. The change to a global variable is calledside effect.

For example:

integer f(a:integer)
{

b := b +1
f := b + a

}

This function computes a value as well as changing the globalvariableb. This causes side
effects. In addition of it changing the global variable, thefunction is difficult to reason with
itself. For example, if at some point in the program it is known that b = y = 0, then the call
f(y) will return a value 1. But, should the following expression:

1 + f(y) = f(y) + f(y)

occurs at that point in the program, then the expression willbe false.

2.1.6 Aliasing

Aliasing is another feature that makes programs harder to understand and difficult to reason
about. Two names are aliases if they denote the same data object during a unit activation.
One way aliases occurs is when two or more arguments to a subprogram are the same. When
a data object is passed by reference, it is referenced both byits name in the calling environ-
ment and its parameter’s name in the called environment. In the following subprogram, the
parameters are in-out parameters (which are parameters that acts as inputs and outputs for
the subprogram):

Aliasing(x, y : in out integer)
{

y := 1
y := x + y

}

For the callAliasing(i, i) , the two parameters are used as different names for the
same object givingi the value 2. But, in the callAliasing(a[i], a[j]) , the result
will depend on the values ofi andj with aliasing occurring when they are equal. This later

2.1 Imperative Programming 17

call illustrates that aliasing can occur at run time, so the detection of aliasing may be delayed
until run time, thus compilers cannot be relied on to detect aliasing.

Aliasing interferes with the optimizing phase of a compiler. Optimization sometimes re-
quires the reordering of steps or the deletion of unnecessary steps. The following assign-
ments which appear to be independent of each other illustrate an order of dependency.

x := a + b
y := c + d

If x andc are aliases for the same object, the assignments are interdependent and the order
of evaluation is very important.

Other ways that aliasing can occur:

• A data object may be a component of several data objects (referenced through pointer
linkages)

• Formal and actual parameters share the same data object

• Procedure calls have overlapping actual parameters

• A formal parameter and a global variable denote the same data object

Pointers are intrinsically generators of aliasing. When a programming language requires
programmers to manage memory for dynamically allocated objects and the language permits
aliasing, an object returned to memory may still be accessible through an alias and the value
may be changed if the memory manager allocates the same storage area to another object.
For example, in the following code, the pointerr is left pointing to a non-existent value.

type pointer = * Integer
var r : pointer;

procedure FreePointer:
var s : Pointer;
begin;
new(s);
s* := 10;
r := s;
dispose(s)
end;

begin
new(r);
FreePointer(r)

Many times optimizers have to make conservative assumptions about variables in the pres-
ence of pointers. For example, a constant propagation process which knows the value of
y is 1 will not be able to keep this information after an assignment e.g.* x = 2 because
maybe that* x is an alias ofy (in the case after an assignment such asx = &y). The value
of y will be changed as well after the effect of the assignment to* x . Thus, propagating the
information thaty is 1 to the statements following* x = 2 would be wrong if* x is indeed

2.2 Procedural Programming 18

an alias ofy . However, if we have information about pointers, the constant propagation
process could make a query like: Isy an alias of* x?. Then if the answer is no, theny = 1
can be propagated safely.

Another optimization that is as an effect of aliasing is codereordering. If the compiler
decides thaty is not an alias of* x , then the code that uses and changes the value ofy can
be moved before the assignment* x = 2 , if this improves scheduling or enable more loop
optimizations to be carried out. In order to enable such optimizations to be carried out in
a predictable manner, the ISO standard for the C language specifies that it is illegal (with
some exceptions) for pointers of different types to reference the same memory location. This
rule is known as strict aliasing. It allows impressive increases in performance but has been
known to break some valid code.

The problem of aliasing arises as soon as language supports variables and assignments. If
more than one assignment is allowed on the same variable, thefact thatx = y cannot be
used at any other point in the program to infer a property ofx from a property ofy . The use
of aliasing and global variables magnifies the issue more.

Imperative constructs jeopardize many of the fundamental techniques for reasoning about
mathematical concepts. For example, the assignments axiomof axiomatic semantics is valid
only for languages without aliasing and side effects. Much work has been tempted to ex-
plain the ”referential opaque”’ features of programming languages in terms of well defined
mathematical constructs. By providing descriptions of programming language features in
terms of standard mathematical concepts, programming language theory makes it possible
to manipulate programs and reason with them using rigorous and precise techniques. But
the resulting descriptions are complex and the notational machinery is difficult to use. One
strong motivation for functional and logic programming is that it avoids this complexity of
imperative programming.

2.2 Procedural Programming

In the history of computer programming, most programs were written sequentially where
programs consist of series of steps that take place one afterthe other where these steps are
executed based on the condition determined by the programmer. The major setback in the
sequentially written program that does not involve any procedures, is that some part of the
program had to be rewritten in more that one place if the same task has to be done in a
different part of the program. This involves duplication ofstatements. To overcome this,
programming languages allow methods to be used making writing programs becomes easier
because statements that are used frequently in the program such as the task of printing are
grouped together in a method. This method can be called whenever needed. Method in
programming languages are known as functions, procedures,methods, subprograms, sub-
routines or simply routines.

For example the task of printing a message. In C++, this task can be done by the statement :

cout<<message;

2.2 Procedural Programming 19

where this message can be printed out depending on the content of the variable message.
This statement can be a part of a functionprtmessage shown below :

void prtmessage(string message){
cout<<"The message is "<<message<<endl;

}

So in the main program, the use of this functionprtmessage can be seen as follows :

main(){

string messg;
messg = "good evening";
prtmessage(messg);
prtmessage("goodbye");
}

The output of the above segment program is

The message is good evening
The message is goodbye

As mentioned the use of functions in a program contribute in structuring a program provided
the coding of the function follows the structuring techniques.

Procedural programming is a conventional programming style that is based upon the concept
of modularity and scope of program code. Programs are decomposed into computation steps
that perform complex operations. Routines are used as modularization units to define the
computation steps. These modules are either coded by the same programmer or precoded
by someone else and provided in the code library.

Each module consists of one or more subprograms whereby these subprograms can be com-
posed of procedures, functions, subroutines or methods depending on the programming lan-
guage used. Most languages distinguish between two kinds ofroutines i.e procedures and
functions. A procedure is an abstract command that is calledto alter some desired state
and it does not return a value, while functions are the mathematical counterparts which will
return a value when activated depending on the arguments or parameters passed.

An example of a function (AVERAGE) that averages three numbers and a procedure (CAL-
CULATE) that calculates the total of three numbers and squaring it written in Fortran are as
follows:

REAL FUNCTION AVERAGE(X, Y, Z)
REAL X, Y, Z
AVERAGE = (X + Y + Z) / 3.0
RETURN
END

SUBROUTINE CALCULATE(A, B, C, TOTAL, TOTSQUARE)
REAL A, B, C, SUM, TOTSQUARE
TOTAL = A + B + C

2.3 Generic Programming 20

TOTSQUARE = TOTAL** 2
RETURN
END

The function and subroutine defined above can be invoked as shown below:

REAL A, B, C, TOTAL, TOTSQUARE, AVG
CALL CALCULATE(A, B, C, TOTAL, TOTSQUARE)
AVG = AVERAGE(A, B, C)

We can say that the function and procedure provides a serviceor they can be called a service
provider and the one that uses them is a client. If the serviceis provided as a function,
then the client has to use it in an expression. On the other hand, if the service is provided
as a procedure, the client are forced to use an imperative style. It is also possible for a
procedural program to have multiple levels or scope, with subprogram defined inside other
subprograms. Each scope can contain name that cannot be seenin outer scopes.

Procedural programming offers more benefit over a simple sequential programming because
procedural code is easier to read hence more maintainable, it is more flexible and facilitates
the practice of good program design. The canonical example of a procedural programming
language is ALGOL. Others are Fortran, PL/1, Modula-2 and Ada.

2.3 Generic Programming

Generics in computer science is defined as a construct that allows one value to take different
data types as long as certain contracts such as subtypes and signature are kept. Generic
programming is a programming style that emphasizes the use of this technique. Generic
modules may be instantiated either during compile-time or run-time to create the entities
such as data structures, functions and procedures that is needed to build a program. This
programming approach encourages the development of high-level of generic abstractions as
units of modularity.

A simple example of using generic technique in creating a list is by declaration the list
asList<T> , whereT represents the type of the list. When instantiated, one can create
List<Integer> or List<String> . The list is then treated as whichever type speci-
fied.

Polymorphism is the fundamental mechanism for generic programming. Generic program-
ming is best suited to parametric polymorphism where the example on list given earlier is
an example of parametric polymorphism. More about polymorphism will be discussed in
the section 2.4.2.

The generic programming paradigm does not exist in isolation. It exists jointly with other
programming paradigm. For example it exists with object oriented paradigm as in Eiffel
and later versions of Java, with functional programming as in ML and also with languages
which provide more than one paradigm such as C++ and Ada.

However, it was , templates of C++ that popularized the concept of generics.

2.3 Generic Programming 21

2.3.1 Templates

As mentioned above, the concept of generics is popularized by the templates of C++. Tem-
plates allow code to be written without concerning much of the data type that eventually will
be used in the program. Template in C++ is of great utility to programmers especially when
it is combined with multiple inheritance and operator overloading. The C++ Standard Tem-
plate Library provides many useful functions within the framework of connected templates.
For example , the C++ STL contains the function templatemax(x,y) which will returnx
or y whichever is larger. This template could be defined as :

template <class T>
T max(T x, T y)
{ if(y > x)

return y;
else

return x;
};

It can be called just like a function such as :

cout<<max(24,80); //outputs 80

The call tomax(24,80) makes the compiler examine the arguments to determine that
this call is a call tomax(int,int) and instantiate a version of the function where the
type T is int . The functionmax() works for all types of arguments as long as the type
is applicable to the conditiony > x . In the example function templatemax accepts two
arguments of the same type but one can use a user defined data type. If a user defined data
type is used, one can use the operator overloading to define the meaning of’>’ so as the
max() function can be used. Even though the use of operator overloading seems to be
a minor benefit for this example, but in the context of a comprehensive library like STL, it
allows the programmer to get extensive functionality for a new data type just by defining a
few operators for it.

A class template extends the same concept to classes. Class templates are often used to cre-
ate generic containers such as vectors, lists, deques, stacks and queues, sets and many more.
These containers have a set of standard functions associated with it, which works well with
whatever matter that you put in between the brackets. For example in C++, has a container
class List which contains functions such asadd() , detach() andgetIterms() .

Previously, some uses of templates likemax() function were filled by the function-
like preprocessor macros. Macros and templates are expanded during compile-time where
macros are always expanded inline while templates can also be expanded as inline function
when the compiler deems it appropriate. Therefore, both function templates and function-
like macros have no runtime overhead.

However templates are considered far more better than macros because of the following
reasons :

• Templates are type safe

2.3 Generic Programming 22

• Templates avoid some of the errors that occur for the code that uses many function-
like macros

• Templates were designed to be applicable to much larger problems than macros.

But, templates also have their disadvantages. There are three drawbacks to the use of tem-
plates which are:

• Historically, many compilers have very poor support for templates making the code
using them less portable. However, most modern compilers now have fairly robust
and standard template support and the new C++ standard , C++0x, is expected to
further address the issue of portability.

• Almost all compilers produce confusing, unhelpful error messages when errors are
detected in a template code, thus making the templates difficult to develop.

• A C++ compiler uses the code specialization approach in translating its templates.
Every use of the template may cause the compiler to generate extra code for the in-
stantiation of the template leading to code bloat when they are indiscriminately used,
thus resulting an excessively large executables. Also the extra instantiation generated
by the templates can cause debuggers to have difficulty working with templates. For
example, when setting a debug breakpoint within a template from a source file where
this setting may be missed set in the actual instantiation desired or may set a break-
point in every place the template is instantiated. Note thatcode bloat is not inevitable
in C++ and can generally be avoided by an experienced programmer.

The term concept has emerged to denote specifically the interface description for templates
that are at the heart of C generic programming frameworks [Aus99]. Back then, although
concepts play an obviously critical role in generic programming, they are typically used
implicitly since there is no language supporting it.

2.3.2 C++ Concepts

In C++, template classes and functions necessarily impose restrictions on the types that they
take. In the case of the function, the requirement an argument must meet is clear, but in
the case of a template the interface an object must meet is implicit in the implementation
of that template. Concepts provide a mechanism for codifying the interface that a template
parameter must meet. The primary motivation of the introduction of concepts is to improve
the quality of compiler error messages. If a programmer attempts to use a type that does not
provide the interface a template requires, the compiler will generate an error. However such
errors are often difficult to understand, especially for novices. The two main reasons for
this are that error messages are often displayed with template parameters spelled out in full
which leads to extremely large error messages and that the compiler does not immediately
refer to the actual location of the error. In an attempt to resolve this issue, C++0x adds the
language feature of concepts [RS06]. Similar to how object-oriented programming use a
base-class to define restrictions on what a type can do, a concept is a named construct that
sepecifies what a type must provide. Unlike object-orientedprogramming, however, the

2.3 Generic Programming 23

concept definition itself is not always associated explicitly with the type being passed into
the template, but with the template definition itself.

One example of the idea of concept is to avoid the problem thatwe saw lots of times when for
instance Spirit (object-oriented parser generator, see Section 4.2) gives an unreadable error
messages. What actually happens is that somewhere in the code a template was wrongly
used, but the compiler doesn’t see this wrong use of a template, and instead starts to unfold
the templates until an error in the unfolded code is found. With Concepts one can specify
the template parameter which has these properties. If this template is now applied to a
parameter which does not have these properties, an error message should be displayed at
this point. This will make the template mechanism of C++ moretype safe. In Java these
problems have been avoided by demanding that for template parameters one has to specify
which interface they need to implement.

In some sense C++ Concepts make a similar step to what was donein Java. This makes C++
superior to Java, because Concepts are more flexible, since one can demand arbitrary logical
combinations of guards whereas the mechanisms in Java and other templates mechanism
in object-oriented languages only demand that a certain interface is implemented by the
template parameter.

The first version of the concept checking system was developed by Jeremy Siek while work-
ing at SGI STL in their C++ Compiler and library group which isnow part of the SGI STL
distribution [SL00]. The definition of concept checking classes in the system originally in-
troduced in the Boost concept checking library was greatly simplified at the price of less
helpful error messages. This differs from the concept checking in SGI STL. At the moment,
concepts are planned to be added as a language construct to C++. More details on this can
be found in the articles [RS06] and [Str03].

2.3.3 Generic Programming Features in Other Languages

Some C++ based languages such as Java and C# left out templates due to the problems with
templates. These languages have adopted other methods in dealing with these problems. C#
is currently adopting generic programming features comparable to templates. Java supports
generic as of J2SE 1.5.0. Generics in Java supports templateprogramming as advanced as
C++ but less powerful. In Java, generics are checked at compile time for type correctness,
and the generic type information is then removed through a process called type erasure
which is unavailable at runtime. Ada’s generics predate templates. Ada has had generics
since it was designed in 1977-1980. The standard library uses generics to provide many
services.

In Haskell, some language extensions have been developed for generic programming and in
the language itself contains some generic aspects. In Haskell [Hut06] itself, for example, a
user-defined data type of binary trees with labels of typea attached to the nodes and leaves
as follows :

data BinTree a = Leaf a | Node (BinTree a) a (Bintree a)
deriving (Eq, Show)

2.4 Object-oriented Programming 24

The keywordderiving followed by the two type classesEq andShow, will make it possi-
ble for the programmer to automatically have an equality function definedBinTree(==)
as well as a way to transform them into printable output. The Haskell compiler can in a
generic fashion generate instances of particular functions for any given data type. Other
instances that can be generated areOrd andRead.

PolyPwas the first generic programming extension for Haskell where the generic functions
are called polytypic. This extension introduces a special construct in which such polytypic
function can be defined through structural induction over the structure of the pattern functor
of a regular datatype.Generic Haskellis another extension to Haskell which is developed
at the Utrecht University. It provides type-indexed value which are values indexed over
the various Haskell type constructors such as unit, primitive types, sums, products and user
defined type constructors. The resulting type-indexed, canbe specialized to any type like the
kind-indexed types, generic application, generic abstractions and type-indexed types. The
Scrap your boilerplateapproach is a lightweight generic programming approach forHaskell.
In this approach programmers can write generic functions such as traversal scheme as well
as generic read (gread), generic show (gshow) and generic equality (geq). This approach
is based on just a few primitives for type-safe cast and processing constructor applications.

2.4 Object-oriented Programming

Quotes from Samuel P. Harbison ”The surest way to improve programming productivity is
so obvious that many programmers miss it. Simply write less code” [HS02]. One way
of achieving this is by implementing the object-oriented paradigm of programming where
emphasis is on generality and reusability. In object-oriented programming, reusability is
supported by inheritance and polymorphism. Object-oriented programming is characterized
by programming with objects, messages, and hierarchies of objects [Cox86]. This section
will start off by giving a glimpse of the history of object-oriented programming and what is
meant by object-orientation in programming before discussing further on its concepts and
usage.

2.4.1 History of Object-oriented Programming

The first two object-oriented languages are SIMULA I and Simula 67 which were intro-
duced in the 1960s. The Simula languages were developed at the Norwegian Computing
Center in Oslo, Norway, by Ole-Johan Dahl and Kristen Nygaard. Simula 67 introduced
most of the key concepts of object-oriented programming such as objects and classes, sub-
classes and virtual procedures, combined with safe referencing and mechanisms for bringing
into a program collections of program structures describedunder a common class heading
(prefixed blocks). SIMULA I got a reputation as a simulation language but it turned out to
be a general programming language due to it possessing interesting properties of a general
programming language.

Starting in the early 1970s, Simula concepts have been important in the discussion of ab-
stract data types and of models for concurrent program execution. Simula was used as a

2.4 Object-oriented Programming 25

platform for the development of Smalltalk extending object-oriented programming by the
integration of graphical user interfaces and interactive program execution. In 1980, ”C with
Classes” was released as an enhanced version of C which included classes for data abstrac-
tion. It was designed so that a preprocessor could make direct conversion from classes to
struct. In 1982, Bjarne Stroustrup began working on a betterversion of ”C with Classes”
which would be a more true object-oriented superset of C. In 1983, the first version of
C++ was released and more advanced object-oriented features were rapidly introduced until
1985, when the first commercial version was released. More features including templates
were continually added until 1982, at which time C++ obtained some level of stability and
an ISO version of C++ was finalised in 1998. In the late 1990s, object-oriented program-
ming became the dominant style for implementing complex programs with large number
of interacting components. A large variety of object-oriented programming languages have
been developed, among them are Eiffel, CLOS (object-oriented enhanced version of LISP),
Object Pascal, Ada 95 (Ada2005 still in the process of enhancement) and particularly the
internet-related Java which has in particular gained popularity now.

Due to the initiative of programmers in searching better ways for people working with com-
puters, object-oriented programming techniques have evolved from procedural program-
ming techniques.

In procedural languages, object-oriented programming appears as a form where data types
are extended to behave like a type of an object, similar to an abstract data type with an ex-
tension such as inheritance in object-oriented programming, and each method is actually a
subprogram which is syntactically bound to a class. Object-oriented programming is an ab-
straction and generalization of imperative programming. Imperative programming involves
a state and a set of operations that changes the state whereasobject-oriented programming
involves collections of objects where each object has a state and a set of operations to trans-
form the state. Thus, we can say that object-oriented programming focuses on data rather
than on control. In an object-oriented language, programming requires the programmer to
think in terms of a hierarchy of objects and the properties possessed by the objects where
emphasis is on generality and reusability. Object-oriented programming uses the metaphor
of message passing to capture the interaction of objects [Laf94]. Before going further, we
will first discuss concepts that are emphasized in object-oriented programming.

2.4.2 Concepts in Object-oriented Programming

An object models the entity of concern in an application. It encapsulates its structure and
behaviour through its data structure and functions. In conventional programming, an object
is referred to as a variable which is an instance of a type. This is similar to an object as
an instance of a class. A class describes a group of similar objects. It names and types
the components of data structure of each object in the class and declares the function that
can be applied to them [Eck00]. The structure of an object is described by member fields
and the behaviour is described by member functions. The member function and member
fields are not the description of an individual object but fora group of similar objects or
class. James Rumbaugh(1991) define a class as a group of objects with similar proper-
ties(attributes), common behaviour (operations), commonrelationships to other objects and

2.4 Object-oriented Programming 26

common semantics(meaning). A class is depicted in a diagramin Figure 2.4.

Class

member functions

member fields

Figure 2.4: Class Diagram

We can depict an object as a box which denotes the boundaries between the inside and out-
side of the object. Inside the box are the local variables i.e. the member fields and functions.
Everything that is completely inside the box is hidden from the outside meaning they are
encapsulated.Encapsulation is one of the major features of object-oriented methods. By
hiding both the data and method within an object, a level of encapsulation that no earlier
methods can approach is achieved, resulting in stability and portability [Cox86] Stability
here means that future changes to the system designed using the object techniques will only
involve in reusing the classes that have been defined and maybe few changes to the reusable
objects. Portability is increased from the ability to reusea class in a new project or a new
platform. New fields or new methods are added to the objects ateach reuse making it more
and more reusable.

Fields and functions that extend outside the box make up the object interface and are acces-
sible. Interface makes possible any access to the object’s member features. All the variables
(functions and fields) that are declared under the keywordpublic in C++ are accessible.
An object is depicted in the Figure 2.5.

An example of a class is theObjShapes class. It is a class of shapes that can consist
of circles, rectangles and etc. It contain shape and colour of the objects and has member
functionsprint for printing the attributes of the shape objects andsetfields for setting
the attributes of the objects. The coding of the class in C++ is shown below :

class ObjShapes {
public:

string shape;
string colour;
void setfields(string s,c);
void print();

2.4 Object-oriented Programming 27

ObjShapes

shape

colour

print

setfields

Figure 2.5: Object Diagram

}

An object is referenced by a variable or a data field. There areseveral ways in referencing
an object i.e. by :

• a variable that contain an object ,eg.ObjShapes obj1 whereobj1 is an object
of a classObjShapes .

• a variable that is a pointer to an object, eg.ObjShapes * obj_ptr

• a variable that is a reference to an object, eg.ObjShapes &obj_ref where we
can say it is a second name of the object. A complete declaration of this reference
variable example is

ObjShapes obj1;
ObjShapes &obj_ref = obj1;

Inside object, computation is achieved by sending messagesto other objects which is called
”message passing”. An object executes one of its methods as aresult of receiving a message.
A message states what should be done by the object whereas a method expresses how it will
be done. Message passing is similar to a function call in conventional programming. In
order to print the attributes of the objectObjShapes , the messageprint must be passed
to the object identifier or variable. If the object variable is a complete object (obj1), the
message passing is executed by the statement

obj1.print();

Message passing for a variable that is a pointer(obj_ptr) to an object can only be executed
after the object is created which is shown below:

obj_ptr = new ObjShapes;

The messageprint is sent by the code:

2.4 Object-oriented Programming 28

obj_ptr->print();

where the object react by executing the method print(). If the message sent is coded in
the main program, so the main program is the sender of the message. In responding to a
message sent, an object has to lookup the appropriate method. The binding of the method
name to it’s body is done routinely by a compiler in conventional programming languages.
There are two types of binding i.e.static anddynamic binding where the former is done
during compile time whereas the latter is done during runtime [AU01]. If the method exist
during compile- and run-time, the result will be the same. The difference can be seen when
the method does not exist, where static binding will report acompile error, whereas dynamic
binding will result in a run-time error. C++ is a strongly typed programming language, so
if an object is of a certain class it will always be of that type. For example,obj1 will
always refer toObjShapes . Therefore,obj1 will not change its class between compile-
and run-time.

Dynamic binding plays an important part in the context of class hierarchies where a class
inherits member functions from its superclass. Eventhoughdynamic binding incurs a per-
formance penalty due to an extra lookup at run-time, it is negligible due to optimisations
carried out by the current object-oriented compiler technology and also because of the rapid
increase in hardware performance.

Object-oriented programming languages use classes to categorize entities that occur in an
application. Related categories form hierarchies that has”is a” relationship. This idea of
relationship is used in relating classes in an object-oriented programming languages. For ex-
ample a classObjShapes can be a circle or rectangle. In other words, classCircle and
Rectangle are derived classes or subclasses ofObjShapes makingObjShapes a su-
perclass or base class.Circle andRectangle inherits all the features ofObjShapes .
This concept is calledinheritance which plays an important role in defining object-oriented
programming languages. The classObjShapes and its descendants are coded in C++ as
shown below:

class ObjShapes { //Class definition for ObjShapes
public:

string shape;
string colour;
//consructor
ObjShapes(){shape = " ";colour = " ";};
//constructor
ObjShapes(string s,string c){shape = s; colour = c;};
//member function
void print();

};

void ObjShapes::print(){
cout<<"Shape is "<<shape<<endl;
cout<<"and the colour is "<<colour<<endl;

};

2.4 Object-oriented Programming 29

\\Class definition for the descendants Circle and Rectangl e
class Circle::public ObjShapes{
public:

real radius;
\\constructor
Circle(string shape, colour):ObjShapes(shape,colour){ };
void setradius(float);
void print();

};

void Circle::setradius(float r){
radius = r;

};
void Circle::print(){

ObjShapes::print();
cout<<"It’s radius is "<<radius<<endl;

}

class Rectangle::public ObjShapes{\\class definition fo r Rectangle
public:

float length, breadth, area;
\\constructor
Rectangle(string shape, colour):ObjShapes(shape,colou r){};
void calcarea(float, float);
void print();

}

void Rectangle::calcarea(float l, float b){
length = l;
breadth = b;
area = length * breadth;

}

void Rectangle::print(){
ObjShapes::print();
cout<<"It’s sides are "<<length<<" and "<<breadth<<endl;
cout<<"It’s area is "<<area<<endl;

};

In the example above, classCircle andRectangle inherits the fieldshape andcolor ,
and the methodprint . In order to show how the message passing between objects of the
classes above, consider the following program segment:

int main(){

Circle c1("circle","blue");
c1.setradius(4.5);

2.4 Object-oriented Programming 30

Rectangle r1("rectangle","green");
r1.calcarea(5.1,6.2);
c1.print();
r1.print();

}

The Figure 2.6 shows the message passing and method lookup for the above code segment.

is−a
is−a lookup

lookup

lookup

lookup

ObjShapes

Shape

clour

print

ObjShapes

Circle

radius

setradius

print

ObjShapes

Rectangle

length

breadth

calcarea

print

r1

c1

rectangle

green

shape

colour

length

breadth

calcarea

print

print

calcarea

print

circle

blue

shape

colour

radius

setradius
setradius

print

print

print

Figure 2.6: Message Passing and Method Lookup

The program declares two objects,c1 andr1 , set the radius forc1 and calculate the area of
r1 . The first invocation ofprint refers to theprint member function ofCircle and
the second invocation ofprint refers to theprint member function ofRectangle .
The output of this program segment is the same whether with static or dynamic binding. If
one wants to express a member function to be bind dynamically, the member function has to
be designated asvirtual . The keywordvirtual signals the intention to use dynamic
binding for designated member function. For example to enable dynamic binding for the
member functionprint in classObjShapes , the declaration of the member function
print is coded as follows:

virtual void print();

Dynamic binding must be a major criterion in calling a language an object-oriented program-
ming language. C++ supports dynamic binding making it a truly object-oriented program-
ming language. Another kind of inheritance ismultiple inheritance. Multiple inheritance

2.4 Object-oriented Programming 31

is when a child class or subclass is derived from more than onebase class. Details of it will
not be discussed here.

Suppose a set of shape classes such asCircle, Triangle, Square and etc are de-
rived from base classShape . Let say we need each shape classes to be treated generically
as objects of base classShape so that to draw a shape we could simply call functiondraw
in each of base classShape and let the program determine dynamically which derived class
draw function to use. Thus we should declaredraw in the base class as virtual function
and we overridedraw in each of the derived classes to draw the appropriate shape.For
example,

virtual void draw() const;

may appear in base classShape which declares that functiondraw is a constant function
that takes no argument, returns nothing and is a virtual function.

A class that has direct instances are called a concrete classmeaning that it has instances of
its class not of its subclasses. A class that does not have direct instances is called anabstract
class. An abstract class serves as a common base but will not have any instances. A class is
made abstract by declaring one or more of its virtual functions to be ”pure”. A pure virtual
function is one with an initializer of= 0 in its declaration as shown below:

virtual void draw() const = 0; //pure virtual

The sole purpose of an abstract class is to provide an appropriate base class from which
classes may inherit interface and/or implementation. Theyare too generic to define real
objects.

A hierarchy does not need to contain any abstract class but there are many good object-
oriented systems that have class hierarchies headed by an abstract class. An example is a
shape hierarchy where it is headed by abstract classShape and the next level down the hier-
archy, there are two or more abstract base classTwoDimenShape andThreedimShape .
The next level concrete classes are defined such as for two dimensional shapes will be circles
and squares and for three dimensional shapes will be spheresand cubes. The usage of the
concept of abstract classes and virtual function can be seenin the translation of the function
types in C++ (see Chapter 4).

Polymorphism is another key concept in object-oriented programming. According to Web-
ster’s dictionary, the word polymorphism means ”occuring in various forms”. But in the
context of object-oriented programming, polymorphism refers to behaviours that have the
same name and meaning but actually are different depending on the class concerned. Poly-
morphism is the ability to write several versions of method(function, subroutine) in different
classes of a subclass hierarchy with the same name and rely onthe object-oriented environ-
ment to establish which version should be executed depending on the class of the target
object when the method is invoked [DD01]

Polymorphism means a behaviour may be inherited either unchanged, or totally different
between the superclass and the subclass, or it is specialized for a particular subclass. Poly-
morphism is implemented through virtual functions. When a request is made through a base
class pointer (or reference) to use a virtual function. C++ chooses the correct overridden
function in the appropriate derived class associated with the object. Sometimes a non virtual

2.5 C++ as an Object Oriented Programming Language 32

function is defined in a base class and overridden in a derivedclass. If such a member func-
tion is called through a base class pointer to the derived class object, the base class version is
used. If the member function is called through a derived class pointer, the derived class ver-
sion is used. As we can see from the example given, the methodprint is coded specially
for certain subclasses which are Circle and Rectangle. The methodprint in Rectangle
andCircle class overrides the methodprint in the superclassObjShapes . Generally
we can say that the subclass version of an attribute or operation/method is said tooverride
the version from the superclass because it is executed in preference to the superclass version.

Through the use of virtual functions and polymorphism, one member function call can cause
different action to occur depending on the type of the objectreceiving the call which gives
programmer tremendous expressive capability [DD01]. Withvirtual functions and poly-
morphism, it is possible to design and implement systems that are more easily extensible.
Programs can be written to generically processed objects ofexisting classes in a hierarchy
that derived from a base class objects. Classes that do not exist during program development
can be added with little or no modifications to the generic part of the program as along as
those classes are part of the hierarchy that is being processed generically .

There are two fundamentally different kinds of polymorphism which was originally de-
scribed informally by Christopher Strachey in 1967. They are ad-hoc and parametric poly-
morphism. Ad-hoc polymorphism is when the range of actual types that can be used is
finite and the combinations must be specified individually prior to use, while parametric
polymorhism is when all code is written without mention of any specific type and thus can
be used transparently with any number of new types. Ad-hoc polymorhism is generally
supported in object-oriented programming through object inheritance which was described
earlier. Parametric polymorhism is widely supported in statically typed functional program-
ming languages and in the object-oriented community, programming using parametric poly-
morphism is often called generic programming (see section 2.3).

2.5 C++ as an Object Oriented Programming Language

In the previous sections we have discussed thoroughly what are the concepts that are needed
in writing an object-oriented program. We also have gone through the history of object-
oriented programming where we now know how it started. However, we have not yet men-
tioned the definition of object oriented programming. Traditionally, we can say a language
or technique is object-oriented if and only if it directly supports abstraction (providing some
form of classes and objects), inheritance (providing the ability to build new abstractions out
of existing ones) and run-time polymorphism (providing some form of run-time binding).
This definition includes all major languages which are referred to as object-oriented such as
Ada95, Beta, CLOS, Eiffel, Simula, Smalltalk, Java and C++ [Laf94]. As mentioned, C++
is a paradigm-neutral language meaning that it was designedto support a range of styles
that are considered fundamentally good and useful. By sharing a common type system, a
common toolset and etc., significant benefits can arise from it such as enabling groups with
moderately differing needs to share a language rather than having to apply a number of
specialized languages.

2.5 C++ as an Object Oriented Programming Language 33

The range of facilities or properties that C++ supports whether they were object-oriented or
otherwise, can be listed below:

i) Abstraction is the ability to represent concepts directly in a program and hide incidental
details behind well defined interfaces. This ability is the key to every flexible and
comprehensible system of any significant size.

ii) Encapsulation is the ability to provide guarantees thatan abstraction is used only ac-
cording to its specification which is crucial in defending abstractions against corruption.

iii) Polymorphism is the ability to provide the same interface to object with differing im-
plementations. Polymorphism is crucial in simplifying code using abstractions.

iv) Inheritance is the ability to compose new abstractions from existing ones. It is one of
the most powerful ways of constructing useful abstractions.

v) Genericity is the ability to parameterize types and functions by types and values. It is
essential for expressing type-safe containers and a powerful tool for expressing general
algorithms.

vi) Coexistense with other languages and systems and this feature is essential for function-
ing in real world execution environments.

vii) Runtime compactness and speed which is essential for classical systems programming
viii) Static type safety is an integral property of languages of the family to which C++ be-

longs to and it is valuable both for guaranteeing propertiesof a design and for providing
run-time and space efficiency.

The list of properties and facilities listed are taken from [Str95]. These facilities and general
properties can be supported in several alternative ways such as supporting them in the core
language or in a library.

C++ supports all the facilities and properties that defines an object-oriented programming
language such as abstraction, encapsulation, polymorphism and inheritance, thus we can say
that C++ is truly an object-oriented programming language,even though it is also a general
purpose language due to its design which supports multiple styles of programming.

Chapter 3

λ-Calculus and Functional
Programming

Generally speaking, functional programming is a style of programming in which the basic
method of computation is the application of functions to arguments [BW88]. The defini-
tion of a function in functional programming is an expression rather than a sequence of
commands and execution of a functional program means the evaluation of the expression.
Expressions in a functional language can be constructed, manipulated and reasoned about,
like any other kind of mathematical expression using more orless familiar algebraic laws
for the operators.

It has been said that functional programs do not use variables but this is not exactly true be-
cause there are variables as arguments of functions and alsoin the let expressions. However,
variables get their value only once, so the value never changes. This avoids the aliasing prob-
lem. Furthermore, this applies only to pure functional programming languages like Haskell.
In ML and Lisp, side effects do occur. The idea of executing commands sequentially (like in
an imperative program) in functional programs is meaningless since the sequence of com-
mands does not make any difference because there is no state to mediate between them.
Functions in a functional program can be used in more sophisticated ways such as they can
be passed to other functions as arguments and returned as results and generally can be calcu-
lated with. Functional languages use recursive functions (functions that are defined in terms
of themselves) instead of sequencing and looping.

Functional programming is declarative in the sense that we say what we want rather than
how to get it. A characteristic feature of functional programming is that if an expression pos-
sesses a well-defined value, then the order in which a computer may carry out the evaluation
does not affect the outcome [CM98]. However, this feature istrue only for pure functional
programming language such as Haskell but not for ML. We can say that the meaning of an
expression is its value and the task of a computer is simply toobtain it.

Functional programs correspond more directly to mathematical objects making it easier to
reason about them. Most functional programming languages are based on a simple and ele-
gant mathematical foundation i.e. theλ-calculus. Alonzo Church [FH88] defined a calculus
that can express the behaviour of function as an effort to capture the computational meaning

34

3.1 History of Functional Programming 35

of mathematical functions. The history of functional programming will be discussed in the
next section in which we will discuss the functional languages since the beginning until now.
Then we will discuss details ofλ-calculus, since it is, together with combinatory logic, one
of the roots of functional programming.

3.1 History of Functional Programming

One of the main roots of functional programming are theλ-calculus and combinatory logic,
which were introduced by Alonzo Church, Haskell Curry and Moses Schönfinkel in the
1920s and 30s. Schönfinkel developed a simple theory of functions in the year 1924 and
at about ten years after that Church introduced theλ-calculus and used it to formalize the
syntax of Whitehead and Russell’s Principia Mathematica. In the 1940’s, Haskell introduced
combinatory logic which is a variable free theory of functions. In the late 1950’s Church’s
λ-notation for functions led to the first version of LISP by McCarthy. LISP was extremely
successful and is still being used. Dialects of LISP includeCommon Lisp, Scheme and elisp
for emacs. LISP had many innovations which was influential onboth theoretic and practical
aspects of functional programming which include the use of garbage collection as a method
of disposing of unused cells, implementing static scoping by using closures, invention of
conditional expression in writing recursive functions (which involves lazy evaluation) and
the use of higher order operations on list. In 1978 Backus defined FP in his Turing Award
lecture. His lecture gave a significant impact on the functional language field [Tan04].

Modern functional languages have more advanced features such as static type systems, poly-
morphism, type inference, algebraic data type, pattern matching and lazy evaluation. These
features contribute a great deal in making functional programming more practical. Examples
of modern functional languages are ML, Miranda and Haskell.ML (meta language) was de-
fined by researches Gordon, Miller et al. for the use in describing proof search strategies.
Later (1978) they found out that ML could also be used as a general programming language.
ML was the first language to use the Hindley-Milner type system (now known as type in-
ference) which is the basis for the type system for most modern functional language. Now
there are two important dialects of ML that is Standard ML andCAML. Miranda [MV97]
was developed by David Turner in 1985. Turner implemented Miranda using the idea of
combinators (fixed set of basic functions). Miranda is a language with lazy evaluation. A
committee was formed in 1987 as an effort to define a standard functional language with
modern features resulting in the development of Haskell named after the logician Haskell
B. Curry [Hug89]. Haskell has all the modern functional language features such as higher-
order functions, type inference, lazy evaluation and user defined data types.

3.2 λ-Calculus

Theλ-calculus was developed by mathematicians before the development of computers in
order to obtain a notation for writing down functions. One way of describing functions
mathematically is through their extension which can be a list of pairs of input, output values
or as a graph from one domain to the other. But not all functions are computable even though

3.2 λ-Calculus 36

they are describable.λ-calculus is an attempt to write down functions that could actually be
evaluated in the real world. The following is the definition of λ-calculus [Pau00]:

Definition: The terms of theλ-calculus, known asλ-terms, are defined inductively from a
given set of variablesx, y, z, . . . as follows:

x, wherex is a variable
c, wherec is a constant
(λx.r (abstraction), wherer is a term, andx is a variable,
(r s) (application), wherer ands are terms

We defineλx, y.r := λx.λy.r, similarly forλx, y, z.r and similar expressions. The symbol
λ is completely arbitrary bearing no significance meaning to it. The symbol arose by a
completed process of evolution. Originally, the ’hat’(∧) notationt[x̂] is used by Principia
Mathematica for the function ofx yielding t[x]. Church modified it tôx.t[x], but it turned
out as∧x.t[x] due to the fault of the typesetter which could not place the hat on top of the
x. The symbol then mutated intoλx.t[x] [Har97].

3.2.1 Variable Binding

The λ-term λx.r refers to a variable defined by surrounding context. For thisterm, the
λ-abstraction defines a new function with argument variablex and bodyr. We callx as
the bound variable to the abstraction. Any occurrences ofx in r is bound by the abstrac-
tion. For example, in theλ-abstractionλx, y.(x y)z, x andy are bound variables because
they are bound to the abstraction whereasz occurs free. A closed term is one which all
variables/identifiers are bound and we will consider a program in theλ-calculus to be any
closed term.

The concept of free and bound variables can be defined as sets in theλ abstraction :

• The set of all bound variablesBV(r)) in r is given by:

BV(x) = ∅
BV(λ x.r) = BV(r)

⋃
{x}

BV(r s) = BV(r)
⋃

BV(s)

• The set of all free variables inr(FV(r)) is given by:

FV(x) = {x}
FV(λ x.r) = FV(r) � {x}
FV(r s) = FV(r)

⋃
FV(s)

A λ-termr is calledclosedif it has no free variables, i.e.FV(r) = ∅. Closedλ-terms are
also calledcombinators.

3.2 λ-Calculus 37

The applicationr s defines the application of functionr to the arguments. An example of
this is shown below:

(λx, y.y + x)3 4

whereλ abstractionλx, y.y + x is first applied to 3 then to 4 i.ex takes the value 3 andy
takes 4. The function application is left associative. How the application is evaluated will
be discussed in Section 3.2.4.

3.2.2 Substitution

The functionf such thatf(x) = r is represented by theλ-abstractionλx.r and when
applied tos yields the result of substitutings for all free occurrences ofx by r. Examples
are as follows:

(λx.x) The identity function which returns its argument unchangedand is usually called I.
(λx.y) A constant function that returnsy when applied to any argument.

Substitution of termt for all free occurrences ofy in r, denotedr[t/y], is defined as follows:

x[t/y] ≡

{
t if x = y
x otherwise

(λx.r)[t/y] ≡





(λx.r) if x ≡ y
(λx.r[t/y]) if x 6∈ {y} ∪ FV(t)
λx′.r[x′/x][t/y] otherwise, wherex′ is ”fresh”

(r s)[t/y] = (r[t/y] s[t/y])

λ-calculus would be inconsistent if we had defined substitution for λ-abstractions (second
clause) naively, i.e. without replacingx with x′ in the last case (α-conversion). For instance,
the termλx, y.x when applied to an arguments should return the constant function(λy.s).
However, in cases ≡ y; if we carried out the substitution directly, we obtain(λy.y) instead
, which is the identity function. The free occurrence ofx turns into a bound occurrence ofy
which is an example of variable capture. The substitutionr[s/x] is safe provided the bound
variables ofr are disjoint from the free variables ofs :

BV(r)
⋂

FV(s) = ∅

In order to avoid a clash in variables, the bound variables ofr might need to be renamed.
This renaming is calledβ-conversion, and is defined in more detail in the next subsection.
For example, we could changeλy.x into λz.x. Then an allowed substitution(λz.x)[y/x] ≡
λz.y can be carried out. The result obtained is in this case a constant function.

3.2 λ-Calculus 38

3.2.3 Conversion

λ-calculus is based on three conversions which transform oneterm into another equivalent
term. The conversions areα-conversion,β-conversion andη-conversion. Each of these con-
versions can be applied as well to any subterm. The formal definition of these conversions
are as follows:

• α-conversion is the result of replacing a subterm of the formλx.r byλy.r[y/x], where
y might not occur free or bound inr. We write thens −→α s′ if s is obtained by
applying this reduction tos.

For example,λx.(x z)−→α λy.(y z).

• A β-redex of a term is a subterm of the form(λx.r) s. A β-redex(λx.r) s reduces to
r[x/s]. A term t β-reduces tot′, written ast −→β t′, if t′ is obtained by replacing a
β-redex int by its reduct.

For example,(λx.(x x))(y z)−→β(y z)(y z).

• An η-redex of a term is a subterm of the formλx.r x, wherex 6∈ FV(r). An η-redex
λx.r x reduces tor. A term t η-reduces tot′, written ast −→η t′, if t′ is obtained by
replacing anη-redex int by its reduct. For example,(λx.((z y)x))−→η(z y)

Among the three conversions,β-conversion is the most important since it represents the
evaluation of a function on an argument.α-conversion is just a technical device to change
the names of variables, whileη-conversion is a form of extensionality. We do not consider
theα-conversion in the thesis.

We demonstrateβ-reduction by using the following example:

(λx, y.y + x)3 4

After the1st β-reduction , we will get:

(λy.y + 3)4

Applying anotherβ-reduction yields3 + 4 which gives the result 7.

3.2.4 Reduction

Reduction corresponds to a systematic attempt to evaluate aterm by repeatedly evaluating
combinationsf(x) wheref is aλ-abstraction. We say that the term is in normal form when
no more reduction is possible except forα-conversion. For example,λx, y.y and(x y)z are
normal form. But manyλ-terms cannot be reduced to normal form. As an example take
Ω := (λx.x x)(λ x.x x). The only reduction ofΩ is to itself (Ω −→ Ω), β-reduction ofΩ
does not terminate andΩ does not have a normal form.

We define what it means for two terms to beα, αβ andαβη-equivalent. For this we need
first the following auxiliary definitions:

3.2 λ-Calculus 39

• r ←→α s if and only if r −→α s
or s −→α r

• similarly for r ←→β s, r ←→η s, r ←→αβ s, r←→αβη s, wherer −→αβ s if and
only if r −→α s or r −→β s, similarly for r −→αβη s

Furthermore,r −→∗
β s means thatr ≡ r0 −→β r1 −→β · · · −→β rn ≡ s for some

r0, . . . , rn, which means thatr reduces tos in 0 or more steps. Notations liker −→∗
α s,

r ←→∗
β s etc. are to be understood similarly. Byr ands beingα (αβ, αβη) equivalent,

written asr =α s, (r =αβ s, r =αβη s), we mean thatr ←→∗
α s (r ←→∗

αβ s, r ←→∗
αβη s).

We identifyr ands, if they areα-equivalent. Therefore we will omit in the following−→α

steps, and write as a subscript of−→,←→ β instead ofαβ, βη instead ofαβη.

There are two main reduction strategies forβ-reduction (note that we ignore intermediate
α-reduction steps):Normal-order reductionis the strategy, in which the leftmostouter-
most redex, is chosen. In contrast, anapplicative-order reductionis a sequential reduction
in which the leftmostinner-most redex is chosen first [Hug89]. Normal-order reduction
corresponds to the principle of passing the arguments to a function initially unevaluated,
whereas applicative-order strategy means that a function’s arguments are evaluated before
the function is applied.

The Church-Rosser Theorem states thatβ-reduction is confluent. The theorem says that
whenever we reduce aλ-terms in two different ways (i.e.r −→∗ s, r −→∗ s′), then the
two reducts can be joined together (i.e. there existss′′ so thats −→∗ s′′, s′ −→∗ s′′). As a
consequence we obtain uniqueness of normal forms: Ifr has normal formss ands′ thens
ands′ are equal up toα-equality.

However, not every reduction strategy will find the normal form. As an example of the dif-
ference between the applicative order reduction and the normal-order reduction we consider
the following example:

• Applicative-order reduction:

(λ x.y)((λ x.x x)(λ x.x x)) =⇒ (λ x.y)((λ x.x x)(λ x.x x))

=⇒
...

• Normal-order reduction:

(λ x.y)((λ x.x x)(λ x.x x)) =⇒ y

From the example above, we can say that applicative-order reduction is not always adequate
and the strongest completeness and consistency result can be achieved with normal-order
reduction.

Let t := y + x. The abstraction(λy.t) containsx as free and eachx it stands for a function
overy. The abstractionλx, y.t contains no free variables and when applied to the arguments
r ands, the result is obtained by replacingx by r andy by s. In other words we perform
two β-reductions which can be shown symbolically as follows:

((λx, y.t)r)s−→β (λy.t[r/x])s−→β t[r/x][s/y]

3.2 λ-Calculus 40

This technique is called currying after Haskell B. Curry. Anexample would be the function
(λx, y.x+ y) which can be applied to 3 to yield the functionλy.3+ y and then to 4 in order
to obtain3 + 4.

As mentioned previously, the order of reduction can be applicative and normal. For a func-
tion application(λx.f)e, the normal-order reduction strategy will reduce the redex(λx.f)e
first before reducinge (being a subterm of the reductionf [x/e] of (f e) to a value. Due
to this it is calledcall-by-name parameter passing. The applicative-order reduction strat-
egy will reducee to a valuev before carrying out the reduction(λx.f) v −→β r[x/v].
Therefore it is calledcall-by-value parameter passing.

3.2.5 Lazy evaluation

In the previous subsection call-by-value and call-by-namewere introduced in terms of re-
duction strategies. In this section we will investigate call-by-name in more detail. Evaluation
means reducing aλ-term until one obtains a normal form. There are two main waysof eval-
uatingλ-terms: call-by-name and call-by-value. Call-by-name evaluation corresponds to
lazy evaluation, where expressions are passed around unevaluated for as long as possible.
Therefore in lazy evaluation function arguments are not evaluated, until needed in order to
compute the result of the functions. On the other hand, call-by-value evaluation corresponds
to eager evaluation where all expressions are evaluated before being passed as function ar-
guments. Hence call-by-value requires that function arguments be reduced to values before
the function is processed.

In a call-by-value setting functions are strict, which means if the result of one of the argu-
ments is undefined, the result of applying this function to its argument is undefined as well.
For instance, ifc is a constant,λx.c applied to the undefined argumentΩ is undefined. In a
call-by-name setting functions can be non-strict, which means that they can have a defined
value even if one of its arguments is undefined. In call by nameλx.c applied toΩ has the
defined resultc.

The evaluation order can have an effect not only on executionspeed but on program cor-
rectness as well. A program that encounters a dynamic semantic error or an infinite loop
under applicative-order evaluation may terminate successfully under normal-order reduc-
tion. Expressions in a strict language can safely be evaluated in applicative-order but not for
a non-strict language. A language is said to be strict if it requires all functions to be strict.
It is a non-strict language, if it allows the definition and use of non-strict functions.

One possible problem of normal-order evaluation is inefficiency, since we obtain duplication
of computation. But this inefficiency can be overcome without sacrificing its terminating
property by using pointers to arguments. The idea is when reducing an application(λx.r)s,
we can first create a pointer to expressions and then reduce(λx.r)s to r′, which isr with
all x replaced by the pointer tos. If we need to reduce the pointer when reducingr′, we
can reduce the expressions pointed by the pointer. The point here is that every time we
encounter this pointer inr′, s need not to be reduced again since it has already been reduced
the first time. This strategy can also be called call-by-needsinces is evaluated whenever
needed and it will be evaluated at the most once.

3.2 λ-Calculus 41

Lazy evaluation gives the advantage of normal-order evaluation (not evaluating unneeded
subexpression) while running within a constant factor of the speed of applicative-order eval-
uation for expressions in which everything is needed. The principle problem with lazy
evaluation is its behaviour in the presence of side effects [Sch00]. When using constants
with side effects, the order of evaluation matters. For instance if we allow the statement
x := x+ 1, which has the side effect of incrementing the value of variablex by 1, the eval-
uation of another expressiont, which refers tox, depends on, whether it is evaluated before
or after the side-effect took place. When using call-by-value evaluation, it is easy to predict
the evaluation order – the arguments of a function are evaluated first, then the function is
evaluated, whereas with call-by-name and call-by-need, the order is difficult to predict. That
is the reason why constants with side effects are usually notused in lazy languages.

The advantage of lazy evaluation is that it uses sometimes less reduction steps than applicative-
order reduction (although with more implementation and runtime cost) and that it guarantees
to find the normal form of an expression if there is one, whereas eager evaluation might not
find the normal form even if it exists.

Lazy evaluation is particularly useful for infinite data structure such as infinite list. It is used
for all arguments in Miranda and Haskell and also available in Scheme through explicit
use ofdelay and force . The problem with side effects in lazy evaluation do no arise
in Miranda and Haskell because they are pure functional language and Scheme leaves the
problem up to the programmer to tackle. ML provides no mechanism for lazy evaluation,
but it can be encoded.

3.2.6 Recursion

Recursion is essential in functional programming. Recursive or self-referential definitions
are not needed to write recursive functions in theλ-calculus, since the functionY gives
the effect of recursion. Y is known as the paradoxical combinator or as the fixed point
operator. This Y combinator is realized based on the Fixedpoint Theorem and its simple
proof. This theorem states that everyλ-expressione has a fixed pointe′ such thate′ −→
e e′, in particular,e′ ande e′ areβ-equivalent. In fact we can definee′ := e0 e0 where
e0 := λx.e (x x) for somex 6∈ FV(e), and one immediately sees thate′ −→ e e′.

By replacinge with a variabley andλ abstractingy we obtain the famous fixed-point com-
binator

Y := λy.(λx.y (x x))(λx.y (x x))

which computes for every terme a fixed pointY e. Indeed,

Y e −→ (λx.e (x x))(λx.e (x x)) −→ e ((λx.e (x x))(λx.e (x x)))←− e (Y e),

soY e =αβ e (Y e).

Any recursive function can be written nonrecursively usingY. How is this done? Consider
the recursive functionF defined by

F = . . . F . . .

3.2 λ-Calculus 42

which can be rewritten as
F = (λf. . . . f . . .) F

The equation above essentially says thatF is a fixed point of theλ-expression(λf . . . f . . .),
butY exactly computes that. Hence, the recursive equation can besolved by the following
nonrecursive definition forF :

F = Y (λf . . . f . . .)

For example, the factorial function

F = λn. if (n = 0) then 1 else(n ∗ F (n − 1))

can be written nonrecursively as

F = Y (λf, n. if (n = 0) then 1 else(n ∗ f(n − 1)))

The ability of theλ-calculus to simulate recursion in this way is the key to its power and
accounts for its persistence as a useful model of computation. This power is best expressed
in Church’s famous thesis which in its original form states thateffectively computable func-
tions from positive integers to positive integers are just those definable in theλ-calculus.
Even though no proof can be given for his thesis but it gained support from Kleene who
in 1936 showed thatλ-definability was precisely equivalent to Gödel and Herbrand’s no-
tions of recursiveness. In 1937 Turing showed that Turing computability was also precisely
equivalent toλ-definability.

In parallel with the development of theλ-calculus, Scḧofinkel and Curry developed combi-
natory logic [Hug89]. Scḧonfinkel discovered that any function could be expressed as the
composition of only two simple functions,K andS. Curry proved the consistency of a pure
combinatory calculus and along with Feys, elaborated the theory considerably [Hug89].
Combinatory calculus plays a big role in the implementationof functional languages.

3.2.7 Higher-order Functions

In functional programming, higher-order functions; i.e.,functions which take other func-
tions as arguments, are treated as first class values, which can then be stored in data struc-
tures, passed as arguments, and returned as results. Let us consider the term for squaring
integers which is defined as follows:

t
def
= λx.x ∗ x

If we want to computex8 then this could be achieved by squaring x three times:x8 =
((x2)

2
)2. In theλ-calculus, this can be defined as the ’power-8’ function:

P8
def
= λx.t(t(t x))

3.2 λ-Calculus 43

So we can see that taking a number to power 8 amounts to applying the squaring function Q
three times. Aλ-term which applies any function three times can be defined asfollows:

t′
def
= λf, x.f (f (f x)))

Sot′ f = λx.f (f (f x)), which is the function which appliesf to x three times. The term
P8 can now be written as t’ t, and58 is t’ t 5.

3.2.8 Typedλ-calculus

Types are a way of distinguishing different sorts of data such as booleans, natural numbers
and functions so as to making sure that these distinctions are respected, for example by en-
suring that functions cannot be applied to arguments of the wrong type. There are several
reasons why types are added toλ-calculus. The main reason for introducing the typedλ-
calculus is that the typedλ-calculus is strongly normalizing, so every reduction sequence
terminates. From a logical point of view, one reason for considering type is that we would
have a clearer picture of what sort of functionsλ-terms denote if we knew exactly what their
domains and codomains were, and only applied them to arguments in their domains. These
considerations inspired Russell originally to introduce types in Principia Mathematica. An-
other reason for types is the fact that a compiler can generate more efficient code, and use
storage more effectively by knowing more about a variable. As time went by, types also
began to be appreciated more and more for their value in providing limited static checks on
programs. Moreover types often serve as a useful documentation in programming and also
they can be used to achieve better modularization and data hiding by ’artificially’ distin-
guishing some data structure from its internal representation.

The basic idea of a typedλ-calculus is that everyλ-term in the typedλ-calculus has a type.
If A,B are types, thenA→ B is a type. A terms can only be applied to a termt, if the type
of s is a a function typeA→ B and the type oft isA. The results t has then typeB. This is
strong typing where termt must have exactly the typeA; there is no notion of subtyping or
coercion. We will uset : A to meant has typeA. This is the standard mathematical notation
where function spaces are concerned, becausef : A → B means thatf is a function from
the setA to the setB. One property of types is that a type cannot be the same as any proper
syntactic subexpression of itself.

There are two approaches in defining typedλ-calculus which are Church’s approach (ex-
plicit) and Curry’s approach (implicit). We will show both approaches of defining typed
λ-calculus.

In Church’s approach variables are typed, i.e. they are of the formvA which means a vari-
able is a pair consisting of a symbolv and a typeA. In the case of constants, the type is
preassigned. The generation rules for valid termst in Church’s style, together with their
typesC, written t : C, are:

vA : A

3.2 λ-Calculus 44

Constantc has typeA
c : A

s : A→ B t : A

s t : B

t : B

λvA.t : A→ B

In contrast, in Curry’s approach to typing, the terms are exactly as in untyped case, and a
term may or may not have a type. But some purists would argue that this isn’t properly
speaking typedλ-calculus but rather untypedλ-calculus with a separate notion of type as-
signment. Curry-style of type assignment does not merely define a relation of typability in
isolation but with respect to a context, i.e. a finite set of typing assumptions about variables.
We writeΓ ⊢ t : A to mean ’in contextΓ , the termt can be given a typeA’. The
elements ofΓ are of the formv : A, that is they are themselves typing assumptions about
variables, typically those that are components of the term.We assumeΓ never gives contra-
dictory assignments to the same variable; if preferred we can think of it as a partial function
from the indexing set of variables into the set of types. We write Γ ⊢ r : A for r : A holds
in contextA. The Curry style typability rules are as follows:

v : A ∈ Γ

Γ ⊢ v : A

Constantc has typeA
c : A

Γ ⊢ s : A→ B Γ ⊢ t : A

Γ ⊢ s t : B

Γ ∪ {v : A} ⊢ t : B

Γ ⊢ λv. t : A→ B

A special context is the empty context∅, which makes no assumptions about the types of
variables. Note that a context is a set of expressions of the form (v : A). So in the last rule,
Γ might containv : A.

The rules above are to be regarded as an inductive definition of typability relation, so a term
only has a type if it can be derived by the above rules. For example the identity function can
be typed by first looking at the rule for variables, we have

{x : A} ⊢ x : A

and therefore by the last rule we get:

∅ ⊢ λx. x : A→ A

3.3 Functional Programming as an Implementation ofλ-calculus 45

This example illustrates the need for context, because without it we could not deducex : B
for anyB. In the last step we derivedλx.x : A → A without any context. Note that we
obtainλx.x : A→ A for any typeA, so aλ-term can have many types. This problem does
not arise in Church typing, since in that either both variables have typeA or else the two
x’s are actually different variable, since their types differ and the types are a component of
the term.λxA.xB : A → B is reasonable forA 6= B, however in this termxB is a variable
different fromx : A, andxB occurs free. In fact the second term isα-equivalent toλyA.xB.

Type preservation is the property that if a term reduces to another term, its type is preserved.
In the context of Curry typability it says that ifΓ ⊢ t : A and t → t′, then we have
Γ ⊢ t′ : A. The Curry typing system gives a form of polymorphism in thata given term may
have different types. In polymorphism, all types bear a systematic relationship to each other
and all types following the pattern are allowed. For example, the identity function has types
A→ A, B→ B or (A→ B)→ (A→ B), but all instances have the same structure.

There exists a third style of typing which looks very similarto Curry style typing, because
it uses contexts, but which is in fact rather a variant of Church style typing: The type of a
variable is declared in a context, but in the rule forλ-abstraction, the type of the abstracted
variable was given by the context is kept in theλ-abstraction. Hence, the rules as in the
Curry system, except for the abstraction rule which becomes

Γ ∪ {v : A} ⊢ t : B

Γ ⊢ λv : A. t : A→ B

It is this variant of the Church-style typing which is actually used in the next chapter.

3.3 Functional Programming as an Implementation ofλ-calculus

As we mentioned earlier,λ-calculus is the basis of functional programming. Through the
history of functional programming, we can see how fromλ-calculus evolved to a family of
modern functional programming languages that all have the characteristics of the calculus
we discussed. For example, LISP, which is one of the first major programming languages
was inspired by theλ-calculus. Many functional languages such as ML consist of little more
than theλ-calculus with additional syntax.λ-calculus is important to functional program-
ming languages and computer science. Through it variable binding and scoping in block
structured languages can be modelled as well as several functions calling mechanism such
as call-by-name, call-by-value and call-by-need. As discussed earlier, theλ-calculus is Tur-
ing universal, and probably the most natural model of computations and Church’s Thesis
asserts that the ’computable’ functions are precisely those that can be represented in the
λ-calculus.

The λ-calculus notions of confluence (Church Rosser property), termination and normal
form, can be used as notions in rewriting theory. Theλ-calculus and its extensions can be
used to develop better type system, such as polymorphism, and to investigate theoretical
issue such as program synthesis. The two main implementation methods , the SECD ma-
chines (for strict evaluation) and combinator reduction (lazy evaluation) exploit properties of

3.4 Denotational Semantics 46

λ-calculus. SECD machine was invented by Landin as an interpreter (byte code interpreter)
for theλ-calculus in order to execute ISWIM (If you See What I Mean) programs. ISWIM
was the model for ML and it was designed to be extended with application-specific data and
operations. It consisted of theλ-calculus plus a few more additional constructs and could be
translated back into pureλ-calculus. Denotational semantics, which is an important method
for formally specifying programming languages, employs theλ-calculus for its notation.

3.4 Denotational Semantics

Semantics is the assignment of meaning to the sentences of a programming language. Se-
mantic definition methods are valuable to implementors and programmers for they provide a
precise standard for a computer implementation, a useful user documentation and a tool for
design and analysis. The standard guarantees that the language is implemented exactly the
same on all machines. A formal semantic definitions can be read by a trained programmer
and use it as a reference to answer subtle questions about thelanguage. The semantics of
programming languages is not as well developed as their syntax. This is because semantical
features are much more difficult to define and describe and a standard method for writing
semantics is still evolving. The first versions of programming language semantics used ma-
chines and their actions as their foundation. There are three main methods for semantics
specification: operational, denotational and axiomatic semantics. In this thesis we will work
with denotational semantics. Before giving a detailed definition of denotational semantics,
we briefly give an overview of the other forms of semantics.

Operational semantics method uses an interpreter to define alanguage where the meaning of
a program is the evaluation history (a sequence of internal interpreter configurations) that the
interpreter produces. One of the disadvantage of this semantic is that there is no machine-
independent definition exists because the language can onlybe understood in terms of in-
terpreter configurations. Furthermore, if the interpreter’s algorithm is simple and written in
an elegant notation, the interpreter can give an insight of the language, but unfortunately,
interpreters for nontrivial languages are large and complex, and the notation used to write
them is often as complex as the language being defined.

In axiomatics semantics, the properties of a language are expressed with axioms and rules
to construct a formal proof of the property. The character ofan axiomatic definition is de-
termined by the kind of properties that can be proved. The meaning of the program is not
explicitly given at all with the axiomatic semantics method. For example, a very simple sys-
tem may only allow proofs that one program is equal to anotherand a more complex system
allows proofs about a program’s input and output properties. Axiomatic definitions are more
abstract than denotational and operational semantics method. The properties proved about
a program may not be enough to completely determine the program’s meaning [All87].
The format in axiomatic semantics is best used to provide preliminary specifications for a
language or to give documentation about properties that areof interest to the users of the
language.

Denotational semantics is an approach to formalizing the semantics of computer systems
by constructing a mathematical object which expresses the semantics of these systems. The

3.4 Denotational Semantics 47

mathematical objects are called denotations or meanings. Further elaboration of the denota-
tional semantics will be discussed in the next section.

Each of the three methods of formal semantics definition has different areas of application,
and together they provide a set of tools for language development. Designers of a new pro-
gramming system might first supply a list of properties that they wish the system would
have. Since a user interacts with the system through an inputlanguage, an axiomatic defini-
tion is constructed in defining the input language and how it achieves the desired properties.
Then a denotational semantics is defined to give the meaning of the language where a for-
mal proof is constructed to show that the semantics contain the properties that the axiomatic
definition specifies. Finally the denotational definition isimplemented using an operational
semantics.

3.4.1 Definition of Denotational Semantics

Denotational semantics has traditionally been described as the theory of true meanings for
programs, or as the theory of what programs denote. The denotation is usually a mathemat-
ical value such as a number or a function and a valuation function maps a program directly
to its meaning. A denotational definition is more abstract than an operational definition, for
it does not specify computation steps.

Denotational semantics originated in the work of Christopher Strachey and Dana Scott in
the 1960s. Denotational semantics originally developed byStrachey and Scott interpreted
the denotation (meaning) of a computer program as a functionthat mapped input to output.
But for programs that included elements such as recursivelydefined functions and data
structures, the definition of denotation is limited. To overcome this, Scott introduced a
generalized approach to denotational semantics based on domains [SS71].

An effort to address difficulties with the semantics of concurrent system, researches later on
introduced approaches based on power domains. An alternative view point for denotational
semantics is that it is seen as a translation from one formal system to another. However, the
pragmatics of denotational semantics is essentially unaffected by the foundational stance
one takes. The aims, hopes, and concrete uses of denotational semantics are the same. We
can say that the purpose of denotational semantics are to bring out subtle issues in language
design, to derive new reasoning principles, and to develop an intuitive abstract model of the
programming language under consideration so as to aid program development.

3.4.2 Semantic Algebra

Before studying the semantics of programming languages, wemust establish a suitable col-
lection of meanings for programs. For this we need the notionof a semantic algebra. A
semantic algebra is given by a semantic domain and a set of operations defined on elements
of the domain. Semantic domains are the sets that are used as value spaces in programming
language semantics. In practice not all of the set and set building operations are needed for
building domains. The set of operations are functions that map elements from the domain
to other elements of the domain. Operations are defined in twoparts: first the functionality

3.4 Denotational Semantics 48

of the operations is defined, then the description of the operation’s mapping is given. The
functionality of an operation is given by the operation’s domain and codomain. For an op-
erationf , its functionalityf : D1 ×D2 × . . . ×Dn → A says thatf needs argument from
domainD1,D2 until Dn to produce an answer in domainA. The description of the opera-
tion’s mapping is usually an equational definition but a set graph, table or diagram may be
used as well.

A primitive domain is a set that is fundamental to the application being studied and its
elements are atomic and are used as answers or semantic outputs. For example the natural
numbers:

• DomainNat = N

• Operations

zero : Nat
one : Nat
two : Nat
. . .
add : Nat×Nat→ Nat
subtract : Nat×Nat→ Nat
multiply : Nat×Nat→ Nat
div : Nat×Nat→ Nat

Note that constants (herezero, one, two, . . .) are treated as functions with zero arguments,
andzero, one, two, . . . return the usual natural numbers. The operationsadd, subtract and
multiply are addition, subtraction and multiplication of natural numbers, respectively and
they are written in infix format. Natural number subtractionneeds to be clarified further: if
the second argument is larger than the first, the result is zero, otherwise normal subtraction
is applied. add, multiply are defined as usual. By using the algebra, we can construct
expression that represent members ofNat. An example is as follows:

(two multiply five) subtract (one add three)

This expression computes as follows:

(two multiply five) subtract (one add three)
= (two multiply five) subtract four
= ten subtract four
= six

Other examples of primitive domains are truth values (Boolean -B), character strings (C) and
etc. Compound domains are domain building constructions for creating new domains from
existing ones. The four basic constructions of forming compound domains from semantic
domainsA andB are :

• The product domainA×B has as members ordered pairs of the form(a, b), for (a ∈ A
andb ∈ B).

3.4 Denotational Semantics 49

• Sum domainsA + B has as members elements fromA andB, labeled to mark their
origins. The classic representation of this labeling is theordered pair(zero, a) for an
a ∈ A and(one, b) for a b ∈ B.

• The members of the function domainA → B is the collection of functions from
domainA to domainB.

• The lifted domainsA⊥, has membersA⊥

def
= A ∪ {⊥}. ’⊥’ denotes an undefined

element (often standing for nontermination) or ’no value atall’. If one wants to intro-
duce a functionf , which applied to an argumenta ∈ A may yield an element inB
or no answer at all, then we can introducef as having functionalityA → B⊥. Then
f(a) = ⊥ means thatf(a) is undefined.

Including⊥ as a value is an alternative to using a theory of partial functions. A partial
function is a function that may not have a value associated with each argument in its domain.

3.4.3 Denotational Definition

A denotational definition of a language consists of three parts i.e the abstract syntax defini-
tion of the language, the semantic algebra and the valuationfunction. The valuation function
is actually a collection of functions, one for each syntax domain. A valuation functionD for
a syntax domain D is listed as a set of equations, one per option in the corresponding BNF
rule for D. For example, the denotational definition of binary numerals are shown in Figure
3.1.

In the algebra onlymultiply andadd are listed because the others are not used in the valua-
tion functions. From the denotational definition in Figure 3.1, we can determine the meaning
of the binary numeralJ101K as follows:

B(101) = (B(10) multiply two) add D(1)
= (((B(1)multiply two) add D(0))multiply two)add D(1)
= (((D(1) multiply two) add D(0)) multiply two) add D(1)
= (((one multiply two) add zero) multiply two) add one
= five

Thus we can see that the meaning of the binary numeral 101 fromthe derivation tree isfive.

We make use of denotational semantics in the proof shown in Chapter 6 where we give the
denotational semantics for the functional programs and forthe object-oriented programs.
Then we show that the semantics of the functional programs and of the programs obtained
from translating them into object-oriented program coincide. The denotational semantics
of the functional program is constructed based on the abstract syntax of the simply typed
λ-calculus shown in the section 6.2.4.

3.4 Denotational Semantics 50

• Abstract syntax:
B ∈ Binary-numeral
D ∈ Binary-digit
B ::= BD | D
D ::= 0 | 1

The notationD := 0 | 1 meansD := {0, 1} and the elements ofB are either elements
of D or an elementb ∈ B followed by an elementd ∈ D written asbd. Thus,
for instance101 ∈ B which is obtained by having:1 ∈ D, so 1 ∈ B, 0 ∈ D, so
10 ∈ B, 1 ∈ D so101 ∈ B. One then writes in the followingB for elements ofB
andD for elements ofD, soB(BD) stands for an element ofB applied to the result
concatenating an elementb of B to an elementd of D.

• Semantic Algebra
I. Natural numbers

DomainNat = N
Operations
zero, one, two, . . . : Nat
add,multiply : Nat×Nat→ Nat

• Valuation Functions :
B : Binary-numeral→ Nat

B(BD) = (B(B) multiply two) add D(D)
B(D) = D(D)

D : Binary-digit→ Nat
D(0) = zero
D(1) = one

The operationmultiply andadd are written in infix format.

Figure 3.1: Denotational definition of binary numeral

Chapter 4

Integrating Functional Programming
into C++

C++ is a general purpose programming language which supports object oriented program-
ming as well as procedural and generic programming. It is a paradigm-neutral language
[GJ98]. Unfortunately, C++ does not support functional programming which can give great
benefits in developing a program especially in order to create mathematical functions. As
discussed in the previous chapter, functional programminghave several features that made
it practical such as first class values, high-order functions, lazy evaluation and other features
that are usually absent from imperative languages. By integrating functional programming
into C++, the advantages of object oriented programming andfunctional programming can
combine making C++ a more powerful language.

We are using C++ code itself in order to integrate functionalprogramming into C++. More
precisely we have written a C++ program, which parsesλ-terms, which are given in a spe-
cific syntax, and translates them into their equivalent C++ statements. This is an important
step towards embedding functional programming into C++, since theλ-calculus is the basis
of functional programming.

In this chapter we will discuss the approach that we use in integrating functional program-
ming into C++ and the design, specification and development of the program that parses and
translatesλ-terms into equivalent C++ code.

4.1 Integration of Functional Programming into C++

Even though there are several approaches to integrate functional programming into C++
such as creating a special library for functional programming(FC++) [MS00], our approach
has the advantage that it is simple and allows for a correctness proof. We also believe that
it is more flexible, since it allows for exampleλ-terms with side effects. Other approaches
will be discussed further in Chapter 7.

The translated code is produced based on the related idea discovered by Kiselyov [Kis98]

51

4.1 Integration of Functional Programming into C++ 52

and Läufer [Lau95] that can be used for functional programming by representing higher
order functions using classes. The C++ code that is generated for simply typedλ-terms uses
the object-oriented concepts of classes and inheritance. Abstract classes are used in defining
the function type of aλ-term with a virtual operator that is overloaded in the definition of the
λ-term. The type itself is the type of pointers to an object of this abstract class. The concept
of inheritance is involved in the definition of aλ-term where the function type abstract class
will be the base class for theλ-term. More details will be discussed in the next chapter.

In its most pure form, functional programs contain no side effect at all [Hug89], (Note
that many functional programming languages such as ML allowside effects). Programs
with no side effect will lessen the burden of debugging and maintaining the program and
also hinder any accidental side effects that might occur during development. Our translated
λ-term follow this: the translated code has no assignment statement. The evaluation of
the translatedλ-term corresponds to call-by-value evaluation. Call-by-value evaluation has
been discussed earlier in the Chapter 3.

In C++ there are two ways of passing arguments in a function i.e. through call-by-value
and call-by-reference [Eti94]. An argument passed to function using call-by-value will not
be changed by the function (eventhough changes to the argument are made in the function)
because a copy of the value is made and passed to it. Any changeto the copy does not
affect the value of the original argument. In case of call-by-reference arguments, the caller
gives the called function the ability to access the caller’sdata directly, and if any changes
or modification to the data will affect it directly. Arguments or parameters that are passed
by reference in C++ make use of the symbol ’&’ as a flag for reference. For example, the
declaration of the function headerf with reference parameters:f(int &x) wherex is a
reference to anint . A reference argument must be anlvalue, not a constant or expression
that returns anrvalue. For example, the callf(t) is only allowed if t is a variable and
x is a reference tot . Whatever happens tot happens tox as well. Evaluation for call-
by-reference is not a problem because a variable is already evaluated (a variable contains a
value).

Generally, for reasons of clarity and performance, many C++programmers prefer that mod-
ifiable arguments be passed to functions by using pointers, small nonmodifiable arguments
be passed call-by-value and large nonmodifiable arguments be passed to functions by using
references to constants. The reference parameters can be used with aconst to prevent
their values being modified. Theconst keyword can be used in several ways to prevent
values of arguments being changed. For example, the previous example is changed using
theconst as follows:

void f(const int &x){
x = 1;
}

This code will not compile since we cannot change aconst variable. The use ofconst
with reference parameters will cause the parameters be passed without copying (in case of
large data will waste too much memory or take too long) but stop it from being altered
or changed. Passing large objects such as structures using pointers to constant data, or
references to constant data will obtain the performance benefits of call-by-reference and the
security of call-by-value.

4.1 Integration of Functional Programming into C++ 53

In call-by-name evaluation, the arguments to a function arenot evaluated at all, but are sub-
stituted directly into the function body using capture-avoiding substitution. If the argument
is not used in the evaluation of the function, it is never evaluated but if it is used several
times, it is reevaluated each time. For example, a function :

int f(int x){
return x + x;
}

and a callf(t) will have the effect of computingt to a valuen1 and computingt to
a valuen2 , then n1 + n2 is computed. This involves in computingt twice since its
value is needed twice. Note that C++ has no call-by-name evaluation, and the example
given is a code in C++ syntax but for a language which has a call-by-name evaluation.
Call-by-name evaluation is rarely implemented directly, but frequently used in considering
theoretical properties of programs and programming languages. Thus, real-world languages
with call-by-name semantics tend to be implemented using call-by-need.

Call-by-need is a memoized version of call-by-name where, if the function argument is eval-
uated, that value is stored for subsequent uses. For example, the function given previously (
for call by name), if the callf(t) is call-by-need,t is evaluated once since the evaluated
version is used for the second use oft . In a ”pure” (effect-free) setting, this produces the
same result as call-by-name. But when the function argumentis used two or more times,
call-by-need is always faster. Sometimes evaluation of expressions may happen arbitrarily
far into computation and due to this languages using call-by-need generally do not support
computational effects (such as mutation) except through the use of monads. This eliminates
any unexpected behaviour from variables whose values change prior to their delayed eval-
uation. Lazy evaluation or delayed evaluation is the technique of delaying a computation
until such time as the result of the computation is known to beneeded. Lazy evaluation also
means evaluation is done only once. Most realistic lazy languages such as Haskell use call
by need for performance reason.

By embeddingλ-calculus into C++, the task of creating a function especially, a mathemat-
ical function, will be simpler. As we know in C++, in order to create a function, we must
name the function, declare and define it before using it (calling it). But by using the syntax
that has been determined to embedλ-calculus, we can have a nameless function and we can
omit the extra work of declaring and defining it. Thus, we can have an option of creating a
function on the fly even though a named function is encouragedfor documentation purposes.
We use the variant of the Church style typedλ-calculus discussed at the end of the previous
chapter, except that we have constants for arithmetic functions, rather than constants for ob-
ject of arbitrary types. Theλ-calculus was introduced at page 35 and the typing rules for a
λ-term is listed in the Chapter 6.

A λ-termλxint.t wheret is of the typeint will be written in our syntax as\int x.int t
where the function type is int→int. The reason why we typeint to t will be explained in
the Section 4.4.1. More details on how the function type is determined are discussed in
Chapter 5. We have said previously that, creating a functionusing the concept ofλ calculus
will rid the task of defining and declaring the function. For example, for creating a function
that squares any integer number in C++ , we need to give the function a name, declare and
define it as follows:

4.2 Overview of the Parser-Translator Program 54

\\declare the square function by giving its prototype
int square(int);

\\define the function
int square(int no){

return no * no;}

\\calling the function
int n = 50;
int square_number = square(n);

But by implementing theλ-calculus, we can create the function above and apply it to the
variablen in one expression which is shown as follows:

int n;
int square_number =(\int no.int no * no)ˆˆn;

We introduce the symbol"ˆˆ" for the term application. In the expression above, theλ-
abstraction is applied to variablen. In this expression theλ-abstraction is reduced ton* n
and if n = 2 , the variablesquare_number will have the value 4. This is calledβ-
reduction. Theλ-calculus has only functions with one argument. Functions with more than
one arguments can be expressed with a function whose result is another function and this
kind of function is known as acurried function. Curried functions are functions that are
represented using nested lambdas. This technique has its name from Haskell B. Curry. An
example of curried function written in our syntax is as follows :

\int x.\int y.\int z.int x+y+z;

When theλ-abstraction above is applied to 3, 4, and 5, it will perform threeβ-reductions
resulting in the value 12. The result is obtained by replacing x with 3, y with 4 andz with
5. The application mentioned can be written as follows:

(((\int x.\int y.\int z.int x+y+z)ˆˆ3)ˆˆ4)ˆˆ5

This term which is written in our syntax, will then be translated into its equivalent C++ code.
In the following sections we will discuss the design, specification and the development of
the Parser-Translator program. We will also show some examples ofλ-terms that we have
tested using our program.

4.2 Overview of the Parser-Translator Program

The Parser-Translator program or PTP was written in C++ using Spirit to generate a parser
that parsesλ-term based on the grammar that has been determined. The PTP was compiled
and executed using the C++ compiler with Boost libraries. The Boost libraries work only
with modern C++ compilers which support modern C++ featuressuch as templates and the
C++ Standard Library.

Spirit is part of the C++ Boost libraries [Bo02]. It is an object-oriented recursive-descent
parser generator framework which was implemented using template meta-programming

4.2 Overview of the Parser-Translator Program 55

techniques where expression templates enable us to approximate the syntax of Extended
Backus-Normal Form (EBNF) completely in C++. It enables a target grammar to be written
exclusively in C++ where it can mix freely with other C++ codeand the grammar is imme-
diately executable i.e. the inline EBNF grammar specifications do not need to undergo the
step of translation from the source EBNF code to C++ code making Spirit the best choice to
be used for developing the PTP.

There are several files that are involved in the PTP. The overview of the files and the flow of
data is shown in the Figure 4.1.

TRANSLAMBDAEXP

GRAMMARLAMBAPP

LIST3VAR

LAMBTERM

SETCONTLAMBTYPE

Input
string

Main

Lambdaexp

Translambdaexp

Trans− Trans−

 Interactions in parsing the
lambda expression

ast

translated code

translated code

Translated

current
node

Translated
function type lambda term

lambtermlambtype pointer objects
to the Ltype class

the LTerm class
pointer object to

1st node

in managing the free
and bound variables

to the specified
Class definitios

lambda term Interactions in
accessing and manipulating
the lambda type objects
in a container

Interactions

 Class definition to the
 specified lambda type

Figure 4.1: Overview of the the files involved in the PTP

The files in the PTP can be divided into two parts i.e, the parsing and the translating part.
These files contain modules that execute certain tasks.Translammbdaexp is the main
file which contains the main module for the PTP where control of the program is executed.
The input string of theλ-expression is entered to the main module where the input will
undergo the parsing phase which involves thegrammarlambdaexp file. If the parsing
succeeds, the input will pass the translation part/phase. In this part, the modules in the files
listvar , Setcont , Lambtype , andLambterm will go into action and the translated
λ-term will be the output.

The grammar rules and the constructor of the classes in the PTP is based on the concept of

4.3 Description of the Modules in the Parsing Phase 56

typed and untypedλ-term as explained in the previous chapter. This concept is depicted in
the Figure 4.2 by giving an example of aλ expression.

λ int z.(int (λ λ int x.int x)z)

λ−

type

type typed λ− term termλ−
untyped typed λ− term

λ−
untyped

term
type

termλ−typed typed λ− term

typed

λ− term
typed

λ− term
typed

type λ− term
untyped

untyped
λ− term

term

λ− termtyped

int x.int x)3 + (

Figure 4.2: Depiction of the concept of the typed and untypedλ-term

4.3 Description of the Modules in the Parsing Phase

The input string ofλ-expression is entered through the main module in theTranslambdaexp
file, where the string is parsed based on the grammar rules in the fileGrammarlambdaexp .
The parsing is done here to ensure that the input is written according to the syntax that has
been determined. If the parsing succeeds i.e. the input matches with theλ-term grammar
rules, an abstract syntax tree (ast) is generated. We will not discuss the parsing process here
because details of it are discussed in the next chapter. Herewe will discuss the formation of
the grammar rules of theλ-term.

EBNF for the production rules in Figure 4.3, and Figure 4.4:

<lambstmt> -> (<lambtype>|<nativetype>) ’ ’ <identifier>
’ ’ ’=’ <lambexp> ;

<lambexp> -> (<lambdaterm>|<untypedlamterm>)
<lambdaterm> -> (<lambabstract>|<lambapp>)
<lambabstract> -> \ (<lambtype>|<nativetype>) ’ ’ <identi fier>

’.’ <lambabstract>|<lambtype>|<nativetype>)
’ ’ <untypedlamterm>

<lambapp> -> ’(’ <lambabstract> ’)’ ’ˆˆ’
(<lambapp>|<digit>|<identifier>)

<untypedlamterm> -> (<digit>|<identifier>|<lambdaterm >)

* {(<infixoperator>|’ˆˆ’)

4.3 Description of the Modules in the Parsing Phase 57

(<untypedlamterm>|<lambdaterm>)}
| <identifier> ’(’

(<untypedlamterm>|<lambdaterm>)

* { ’,’ (<untypedlamterm>|<lambdaterm>)}
’)’

<infixoperator> -> ’=’|’-’|’/’|’ * ’
<digit> -> +{{0|1|2|3|4|5|6|7|8|9}}
<btype> -> (nativetype|lambtype

|’(’ <btype> ’)’)
<nativetype> -> (’int’|’char’|’string’|’double’

|’float’|’long’|’short’
|’bool’|’signed’|’unsigned’)

<nondigit> -> (’-’|’a’|’b’|’c’|’d’|’e’|..|’z’
|’A’|’B’|’C’|’D’|’E’|’F’..|’Z’)

<lambtype> -> * {<btype> ’->’ } <btype>
<identifier> -> <nondigit> * {(<nondigit>|<digit>)}

" " ";""="" "

lambabstractlambdaterm

lambapp

lambtype

nativetype

lambstmt

lambexp lambdaterm

untypedlamterm

identifier lambexp

" \ "

nativetype

lambtype " " identifier " . "

nativetype

lambtype

(a)

" " untypedlamterm

" ("

digit

identifier

lambabstract ") "

(a)

lambapp

lambabstract

" ^^ "

Figure 4.3: Syntax diagram of theλ-term grammar

4.4 Description of Modules in the Translation Phase 58

From the syntax diagram shown in Figure 4.3, we can see that the λ-expression can be a
typedλ term or an untyped one. The grammar for theλ-term is divided intoλ-abstraction
andλ-application. The grammar rule for thelambdaterm is for the building ofλ-abstraction
and application while the rule foruntypedlamterm (Figure 4.4) is for the body of theλ-
term or a standalone untypedλ-term. Other variables that made up the grammar of aλ-term
are shown in the Figure 4.4. Note that in the syntax diagram, the symbol ’*’ and ‘+’ is the
indication that whatever is associated with them will be repeated zero or many times (‘*’)
and one or more times (‘+’). To assist in understanding the grammar given in the syntax
diagram, we give the Extended Backus Naur Form (EBNF) for thegrammar. We will not go
through the precise syntax of theλ-term because we can see it clearly from the syntax dia-
gram. The complete grammar of theλ-term written in Spirit are enclosed in the appendix.
We only would like to mention some of the directives and predefined parser in Spirit that we
used in the grammar rules such asleaf_node_d , root_node_d ,digit_p , alpha_p
and etc. In the Figure 4.4, the directivesdigit_p andalpha_b is used instead in the pro-
duction rule fordigit andnondigit . digit_p recognizes the digits from 1 to 0 and
alpha_b recognizes all the characters in the alphabet whether in lower or upper case. Since
we are building an abstract syntax tree, directives likeleaf_node_d , root_node_d ,
no_node_d and inner_node_d are beneficial in simplifying the structure of the tree
thus making the traversing and processing of the abstract syntax tree formed more easier.
Usually every character in a string will be taken as a node in atree, butleaf_node_d will
take all the characters it is formed from as one node – this construct will for instance be used
for identifiers. Other directives will be discussed and examples for their usage in building
the abstract syntax tree will be given in the next chapter. Every token in the grammar rule is
given an identification (id) which is an integer value. This id is used to identify each node
in the abstract syntax tree.

4.4 Description of Modules in the Translation Phase

The abstract syntax tree generated will be passed to the module lambdaexp where this
module will pass the beginning node of the tree to the moduletranslambaterm to be
processed. Here every node including the children node willbe processed until the end node
of the tree. The tree will be traversed from the beginning node to the end node using the
tree iterator which is a special facility from Spirit. Everynode and its children are tested for
their token id in the grammar rule. When the node is identified, specific module in the file
Translambdaexp is called which in turn will call the module in the fileLambterm or
Lambtype to translate it to its equivalent C++ code.

The fileLambtype consists of lambda type class (LType) with constructors for function
type and native type, and methods for generating the C++ codefor the function type and
native type. For example if the node is alambtype or a nativetype , the module
translambdatype is called which in turn will instantiate the constructor forthe function
type or native type in the fileLambtype and execute the appropriate method to translate it
to its equivalent C++ code.

The file Setcont is associated with filesLambtype , Listvar andLambterm . The
involvement of these files are discussed in the coming sections.

4.4 Description of Modules in the Translation Phase 59

4.4.1 Description of the Lambterm File and its Associated Files

The fileLambterm contains the declaration and the definition of the typed (LTerm) and
untypedλ-term (UntypedLTerm) objects along with the definition of their methods. As
mentioned PTP is developed using the object-oriented approach that involves inheritance
where the typedλ-term form a subclass of the untypedλ-term. Constructors are built based
on all possible terms that can occur for the class and subclass and a method is defined to
create a pointer to each constructor. There is a special constructor in LTerm class that
gives a type to an untypedλ-term where a method calledLift creates a pointer to this
constructor. Thus any untypedλ-term will become typed using this method.

TheListvar file manages the bound and free variables of theλ-term. It consists of a class
Listvariable with constructors for empty list of variables and adding list of variables.
The classListvariable has methods that are responsible in displaying arguments for
the λ-term and also a method that will not allow the same variable name to be listed as
arguments for theλ-term which indirectly minimizes or disallow aliasing.

The methods of the class of typedλ-term are for the purpose of translating the typedλ-term
to its equivalent C++ code. The same thing applies to the methods of the class of untyped
λ-term. The translated code produced uses the object-oriented programming technology. A
class is created for eachλ-term and the translatedλ-term is by inheritance an element of the
translated function type. Here the function type is an abstract class which is the base class
for the class ofλ-terms of this type.

The type checking in the translated code is done by the type system of C++. The type
system of C++ has decidable type checking not type inferencelike in Haskell. In C++ we
check whether a termt has a certain type but not type inferencing because a termt can have
multiple types. For example a termλxint. 3.14 can be of type int→float or int→double and
by inheritance a term can be an element of many types. In the translation we added the type
to the body of the term because we need to know the type of the body of theλ-term. But if
we apply aλ-term t to s(s t) and we know the type ofs; t : σ → τ thens : σ, we do not
demand to assign a type tot and in some examples we can even omit the type.

Why do we need to use inheritance in the translation? To explain this, consider the terms
given as follows:

g := λx.x : int→ int

g′ := λx.x+ x : int→ int

h : (int→ int)→ int

h(f) = f(5)

Given the expression:h(g) + h(g′), without using inheritance, the lefth needs to use the
class definingg and the righth needs to use the class definingg′. Assumingg is defined by
classlambda1 andg′ is defined by classlambda2 andh has methods as follows:

int operator() (lambda1 g){
return g(5);
}
int operator() (lambda2 g) {

4.4 Description of Modules in the Translation Phase 60

return g(5);
}

In general, it is not possible to predict all possible applications ofh since arguments might
be defined dynamically. One might suggest thath should have templated method of the
form:

template operator() <A> (A g){
return g(5);
}

But this can only work if we know at compile time theg’s to whichh is applied. Thus the
use of inheritance seems to be the only type method which works in general.

The translation of aλ-term will create various classes. The general form of the translated
code is as follows:

[Classes of the function types are defined here
: :
: :

]
{Classes of the lambda-term are defined here

: :
}

[Lambda expression is written here]

If the λ-term is a simpleλ-abstraction, the class defined is just a single class that has a
function type as the base class. As an example we give the class definitions for theλ-term
λxint.x+ 5. The function type is int→int which is translated as follows:

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0;};
typedef Cint_intD_aux * Cint_intD;

The class definition for theλ-term is as follows:

class lambda0 : public Cint_intD_aux{
public:
lambda0() {};
virtual int operator () {int x}
{ return x + 5;};

};

Theλ-term itself is translated intonew lambda0() . We are aware that the use ofnew is
expensive. In many simple examples, one could avoid the use of new by replacing pointers
to objects by objects. For instance, we could replace a pointer to an object of the class
representing aλ-term by the object of this class itself, and then would not need to generate
the object dynamically. However we do not know how to deal with the general situation.
In general, it seems that we need inheritance. For instance,the C++ class representing

4.4 Description of Modules in the Translation Phase 61

(\(int->int) f.int f)ˆˆ0 could without inheritance only applied to aλ-term of
type (int→int) which is translated into one particular object, and therefore not be applied to
an arbitrary element of type (int→int). One could create several instances of this method to
cater for different objects representing differentλ-terms which are all of type (int→int), but
only if those objects are known at compile time. If we generate thoseλ-terms dynamically
at run time, then this is no longer possible. So, in the general situation we require the use of
inheritance, although many special cases would be optimized.

If the term is a curried function or a nestedλ-term, a series of class definition and function
type will be generated. The name of the class is automatically generated: it starts with
lambda followed by an integer that corresponds to the sequence of classes generated. If
a curried function or a nestedλ-abstraction that involves three arguments like the example
given previously is translated, three classes will be created and the name of the class will
be lambda0 , lambda1 andlambda2 . Details of the translation is discussed in the next
chapter. Here we only give some examples.

The statements declaringλ-terms that will be accepted by our parser have the following
form:

(nativetype|lambdatype) identifier "=" (lambdaterm
| untyped lambdaterm);

nativetype refers to tha native or basic type in C++ such asint , char anddouble ,
while lambdatype refers to the function type A→B where A is the input type and B is
the result type of the function. The general processing of the abstract syntax tree is shown
in the pseudocode below:

1. Begin with the 1st node
2. Execute the module for translation of the type whether it’ s

a native type or a lambda type to the children of the node
3. string1 = Translation of type
4. Next node (identifier)
5. string2 = identifier
6. Skip node (for ’=’)
7. Test the next node

a. if = lambda term
Execute the module for translation of the lambda

term to the children of the node
string3 = class definition of the lambda term and its
function type
string4 = expression of the lambda term
b. if = untyped lambda term

Execute the module for translation of the untyped
lambda term to the children of the node
string3 = translation of the untyped lambda term
string4 = expression of the untyped lambda term

8. Output string3 + string1 + string2 + ’=’ + string4
9. End

4.5 Examples of the translation ofλ-term expressions 62

In step 2, the children of the node is passed to get the object of the type pointer which points
to the appropriate constructor of the classλ-type (LType). This object pointer then invoke
the method that creates the classes of the function type. TheclassLType and its methods
are in the fileLambtype . An associative container is applied to manage the sequenceof
λ-type objects. We make use of it because we can order theλ-type objects in a container
following a sorting criterion that is predefined in the program and also due to its iterator that
offer a common interface for any arbitrary container type. The iterator makes it possible
for us to avoid any duplication of theλ-type objects. The container mentioned is defined
in the fileSetcont . Once the object pointer ofLType is determined, it is checked in the
container using the iterator whether it exists or not. If it exists it will be discarded, otherwise
it will be added to the container. Then the class definition ofthe function type will be
created where the sequence of class definition ofλ-types are based on theλ-type objects in
the container.

In step 7, the children of the node is passed to the end to get the object of type pointer
that points to the constructor of the classLTerm where this object pointer will invoke the
appropriate methods to generate the class definitions and expression of theλ-term. Similarly
for the untypedλ-term, the same process will be executed to get the class definition and
expression for the untypedλ-term. The modules responsible for these tasks reside in thefile
Lambterm and these modules will invoke the modules in the fileListvar to manage the
bound and free variables of theλ-term. The modules in the fileLambtype are also invoked
to get the class definition of the function type. The string ofclass definition of function type
and class definition of a term as well as the expression of theλ-term are each assigned to a
string variable which are concatenated to produce the wholecompleted translation.

4.5 Examples of the translation ofλ-term expressions

The Parser-Translator program was tested with several forms of λ-term and the translated
code was compiled and run. The result then was compared with the result that we got
manually. Here we will give some examples ofλ-terms that were tested and their translated
code.

1) input :
int->int f =\int y.int (\int x.int x * x)ˆˆ3

+ (\int x.int x * x)ˆˆ3 +y;
and the translated code is:
class Cint_intD_aux
{

public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux * Cint_intD;

class lambda1 : public Cint_intD_aux{
public :
lambda1() { };
virtual int operator () (int x)

4.5 Examples of the translation ofλ-term expressions 63

{ return x * x; };
};

class lambda0 : public Cint_intD_aux{
public :
lambda0() { };
virtual int operator () (int y)
{ return (* (new lambda1()))(3) +

(* (new lambda1()))(3)+y; };
};
Cint_intD f = new lambda0();
We can apply this term to an integer value which is shown as follows :
int g = (* f)(4);
and the result is the value 22.

2) Input:
int g =(\int->int f.int (* (f))((* (f))(2)))

ˆˆ(\int x.int 2+x);
The translated code is as follows:
class Cint_intD_aux
{

public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux * Cint_intD;

//Definition of type : ((int->int)->int)
class CCint_intD_intD_aux
{

public : virtual int operator() (Cint_intD x) = 0; };

typedef CCint_intD_intD_aux * CCint_intD_intD;

class lambda0 : public CCint_intD_intD_aux{
public :
lambda0() { };
virtual int operator () (Cint_intD f)
{ return (* (f))((* (f))(2)); };

};

class lambda1 : public Cint_intD_aux{
public :
lambda1() { };
virtual int operator () (int x)
{ return 2 + x; };

};
int y = (* (new lambda0()))(new lambda1());

4.5 Examples of the translation ofλ-term expressions 64

Theλ-expression in the second example can be written inλ-notation as :

λf.f(f 2)(λx.2 + x)

and it can be evaluated as:

(λx.2 + x)((λx.2 + x)2) = (λx.2 + x)4

resulting in the value 6.
3) Input:

int k =(((\((int->int)->(int->int)) g.\int->int f.
int->int gˆˆgˆˆf)

ˆˆ(\int->int f.\int x.int fˆˆfˆˆx))
ˆˆ(\int x.int 2+x))ˆˆ3;

and the translated code is:
class Cint_intD_aux
{

public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux * Cint_intD;

//Definition of type : ((int->int)->(int->int))
class CCint_intD_Cint_intDD_aux
{

public : virtual Cint_intD operator() (Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux * CCint_intD_Cint_intDD;

//Definition of type : (((int->int)->(int->int))
// ->((int->int)->(int->int)))
class CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD_ aux
{

public : virtual CCint_intD_Cint_intDD operator()
(CCint_intD_Cint_intDD x) = 0; };

typedef CCCint_intD_Cint_intDD_CCint_intD_Cint_intDD D_aux*
CCCint_intD_Cint_intDD_CCint_intD_Cint_intDDD;

class lambda1 : public CCint_intD_Cint_intDD_aux{
public :CCint_intD_Cint_intDD g;
lambda1(CCint_intD_Cint_intDD g) { this-> g = g;};
virtual Cint_intD operator () (Cint_intD f)
{ return (* (g))((* (g))(f)); };

};

class lambda0 : public
CCCint_intD_Cint_intDD_CCint_intD

4.5 Examples of the translation ofλ-term expressions 65

_Cint_intDDD_aux{
public :
lambda0() { };
virtual CCint_intD_Cint_intDD operator ()

(CCint_intD_Cint_intDD g)
{ return new lambda1(g); }

};

class lambda3 : public Cint_intD_aux{
public :Cint_intD f;
lambda3(Cint_intD f) { this-> f = f;};
virtual int operator () (int x)
{ return (* (f))((* (f))(x)); };

};

class lambda2 : public CCint_intD_Cint_intDD_aux{
public :
lambda2() { };
virtual Cint_intD operator () (Cint_intD f)
{ return new lambda3(f); }

};

class lambda4 : public Cint_intD_aux{
public :
lambda4() { };
virtual int operator () (int x)
{ return 2 + x; };

};
int k = (* ((* ((* (new lambda0()))(new lambda2())))

(new lambda4())))(3);

In the above example, the function type forλ-abstraction represented bylambda0 is
(((int→int)→(int→int))→((int→int)→(int→int)) where the class definition for this func-
tion type is built from series of function types. The function type will not be duplicated even
though we have otherλ-abstractions in the expression of the same function type inthe series
of function types. This is the advantage of using a containerfor λ-type objects. We have
tested this program with many moreλ-expressions. Only a few of them are shown here. The
implementation of the Parser-Translator Program in integrating functional programming is
discussed in greater detail in the next chapter.

We have mentioned previously that lazy evaluation is one of the characteristics of a func-
tional program. After introducing the extended syntax in defining a λ-term in C++, we
can represent lazy evaluation in C++ by using the extended syntax. Further details will be
discussed in the next section.

4.6 Lazy Evaluation in C++ 66

4.6 Lazy Evaluation in C++

We represent lazy evaluation in C++ by translating Haskell code using infinite list such
as for computing Fibonaci numbers. This example [ABS06a], [ABS06b] requires that we
have infinite streams of natural numbers and rely heavily on lazy evaluation. The standard
technique for replacing call-by-value by call-by-name is to delay evaluation. The code in
Haskell that will be translated into efficient C++ code is shown as follows:

fib = 1:1:(zipWith (+) fib (tail fib))

In order to delay evaluation, we replace typesA by () → A where() is the empty type (i.e.
void). Lazy evaluation not only delay evaluation, but it evaluates a term only once. So, to
obtain this, we define a new typeLazy(A) which delays evaluation of an element of type
A in such a way that evaluation will be carried out when needed,and it is done only once.
Once the value is computed, the result is stored in a variablefor later reuse. The definition
for the classlazy is a general definition which is not restricted to lazy streams. We use the
extended C++ syntax forλ-terms,λ-types and especiallyrˆˆt for application,\ for λ and
-> for → which has been discussed in Chapter 5 in the translated code.The definition of
the classlazy is as follows:

template<typename X> class lazy{
bool is_evaluated;
union {X result;

() -> compute_function;};
public:

lazy(() -> X compute_function){
is_evaluated = false;
this->compute_function = compute_function;};

X eval() {
if (not is_evaluated){

result = comput_function ˆˆ ();
is_evaluated = true;};
return result;};};

#define Lazy(X) lazy<X> *

The definition given would be much longer and considerably complicated without support
from the extended syntax. Using the classlazy we can easily define lazy streams of natural
numbers. Possibly terminating streams such as lazy list canbe defined similarly but require
the usual technique based on the composite design pattern for formalising algebraic data
types as classes by introducing a main class for the main typewhich has subclasses for each
constructor, each of which stores the arguments of the constructor.

template<typename X> class lazy_stream{
public: Lazy(X) head;

Lazy(lazy_stream<X> *) tail;
... Constructor as usual... }

#define Lazy_Stream(X) lazy_stream<X> *

4.6 Lazy Evaluation in C++ 67

An operation which takes a function of type() → X and returns the corresponding element
of typeLazy(X) is defined as :

template<typename X> Lazy(X)
create_lazy(()-> X compute_function)

{ return new lazy<X>(compute_function);};

We need to define operators that will be used in the above definition of fib which is listed
as follows:

• lazy_cons_lazy<X> computes the cons-operation on streams and returns lazily
a lazy stream:

template<typename X>Lazy(Lazy_Stream(X))
lazy_cons_lazy(Lazy(X) head,

Lazy(Lazy_Stream(X)) tail){
return create_Lazy

(\ () X.new lazy_stream<X>(head,tail))};}

• lazy_tail<X> computes tail of a stream lazily where only its type is definedhere:

Lazy(Lazy_Stream(X)) lazy_tail<X>(
Lazy(Lazy(Lazy_Stream(X)) s)

• lazy_zip_with<X> computes the usualzip_with function (i.e.zip_with (f,
[a, b, . . .], [c, d, . . .]) = [f a c, f b d, . . .]; we define only its type:

Lazy(Lazy_Stream(X)) lazy_zip_with<X>
(X -> X -> X f,

Lazy(Lazy_Stream(X)) s0,
Lazy(Lazy_Stream(X)) s1)

The definition oflazy_tail and lazy_zip_with is straightforward, once one has
introduced a few combinators which deals withLazy(X) . After introducing the operators
that are involved in defining Fibonacci numbers, the stream of Fibonacci numbers is defined
as follows:

()-><Lazy_Stream(int)> fib_aux =
\() x.Lazy_Stream(int)

eval(
lazy_cons_lazy(

one_lazy,
lazy_cons_lazy(

one_lazy,
lazy_zip_with(

plus,
create_lazy(this),
lazy_tail(create_lazy(this))))));

4.6 Lazy Evaluation in C++ 68

Lazy_Stream(int) fib = eval(create_lazy(fib_aux));

plus isλx, y.x+y, one_lazy is the numeral 1 converted into an element ofLazy(int) ,
create_lazy transforms element of type() -> A into Lazy(A) , andeval evaluates
an element of typeLazy(A) to an element of typeA. The keywordthis is used in the
definition of fib_aux . If we usefib_aux , C++ will first instantiatefib_aux as an
empty class and use this value when evaluating the right handside. We can only obtained
a truely recursive definition usingthis . When evaluated, one sees that thenth element of
fib computes tofib(n) and this computation is the efficient one in which previous calls of
fib(k) are memoized. ReplacingLazy(X) by () -> X , results in an implementation of
the fibonacci numbers which is still correct, but requires exponential space since memoiza-
tion is lost.

Lazy evaluation in C++ has been studied extensively in the literature (eg. [Sch00], [MS00],
[Kel97]) where all implementations are restricted to lazy lists. We introduce a general type
of lazy elements of an arbitrary type, which not only corresponds to call-by-name (usually
achieved by replacing a typeA by ()→ A), but also guarantees that elements are evaluated
once, as required by true lazy evaluation. There is no need toa new delay construct to C++
since our implementation of laziness makes use of the existing language of C++ only.

4.6 Lazy Evaluation in C++ 69

untypedlamterm digit infixoperator
" ^^ "

identifier

lambdaterm

lambdaterm ") "" (" " , "lambdaterm

*[]

*[]

lambdaterm

identifier

infixoperator digit +digit_p

btype
lambtype

nondigit
alpha_p

"int"
"char"
"string"
"double"
"float"
"long"
"short"
"bool"
"signed"
"unsigned"

")""("

" − "

" + "
" − "
" / "
" * "

")""("

lambtype btype*[" −> "] btype

identifier nondigit nondigit
digit

]*[

nativetype nativetype

Figure 4.4: Continuation of syntax diagram of theλ-term grammar

Chapter 5

Implementation of The
Parser-Translator Program

In the previous chapter, we have discussed the design of the Parser-Translator program.
Now we describe the implementation. We write in the following PTP as reference to our
Parser-Translator program. The PTP does two jobs which are parsing and translating. When
an expression representing a simply typedλ-term is input to the PTP, it parses the input
and translates it to a sequence of C++ statements. An overview of how the PTP works are
shown in the Figure 5.1. More details of the parsing and translation done by the PTP will
be discussed in the coming sections. We will also give an example of a simply typedλ-term
input to the PTP, and discuss the translation and execution of the translated code along with
the representation of the memory allocation. This information is important in proving the
correctness of the translated code because we build the mathematical model from the formal
semantics.

λ− term
expression

input

C++ Compiler

Machine Language

output

compiled

This section is not part
of the implementation of

(string)

Translated code
written in a C++
source file

the translated code with other
the PTP. Just to show that

c++ statements can be compiled
to produce an output.

Parser−Translator Program

(Parsing and translating)

Figure 5.1: Overview of the Implementation of the PTP

70

5.1 Parsing Phase 71

5.1 Parsing Phase

PTP creates a parser that parse an input ofλ-expression following a specific syntax. The
parser calls the scanner to obtain the tokens of the input string and assembles the tokens
into a parse tree. The tree is then passed to the translation phase where a sequence of C++
statements, equivalent to the inputλ-expression, will be generated. Before explaining in
detail the parsing phase, it is important to introduce some of the concepts needed in the
discussion of this section. A precise definition of what it means for a sequence of C++
statements to be equivalent to aλ-term as well as a rigorous proof that equivalence holds for
the code generated by the PTP will be given in the next chapter.

5.1.1 General Concepts in Scanning and Parsing

The purpose of scanning and parsing is to recognize the structure of the code disregarding
the meaning of it.Scanningwhich is also known as lexical analysis simplifies the task
of the parser by reducing the size of the input. It reads the input as single characters and
groups them into tokens (the smallest meaningful units in a program).Tokensare the basic
building blocks of a program such as identifiers, digits, keywords and other symbols. We
use the notation of regular expression to specify tokens. Aregular expressiongenerates a
regular set where regular sets are sets of strings that can bedefined using three operations:
concatenation, alternation and Kleene star. Concatenation is used when a regular expression
generates two regular expressions next to each other where one string is followed by (con-
catenate with) another string. Alternation provides choice from a finite set of alternatives for
the regular expression usually using the symbol (|). Kleene star is used for arbitrary (pos-
sibly zero) many repetitions of a regular expression. For example in C++, a digitsequence
can be generated by the following regular expression:

digit --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digit_sequence --> digit digit *

Notice that in the above regular expression, the three rulesare applied.digit is defined as
being a digit, and thedigit_sequence makes use of concatenation and Kleene star to
generate integers like 11, 12, 19 and so on. To generate a valid string, the regular expression
is scanned from left to right choosing alternatives and repetitions.

Regular expressions are suitable for defining tokens but arenot able to specify nested con-
structs which is important in programming languages. Tokens are translated by theparser
into a parse tree. Thisparse treerepresents higher-level constructs in terms of their con-
stituents which are combined based on a set of potentially recursive rules known as a
context-free grammar. Every rule in a context free grammar is known as aproduction.
The symbol on the left hand side of a production is known as a variable ornon terminal.
Terminals are the symbol that make up a string derived from a grammar andthey cannot
appear on the left hand side of a production. TheStart symbol names the construct defined
by the overall grammar and it is usually the non terminal on the first production.

Context free grammars use notation calledBackus-Naur Form or BNF in honour of John
Backus and Peter Naur . BNF when augmented with extra operators such as concatenation

5.1 Parsing Phase 72

(|), Kleene star(*), Kleene plus (+) and meta-level parenthesis of regular expressions is
calledextended BNF(EBNF) [ISO96]. For example, a C++ identifier can be generated by
the following production rules:

identifier --> nondigit | identifier nondigit | identifier digit
nondigit --> _ | a | b | c | d | ... | z

| A | B | C | D | ...| Z
digit --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Using the production rules above, we can generate identifiers such asname, first_name ,
room1 and so on. The non terminal identifier is the start symbol. Theproduction rule
for identifier make use of the recursive construct and alternation to define it. The parser
will organize the tokens such as identifier, digit and nondigit into a parse tree based on the
grammar above. For example the parse tree for identifierroom1 is shown below:

nondigit nondigit

identifier

identifier

identifier

nondigit

nondigit

identifier

digit

r o

o

m

1

Figure 5.2: Parse tree for identifier room1

The grammar is parsed using the LL parsing technique. LL parser parses input fromLeft
to right and constructs aLefmost derivation of the expression. An LL parser is called an
LL(k) parser if it uses k tokens of look-ahead when parsing a statement. Among the LL(k)
grammars, LL(1) grammar is very popular because the corresponding parser need only to
look at the next token to make their parsing decision. As mentioned in the previous chapter,
PTP is developed using the Spirit. The Spirit parser framework is an object oriented re-
cursive descent parser generator framework where the parser objects are composed through
operator overloading and the result is a backtracking LL(∞) that is capable of parsing rather
ambiguous grammars.

5.1 Parsing Phase 73

5.1.2 Parsing a statement

Spirit allows us to approximate the syntax of EBNF completely in C++. So, the grammar
given above can be written as:

identifier = nondigit >> * (nondigit | digit);
nondigit = ch_p(’_’) | alpha_p;

digit = +digit_p;

Notice that from the grammar written above, left recursion is avoided in the rule for identi-
fiers by making use of the sequence operator (>>) and the Kleene star instead. Grammars
using Spirit should eliminate direct and indirect left recursion to avoid the parser entering an
infinite loop. To simplify the digit and nondigit rule we makeuse of the predefined parser in
Spirit such asdigit_p , alpha_p andch_p . digit_p parses digit,alpha_p parses
alphabetical characters andch_p parses any single character. The Kleene plus(+) in the
digit rule means that the digit can appear one or more times. An overview of how a state-
ment is parsed is shown in the Figure 5.3

START END

SCANNER PARSER TREE_MATCH

ABSTRACT
SYNTAX
TREE

TRANSLATION

MODULE

Translated

code

Linear Input Stream
(int−>int) k =\int x.int x*x;

Figure 5.3: Overview of how parsing is executed

In the Figure 5.3, the linear input stream of data is read sequentially by the scanner from
the start to the end. The parser does the work of recognizing the input read by the scan-
ner by attempting to match the input with the grammar rules. The parser reports the suc-
cess or failure of the match through a treematch object, which we use in order to gen-
erate a parse tree. More precisely, in the PTP, we generate anabstract syntax tree (ast)

5.1 Parsing Phase 74

[Bo02], which is similar to a parse tree. The only differenceis that it has the advantage
of having more directives which can reduce your code in processing the abstract syntax
tree. When the match is successful, an abstract syntax tree is generated where the trans-
lation module will traverse or parses the tree to get the translated code. The input stream
(int->int) k=\int x.int x * x; when parsed will generate the abstract syntax tree
shown in Figure 5.4.

’.’

lambstmt

lambtype nondigit lambabstract

nativetype

nondigit lambabstract

nondigit

infixoperator

nondigit

nativetype

nativetype

nativetype

int int

’\’

int

int

xx

−>

k

’*’

’ ’

 x ’ ’

’;’

Figure 5.4: An abstract syntax tree for the input statement in fig 5.3

Notice that in the Figure 5.4, the arrow (→) symbol in thelambtype and theinfixoperator
is considered the root. The arrow symbol is the root forlambtype (int→int) and the
infixoperator (*) is the root for its operands. This is due to the directiveroot_node_d
used to enforce the symbols mentioned as the root node. Also in the abstract syntax tree in
Figure 5.4, brackets for the function type (int→int) are not considered as a node in the tree.
This is because the directiveinner_node_d directs the parser to just take the expression
in the brackets as the node in the tree. Theroot_node_d andinner_node_d directives
are directives that only effect the abstract syntax tree. Ifwe do not use theroot_node_d
andinner_node_d directives in the grammar, the structure of the abstract syntax tree will
be different where brackets in (int→int) will be taken as nodes in the tree and thelambtype
will have three children of the same level. Similarly, the expression (x* x) would have as
syntax tree the variables and the symbol * at the same level. The structure of the the abstract
syntax tree without using directivesinner_node_d androot_node_d can be seen in
Figure 5.5.

5.2 Translation phase 75

nondigit

’.’

nativetype

lambstmt

lambtype

nativetype

nondigit lambabstract

nativetype nondigit

nativetype

lambabstract

infixoperator

nondigit

int

int

’(’

int

’)’

k

’\’

int

’ ’

x
’*’ x

−>

 x ’ ’

’;’

Figure 5.5: An abstract syntax tree without the directives inner node and rootnode

These directives are useful in simplifying the structure ofthe tree so as to ease the process
of traversing and transforming the tree to get the translated code. The complete grammar
for theλ-term coded in Spirit is shown in Appendix A.

The tree_match class has an operatorbool() that we can test for a successful match.
When a full match meaning the parser has successfully parsedall the input, the translation
module for processing the tree is executed to get the translated code. This phase is called
translation phase.

5.2 Translation phase

The translation follows the object-oriented method of programming where classes and the
concept of inheritance are involved in producing the translated code. We also use pointers
and dynamic allocation of the classes in the memory.

Translation is executed by the PTP in three stages :

1. Translation of the function type.

2. Translation of theλ-term.

3. Translation of the expression.

5.2 Translation phase 76

When the expression representing aλ-term is input to the PTP following the syntax dis-
cussed earlier, it undergoes several stages of translationto produce the translated code. First,
the function type is determined and the abstract class for the function type is defined. The
λ-term is then defined as a derived class for the function type abstract class where the vir-
tual operator() is overloaded in theλ-term class. Finally, theλ-expression is translated as an
expression that involves instantiating theλ-term class.

As mentioned in the previous chapter, there are two categories ofλ-terms i.e. the typed
and untypedλ-term. There are two tasks that need to be done for the translation i.e. class
definition andλ-expression generation. Thus there are two kinds of method for the typed
and untypedλ-term that correspond to the two tasks. We call these modulesclassdef() and
term exp(), which correspond to class definition andλ-expression respectively. Shown in
Figure 5.6 and Figure 5.7 is the general idea of how several forms of the typed and untyped
λ-term are translated.

Typedλ-term class definition term expression
abstraction (λxA · r) r.classdef() r.term exp()
application (r s) r.classdef() ’(’ + ’*’ + ’(’ + r.term exp() + ’)’ + ’)’

+s.classdef() + ’(’ + s.term exp() + ’)’
application(r u) r.classdef() ’(’ + ’*’ + ’(’ + r.term exp() + ’)’ ’+’ ’)’

+u.classdef() + ’(’ + u.term exp() + ’)’

Figure 5.6: Translation of the typedλ-term

Untypedλ-term class definition term expression
number − number
identifier − identifier
r infixoperators r.classdef() r.term exp()+ infixoperator

+ s.classdef() + s.term exp()
r infixoperatoru r.classdef() r.term exp()+ infixoperator

+ u.classdef() + u.term exp()
t infixoperatoru t.classdef() t.term exp()+ infixoperator

+ u.classdef() + u.term exp()
t infixoperators t.classdef() t.term exp()+ infixoperator

+ s.classdef() + s.term exp()
functionsymbol(t1 , t2, . . . , tn) t1.classdef()+t2.classdef() functionsymbol + ’(’ +

+ . . .+ tn.classdef() t1.term exp()+t2.term exp()
. . .+ tn.term exp() + ’)’

Figure 5.7: Translation of the untypedλ-term

The method termexp() and classdef() is not the actual method used in the PTP to execute
the translation. They are just as representatives of the methods that are involved in the men-
tioned tasks. In the Figure 5.6 and Figure 5.7, variablesr, s, t andu represents typed and
untypedλ-terms. Typedλ-terms are represented by variablesr ands, whereast andu rep-
resent untypedλ-terms. The symbol ’+’ means concatenation. r.classdef() + u.classdef
means the string of class definitions forr produced by the mentioned method is concatenated

5.2 Translation phase 77

with the string of class definitions foru. Characters that are enclosed in a single quotation
are just strings such as ’*’ and ’(’.

5.2.1 Translation of the Function Type

For eachλ-term input to the PTP, the type is defined first. In PTP there are two kinds of
type that is basic C++ type (eg.int, char) and the arrow type or function type (eg.
(int→int)). The type of the term or function is determined based onthe left type and the
right type of the term. How the type of the term is determined in the PTP can be shown in
the Figure 5.8.

Left type = int Right type = int

= (int−>(int−>int))
Term type = (Left type −> Right type)

= Subterm typeRight type

intλ x . λ y .r
int int

Subterm type = (int−>int)

Left type
= int

Figure 5.8: How the type of a two argument term are determinedby the PTP

In the figure 5.8 we have a two argumentλ-abstractionλxint, yint.r where the termr is of
the type int. The type int for the variablex is the left type for the term and the type for
the subtermλyint r is the right type for the term. The left type is the input type for the
term and the right type (subterm type) is the output type for the term. The type for the
subterm is determined similarly giving an arrow type (int→int) where the type int fory is
the left type and the type int for the termr is the right type. Finally the type of the term is
determined as (int→(int→int)) where the left type is int and the right type is (int→int). For
each function type an abstract class is defined with a virtualoperator that will be overloaded
in the definition of theλ-term and the type itself is the type pointers to an object of this
abstract class. In general, the abstract class of the function type is defined as follows :

class type classname_aux
{ public : virtual output type operator()

(input type x) = 0; };

\\ =0 means it is a pure virtual function

typedef type classname aux *

5.2 Translation phase 78

type classname;

For thetype classnamewe make use of lettersCandD to represent open and close brackets
respectively, and an underscore for an arrow. For example,Cint_Cint_intDD means
(int→(int→int)). The input type and theoutput type make up thetype classnameof a
function type which can be a basic type or an arrow type. For example, thetype classname
Cint_intD represents the function type where theinput type is int and theoutput type
is int . Similarly for Cint_Cint_intDD , the input type is int and theouput type is
Cint_intD . The definition of the function type is represented in stages. If the function
type (int→(int→int)) is to be defined, the definition will be as follows :

\\This is the definition of (int->int)
class Cint_intD_aux
{ public : virtual int operator() {int x} = 0;};

typedef Cint_intD_aux * Cint_intD;

\\This is the definition of (int->(int->int))
class Cint_Cint_intDD_aux
{public : virtual Cint_intD operator() {int x} = 0};

typedef Cint_Cint_intDD_aux * Cint_Cint_intDD;

We could use C++ templates in the definition of the function type so as to make the classes
generic. It would be easier definingλ-type by hand using a general C++ template for the
class corresponding to the arrow type. But we are not using them in the generated code
(translated code) in order to obtain a much faster compilation for the code and also making
the task of correctness proof less complicated.

5.2.2 Translation of theλ-term

The concept of inheritance is involved in the definition of theλ-term where the function type
abstract class will be the base class for theλ-term class. A general definition of theλ-term
class is as follows:

class
term classname:public type classname aux {

public : [declaration of free variable in the
term] ;
constructor with/without arguments;
virtual output type operator() (input_type

bound_variable)
{ return body of term; };

};

The members of the class are free variables of the term (if there is any) and the overloaded
virtual operator. The virtual operator in the function typeclass is overloaded here with the
bound variable as argument and the return statement here depends on the body of the term. If

5.2 Translation phase 79

the body of the term is a subterm, then the return statement isan instantiation of the subterm
class. Otherwise, the return statement is just returning the application of the body of the
term. The instantiation of the subterm class is done by usingthe operatornew followed by
the constructor of the subterm class withboundvariableas argument.

For eachλ-term or subterm, a class will be defined as an instance of the function type class
and it will be translated in stages. Aλ-term can be translated into one or more classes
depending on the arguments of the term such as for a two argument λ-abstraction, two
classes will be defined, one for the term and one for the subterm. The translation of a two
argumentλ-abstractionλxint, yint.x ∗ y can be pictured as in Figure 5.9.

λ.

Cint_Cint_IntDD

Definition of class

Definition of class

lambda0

Class for term
λ x

 x is passed as an
argument to

Definition of class

lambda1

Class for subterm

λ y

Definition of class

Cint_IntD

constructor lambda1

Abstract class of type (int−>(int−>int)) Abstract class of type (int−>int)

int
y int int x*yx*y

Figure 5.9: The translation of a two argumentλ-abstraction

In the Figure 5.9, theλ-abstraction is translated by defining two classes that islambda0
andlambda1 wherelambda0 is the class for the term andlambda1 is the class for the
subterm. Each class for the term has a function type abstractclass as a base class and the
virtual operator is overloaded in the term class. For the term λxint, yint.x ∗ y, there is no free
variable and its bound variable isx which meansx is bound in the entire abstraction. This
term or function accepts an int type argument and returns a function of the type (int→int).
So the definition of the termλxint, yint.x ∗ y is:

class lambda0:public Cint_Cint_intDD_aux{
public:
lambda0() { };
virtual Cint_intD operator () (int x)
{return new lambda1(x);};

};

The returned function is the internal abstraction or subterm λyint.x ∗ y. In the subterm,y is
bound andx is free. In the subterm class the virtual operator is overloaded by accepting an
argumenty of type int and return the expressionx ∗ y where it is also of the type int. The
definition of the subterm class is:

5.3 The Execution of the Translated Code 80

class lambda1 : public Cint intD aux {
public : int x;
lambda1(int x) { this->x = x; };
virtual int operator () (int y)
{return x * y; };

};

5.2.3 Translation of the expression

Finally, at this stage the expression input to the PTP is translated into a C++ expression
which involves instantiation ofλ-term classes and pointers. In the case of theλ-term as
an application term, theλ-term involved in the application is translated in a similarway as
described above, and it is instantiated by dynamically allocating the memory for theλ-term
class using operatornew (eg. new lambda0()). This means that theλ-term class is
allocated an address in memory and to reference it we make useof a pointer. We use the
dereference operator(*) to the constructor of theλ-term class(eg.* (new lambda0()))
to access the function of the class. For example, theλ-abstraction above when applied
to 3 and 2 written in our syntax as((\int x.\int y.int x * y)ˆˆ3)ˆˆ2; , which is
equivalent to((λxint, yint.x ∗ y)3)2 will be translated as :

(* ((* (new lambda0()))(3)))(2)

Here are a few examples of the translation of theλ-expression :

1) (int->int) k =\int x.int x * x;

translated to:Cint_intD k = new lambda0();

2) int l =(\int x.int x * x)ˆˆ3;

translated to:int l = (* (new lambda0()))(3);

3) (int->int) m =(\(int->int) f.\int x.int fˆˆx)ˆˆ(\int y.in t y+y);

translated to:Cint_intD m = (* (new lambda0()))(new lambda2());

5.3 The Execution of the Translated Code

There are several areas of the memory that are used during theevaluation of aλ-expression.
Local variables and function parameters are stored on the stack, while instruction code in
the code space and global variables are in the global space. Registers are used as internal
housekeeping functions such as keeping track of the top of the stack and the instruction
pointer. Almost all of the remaining memory is given to the heap. The heap [GJ98] is a
dynamic memory area allocated by the commandnew and freed bydelete . When using
new, memory for the data the pointer is pointing to is allocated on the heap, and the pointer
is assigned the address of the location on the heap. The main property of the heap is that the
memory that is reserved is still available until it is explicitly freed. In the translated code,
the instantiation of theλ-term class is by dynamically allocating them on the heap.

We use an example in order to explain the execution of the translated code. We choose a
more complex term as an example so as the discussion covers more aspects in explaining

5.3 The Execution of the Translated Code 81

the execution of the translated code.

The statement to be executed is written as follows in our syntax:

int k =((\(int->int) f.\int x.int fˆˆ(fˆˆx))
ˆˆ(\int x.int x+2))ˆˆ3

This corresponds to theλ-term: :

int k = (λf (int→int), xint.f(f x))(λxint.x+ 2)3

The function types determined for theλ-terms involved in the expression are defined as
follows:

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux * Cint_intD;

//Definition of type : ((int-> int) (int-> int))
class CCint_intD_Cint_intDD_aux
{ public : virtual Cint_intD operator() (Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux * CCint_intD_Cint_intDD;

The classes defined when translating theλ-term :

(\int->int)f.\int x.int fˆˆ(fˆˆx)

in the statement above are as follows:

class lambda1 : public Cint_intD_aux{
public :Cint_intD f;
lambda1(Cint_intD f) { this-> f = f;};
virtual int operator () (int x)
{ return (* (f))((* (f))(x)); };

};
class lambda0 : public CCint_intD_Cint_intDD_aux{

public :
lambda0() { };
virtual Cint_intD operator () (Cint_intD f)
{ return new lambda1(f); }

};

In the translation above theλ-term is translated as the definition of the classeslambda0 (for
the term\(int->int) f.\int x.int fˆˆ(fˆˆx)) and lambda1 (for the sub-
term \int x.int fˆˆ(fˆˆx)). The expressionfˆˆ(fˆˆx) in the body of the sub-
term is also translated as(* (f))((* (f))(x)) using the dereference operator(*) where
the functionf is applied twice.

Theλ-term \int x.int x+2 is translated as follows :

5.3 The Execution of the Translated Code 82

class lambda2 : public Cint_intD_aux{
public :
lambda2() { };
virtual int operator () (int x)
{ return x + 2; };

Theλ statement above will be finally translated as an expression given below :

int k = (* ((* (new lambda0()))(new lambda2())))(3);

The statementint k = (* ((* (new lambda0()))(new lambda2())))(3);
is equivalent to sequence of statements shown below:

CCint_intD_Cint_intDD k1 = new lambda0();
Cint_intD k2 = new lambda2();
Cint_intD k3 = (* (k1))(k2);

int k4 = (* (k3))(3);

For a better explaination of how the expressionk is evaluated, we based our explaination on
the sequence of statements above so as to show the stages of evaluation. The execution of
the statement can be pictured in the figure 5.10:

The parts of the memory such as the stack for variables and parameters, code space and the
heap is pictured separately from each other in Figure 5.10, even though we know they are in
the same part of the memory. The reason for this is to show a clear view of the execution of
the translated code.

First, the classes of theλ-term are dynamically allocated on the heap by the expression
k1 andk2 where the operator method oflambda0 creates an instance oflambda1 . In
the expressionk3 , the application of the twoλ-terms invokes the operator() method that is
overloaded inlambda0 with the instance of variablef set to the instance oflambda2 .
The result of the application oflambda0 to lambda2 is the instance oflambda1 with f
bound tok2 . Expression 3 is evaluated to 3. Then the evaluation comes tothe stage where
the expression of the body oflambda1 i.e. (* (f))((* (f))(x)) is evaluated.

This evaluation can be shown clearly if we break down the bodyexpression as:

int y1 = ((* (f))(x);
int y2 = (* (f))(y1);

In the expressiony1 , the operator() method oflambda1 is called. This will make a call
to the operator() method off which is bound to the instance oflambda2 and apply it to
3(wherex takes the value 3). This will evaluate to 5. Then the expression y2 , will make the
operator method off to be called again, which is still bound to the instance oflambda2
and apply it toy1 which evaluates to 5 giving the result 7. The evaluation of the expression
discussed follows the call-by-value evaluation strategy.This evaluation strategy has been
discussed in the Chapter 3.

We did not include memory management in the translated code.This is due to the difficulty
of doing memory management when using nestedλ-terms because we cannot really predict

5.4 Testing of the Translated Code 83

Code Space

Heap

Stacks for local variables
and parameters

k2

k1

y1

y2

k4

k3

λ f. λ x. f(fx)

operator(f) {

return new λ x. f(f x)

λ x. f(f x)

f

operator (x) { y1 = f x;

λ x.x + 2

operator(x) {

return x + 2; }

}

7

3

5

5

7

applied twice

(once in y1 and
second in y2)

y2 = f y1; return y2;}

x in k4

x in k3

f in k1

Figure 5.10: Memory representation of the execution of the translated code

when the memory are in use or free. But we did mention in our papers that we wanted to
rely on a garbage collected version of C++.

5.4 Testing of the Translated Code

How do we know that what has been translated is correct and it follows the functional
method of programming? We answer this question in two ways: in Chapter 6 we give
a formal correctness for the translation program. However,this proof is carried out with
respect to a mathematical model of a fragment of C++ and thereis no formal proof that this
model actually reflects the behaviour of C++ correctly (although it is fairly obvious that it
does). Therefore there is is still a demand for testing the program correctness. In addition,
testing allows us to assess the efficiency of the program.

Well, first the PTP that has been developed was tested on several types ofλ-terms from
simple to complex ones. This was discussed in the previous chapter and it was found that
the result given by the program are correct when compared with the manual evaluation of
the terms. Before discussing further, we need to define Church numerals as they are part of

5.4 Testing of the Translated Code 84

the testing samples.

Church numerals are the representations of natural numbersunder Church encoding. Church
numerals 0, 1, 2, .., n, are defined as follows in theλ-calculus:

0 ≡ λ f.λ x. x
1 ≡ λ f.λ x. f x
2 ≡ λ f.λ x. f (f x)
3 ≡ λ f.λ x. f (f (f x))
.
n ≡ λ f.λ x. fn x

The natural numbern is represented by the church numeraln, which has property that for
anyλ-termsF andx,

n F x =β Fn x

In the following we describe the testing of the translated code with more advanced and
harder examples. The testing examples are chosen to test thefollowing correctness and
performance aspects of the programs:

• Correctness:

– Bound renaming

All examples requireα-conversion, that is renaming of bound variables, when
computed via term rewriting. Our program doesn’t doα-conversion explicitly,
but only implicitly through the implementation of classes.The tests show that
this implicit α-conversion is done correctly.

– Higher-types

In order to test that higher types are implemented correctly, all examples involve
higher-types, that is variables of a function type. The highest types occur when
a Church numeraln is applied to a Church numeralm: nm. In that casen =
λ f λx.fn x wheref is of type (Int→Int)→(Int→Int) andx is of type Int→Int.
Consequently the termn has type ((Int→Int)→(Int→Int))→((Int→Int)→(Int→Int)).
Even higher types are needed to typek nmm etc..

• Efficiency

– Large results

Evaluating, for example the termnm succ 0 (wherenm are Church numerals)
yields the numbermn. In this way one easily obtains results that go to the limit
of the range of floating point number. More dramaticallyk nm succ 0 evaluates
tomnk

.

– Long computations

If in the example above one replaces the successor function succ by the identity
function (λx.x), then the results will always 0, yet the computation takes as long
as with the successor function. In this way pure performanceis tested without
limitations given by the size of the output.

5.4 Testing of the Translated Code 85

These tests are based on the execution time of the translatedcode of theλ-terms shown in
the Figures 5.11, 5.12, and 5.13. We usedt2, t3, . . ., tn to represent the church numeral 2, 3
,. . ., n and succ to represent a function successor. The Church numerals 2, 3, 4, 5 and 6 are
applied to a successor function (λ x. x+ 1) and applied again to 0. The term:

skn := tn(. . . (tn︸ ︷︷ ︸
k

succ . . .) 0 ≡ nk

If succ function is replaced by the identity function, the term is defined as follows:

ikn := tn(. . . (tn︸ ︷︷ ︸
k

identity . . .) 0 ≡ 0

Other computations of the Church numeral are also tested andthe term is defined as follows:

sk1k2n1n2
:= tn1

(. . . (tn1︸ ︷︷ ︸
k1

succ . . .)(tn2
(. . . (tn2︸ ︷︷ ︸
k2

succ) . . .) 0) ≡ nk1
1 + n2

k2

When a Church numeral (eg.t2) applied to a function square (λx.x ∗ x) and applied to 2
will give 24 which is represented in the Figure 5.13 assq42. If the termsq42 is applied twice
will give (24)4.

Based on the execution time of theλ-terms, the computation of the Church numerals is
limited up to a certain exponent given as follows:

Church numeral Exponent
2 30
3 19
4 15
5 14
6 11

We say this is because the value of the computation for the term s312 , s203 , s164 , s155 , ands126
’does not make sense’ (0 or negative value) and the executiontime is quite long (sometimes
∞). This is due to the complexity increasing as the exponent increases. The range of an
integer value for the compiler can also be the cause of the limitation of the computation of
the term.

If one looks at the translated code naively, it seems quite inefficient to introduce a new
element for eachλ-term arising. But if one looks at what is really going on, onesees that
not theλ-term is stored , but only the free variables. If we look atλ x. x+ y, the code for
the classλ x. x+ y is stored as part of the source code and what is stored on the heap is the
information that we are referring to the class referring toλ x. x+ y.

A more reliable way of verifying that the translation code iscorrect, is by modeling a sim-
plified C++ compiler that executes the translated code. By this modeling we can prove that
the translation code is correct for all kinds ofλ-terms. The next chapter will give a proof of
the correctness of the translation.

5.4 Testing of the Translated Code 86

No. λ-terms Output Execution time(sec)
1. s122 4096 0
2. s132 8192 0
3. s142 16384 0
4. s152 32768 0
5. s162 65536 0
6. s172 131072 0
7. s182 262144 0
8. s192 524288 0
9. s202 1048576 0.046
10. s212 209152 0.093
11. s222 4194304 0.187
12. s232 8388608 0.39
13. s242 16771216 0.765
14. s252 33554432 1.531
15. s262 67108864 3.031
16. s272 134217728 6.078
17. s282 268435456 12.14
18. s292 536870912 24.375
19. s302 1073741824 48.562
20. s312 -2147483648 97.109
21. s322 0 194.218
22. s83 6561 0
23. s93 19683 0
24. s103 59049 0
25. s113 177147 0.015
26. s123 531441 0.031
27. s133 1594323 0.062
28. s143 4782969 0.156
29. s153 14348907 0.484
30. s163 43046721 1.421
31. s173 129140163 4.265
32. s183 387420481 12.812
33. s193 1162261467 38.453
34. s203 -808182895 115.281
35. s54 1024 0

Figure 5.11: Table of Execution Time for the Samples ofλ-terms

5.4 Testing of the Translated Code 87

No. λ-terms Output Execution time(sec)
36. s64 4096 0
37. s74 16384 0
38. s84 65536 0
39. s94 262144 0015
40. s104 1048576 0.031
41. s114 4194304 0.109
42. s124 16777216 0.453
43. s134 67108864 1.859
44. s144 268435456 7.422
45. s154 1073741824 29.672
46. s164 0 118.687
47. s174 0 ∞
48. s45 625 0
49. s55 3125 0
50. s65 15625 0
51. s75 78125 0
52. s85 390625 0.015
53. s95 1953125 0.046
54. s105 9765625 0.25
55. s115 48828125 1.218
56. s125 244140625 6.14
57. s135 1220703125 30.671
58. s145 1808548329 153.406
59. s155 0 ∞

60. s46 1296 0
61. s56 7776 0
62. s66 46656 0
63. s76 279936 0.015
64. s86 1679616 0.031
65. s96 10071696 0.234
66. s106 60466176 1.437
67. s116 362797056 8.609
68. s126 -2118184960 51.609
69. s93 20195 0
70. s103 59561 0

Figure 5.12: Continuation of the Table of Execution Time forthe Samples ofλ-terms

5.4 Testing of the Translated Code 88

No. λ-terms Output Execution time(sec)
71. s11

9

32 177659 0
72. s12

9

32 531953 0.31
73. s13

9

32
1594835 0.46

74. s14
9

32 4783481 0.171
75. s15

9

32 14349419 0.484
76. s16

9

32 43047233 1.468
77. s17

9

32
129140675 4.375

78. s18
9

32 387421001 13.125
79. s19

9

32 1162261979 39.359
80. s20

9

32
0 ∞

81. s18
11

32
1162263515 38.796

82. s18
12

32 1162265563 38.812
83. s18

15

32 1162310619 39.218
84. s18

19

32
1166242779 39.39

85. s4
6

54 4721 0
86. s7

7

54 94509 0.015
87. s8

8

54 456161 0.015
88. s9

9

54
2215269 0.062

89. s10
10

54 10814201 0.281
90. s11

11

54 33022429 1.343
91. s12

12

54
260917841 6.609

92. s13
13

54
1287811989 32.546

93. s14
13

54 1875657193 155.281
94. sq42 65536 0
95. (sq4)4 0 0
96. i183 i112 0 38.802
97. i183 i122 0 38.913
98. i183 i152 0 39.39
99. i75 i

7
4 0 0.014

100. i85 i
8
4 0 0.015

101. i95 i
9
4 0 0.0612

Figure 5.13: Continuation of the Table of Execution Time forthe Samples ofλ-terms

Chapter 6

Correctness Proof

In order to prove the correctness of the translation we give aformal semantics of the trans-
lated code by building a mathematical model of it. The mathematical model is based on
the execution of the translated code. First we give a denotational semantics of the typedλ-
calculus. Then the correctness of the implementation of thetypedλ-calculus by C++ classes
is proved with respect to the denotational semantics. The correctness proof of the translated
code is based on a Kripke-style logical relation between values (the results of evaluating
expressions) and denotations (elements of the model).

The approach of using denotational semantics and logical relation in proving program cor-
rectness has been used before by researchers such as Plotkin[Plo77], and many others. The
method of logical relation can be traced back at least to Tait[Tai67] and has been used
for a large variety of purposes (eg. Jung and Tiuryn [JT93], Statman [Sta85], and Plotkin
[Plo80]).

Before we start building a mathematical model of the translated code, we list some of the
mathematical preliminaries that will be frequently used inthis chapter. The presentation of
the proof follows the style of Winskel [Win93].

6.1 Mathematical preliminaries

Mappings

i) If X, Y are sets, then a listm = (x1 : y1), . . . , (xn : yn) ∈ list(X×Y) is considered as
a finite mapm from X to Y which is defined as follows: Ifx ∈ X, x = xi andx 6= xj
for j > i, thenm(x) := yi. If x 6= xi for all i = 1, . . . , n, thenm(x) is undefined.

ii) We definedom(m) as the domain ofm which is, ifm is as above,{x1, . . . , xn}.
iii) If x ∈ X, y ∈ Y , thenm[x 7→ y] := m, (x, y), i.e.the extension of the listm by

(x, y). Since in the way we have defined lists to denote finite functions,m, (x, y) will
denote the function whih mapsx to y and all other variables to what they are mapped

89

6.2 Definition of the Typedλ-calculus 90

to bym. Note thatdom(m[x 7→ y]) = dom(m) ∪ {x} and

m[x 7→ y](x′) =

{
y, if x′ = x,
m(x′), otherwise

6.2 Definition of the Typedλ-calculus

We briefly recall the syntax of the simply typedλ-calculus which was discussed in detail in
Chapter 3. The syntax is similar to the one given in Section 3.2.8 (church style), but differs
slightly because we have a single base type of integers, and terms include the construct of
applying function names to argument terms.

6.2.1 Types

The setTyp of types is inductively given by :

i) Int ∈ Typ.

ii) if A,B ∈ Typ, thenA→ B ∈ Typ.

An alternative way of defining the setTyp is by means of a recursive domain equation :

Typ={Int }+Typ×Typ

Remark: Note that in the clause ii) of the setTyp of types, the ”→” is a syntactic symbol of
the object language in the domain equation given above. The ”+” and ”×” are symbols of
the metalanguage denoting the set theoretic operations of disjoint sum and cartesian product
respectively. The definition of types above is essentially the same as that given in Section
3.2.8. There theλ-calculus was based on base types, of which we use in this chapter only
the typeInt of integers.

6.2.2 Terms

TheTerms of theλ-calculus are defined as follows:

i) n is a term (n ∈ N).

ii) x is a term (x ∈ Var, whereVar = String).

iii) r s is a term, ifr, s are terms. (Termr is applied to terms).

iv) λx : A.r is a term, ifx ∈ Var, A ∈ Typ, r is a term. (λ-abstraction).

v) f [r1 . . . rn] is a term (abbreviated asf [~r]), if f ∈ F andri are terms. HereF is a set
of names for computable functions onN). The function denoted byf is written as
JfK.

6.2 Definition of the Typedλ-calculus 91

The above can be written as a domain equation as follows:

Term=N+Var+Term×Term+Var×Typ×Term +F×List(Term)

This definition of terms corresponds to the definition of terms given in the page 36. In
addition is the fifth term which is a function applied to a listof terms.

6.2.3 Typing

A ContextΓ is a map from variables to types i.e. a list of variables and their type :

Context=list(Var×Typ)

Contexts will be denoted asΓ = x1 : A1, . . . , xn : An

The typing rules below correspond to the third style of typing described in Section 3.2.8.
TheTyping rules of the simply typedλ-calculus are :

i)

Γ, x : A ⊢ x : A

ii)

Γ ⊢ n : Int

iii)
Γ, x : A ⊢ r : B

Γ ⊢ λx : A.r : A→ B

iv)
Γ ⊢ r : A→ B Γ ⊢ s : A

Γ ⊢ rs : B

v)
f : Int × . . .× Int → Int Γ ⊢ r1 : Int . . .Γ ⊢ rn : Int

Γ ⊢ f [r1, . . . , rn] : Int

The first rule says that in the contextA, the variablex can be given a typeA, provided it is
assigned this type in the context. The constantn has preassigned typeInt. The third rule is
for an abstraction where we follow the variant of church-style typing discussed on the page
45. If in contextΓ, extended byx : A we haver : B, thenλx : A.r has typeA → B (in
contextΓ). For an application termr s we have the following rule: ifr in contextΓ is of
typeA → B ands in the same context is of the typeA, then the termr s has typeB in the
context. The fifth rule is an additional rule to the typability rules on the page 44. The rule
involves a function with a list of arguments or terms, where we assume the list of arguments
or terms is of typeInt. Then the type of the resulting term isInt.

6.3 Implementation by C++ Classes 92

6.2.4 Denotational Semantics

The sets offunctionals of typeA denoted as D(A) are defined as follows :

i) D(Int) = N

ii) D(A→ B) = {f |f : D(A)→ D(B)}

iii) D :=
⊎

A∈Typ D(A) where
⊎

denotes disjoint union.

A Functional Environment is a finite mapping

ξ : Var→ D

We defineFEnv := Var →fin D to be the set of all functional environment. IfΓ is a
context, thenξ : Γ means∀x ∈ dom(Γ).ξ(x) ∈ D(Γ(x)).

For every typedλ-termΓ ⊢ r : A and every functional environmentξ : Γ the denotational
valueJrKξ ∈ D(A) is defined as follows:

(i) JnKξ = n
(ii) JxKξ = ξ(x)
(iii) Jr sKξ = JrKξ(JsKξ)
(iv) Jλx : A.rKξ(a) = JrKξ[x 7→ a]
(v) Jf [~r]K = JfK(J~rKξ)

An Implementation of the typedλ-calculus is an (implementation of an) algorithm com-
puting for every closed termr : Int the valueJrK ∈ N.

6.3 Implementation by C++ Classes

As mentioned in the previous chapter, theλ-term that was input to the parser, will be trans-
lated to C++ statements which involves the creation of C++ classes for theλ-term. The
created classes depend on theλ-term. The more complex the term is the more classes will
be created. When the class is instantiated, an address of theclass will be stored on the heap.
Further instantiations of other classes will create further objects on the heap. Variables will
be assigned addresses of the objects created on the heap.

Every class is instantiated by calling the constructor of the object i.e. the name of the class
with or without any arguments. The body of theλ-term is associated with the application
in the syntactic sets of this translated code. Based on the syntax of this translated code we
distinguish each entity of the syntax by grouping them into syntactic sets.

The list of syntactic sets associated with C++ classes is as follows:

• Addr = Int
These are addresses (Addr) of classes or variables on the heap.

• Constr = String
An element of (Constr) is a constructor or name of a class.

6.3 Implementation by C++ Classes 93

• Val = Int + Addr
A value (Val) is either an integer or an address on the heap.

• App = Int + Var + F× list(App) + App × App + Constr × list(App)
This is the same as the definition ofTerm above.
An application (App) can be any of the following:

– Int

– Var

– F x list(App) e.g.f(x, y, z)

– App × App e.g.r s.

– Constr x list(App) e.g. new lambda1(x) or new lambda0()

• Abst = Var×Typ×Context×App

An abstraction (Abst) corresponds to the body of a class. Classes occurring in this
setting consist of instance variables and one methodoperator()(A x){ ... } .
They are therefore given by the variable bound by the operator method, the type of
that variable, an application term which is the body of the operator method, and a
context which describes the instance variables of the class.
Types such asInt→ Int, which is an arrow type, will be represented in C++ as strings
such asCint_intD .

• Env = list(Var × Val)
An environment (Env) is a list of variables and their values, or a finite map from
variables to values.

• Heap = list(Addr × Constr× list(Val))
Heap consists of a list of addresses of class names (constructors) and a list of values
of the instance variables of that class. It is therefore a finite map from addresses to
pairs consisting of constructors and a list of values of the instance variables.

• Class = list(Constr× Abst)
The setClassof classes consists of list of names of classes (constructors) and the
abstraction term describing the body of that class. It is therefore a finite map from
constructors toAbst.

We assume that everyf ∈ F is given by a side effect free C++ function.

6.3.1 The Evaluation of theλ-terms in C++

When aλ-term r is evaluated in an environmentEnv, then for allλ-termss which areλ-
abstractions involved in the evaluation ofr, elements on the heap (Heap) will be created.
They will contain the constructor of the class representingthe translatedλ-term, and values
for all the free variables ofs. Therefore the evaluation will take an element ofEnv, and an
application term (element ofApp), and compute a value (element ofVal) and an extended
heap.

6.3 Implementation by C++ Classes 94

If a value is an address, the meaning of that address will be looked up in the given class
environment C:Class.

Thus the functionality of the evaluation function (eval) is as follows:

eval : Class→Heap→Env→App→Val×Heap

In case of function application, where one value is applied to another, again, during the
computation, the heap will be extended. So the application function takes a heap, two values,
and returns a value and an extended heap. Thus the functionality of the application function
(apply) is as follows:

apply : Class→Heap→Val→Val→Val×Heap

Note that the functioneval andapply depend on the class environment, but they donot
change it. Moreover in the recursive definition of eval and apply, the argument C:Class is
not changed in the recursive calls. Therefore we drop the class argument in order to simplify
the notation. We write

evalη a instead of evalC η a

and

applyH η a instead of applyC H v w

.

The reason why the class environmentC does not change is that classes are built during the
parsing phase only (see Section 6.3.3). In the evaluation phase they are only looked up but
not modified.

In presenting the evaluation rules we will follow the convention that

• n range over numbersN

• x range over variablesVar

• a , b range over applicationApp

• v , w range over valuesVal

• k range over addressAddr

• H ranges overHeap

• c range over constructorConstr

• C range overClass

• A,B range overType

• η range overEnv

6.3 Implementation by C++ Classes 95

The meta variables we use to range over the syntactic categories can be primed or sub-
scripted. For example,H,H ′,H ′′,Hk stand for heaps,C,C ′, C ′′, C1 stand for classes and
v1, v

′ stand for values.

The recursive rules for the evaluation ofλ-terms are as follows:

Evaluation of an applicative term which is a number

evalH η n = (n,H) (6.1)

Thus any number is evaluated to itself without any change to the heap.

Evaluation of an applicative term which is a variable

evalH η x = (η(x),H) (6.2)

Thus a variable evaluates to its content in an environmentη without any change to the heap.

Evaluation of an applicative term which is a function with a list of arguments

evalH η f [~a] = (JfK(~n),H ′) (6.3)

where
(~n,H ′) = eval*H η~a

The auxiliary function eval* is defined by

eval*H η (a1, a2, . . . ak) := ((n1, n2, . . . , nk),H
′)

where
evalH η a1 = (n1,H1)

evalH1 η a2 = (n2,H2)

...

...

evalHk−1 η ak = (nk,H
′)

A function f with a list of arguments evaluates toJfK applied to the result of evaluating the
arguments. The arguments need to evaluate to numbers, and the evaluation will result in an
extended heapH ′. H ′ is unchanged becausef ∈ F has no side effect.

Evaluation of an applicative term which is the application of one term to the other

evalH η (a b) = applyH ′′ v w = (v′,H ′′′) (6.4)

6.3 Implementation by C++ Classes 96

where
evalH η a = (v,H ′)

evalH ′ η b = (w,H ′′)

Thus an application of one terma to another termb is evaluated by first evaluating the
application terma giving a valuev on the extended heapH ′. Then the second application
termb is evaluated with the value on the heapH ′ giving a valuew on the extended heapH ′′.
Then the functionapply is used which computes the result of applyingv to w.

The definition ofapply in detail is shown as follows :

applyH k v = evalH η a (6.5)

where H(k) = (c, ~w),

C(c) = (x : A; ~y : ~B; a) (assumingc ∈ dom(C))

domη a = {x, ~y}

η(x) = v

η(yi) = wi

So apply is only defined if the first value is an addressk on the heap. Assume it is, and
its class isc, and the values of the instance variables are~w. Assume the class namec is in
the domain of the class environmentC, and the corresponding class denotes the abstraction
(x : A; ~y : ~B; a). Then theoperator() method of this class is to be applied to the
second valuev (argument ofapply). This is done by evaluatinga in the environment where
the variablex is mapped tov, and the instance variables are mapped to the values given on
the heap for addressk. This will result in an extension of the heap.

Evaluation of λ-term where the applicative term is a constructor with a list of argu-
ments

evalH η c[~a] = (k,H ′[k 7→ c[~v]) (k ∈ Addr , v ∈ Val) (6.6)

where eval*H η~a = (~v,H ′)

and k = new(H ′) (new(H ′) is an address not in dom(H ′))

Thus the evaluation of a constructorc with its arguments will result in first evaluating the
arguments of the constructor in sequence. Then a new elementis created on the heap with
constructor name set toc and the instance variables set to the evaluated arguments ofthe
constructor. The value returned is the new address created on the heap.

In all other cases for the application, it is termed invalid and an error will be returned.

6.3 Implementation by C++ Classes 97

Lemma 1:

i) evalH η a = (v,H ′) =⇒ H ⊆ H ′

ii) applyH vw = (v′,H ′) =⇒ H ⊆ H ′

iii) eval* H η~a = (~n,H ′) =⇒ H ⊆ H ′

Proof of i) ii) iii) by simultaneous induction on the definition ofeval andapply.

i) Proof by induction on the definition ofeval:

Cases:

1) a = n (when the applicative term is a number):
evalH η n = (n,H)

2) a = x (when the applicative term is a variable):
evalH η x = (η(x),H)

3) a = f [~a] (when the applicative term is a function with a list of arguments):
evalH η f [~a] = (JfK(~n),H ′)

where
eval*H η~a = (~n,H ′)

By induction hypothesis (iii),H ⊆ H ′.
4) a = a1, a2 (when one applicative term is applied to another applicative term):

evalH η (a1 a2) = (v′,H ′′′)
where

evalH η a1 = (v,H ′),
evalH ′ η a2 = (w,H ′′),
applyH ′′ η v w = (v′,H ′′′)

By induction hypothesis (i),H ⊆ H ′ ⊆ H ′′ and by induction hypothesis (ii),
H ′′ ⊆ H ′′′

5) a = c[~a] (when the applicative term is a constructor with a list of arguments):
evalH η c[~a] = (k,H ′[k 7→ c[~n]])

where
eval*H η~a = (~n,H ′)
k = new(H ′)

By induction hypothesis (iii),H ⊆ H ′ ⊆ H ′[k 7→ c[~n]]

ii) Proof of apply by giving the detailed definition of apply :

applyH k v = (v′,H ′)

where k ∈ dom(H),

evalH (x, ~y 7→ v, ~w)a = (v′,H ′)

We know : H(k) = (c, ~w) and

C(c) = (x : A; ~y : ~B; a)

By induction hypothesis (i),H ⊆ H ′

iii) Proof by induction on the definition ofeval*.

Cases:

6.3 Implementation by C++ Classes 98

1) ~a = [] (when the list of arguments is an empty set, i.e, no arguments):
eval*H η [] = ([],H), thereforeH = H ′ ⊆ H ′

2) ~a = a : ~b :
eval*H η [a : ~b] = ([n : ~n],H ′′)

where
eval*H η a = (n,H ′)
eval*H ′ η~b = (~n,H ′′)

By induction hypothesis (i),H ⊆ H ′and by induction hypothesis (iii,H ′ ⊆ H ′′.

Thus we conclude Lemma 1.

Recall that the true signatures of eval and apply are as follows :

eval : Class→Heap→Env→App→Val×Heap

apply : Class→Heap→Val→Val→Val×Heap

We write evalC H η a and applyC H vw if the argumentC:Class is to be made explicit.

6.3.2 Modelling the Parser-Translator Program

The parser-translator program (PTP) described in Chapter 5takes as input a string repre-
senting a typedλ-term and outputs corresponding C++ class definitions. In order to simplify
things and to concentrate on the most important aspects of the problem we assume that the
input is given as an abstract term rather than a string. The parsing from a string to a term is
a traditional parsing problem which is of no interest here. What is interesting is the process
of creating a system of C++ classes that represents aλ-term.

In order to give a recursive description of this process, we must assume that the term in
question is not the first term being parsed, but other terms (or subterms) have been parsed
before having created a system of classes. Furthermore, if the term has free variables, then
the types of these variables must be fixed by an appropriate context. Therefore, the parserP
(corresponding to the parser-translator program) has the following functionality:

P : Class→Context→Term → App×Class

In the recursion definition of PC Γ t above, we do a case analysis on the possible forms of
the termt:

Parsing when the term is a number:

PC Γ n = (n,C) (6.7)

Thus the parsing of a number will give the value of the number and an unchanged classC.

Parsing when the term is a variable

6.3 Implementation by C++ Classes 99

PC Γ x = (x,C) (6.8)

Thus the parsing of a variable will give the variable and unchanged classC.

Parsing when the term is a function with a list of arguments:

PC Γ f [~r] = (f [~a], C ′) (6.9)

where
P*C Γ ~r = (~a,C ′)

Thus the parsing of a term that has a function with a list of arguments will result in the
extended class of the function with the list of applicationswhere the list of applications will
be parsed recursively first.

The recursive definition of P* is:

P*C Γ (r1, r2, . . . , rk) = ([a1, a2, . . . , ak], C
′)

where
PC Γ r1 = (a1, C1)

PC1
Γ r2 = (a2, C2)

...

...

PCk−1
Γ rk = (ak, C

′)

Parsing of an application:

PC Γ (r s) = (a b,C ′′) (6.10)

where
PC Γ r = (a,C ′)

P′
C Γ s = (b, C ′′)

Thus in the case of parsing aλ-term which is an application, the first term will be parsed first
giving a resulting terma and an extended classC ′. Then the second term with extended class
C ′ (from the parsing of the former) will be parsed giving a resulting termb with extended
classC ′′. The resulting term will bea b and the class will beC ′′.

Parsing of aλ-abstraction:

PC Γ (λx : A.r) = (c[~y], C ′[c 7→ (x : A; Γ; a)]) (6.11)

where~y = dom(Γ), PC Γ [x 7→ A] r = (a,C ′), andc = newC ′ meaning thatc is a name
of a class that is ”new” i.e. has not been used before.

6.3 Implementation by C++ Classes 100

Remark : we only generatec[~x] ∈ App with ~x ∈ list(Var) and notc[~a] with arbitrary
~a ∈ list(App)

Lemma 2:

i) PC Γ r = (a,C ′) =⇒ C ⊆ C ′

ii) P*C Γ ~r = (~a,C ′) =⇒ C ⊆ C ′

Proof of Lemma 2 by induction onr respectively~r.

i) Proof by induction onλ-termr.

Cases on the termr:

1) r = n (when the term is a number):
PC Γ n = (n,C)

2) r = x (when the term is a variable):
PC Γ r = (x,C)

3) r = f [~r] (when the term is a function with a list of arguments):
PC Γ f [~r] = (f [~a], C ′)

where
P*C Γ ~r = (~a,C ′)

By induction hypothesis (ii),C ⊆ C ′

4) r = r1, r2 (when the term is an application):
PC Γ (r1 r2) = (a b,C ′)

where
PC Γ r1 = (a,C ′)
PC′ Γ r2 = (b, C ′′)

By induction hypothesis (i) applied twice,C ⊆ C ′ andC ′ ⊆ C ′′

5) r = λx : A.r (when the term is an abstraction):
PC Γ (λx : A.r) = (c[~y], C ′[c 7→ (x : A,Γ; a)])

where
~y = dom(Γ), PC (Γ [x 7→ A]) r = (a,C ′) andc = newC ′

By induction hypothesis (i),C ⊆ C ′ and becausec /∈ dom(Γ), C ′ ⊆ C ′[c 7→ (x :
A,Γ; a)]

ii) Proof by structural induction on~r

Cases on~r :

1) ~r = [] (when~r is an empty list:)
P*C Γ [] = ([], C)

2) r : ~r :
P*C Γ f [r : ~r] = ([a : ~a], C ′′)

where
PC Γ r = (a,C ′)
P*C Γ [~r] = ([~a], C ′′)

Thus by induction hypothesis (i),C ⊆ C ⊆ C ′ and by induction hypothesis (ii),
C ′ ⊆ C ′′

Therefore Lemma 2 is proven.

6.3 Implementation by C++ Classes 101

6.3.3 The Correctness of The Translated Code

The correctness proof of the translated code is based on a Kripke-style logical relation be-
tween the C++ representation of the term (∈ Val × Heap) and its denotational value (∈
D(A)). The relation is indexed by the class environmentC and the typeA of the term.
Since in the case of an arrow type,A → B, extensions ofH andC have to be taken into
account, this definition has some similarity with Kripke models. The relation

∼C
A⊆ (Val× Heap)× D(A) whereA ∈ Typ , C ∈ Class

is defined by recursion onA as follows:

(v,H) ∼C
Int n : ⇐⇒ v = n

(v,H) ∼C
A→B f : ⇐⇒ ∀C ⊆ C ′,∀H ⊆ H ′,∀(w, d) ∈ Val× D(A) :

(w,H ′) ∼C′

A d =⇒ applyC′H ′vw ∼C′

B f(d)

We also set(η,H) ∼C
Γ ξ := ∀x ∈ domΓ(η(x),H) ∼C

Γ(x) ξ(x) ∈ D(Γ(x))

Lemma 3:
(v,H) ∼C

A d,C ⊆ C ′,H ⊆ H ′ =⇒ (v,H ′) ∼C′

A d

Proof of Lemma 3by induction onA.

Cases:

1) A = Int:
By definition

(v,H) ∼C
Int n : =⇒ v = n

=⇒ (v,H ′) ∼C′

Int n

2) A→ B
Assume

(v,H) ∼C
A→B f, (6.12)

C ′ ⊆ C ′′,H ′ ⊆ H ′′,

and let
(w, d) ∈ Val× D(A) : (w,H ′′) ∼C′′

A d

We have to show : applyC′′H ′′vw ∼C′′

B f(d)

SinceC ⊆ C ′ ⊆ C ′′ andH ⊆ H ′ ⊆ H ′′, this holds by the assumption (6.12).

Therefore the Lemma 3 is proven.

Our main theorem, which corresponds to the usual ”Fundamental Lemma” or ”Adequacy
Theorem” for logical relations, reads as follows:

Adequacy Theorem: If η : Env, ξ : FEnv,Γ ⊢ r : A, ξ : Γ,PCΓr = (a,C ′), C ′ ⊆
C ′′, (η,H) ∼C′′

Γ ξ,andH ⊆ H ′, then evalC′′H ′ηa ∼C′′

A JrKξ

6.3 Implementation by C++ Classes 102

Proof: Let us assume :

η : Env, ξ : FEnv, Γ ⊢ r : A, ξ : Γ, PCΓr = (a,C ′),

C ′ ⊆ C ′′, (η,H) ∼C′′

Γ ξ, H ⊆ H ′

We have to show :
evalC′′ H ′ η a ∼C′′

A JrKξ

We prove this by induction on the typing judgementΓ ⊢ r : A

Cases :

1) Γ, x : A ⊢ x : A
Since, by definition,

PC (Γ, x : A) x = (x,C),

we know a = x andC ′ = C
Furthermore, by the definition of(η,H) ∼C′′

(Γ,x:A) ξ,
we know :

(η(x),H) ∼C′′

A ξ(x) (6.13)

Since evalC′′ H ′ η x = (η(x),H ′) andJxKξ = ξ(x),
we have to show :

(η(x),H ′) ∼C′′

A ξ(x)

But this follows from (6.13) using Lemma 3 and the fact thatC = C ′ ⊆ C ′′ and
H ⊆ H ′

2) Γ ⊢ n : Int
Since by the definition of the parser,

PC Γ n = (n,C),

we know a = n and C = C ′

Since, evalC′′ H ′ η n = (n,H ′)
and, by definition JnKξ = n
we have to show : (n,H ′) ∼C′′

Int n
This hold by definition of∼Int

3)
Γ, x : A ⊢ r : B

Γ ⊢ λx : A.r : A→ B

Since, by definition,

PC Γ (λx : A.r) = (c[dom(Γ)], C̃ [c 7→ (x : A; Γ; a′)])

where PC Γ [x 7→ A] r = (a′, C̃), and
c = newC̃

We knowa = c[dom(Γ)] and C ⊆ C ′ ⊆ C ′′

6.3 Implementation by C++ Classes 103

where C ′ = C̃[c 7→ (x : A; Γ; a′)]
We have to show :

evalC′′ H ′ η a ∼C′′

A→B Jλx.rKξ

Assume

evalC′′ H ′ η a = (v, H̃)

= (k,H ′′[k 7→ c[~v]])

Hence,

v = k

H̃ = H ′′[k 7→ c[~v]]

where

eval*C′′ H ′ η dom(Γ) = (~v,H′′)

k = newH ′′

Assume C ′′ ⊆
˜̃
C, H̃ ⊆

˜̃
H and (w,

˜̃
H) ∼

˜̃
C
A d

We have to show that :

apply˜̃
C

˜̃
H v w ∼

˜̃
C
B f(d)

We know
f = Jλx.rKξ and d ∈ D(A)

f(d) = Jλx : A.rKξ(d) = JrKξ[x 7→ d]

Since ˜̃
H(k) = H̃(k) = c[~v]

and ˜̃
C(c) = C ′(c) = (x : A; Γ; a′)

We have :
apply˜̃

C

˜̃
H k w = eval̃

C̃

˜̃
H(x;dom(Γ) 7→ w;~v) a′

We have to prove that :

eval̃
C̃

˜̃
H(x;dom(Γ) 7→ w;~v) a′ ∼

˜̃
C
B f(d) (6.14)

Using the induction hypothesis forΓ, x : A ⊢ r : B,
˜̃
H,

η′ = η[x 7→ w],

ξ′ = ξ[x 7→ d],

Γ′ = Γ[x 7→ A], (where dom(Γ′) = dom(Γ) ∪ {x})

PC Γ′ r = (a′, C̃).

C̃ ⊆
˜̃
C holds becausẽC ⊆ C ′ ⊆ C ′′ ⊆

˜̃
C

We have to show :

(η′,
˜̃
H) ∼

˜̃
C
Γ′ ξ′

6.3 Implementation by C++ Classes 104

i) Let y ∈ dom(Γ), we have to show :

(η(y),
˜̃
H) ∼

˜̃
C
Γ(y) ξ(y)

This follows from assumption :

(η,H) ∼C′′

Γ ξ

and Lemma 3 provided we can showH ⊆ ˜̃
H (sinceC ′′ ⊆

˜̃
C holds by assumption)

Proof ofH ⊆ ˜̃
H:

We haveH ⊆ H ′, by assumption.
Since evalC′′ H ′ η a = (v, H̃),
we have H ′ ⊆ H̃ by Lemma 1.

FurthermoreH̃ ⊆ ˜̃
H by assumption. HenceH ⊆ ˜̃

H.

ii) (w,
˜̃
H) ∼

˜̃
C
A d holds by assumption.

All conditions for applying the induction hypothesis are satisfied and we conclude
(6.14).

4)
Γ ⊢ r : A→ B Γ ⊢ s : A

Γ ⊢ r s : B

By definition,

PC Γ(r s) = (e b,
˜̃
C)

where
PC Γr = (e, C̃)

P
C̃
Γs = (b,

˜̃
C)

we know thata = e b and C ′ =
˜̃
C

Hence,C ⊆ ˜̃
C ⊆ C ′′

Assume
(η,H) ∼C′′

Γ ξ

We have to show
evalC′′ H ′ η(e b) ∼C′′

B JrKξ(JsKξ) (6.15)

Since, by definition ,

evalC′′ H ′ η(e b) = applyC′′

˜̃
H v w

where
evalC′′ H ′ η e = (v, H̃)

evalC′′ H̃ η b = (w,
˜̃
H)

and
Jr sKξ = JrKξ(JsKξ)

6.3 Implementation by C++ Classes 105

Hence we have to show :

applyC′′

˜̃
H v w ∼C′′

B JrKξ(JsKξ) (6.16)

We use the induction hypothesis forΓ ⊢ r : A→ B and PCΓr = (e, C̃)

C̃ ⊆ C ′′, (holds becausẽC ⊆ ˜̃
C ⊆ C ′′ by Lemma 2)

(η,H) ∼C′′

Γ ξ,H ⊆ H ′

thus, evalC′′ H ′ η e ∼C′′

A→B JrKξ
We got :

(v, H̃) ∼C′′

A→B JrKξ

We use the definition of ∼C′′

A→B JrKξ,
we know f = JrKξ,

C ′ ⊆ C ′′, H̃ ⊆
˜̃
H hold by Lemma 1, and(w, ˜̃H) ∼C′′

A JsKξ is proved by induction
hypothesis forΓ ⊢ s : A
Hence, we conclude that (6.16) holds.

5)
f : Int × . . .× Int→ Int Γ ⊢ r1 : Int, . . . ,Γ ⊢ rn : Int

Γ ⊢ f [r1 . . . rn] : Int

By definition
PC Γ f [~r] = (f [~e], C̃) (6.17)

where
P*C Γ ~r = (~e, C̃)

The detail definition of P*C Γ ~r = (~e, C̃) are :

PC Γ r1 = (e1, C1)

PC1
Γ r2 = (e2, C2)

...

...

PCk−1
Γ rk = (ek, Ck)

We know thatCk = C̃ , henceCi ⊆ C̃ ⊆ C ′′

We know from (6.17),a = f [~e], C ′ = C̃ , henceC ⊆ C̃ ⊆ C ′′

Assume
(η,H) ∼C′′

Γ ξ

we have to show:
evalC′′ H ′ ηf [~e] ∼C′′

Int JfK(JrKξ) (6.18)

Since, by definition
evalC′′ H ′ ηf [~e] = (JfK(~n),H ′′)

where
eval*C′′ H ′ η~e = (~n,H ′′)

H ′′ unchanged becausef ∈ F has no side effect.

6.3 Implementation by C++ Classes 106

The definition
eval*C′′ H ′ η~e = (~n,H ′′)

is elaborated as follows :
evalC′′ H ′ ηe1 = (n1,H

′
1)

evalC′′ H ′
1 ηe2 = (n2,H

′
2)

...

...

evalC′′ H ′
k−1 ηek = (nk,H

′
k)

whereH ′
k = H ′′

Hence H⊆ H′ ⊆ H′
1 ⊆ H′

2 ⊆ . . . ⊆ H′
k

Therefore, by induction hypothesis ,

evalC′′ H ′
i ηei ∼C′′

Int JriKξ

that is
(ni,Hi) ∼C′′

Int JriKξ

=⇒ ni = JriKξ

We have to show :
evalC′′ H ′ ηf [~e] ∼C′′

Int JfK(JrKξ)

Since, by definition of,
(JfK(~n),H ′′) ∼C′′

Int JfK(~n)

and
JfK(~n) = JfK(~n)

Therefore (6.18) holds.

This completes the proof of the Adequacy Theorem.

Corollary (Correctness of the implementation):

If ⊢ r : Int,PC r = (a,C ′), C ′ ⊆ C”, then for any heapH, evalC” H η a = (JrK,H ′) for
someH ′ ⊇ H

Proof: This is a special case of the Adequacy Theorem withΓ = ∅. Note that(η,H) ∼C′′

∅
ξ

holds trivially.

Chapter 7

Related Work

It has been discovered by several researches[Kis98], [Lau95] that C++ can be used as func-
tional programming by representing higher-order functions using classes. Our representa-
tion in the translated code is based on similar ideas. There are other approaches that have
made C++ a language that can be used for functional programming such as the FC++ library
[MS00], FACT! [SS00], [FA00], Lambda Library [JP00], Funk library [Hal02] and creating
macros that allow creation of single-macro closure [Kis98]. We will discussed briefly these
approaches below.

There are other fragments of object-oriented languages in the literature which are used to
prove the correctness of programs such as the well known Featherweight Java [AIW99].
The model of this language avoids the use of a heap, since methods do not modify instance
variables. However our model of C++ does make use of a heap which is closer to the actual
implementation of C++.

7.1 FC++ Library

FC++ is a library for doing functional programing in C++. Thelibrary comprises of a gen-
eral framework or functoids and about 100 common/useful functions. FC++ is claimed to
be different from other libraries which provide either syntax support (such as ”lambda” op-
erator for anonymous functions) or a framework for expressing higher-order function-type
[MS03] due to its powerful type system. FC++ offers completesupport for manipulating
polymorphic functions where passing them as arguments to other functions and returning
them as results. For example FC++ supports higher order polymorphic operators such as
compose() which is a function that takes two arguments(possibly polymorphic) and re-
turns a possibly polymorphic result.

FC++ also can be used to embed a lot of the capabilities of modern functional programming
languages (such as Haskell or ML) in C++. It also comes with a lot of useful predefined
function which is a large part of the Haskell Standard Prelude and supports lazy evaluation.
It has lazy list data structure and several functions that operate on this lazy list. It has a
number of support functions for transforming FC++ data structure into data structures of the

107

7.1 FC++ Library 108

#include<assert.h>
#include<string>
#include "prelude.h"

int main(){
int x=1, y=2, z=3;
std:string s="foo", t= "bar", u="qux";

List<int> li = cons(x, cons(y,cons(z,NIL)));
List<std:string> ls = cons(s,cons(t,cons(u,NIL)));

assert(head(li) == 1);
//list_with makes short_list
assert(tail(li) == list_with(2,3));

ls = compose(tail,tail)(ls);
assert(head(ls) == "qux");
assert(tail(ls) == NIL);
}

Figure 7.1: List and compose

C++ Standard Template Library and vise versa. Also, it has operators for promoting normal
functions into FC++ functoids and supplies indirect functoids i.e. runtime variables that can
refer to any functoid with a given monomorphic type signature.

FC++ implementation relies heavily on C++ templates and theC++ type system. It does not
focus on improving the syntax using either the preprocessor(eg.,#define) or overloading
techniques (eg., expression templates). Its value lies on its type system for polymorphic
function providing a nicer syntactic front-end for definingfunctions.

An example [MS01] of manipulations of list written in C++ using the FC++ library is shown
in Figure 7.1

The example given in Figure 7.1 demonstrates the capabilities of FC++ manipulating poly-
morphic functions. The List is parametrized by the type of its elements where in the Figure
7.1, we see both the list of integers and strings. Thetail() function takes a ”list of T” and
returns a ”list of T” where T can be of any type.compose(f,g) yields a new function
h such thath(x) is the same asf(g(x)) . Thecompose operator composes two unary
functions where it can take polymorphic functions as parameters and return a polymorphic
function as a result. As a result,compose(tail,tail) is a polymorphic function with
the same signature astail . FC++ lists are lazy: elements of a list is evaluated only when
they are requested. Operations can be performed lazily on the list such as using the function
filter() defined in the library. For example:

List<int> evens = filter(even, integers);

creates a list of even integers.even is another function defined in FC++.

7.2 FACT! 109

FC++ functoids supports currying. For exampleplus is curryable i.e.plus(2) yields
a new functionf(x) , wheref(x) = 2 + x . Currying is supported by the FC++ op-
erators that are themselves (higher-order polymorphic) functoids. Using the operator (eg.
ptr_to_fun()) can transform regular C++ functions or methods into functoids so that
they can be used with the predefined functionality, including higher-order operators like
currying andcompose .

The functoids that we have seen are direct functoids becausecall to them are statically
bound. FC++ also supports indirect functoids through theFunN classes. These functoids
are dynamically bound and thus can change their ”function values” by assignmnent. Indirect
functoids are described by their monomorphic type signature and variables of typeFunNcan
be bound to any function with the right signature. For example, Fun1<int,bool> de-
scribes a one argument function that takes anint and returns abool , whereasFun2<int,
int,string> describes a two-argument function which takes twoint s and return a
string . The functionmakeFunN() converts a direct functoid into an indirect one. More
examples of the use of FC++ library in [MS01] and [MS00].

FC++ allows higher-order polymorphic function types to be expressed and used; type sig-
nature are explicitly declared unlike Haskell and ML where types can be inferred. The type
language (building blocks forSig template classes) is awkward eventhough it will not be
a problem in learning to use it. There is a bound in the number of arguments that the func-
toids can support but it can be remedied by adding templates with more parameters in the
framework. The naming of the base classes in FC++ likeFun1 andFunImpl , as well as
operatorsmakeFun1 andFun1Impl encode in their names the number of arguments of
the functions they manipulate.

Compiler error messages can be verbose when a user of FC++ makes a type error where
the compiler typically reports the full template instantiation stack, resulting in many lines
of error messages. Another limitations to FC++ is that it cannot fully prevent side effects in
user code. Nevertheless, by declaring a method to beconst can prevent it from modifying
the state of the enclosing object. This is what FC++ try to enforce in order to have ”side-
effect freedom”. Even though the indirect functoids are side effect free because any class
inheriting fromFunNImpl classes have to have aconst operator() , but users could
decide to add methods which is not side effect free to the subclass ofFunNImpl .

7.2 FACT!

FACT! (Functional Addition to C++ through Templates and Classes) is a C++ library that
offers several aspects of functional programming to C++ programmers. It provides methods
to get curried representations of C++ functions/class member functions, functional compo-
sition, λ-expression, and has basic support for lazy evaluation. Through currying FACT!
allows for partial application of C++ functions making it possible to pass less than n argu-
ments to a n-ary function giving a valid result.

The currying approach of FACT! offers a more consistent and flexible way to bind argu-
ments of a function to some specific values. Template libraries such as STL contain several
generic algorithms that expect functions as arguments (higher-order functions), resulting in

7.2 FACT! 110

a frequent use of function objects. User-defined functions are awkward because they need to
be declared as a class in namespace scope before being used. The point of use and the point
of definition may get more and more dispersed making code harder to read and understand.
Using FACT!λ-notation point of use and point of definition can be kept close together. Thus
functions can be define on the fly which is common in functionalprogramming languages.

The lambda function takes a list of variables which is called theλ-list, an expression
(calledλ-expression) that can contain any of this list of variables and returns a function
which usually has the same number of arguments as the elements in theλ list. For example:

lambda(x, y, x + y)

wherex , y formed theλ list, andx + y is theλ-expression. A binary function is re-
turned from thelambda function since theλ list has two members. Functions returned by
lambda are polymorphic, thusx andy may be bound to values of typeint , complex ,
string or any other type that is compatible with theλ-expression.λ-expressions may
contain calls to other functions, for example:

lambda(x, y, z, sqrt(sqr(x) + sqr(y) + sqr(z)))
lambda(x, y, sin(x)/cos(y))

λ-variables may be bound to functions andlambda functions may return a function, which
in turn will return a function as well, which are shown as follows:

lambda(f, x, y, f(x, y))// f is a placeholder for a function
lambda(x, lambda(y, x + y))

Functions returned bylambda are presented in curried form, making them capable of tak-
ing arguments one at a time and thereby offers the opportunity of partial application. Expres-
sion templates [Vel95] are a way to handleλ-expression. Expression templates are nested
template structures, used to represent the parse tree of an expression. They are built during
compile time through overloaded arithmetic operators which instead of immediately apply-
ing an operation, it returns objects that incrementally build up the parse tree. The parse tree
is represented as a type tree (expression template tree) andas a tree of objects (the expression
object which is an instance of expression template tree).

λ-variables become part of the the expression template tree by using the expression template
technique. The expression template tree emphasizes types,so differentλ-variables must be
of different types enabling template meta programs to do thesubstitution during compile
time. Thusλ-variables need to be of unlimited types whereARGis a suitable representation
because it can be used to formnumeric_limits<int>::max() of different types.
The structure ofARGis as follows:

template <int>
struct ARG {};

FACT! has a large number of predefinedλ-variables which are defined in the scope of

7.3 Lambda Library (LL) 111

namespace LAMBDA. A user just writesusing LAMBDA::x to make theλ-variable
x visible in the current scope. Expressions templates can be formed out of expressions con-
taining instances ofARGby using PETE (Portable Expression Templates Engine). PETEal-
lows for the easy integration of expression template functionality to user defined classes. By
buildingλ-expressions on top of PETE, the user can use his expression template functional-
ity aware classes within aλ-expression by still taking benefit of all the related optimization.
More on buildingλ-expression with PETE can be seen in [SS00]. Even though the Curry
function is claimed to be powerful as its functional counterpart, there are still limitations
with λ-expression and lazy evaluation.

7.3 Lambda Library (LL)

The Lambda Library (LL) is a C++ template library implementing a form ofλ-abstraction
for C++. It is designed to work with the Standard Template Library(STL) which is now
a part of the C++ Standard Library. Therefore the library does no language extensions or
preprocessing. The LL consists of rich set of tools for defining unnamed functions which
works with the STL algorithms. It offers significant improvements in terms of generality
and ease of use compared to the binders and functors in the C++standard library. We will
show some examples of the use of LL taken from [JP00].

• Initialize the elements of a container to the value 1:

list<int> v(10);
for_each(v.begin(), v.end(), _1 = 1);

The example above_1 = 1 creates aλ-function which assigns the value 1 to every
element inv . The variable_1 is a placeholder with an empty slot which will be filled
with a value at each iteration. We call_1 = 1 aλ-expression and a function object
created by aλ-expression is aλ-functor.

• Create a container of pointers and make them point to the elements in the containerv .

list<int * > vp(10);
transform(v.begin(), v.end(), v.begin(), &_1);

The address of each element inv (with &_1) are assigned to the corresponding element
in vp .

• For each element inv , a functionfoo is called, passing the original value of each
element as an argument tofoo .

int foo(int);
for_each(v.begin), v.end(), _1 = bind(foo, _1));

• The elements ofvp are sorted and output:

sort(vp.begin(), vp.end(), * _1 > * _2);
for_each(vp.begin(), vp.end(), cout<< * _1 <<endl);

7.3 Lambda Library (LL) 112

The call tosort , sorts the elements by their contents in descending order. Theλ-
expression* _1 > * _2 contains two different placeholder_1 and_2 creating bi-
nary λ-functor. When this functor is called the first argument is substituted for_1
and the second argument for_2 . Finally the sorted content ofvp is output.

In λ-calculus and in functional programming languages, the formal parameters are com-
monly named within theλ-expression such as:

λx, y.x+ y

But the LL counterpart of the above expression is written as_1 + _2 where the place-
holder variables have predefined names. The use of a placeholder variable in an expression
implicitly turns the exppression intoλ-expression. There is no explicit syntactic construct
for λ-expression. The LL supports the placeholders_1,_2 and_3 which meansλ-functors
can take not more than three arguments passed in by STL algorithm and zero parameter is
possible too. The third placeholder is a necessity in order to implement all the features of
the current library.

The LL provides typedefs for the placeholder types, making it easy to define the placeholder
names to your liking. A placeholder leaves the argument totally open, including the type,
meaning that the lambda functor can be called with argumentswith any type for which the
underlying function makes sense. Since the type of the placeholder remains open, the return
type of theλ-functor is not known either. The LL has a type deduction system that figures
out the return type when theλ-functor is called where it covers operators of built-in types
and operators of user-defined types.

For an ordinary function call, an explicit syntactic construct is needed. In this case the
bind function template serves the purpose. The syntax ofλ-expression created with the
bind function is :

bind(target-function, bind-argument-list)

In a bind expression, thebind-argument-list must be a valid argument list fortarget-
function , except that any argument can be replaced with a placeholder, or, generally, with
a λ-expression. When a placeholder is used in place of an actualargument, the argument
is said to be unbound. Thetarget-function can be a pointer to function, a reference
to a function or a function object. Examples of bind expression [JP00] is shown as follows.
SupposeA, B,C andX are some types:

X foo(A, B, C); A a; B b; C c;
....
bind(foo, _1, _2, c);
bind(&foo, _1, _2, c);
bind(foo, _1, _1, _1);
bind(_1, a, b, c);

7.4 Kiselyov’s Functional Style in C++ 113

The first and second bind expression returns a binaryλ-functor but the second bind ex-
pression uses a function pointer instead of a references. For the third bind expression, the
argument will be duplicated in each place the placeholder isused, and for the expression to
make sense and to compile, the argument to the resulting unary λ-functor must be implic-
itly convertible toA, B andC. The fourth bind expression shows the case where the target
function is left unbound where the resultingλ-functor takes one parameter, the function to
be called with argumentsa, b andc . More examples of bind expression with member
functions as targets and other uses of the overloaded operators in LL are shown in [JP00].

Even though LL overloaded almost every operator forλ-expressions based on the basic rule
that any operand of any operator can be replaced with a placeholder or with aλ-expression,
there are some special case and restrictions; the return types cannot be chosen freely while
overloading operators->, new, delete, new[] anddelete[] , thus these cannot
be overloaded directly forλ-expressions; it is not possible to overload the., * , and?:
operators in C++; the assignment and subscript operators must be defined as member func-
tions which creates some asymmetry toλ-expressions (eg.int i; _1 = i; is valid
λ-expression but noti = _1); the return type deduction system may not handle all user-
defined operators.

The Lambda Library (LL) allows generic function objects to be defined on the fly. This
library does not focus on functional programming style, rather it emphasizes on imperative
programming allowing multiple assignments, while loops, and several imperative constructs
within an expression that defines a function object. The LL does not have support for n-arity
functions, because it is meant to be used with STL algorithmswhich do not accept ternary
functions. It only supports for the generation of nullary, unary, binary and ternary function
objects. However the LL provides good means to define even very complex function objects
through expressions.

7.4 Kiselyov’s Functional Style in C++

The definition of a local class, within a function, method or block is permitted in C++ where
this feature makes nested functions and closures possible.Nested functions and nested
methods are actually compiled inline unless they are virtual. A local class follows regular
lexical scoping rules. For example, a variable of an outer block can be declared visible or
modifiable within the inner scope. Also, to some extent, a local scope can be captured and
a closure is return as the value of a function. Returning an object as the result of a function
involves deep copying of the object to and from temporaries which can be costly for big
objects such as matrices and images. Therefore an alternative to this is the lazy construction
where objects themselves are never returned from functionsinstead yield a ”recipe” on how
to make an object. The construction of the object will occur later when it is needed. For
example [Kis98]:

Matrix haar = haar_matrix(5);

harr_matrix is a class not a simple function. It constructs an objectLazy_matrix . A
special constructorMatrix(const Lazymatrix& recipe) follows the recipe and

7.5 Funk: A Framework for Functional Style in C++ 114

makes the matrixhaar right in place without any intermediary temporaries.

The following code segment [Kis98] is the representation ofλ-expression which is C++
standard-compliant.

main(void){
MakeTestFunction("cos(x) - x",

Lambda((const double x), double,
return cos(x)-x)) fcos;

//function is instantiated
fcos.run(2.0,3.0); //run the function with two values

MakeTestFunction("HUMPS function zerodemo.m",
Lambda((const double x), double,
return 1/(sqr(x - 0.3) + .01)

+ 1/(sqr(x - 0.9) + .04)
-6))().run(0.4,1.6,1.299954968);

//function is instantiated and run.
}

MakeTestFunction is a subclass ofATestFunction which has a methodrun for
running a test and making sure the result is correct. Both these functions andLambda are
defined in the LinAlg: a Numerical Math Class Library [LA96].MakeTestFunction
has arguments that consists of:

i) the title of the test case
ii) the test’s body itself specified as anonymous functionLambda (genuineλ-abstraction)

Lambda consists of three arguments: input argument, return type and the body of the func-
tion/abstraction. In the code segment above, examples are given in testing two computations
titled "cos(x) -x"’ and "HUMPS function zerodemo.m" and these computa-
tions are defined byLambda. The wholeMakeTestFunction clause is subsequently
instantiated and run.

Kiselyov introduces the features of closures, late bindingandλ-abstraction in incorporating
the functional style in C++.

7.5 Funk: A Framework for Functional Style in C++

All Funk code is based around evaluating or aggregating other expression templates (ET).
ETs are template instantiations that represent recursively constructed expressions. All ETs
are formed around atomic ET variables or ETs that contain C++function pointers. ET
variables are defined by instantiations of struct templateETvar which needs two parameters
for instantiation: name variables and type variable. Name variables are just a character
template parameter which are limited to a single character only. The definition ofETvar is
as follows:

7.5 Funk: A Framework for Functional Style in C++ 115

template<char n, classT>
struct ETvar{ };

Variables can be define using the definition ofETvar . For example defining variablea of
type int is:

ETvar<’a’,int> a;

ET can also define algebraic expressions, for example an ETplus can be define by com-
bining two other ETs:

template<class LHT, class RHT>
struct plus{};

where LHT and RHT are expression templates.

An algebraic expression(a+ b)× (c+ d) are defined as:

times<plus<ETvar,<’a’,int>,
ETvar<,b,,int>>,

plus<ETvar<’c’,int>,ETvar<’d’,int>>>

wheretimes is an ET that is defined similar asplus .

Funk implements partial application of functions using thetypeslambda andapply and
several utility metaprograms.apply is used to hold the values of arguments to which
functions have been applied, whereaslambda is used to specify the need for and type of a
function’s parameter. The definition oflambda andapply is:

template<class V, class ET> lambda{ };
template<class V, class ET> apply{ };

Any Funk λ-expression that has typelambda<A,ET> corresponds to theλ-expression
λa.et wherea has typeA andet has typeET. Expression template can be turned intoλ-
expressions by embedding them into a series of instantiations of lambda template. Thus
the following structure represents theλ-expressionλa.(λb.(a+ b)):

lambda<ETvar<’a’,int>’
lambda<ETvar<’b’,int>,

plus<ETvar<’a’,int>,
ETvar<’b’,int>>>>

lambda ’s first template parameter holds information about the variable it manages and the
body of theλ-expression is represented by the second template parameter. When a Funk
λ-expression is partially applied to an arguments, the resultant type of the application is
apply instantiated with the same argument as the formerlambda is instantiated with.
Thus if aλ-expression given above is applied to an argument, its type would become:

apply<ETvar<’a’,int>, //note the apply instead of the lamb da

7.5 Funk: A Framework for Functional Style in C++ 116

lambda<ETvar<’b’,int>,
plus<ETvar<’a’,int>,

ETvar<’b’,int>>>>

and after application to another argument, its type becomes:

apply<ETvar<’a’,int>,
apply<ETvar<’b’,int>,

plus<ETvar<’a’,int>,
ETvar<’b’,int>>>>

Since the type of thisλ-expression is fully applied, it must be reduced to theλ expression’s
ET’s final type i.e. int in order to be usable for computation. There are mechanisms
that perform type translations of Funkλ-expressions into their applied state [Hal02]. An
example of aλ-expression applied to two values 3 and 4:

(λa, b.a+ b)3 4

is represented using expression templates is given as follows:

apply_lambda_to_arg(
apply_lambda_to_arg(

lambda<ETvar<’a’,int>,
lambda<ETvar<’b’,int>,

plus<ETvar<’a’,int>,
ETvar<’b,’,int>,3),4)

How the application of theλ-expression is evaluated is shown in [Hal02].

Funk has a type resurrection system which is set up by making the superclass actually a
structure template with one template parameter. All expression templates inherit from this
superclass instantiated with the type of the expression template. When the type of an expres-
sion template is sliced1 upon being passed as an argument to a restrictive function template,
it’s original type can be resurrected from the template parameter of the sliced object. Thus
the necessary parts of the system is redefined to allow type resurrection.The base structure
is defined as :

template<class>
struct ET{ };

ETvar andplus are redefined so they derive themselves fromET<T> [Hal02]. To pre-
serve data information and type information, but still havethe class match as a superclass,
an argument type ofET<T>&must be used for the parameters of function and operator tem-
plates that will resurrect type. When an argument is a reference, slicing only affects the
object’s type and not its data allowing casting the argumentback to its original type and still
retain its data integrity. The definition of operator +:

template<class E1, class E2>

1slicing occurs when data members exclusive to a subclass gettruncated as an object instance is cast as its
superclass

7.6 Comparisons 117

plus<E1,E2> operator + (ET<E1>& lhs, ET<E2>& rhs){
return plus<E1,E2(static_cast<E1&>(lhs),

static_cast<E2&>(rhs));

Thus by the definitions above things likea + b can be written and the result will be an
expression template.λ-expressions are created by making comma separated lists ofparam-
eters followed by the-- and> operators followed by the expression template representing
the body of the Funkλ-expression. The following code is legal C++ code once the Funk
libraries are loaded.

x-->(x * x);
(a, b, c)-->((a+b)/c);

Functions are partially applied arguments through the use of operator<<.

For example:

((x,y)-->((x+y)/(x * y))) <<3 <<4;

Funk currently does not offer support for polymorphic typesin expression templates. Even-
though Funk does provide some nice feature to the C++ programmer, it has its limitations.
Naming an expression template is not possible without stating its entire type in the decla-
ration. It is possible to state an expression’s template type, but it’s not worthwhile because
typenames for ETs get very complicated very fast.

7.6 Comparisons

What have been discussed above are approaches that are related to our project where advan-
tages and limitations of these approaches are also given. These works are too extensive in
comparison with our project since our project is still new and ”young”. Many things have
not been covered such as polymorphic higher-order functions that have polymorphic argu-
ments (in FC++ library) and type inference. But one thing we can say is that the novelty of
our project is that it provides a correctness proof that is lacking in all of the approaches. Our
project provides a simple way of creating a function on the fly(λ-expression) with a syntax
that is easily read and understand which is similar to the usual λ-notation. Thisλ-expression
is translated into C++ statements that can be compiled with any C++ compiler. We uses the
usual C++ statements without overloading any operator to define an anonymous functions.

To compare other approaches discussed above with our approach in defining aλ-term, we
will compare them based on an example. The example is a simpleλ-term:

(((λ x.λ y.λ z.x+ y ∗ z)3)2)5

• FC++ Library:

#include "prelude.h"
#define FCPP_ENABLE_LAMBDA
//to get the lambda portion of the library
LambdaVar<1>x; //declare variable x

7.6 Comparisons 118

LambdaVar<2>y; //declare variable y
LambdaVar<3>z; //declare variable z
cout<<lambda(x,y,z)[multiplies[plus[x,y],z](3,2,5);

LambdaVar is for declaring variables used in theλ-expression.

lambda(LambdaVar)[lambdaExp] creates a lambda on the fly.

• Lambda Library:

int x = 3;
int y = 2;
int z =5;
_1 = x;
_2 = y;
_3 = z;
_1 + _2 * _3;

It makes use of a placeholder for a variable and the Lambda Library only supports 3
placeholders, meaning thatλ-functors cannot take n-arity arguments which is quite
difficult if we want to have nestedλ-terms. We can see here Lambda Library makes
use of the imperative way in defining theλ-terms where assignments are used and it
is not side effect free proof.

• FACT!:

lambda(x, y, z, x+y * z) (3,2,5);

Theλ-expression is handled by expression templates which are used to represent the
parse tree of the expression. As mentioned previously (section 7.2), PETE is used
to form expression templates from expression containing instances ofARGand the
evaluation of the application is also done by PETE. Users of FACT! are not required
to know about PETE.

• Funk

((x,y,z)-->(x+y * z)) <<3 <<2 <<5;

One of Funk’s goal is to become a self contained sublanguage of C++. Operator>
converts the list created by the comma operator and an expression template into an
actual Funkλ-expression.

Using our syntax in writing theλ-expression above is given as follows:

(\int x.\int y.\int z.int x+y * z)ˆˆ3ˆˆ2ˆˆ5;

FACT! and Funk make use of template meta programming for their λ-expression, and the
difference between the two; Funk has its own syntax forλ-expression where the operators
involved in the expression are overloaded in the Funk library using expression templates.
FC++ and Lambda Library make use of C++ templates in their implementation. Comparing
other approaches with our approach in writing theλ-term, we can say that our way is much
simpler is much closer to the originalλ-term. Even though the type of the function is

7.6 Comparisons 119

explicitly declared, the type checking is done by the C++ type system. The translation of
theλ-term uses classes and inheritance in an essential way whichis simpler and easier to
understand.

The other approaches deal only with simpleλ-terms, but are they much more efficient,
since they don’t use inheritance, so theλ-terms are not dynamically generated. All these
approaches have been optimised for performance rather thanfor generality. The other ad-
vantage of those approaches is that they don’t require an extension of C++ but are just a
library used in addition to C++. In general it is always desirable to add new feature by using
libraries rather than by extending a language, since each new language extension makes the
language more complicated, and the language of C++ is already a rather complex language.

Chapter 8

Summary and Outlook

In this chapter we will summarize our project and give some considerations for future work
in extending and improving our project.

8.1 Summary

The objective of this project was to extend C++ language in order to enhance its existing sup-
port for different paradigm such as object-oriented, procedural and generic programming.
The additional support that we implemented is functional programming. We developed a
parser-translator program that translates typedλ-terms into C++ classes so as to integrate
functional concepts into C++.

We introduced a syntax for representingλ-types and -terms in C++. In that extended lan-
guage, we writeA -> B for the function typeA → B, rˆˆs for the application of r to s,
and\A x.B s for λxA.s if s : B. We use functional style notation rather than overloading
existing C++ notation, since we believe that this will improve readability and acceptabil-
ity by functional programmers. Theλ-abstraction is interpreted as a function of its free
variables in the form(new T(x1, . . . xn)). Hence, the evaluation of aλ-abstraction in an
environment for free variables is similar to a ”closure” in implementations of functional
programming languages.

The translated code uses the object-oriented approach of programming that involves the
creation of classes for theλ-term. By using inheritance, we achieved that the translation
of a λ-abstraction is an element of a function type. Aλ-abstraction is represented as a
new instance of its corresponding class. Even if the classesfor two occurrences of the
sameλ-abstraction coincide, for each occurrence a new instance is created. Therefore, if
a variable occurs as the same name, but with different referential meaning in two identical
λ-expression, it will not be a problem.These features have been tested on severalλ-terms.

The correctness of our implementation is proved with respect to the usual (set-theoretic)
denotational semantics of the simply typedλ-calculus and a mathematical model of a suffi-
ciently large fragment of C++. The proof is based on a Kripke-style logical relation between
C++ values and denotational values.

120

8.1 Summary 121

We model only the fragment of C++ that is involved in the translation of the simply typed
λ-calculus. We assume that classes translated for theλ-term have instance variables, one
constructor, and one method which corresponds to theoperator() method. The method
has one argument, and the body consist of an applicative term. Therefore, a class is given
by a context representing its instance variables, the abstracted variable of the method and
its type, and an applicative term. Applicative terms are numbers, variables, function terms
applied to applicative term, the application of one applicative term to another, or a con-
structor applied to the applicative terms. When a constructor call of a class is evaluated, its
arguments are first evaluated. Then the memory is allocated on the heap for the instance
variables, where they are set to the evaluated arguments. The address to this memory loca-
tion is the result returned by evaluating the constructor call. The only possible result of the
evaluation of the applicative term is a number, so values areaddresses or numbers.

The syntactic sets are groups of each entity of the syntax in the translated code. The
syntactic sets described above are defined in the section 6.3. Applicative term which we
write asn, x, f [a1, . . . , an], (a b) and c[a1, . . . , an], corresponds to the C++ constructs
n, x, f(a1,...,an), (* (a))(b) andnew c(a1,...,a2) The class written
in the form(Γ;x : A; b) with Γ = x1 : A1, . . . , xn : An, corresponds to the C++ translated
code discussed in Chapter 5.

During the execution of aλ-term, a class address of the application (App) of theλ-term is
created on the heap (Heap) and with respect to the environment (Env), aλ-term is evaluated
to the value (Val) and extended heap (which contains the address of the value that has been
evaluated for theλ-term). For a function application, the heap which containsthe class
address of the two terms with the values evaluated from each term is evaluated to a value
and an extended heap.

The recursive description of the process in creating a system of C++ classes that represents
a λ-term is based on the assumption that theλ-term is not the first term being parsed, but
other terms (subterm) have been parsed before creating a system of classes, and if the term
has free variables, the types of these variables are fixed an appropriate context.

After going through the definitions of the evaluation function eval, the implementation of
the C++ classes do coincide with the denotational semanticsof the simply typedλ-calculus.
An integern is evaluated by itself and a variable is evaluated by returning its value in the cur-
rent environmentη. The application of a native C++ functions to argumentsa1, a2, . . . , an
is carried out by evaluating the arguments in sequence first ,and then apply the functionf
to those evaluated arguments. The application(a b) corresponds to the construct(∗(a))(b)
wherea andb is evaluated first and due to the type correctness,a must be an element of the
type of pointers to a class. Therefore the value ofa will be an address on the heap. The
information about the class used and the values of the instance variables are stored on the
heap.(∗(a))(b) is then computed by evaluating the body of the method of the class in the en-
vironment where the instance variables have values as stored on the heap, and the abstracted
variables has the result of evaluatingb. This is what is computed byeval which makes use
of the auxiliary functionapply. The expressionc[~a], which stands for the C++ expression
new c(a0, . . . , an), is evaluated by first computinga0, . . . , an in sequence. What the func-
tion eval carried out is the intended behaviour of C++ which is the information about the
class used and the result of evaluatinga0, . . . , an is stored on the heap. Therefore, we can

8.2 Conclusion 122

say that our implementation is proven correct.

8.2 Conclusion

Through the discussion of related works (Chapter 7) we couldsee that there are researchers
who were very keen in merging the functional programming paradigm to C++ language
with their pros and cons in doing so. The advantages of our approach/solution is that it
is simple and it uses classes and inheritance in an essentialway . Another advantage that
is quite significant is that our approach is really integrated into C++, which avoids having
strange error message like the unnecessary error messages of a user making a type error in
using FC++. Furthermore in applying functional programming into C++ , one does not have
to learn and use new constructs (like in FC++ and FACT!). Mostimportantly, we have a
formal correctness proof and to our knowledge the verification of the implementation of the
λ-calculus in C++ (and related object-oriented languages) using logical relations is new. A
correctness proof of other implementations (such as LambdaLibrary and FC++) would have
been difficult, since the libraries are very big, and make useof the C++ template mechanism.
In our case we had complete control over the code generated, which made it much easier to
carry out the proof.

The idea behind my thesis is to make established modelling and proof technology from
mathematics and logic available for the analysis of stateful programs. We address the fol-
lowing technology; Denotational semantics for higher types which is first set theoretic then
domain-theoretic (the latter is not worked out in the thesisdue to lack of time), logical
relations which provides powerful means to prove properties of higher type programs and
Kripke semantics to deal with states.

The fact that it is possible to have a denotational semanticsat a description level where
pointers are manipulated explicitly entails that the well known benefits of denotational se-
mantics, extensionality and compositionality, are still available at that level. This has been
proven where we were able to give a short and concise proof of our C++ fragments using the
denotational semantics instead of a complicated operational argument. More benefits are to
be expected when it comes to verifying programs written in this C++ fragment.

Our original goal was to extend at reasonable fragment of C++by λ-terms. Unfortunately
this turned out to be too long, especially because using the Spirit parsing library turned out
to be complicated. Spirit is difficult to use since it is a recursive descendent parser, which
would have required to substantially modify the grammar of C++, whereas, using Lex or
Yacc would have been much easier. Apart from this, Spirit wasdifficult to use because of the
expansion of templates. But the advantage of using Spirit isthat the grammar is directly part
of the code instead of (when using Lex and Yacc) generating C++ code from the grammar.
If we would start the project again, it would be advisable to start with Lex/Yacc, we realised
the difficulty unfortunately too late.

We believe that if our approach is extended to cover full C++,we will obtain a language that
merges the worlds of functional and object-oriented programming, and we will see many
examples, where the combination of both language concepts (eg. the use ofλ-terms with
side effect) will result in interesting new program techniques. We have introduced a general

8.3 Future Work 123

technique for introducing lazy evaluation into C++ [ABS06b]. It is illustrated by computing
the Fibonacci numbers efficiently in C++ (with the extended C++ syntax) using infinite
streams and lazy evaluation.

The ideal system for our approach would be an extensions of the full language C++ with
λ-terms in addition of other constructs from functional programming such as data types.

8.3 Future Work

We have shown how the functional concepts are introduced into C++ in a provable correct
way. This work has lent itself to a number of extensions, suchas the integration of recursive
higher-order functions, polymorphic and dependent type systems, as well as the combination
of larger parts of of C++ with theλ-calculus. The accurate description of these extensions
would require more sophisticated, eg. domain theoretic constructions and a more systematic
modelling of C++.

The proofs of theorems and how the functionsP , eval, andapply are defined is rather low
level since it mentions and manipulate the class environment and the heap explicitly. It
would be desirable to lift the proofs and definitions to the abstract monadic level. A frame-
work for carrying this out might be provided by suitable versions of Moggi’s Computational
λ-calculus [Mog91], Pitt’s evaluation logic [Pit91] and special logical relations for monads
[JGLN02].

We intend to upgrade this to an extension of the language byλ-types andλ-terms together
with a parser program which translates this extended language into native C++. We would
like to extend our implementation to support polymorphism using C++ templates since our
implementation does not support polymorphism specificallyparametric polymorphism. Our
implementation deduces the function type of aλ-term based on the function type of its
subterms and it depends on the C++ type system for type checking. Thus, to give great
value to our implementation, we would extend it to support type inference. It would be
interesting to expand our fragment of C++ to deal with side effects. This would allow for
instance in proving that our lazy construct shown in the section 4.6 actually gives rise to an
efficient implementation of the Fibonacci function.

We would like to include memory management in our implementation to eliminate runtime
crashes and memory leaks. We intend to use garbage collectorin C++ i.e. using thelibgc
library. Using libgc automatically protects your program against memory leaks,allows
writing program without callingdelete of free , allows fixing premature frees in the
code and provides a fast non-fragmenting memory allocator.

Appendix A

Grammar of λ-terms Coded in Spirit

lambstmt = (lambtype | nativetype)
>> no_node_d[ch_p(’ ’)]
>> identifier
>> no_node_d[ch_p(’ ’)]

>> no_node_d[ch_p(’=’)]
>> lambexp

>> ch_p(’;’);

lambexp = lambdaterm | untypedlamterm;

lambdaterm = lambabstract | lambapp;

lambabstract = chlit<>(’\\’)
>> (lambtype | Nativetype)

>> ch_p(’ ’)
>> identifier
>> ch_p(’.’)
>> (lambabstract

| (lambtype | Nativetype)
>> ch_p(’ ’)
>>untypedlamterm);

lambapp = no_node_d[ch_p(’(’)]
>> lambabstract

>> no_node_d[ch_p(’)’)]
>> (root_node_d[str_p("ˆˆ")]

>> (lambapp |digit | identifier);

untypedlamterm = longest_d[(digit | identifier | lambdate rm)
>> * (root_node_d[(infixoperator | "‘ˆˆ"’)]

124

125

>> (untypedlamterm | lambdaterm)]
| identifier >> ch_p(’(’)

>> (untypedlamterm | lambdaterm)
>> * (ch_p(’,’)
>> (untypedlamterm | lambdaterm);

infixoperator = ch_p(’+’)
| ch_p(’-’)

| ch_p(’ * ’)
| ch_p(’/’);

digit = leaf_node_d[lexeme_d[+digit_p]];

lambtype = * (btype >> root_node_d[str_p("->")])
>> btype;

btype = longest_d[Nativetype
| inner_node_d[ch_p(’(’) >>lambtype >> ’)’]
|inner_node_d[’(’ >>btype >>’)’]];

nativetype = str_p("int")
| str_p("char")
| str_p("string")
| str_p("double")
| str_p("float")
| str_p("long")
| str_p("short")
| str_p("bool")
| str_p("signed")
| str_p("unsigned");

identifier = leaf_node_d[nondigit
>>* (nondigit|digit)];

nondigit = ch_p(’_’)
| alpha_p;

Appendix B

Integration of Functional
Programming into
C++:Implementation and Verification

Appendix C

A Provably Correct Translation of
the Lambda-Calculus into a
Mathematical Model of C++

Appendix D

Functional Concepts in C++

Bibliography

[Ab06] R. H. Ab.Rauf. Integrating Functional Programming into C++:Implementation
and Verfication. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, John V.
Tucker (Eds):Logical Approaches to Computational Barriers.Second Confer-
ence on Computability in Europe, CIE 2006. Swansea, UK. University of Wales
Swansea Report Series, Report # CSR 7-2006, 2006

[ABS08] R. H. Ab. Rauf, Ulrich Berger, Anton Setzer. A Provably Correct Translation
of the Lambda-Calculus into a Mathematical Model of C++.To appear in Jour.
Theory Computing System, 2008.

[ABS06a] R.H. Ab. Rauf, U. Berger, A. Setzer. Functional Concepts in C++.In:Conference
Proceedings of TFP 2006, 2006

[ABS06b] R. H. Ab. Rauf, U. Berger, A. Setzer. Functional Concepts in C++..In: Henrik
Nilson (Ed.): Trends in Functional Programming., Volume 7, Series Trends in
Functional Programming, Intellect, Bristol and Chicago,pg. 163-179, 2007.

[AG05] D. Abraham and A. Gurtovry.C++ Template Metaprogramming: Concepts,
Tools and Techniques from Boost and Beyond. Addison Wesley, 2005.

[AIW99] B. Pierce A. Igarashi and P. Wadler. Fetherweight Java: A Minimal Core Cal-
culus for Java and GJ.Proceedings of the 1999 ACM SIGPLAN Conference
on Object-Oriented Programming System, Languages & Applications (OOPSLA
’99), 34(10):132–146, 1999.

[All87] L. Allison. A Practical Introduction to Denotational Semantics. Cambridge
Univerity Press, 1987.

[And72] B. Anderson. Documentation for Lib Pico-Planner.School Of AI, Edinburgh
University, 1972.

[AU01] L. Ammeraal and H. V. Utrecht.C++ For Programming 3rd Edition. John Wiley
& Sons Ltd., 2001.

[Aus99] M. H. Austern.Generic Programming and the STL. Addison Wesley., 1999.

[Bar84] Barendegt, H. Pieter.The Lambda Calculus:2nd Edition. nh, 1984.

[Bau72] B. Baumgart. Micro Planner Alternate Ref. Manual.Stanford AI Lab, 1972.

175

BIBLIOGRAPHY 176

[BG96] T.J. Bergin and R.G. Gibson.History Of Programming Languages II. Addison
Wesley, Reading, MA, 1996.

[Bo02] C++ Boost Community. http://www.boost.org, 2002.

[Bra04] G. Bracha.Generics in Programming Languages. Addison Wesley,2004.

[BW88] R. Bird and P. Wadler.Introduction To Functional Programming. Prentice Hall
International, 1988.

[CM98] G. Cossineau and M. Mauny.The Functional Approach to Programming. Cam-
bridge University Press, 1998.

[Cox86] B. Cox. Object Oriented Programming : An Evolutionary Approach. Addison
Wesley, Reading, MA, 1986.

[Dav73] J. Davies. Popler 1.6 Ref. Manual.TPU Report, University of Ediburgh, 1973.

[DD01] H. M. Dietel and P.J. Dietel.How to Program: Introducting Object-oriented
Design with UML. Prentice Hall, 2001.

[Eck00] B. Eckel.Thinking in C++ 2nd Edition. Prentice Hall, 2000.

[Eti94] J. Etinger.Programming In C++. McMillian Press Ltd., 1994.

[FA00] The Fact! Library Home Page. http://www.fz-juelich.de/zam/FACT, 2000.

[FH88] A. J. Field and P. G. Harrison.Functional Programming. Addison Wesley, 1988.

[GJ98] C. Ghezzi and M. Jazayeri.Programming Language Concepts. John Wiley and
Sons, 1998.

[Hal02] T. Hallock. Funk: A Framework for Functional Programming Style in C++.
thomashallock.com/templatemetaprogramming.pdf, 2002.

[Har97] J. Harrison. Introduction to Functional Programming. Cambridge University,
1997.

[Hew06] C. Hewitt. The Repeated Demise of Logic Programmingand Why It Will be
Reincarnated:What Went Wrong and Why.Lessons from AI Research & Appli-
cations, Technical Report SS-06-08,AAI Press, March 2006.

[Hig73] B. Higman. A Comparative Study Of Programming Languages. MacDon-
ald:London and American Elsevier Inc : New York, 1973.

[HM07] J. Heering and M. Mernik.Domain-Specific Languages in PerspectiveReport
SEN-E0702, September 2007.

[HS02] S. P. Harbison and G. C. Steele.C: A Reference Manual 15th Edition. Paperback,
2002.

[Hud89] P. Hudak. Conception, Evolution, and Application of Functional Programming
lamguages.ACM Computing Surveys, 21(3), September 1989.

[Hug89] J. Hughes. Why Functional Programming Language Matters. Comput.
J.32(2):98-107, 1989.

BIBLIOGRAPHY 177

[Hut06] G. Hutton.Programming in Haskell. Cambridge University Press, 2006.

[ISO96] EBNF ISO/IEC. Information Technology-Syntactic Metalanguage - Extended
BNF. EBNF ISO/IEC 14977:1996(E), 1996.

[JGLN02] S. Lasota J. Goubalt-Larrecq and D. Nowak. LogicalRelations for Monadic
Types. Proceedings of the 16th International Workshop on ComputerScience
Logic(CSL ’02), Lecture Notes in Computer Science, 2471:553–568, 2002.

[JP00] J. Jarvi and G. Powell. The Lambda Library: Lambda Abstraction in C++.
Technical Report 378, Turku Centre For Computer Science, November 2000.

[JT93] A. Jung and J. Tiuryn. A New Characterization of Lambda Definability. Typed
Lambda Calculi and Applications, Lecture Notes Computer Science, pages 245–
257, 1993.

[Kis98] O. Kiselyov. Functional Style in C++: Closures, Late Binding and Lambda
Abstractions.ICFP:Proceedings of the third ACM SIGPLAN International Con-
ference on Functional Programming, page 337, 1998.

[Kow88] R. Kowalski. The Early Years of Logic Programming.ACM, 1988.

[LA96] LinAlg: A Numerical Maths Library. http://pobox.com/ oleg/fttp/LinAlg.README.txt,
1996.

[Laf94] M. Beaudon Lafon.Object - Oriented Languages - Basic Principles and Pro-
gramming Techniques. Chapman & Hall, 1994.

[Lau95] K. Laufer. A Framework for Higher Order Functions inC++. COOTS, 1995.

[Lig73] J. Lightwill. Artificial Intelligence: A General Survey of AI. A paper Symposium
UK Science reserach Council, 1973.

[May87] H. G. Mayer.Programming Languages. MacMillian Publishing Company, 1987.

[Mog91] E. Moggi. Notions of Computation and Monads.Information and Computation,
93(1):55–92, 1991.

[MS00] B. McNamara and Y. Smaragdakis. Functional Programming in C++. Interna-
tional Conference on Functional Programming (ICFP2000), 2000.

[MS01] B. McNamara and Y. Smaragdakis. Functional Programming in C++ Using
FC++ Library. SIGPLAN Notices, April 2001.

[MS03] B. McNamara and Y. Smaragdakis. Syntax Sugar for FC++: Lambda, Infix,
Monads and more.DPCOOL ’03, 2003.

[MV97] S.Miller and T. Vitale The Miranda Programming Language.
http://www.engin.umd.umich.edu/CIS/course.des/CIS400/miranda/miranda.html,
1997.

[Pau00] L.C. Paulson. Foundations of Functional Programming. Computer Science Tri-
pos Part IB, Easter Term, University of Cambridge, 2000.

BIBLIOGRAPHY 178

[Pit91] A. M. Pitts. Evaluation Logic.Workshop In Computing, Springer, pages 162–
189, 1991.

[Plo77] G. D. Plotkin. LCF Considered as a Programming Language.Theoretical Com-
puter Science, 5:223–255, 1977.

[Plo80] G. D. Plotkin. Lambda Definability in Full Type Hierarchy. To H.B. Curry;
Essays on Combinatoric Logic, Lambda Calculus and Formalism, pages 363–
373, 1980.

[Ree04] T. Reenskaug. Empowering People with BabyUML.A Sixth Generation Pro-
gramming Language, ECOOP2004, 2004.

[Ree07] T. Reenskaug. Programming with Roles and Classes:the BabyUML Approach,
a Chapter in Computer Software Engineering Research.Nova Publishers, Hap-
pauge NY, 2007.

[RS06] G. D. Reis and B. Stroustrup. Specifying C++ Concepts. Proceedings of the
2006 POPL Conference, ACM SIGPLAN Notices Archive, 41(1): 295 – 308,
January, 2006.

[SA05] H. Sutter and A. Alexandrescui.C++ Coding Standards: 101 Rules, Guidelines
and Best Practices. Addison Wesley, 2005.

[Sch00] S. Schupp. Lazy List in C++.SIGPLAN Not., 35(6):47 – 54, 2000.

[SL00] J. G. Siek and A. Lumsdaine. C++ Concept Checking.Dr. Dobb’s Journal, June,
2001.

[SL01] J. G. Siek and A. Lumsdaine. Concept Checking: Binding Parametric Poly-
morphism in C++.First Workshop on C++ Template Programming, Germany,
2000.

[SS71] D. Scott and C. Strachey. C: Mathematical Semantics for Computer Language.
Tech. Monograph PRG-6, Programming Research Group, 1971.

[SS00] J. Striegnitz and S. A. Smith. An Expression TemplateAware Lambda Function.
First Workshop on C++ Template Programming, 2000.

[Sta85] R. Statman. Logical Relation and the Typed Lambda Calculus. Information and
Control, 65:85–97, 1985.

[STL00] The SGI Standard Template Library. http://www.sgi.com/tech/stl, 2000.

[Str95] B. Stroustrup. Why C++ is Not Just an Object-oriented Programming Language.
OOPSLA ’95, 1995.

[Str03] B. Stroustrup. Concept Checking – A More Abstract Complement to Type
Checking. Committee paper N1510-03-0093 Paper for the C++ Committee, Oc-
tober 22, 2003. http://www.reseaech.att.comm/ bs/n1510-conceptchecking.pdf.

[Tai67] W. Tait. International Intrepretation of Functional of Finite Type I. Journal of
Symbolic Logic, 32(2):198–212, 1967.

BIBLIOGRAPHY 179

[Tan04] G. Tan A Brief History of Functional Programming
http://www.cs.bc.edu/ gtan/historyOfFP.html, 2004.

[Vel95] T. L. Veldhuizen. Expression Templates.C++ Report, 1995.

[Wat90] D. A. Watt. Programming Language Concepts and Paradigms. Prentice Hall
International, 1990.

[Win93] G. Winskel. The Formal Semantics of Programming Languages: an Introduc-
tion. Massachussets Institute of Technology, 1993.

[WS03] B. K. Williams and S.T. Sawyer.Using Information Technology (A Parctical
Introduction to Computers and Communications), Fifth Edition. McGraw Hill,
2003.

