
Integrating Functional Programming Into
C++:Implementation and Verification

Rose Hafsah Ab. Rauf ?

Department of Computer Science, University Of Wales Swansea

Abstract. We describe a parser-translator program that translates typed
λ-terms to C++ classes so as to integrate functional programming. We
prove the correctness of the translation with respect to a denotational
semantics using Kripke-style logical relations.

1 Introduction

C++ is a general purpose language that supports object oriented programming
as well as procedural and generic programming, but unfortunately not functional
programming. We have developed a parser-translator program that translates
typed λ-term to C++ statements so as to integrate functional progamming.
This translated code uses the object oriented approach of programming that
involves creation of classes for the λ-term where for a complex term the concept of
inheritance is applied. We build a mathematical model from the formal semantics
of the translated code to prove its correctness. First, we give the denotational
semantics of the typed λ-calculus. Then the correctness of the implementation of
the typed λ-calculus by C++ classes is proved with respect to the denotational
semantics. The correctness proof of the translated code is based on a Kripke-style
of logical relation between the C++ class and the denotational model.

The parser-translator program that has been developed will parse a string
represention of typed λ-term and translate it to a sequence of C++ statements.
The translation of this λ-term will be discussed in the next section. How the
translated code is executed will also be discussed along with the representation
of the memory allocation. The mathematical model was based on the execution
of the translated code. In building up this mathematical model, we will first give
the denotational semantics of the typed λ-calculus. Then we will implement the
C++ classes with the denotational semantics. These will be discussed in section
3. Some related works on integrating functional programing into C++ will be
discussed at the end of this paper.

The approach of using denotational semantics and logical relation in prov-
ing the correctness of programs has been used before by researchers such as
Plotkin[6], and many others. The method of logical relation can be traced back

? This paper is part of my Phd project and I would like to thank my supervisors Dr.
Ulrich Berger and Dr. Anton Setzer for their knowledge and guidance making it
possible for me to complete it.

at least to Tait[13] and has been used for a large variety of purposes (eg. Jung
and Tiuryn[1], Statman[9] and Plotkin[5]). To our knowledge the verification of
the implementation of λ-calculus in C++ using logical relation is new.

2 Translation

For the purpose of explaining how the λ-term is translated to its equivalent
C++ statements and execution of the translated code, we will not go through
the details of the parser-translator program in action. A λ-term λxα . t is witten
in our syntax as \λ.x.β.t where t : β. We will give an example of a λ-term input
to the parser-translator program and how it is executed. The statement shown
below is the string that was entered to the program:

int k = ((\int → int f · \int x · int f∧∧f∧∧x)∧∧(\int x · int x+ 2))∧∧3 (1)

and it is equivalent to k = (λf · λx · f(fx))(λx · x+ 2)3

The λ-term \int → int f · \int x · int f∧∧f∧∧x in the statement above is
translated as objects which is defined as follows ;

class lambda1 : public Cint_intD_aux{

public :Cint_intD f;

lambda1(Cint_intD f) { this-> f = f;};

virtual int operator () (int x)

{ return (*(f))((*(f))(x)); };

};

class lambda0 : public CCint_intD_Cint_intDD_aux{

public :

lambda0() { };

virtual Cint_intD operator () (Cint_intD f)

{ return new lambda1(f); }

};

and the λ-term \int x · int 2 + x is translated as follows :

class lambda2 : public Cint_intD_aux{

public :

lambda2() { };

virtual int operator () (int x)

{ return x + 2; };

};

The statement (1) will be finally translated as the expression :

int k = (∗((∗(new lambda0()))(new lambda2())))(3);

The classes for the λ-terms are instantiated by statements new lambda0()
and new lambda2() where pointers will be created that point to the addresses

of the classes on the heap. The heap which is also known as free store is a
dynamic store in the memory. Classes are created for each λ-term objects and
each classes have pointers to its addresses on the heap. The local variables and
function parameters are stacked for every execution and these storage allocated
for the variables will be deleted after each execution terminates.

3 Proof of correctness

Before we start building a mathematical model of the translated code, we list
some of the mathematical preliminaries that will be frequently used in this sec-
tion. The presentation of the proof follows the style of Winskel[14].

3.1 Mathematical preliminaries

Mappings

1. If X, Y are sets, then a list m = (x1 : y1), . . . , (xn : yn) ∈ list(X × Y) is
considered as a finite map from X to Y which is defined as follows : If x ∈
X, y ∈ Y, then m(x) := y where x = xi, y = yi and x 6= xj for j > i.

2. We usually define dom(m) = the domain of m = x1, . . . , xn.

If x ∈ X ,y ∈ Y, then m[x 7→ y] := m, (x,y), the extension of the list m by
(x,y). Note that dom(m[x 7→ y]) = dom(m) ∪{x} and

m[x 7→ y](x′) =

{
y if x′ = x
m(x′) if x′ ∈ dom(m)\{x} (x′ ∈ X)

3.2 Implementation of the typed λ-calculus

a) Types

The set Typ of types is inductively given by :

i) Int ∈ Typ

ii) if A,B ∈ Typ, then A→ B ∈ Typ

b)Terms

The Terms for the λ-calculus can be any of the following shown below.

i) n ∈ N (any number)

ii) x ∈ Var (where Var = String)

iii) r s (term r is applied to term s)

iv) λx : A.r (term is an abstraction)

v) f [r1 . . . rn] = f [r] (f ∈ F is a set of names for computable functions on
N).The function denoted by f is written as [[f]]

c) Typing

A ContextΓ is a map from variables to types i.e. a list of variables and their
type : Context=list(Var× Typ)

Context will be denoted as Γ = x1 : A1, . . . , xn : An
The Typing rules of the simply typed λ-calculus are :

i)

Γ, x : A ` x : A

ii)

Γ ` n : Int

iii)

Γ, x : A ` r : B

Γ ` λxr : A→ B

iv)

Γ ` r : A→ B Γ ` s : A

Γ ` rs : B

v)

f : Int× . . .× Int→ Int Γ ` r1 : Int . . . Γ ` rn : Int

Γ ` f [r1, . . . , rn] : Int

d) Denotational semantics

The sets of functionals of type A denoted as D(A) are defined as follows :

i) D(Int)= N

ii) D(A→ B) = {f |f : D(A)→ D(B)}
iii) D :=

⊎
A∈Typ D(A) where

⊎
denotes disjoint union

A Functional Environment is a mapping of ξ : Var → D. We let FEnv :=
Var → D be the set of all functional environments. If Γ is a context, then ξ : Γ
means ∀x ∈ dom(Γ).ξ(x) ∈ D(Γ (x)).

For every typed λ-term Γ ` r : A and every functional environment ξ : Γ
the denotational value [[r]]ξ ∈ D(A) is defined as follows :

i) [[n]]ξ = n

ii) [[x]]ξ = ξ(x)

iii) [[r s]]ξ = [[r]]ξ([[s]]ξ)

iv) [[λx : A.r]]ξ(a) = [[r]]ξ[x 7→ a]

v) [[f [r]]] = [[f]]([[r]]ξ)

By an implementation of the typed λ-calculus we mean an (implementation
of an) algorithm computing for every closed term r : Int the value [[r]] ∈ N.

3.3 Implementation by C++ classes

The classes that will be created depend on the λ-term that is being parsed,
the more complex the term is the more level of classes will be created and this
involves inheritance. When the class is instantiated, an address of the class will
be stored on the heap, and further instantiation of other classes will create a
stack of addresses on the heap with addresses of any variables which is bound
to the classes (or λ-term).

Every class is instantiated by calling the constructor of the object i.e. the
name of the class with or without any arguments.The body of the λ-term is
associated with the application in the syntactic sets of this translated code. The
list of syntactic sets associated with the C++ classes are as follows:

– Addr = Int
These are addresses (Addr) of classes or variables on the Heap.

– Constr = String
Constructor (Constr) is the name of the class

– Val = Int + Addr
A value (Val) is either an integer or an address of a class or variables

– App = Int + Var + F× list(App) + App × App + Constr ×
list(App)

– Abst = Var × Typ × Context × App
Abstraction(Abst) consist of the variables and the type bound to the ab-
straction, and the context which is the list of variables and their types and
the application. Types like Int→Int will be represented in C++ as strings.

– Env = list(Var × Val)
Environment (Env) is the list of variables and their values

– Heap = list(Addr × Constr × list(Val))
Heap consists of list of addreses of constructors and their list of values of
the variables

– Class = list(Constr × Abst)
Class consists of list of constructor and their abstraction

We assume that every f ∈ F is given by a side effect free C++ function

a) The evaluation of the λ-terms in C++
When a λ-term is executed, a class address of the application of the λ-term is

created on the heap and with respect to the environment, a λ-term is evaluated
to the value and an extended heap. This extended heap contains the address of
the value that has been evaluated for the λ-terms. Thus the functionality of the
evaluation function (eval) is :

eval : Heap→ Env→ App→ Val×Heap

For a function application, where a lambda term is applied to another lambda
term, the heap which contain the classes address of the two terms with the two

values evaluated from the two terms will evaluate to a value and an extended
heap. Thus the functionality of the application function (apply) is :

apply : Heap→ Val→ Val→ Val×Heap

In the definition of the function eval and apply we fix some C:Class.
In presenting the evaluation rules we will follow the convention that :

– n ranges over numbers N
– x ranges over variables Var
– a , b ranges over application App
– v , w ranges over values Val
– k ranges over address Addr
– H ranges over Heap
– c ranges over constructor Constr
– C ranges over Class
– A,B ranges over Typ
– η ranges over Env

The metavariables we use to range over the syntactic categories can be primed
or subscripted. For example, H,H ′, H ′′, Hk stand for heaps, C,C ′, C ′′ stand for
classes and v1, v

′ stand for values.

The rules for the evaluation of the λ-terms are as follows:

i) Evaluation of a λ-term where application is a number

evalH η n = (n,H)

ii) Evaluation of a λ-term where application is a variable

evalH η x = (η(x), H)

iii) Evaluation of a λ-term where application is a function with a list
of arguments

evalH η f [a] = ([[f]](n), Hk)

where a = a1, . . . , ak,n = n1, . . . , nk and eval*H η a = (n, Hk).
Here we define eval*H η a = (n, Hk) if eval Hη a1 = (n1, H1), . . . , eval
Hk−1 η ak = (nk, Hk). Hk is not changed by f because f ∈ F has no side
effect.

iv) Evaluation of a λ-term where the application is the application of
one term to the other

evalH η (a b) = applyH ′′v w = (v′, H ′′′)

where evalH η a = (v,H ′), evalH ′ η b = (w,H ′′)
The definition of apply in detail is shown as follows :

apply H k v = evalH [x,y 7→ v,w]a

where H(k) = (c,w), C(c) = (x : A; y : B; a)(assuming c ∈ dom(C))

v) Evaluation of a λ-term where the application is a constructor with
a list of arguments

evalH η c[a] = (k,H ′[k 7→ c[v]]) (k ∈ Addr, v ∈ Val)

where eval* H η a = (v, H ′) and k = new H ′ (new H ′ is an address not in
dom(H ′))

In all other cases for the application, it is termed invalid and an error will be
returned.

Lemma 1. 1. eval H η a = (v,H ′) =⇒ H ⊆ H ′
2. apply H vw = (v′, H ′) =⇒ H ⊆ H ′
3. eval* H η a = (n, H ′) =⇒ H ⊆ H ′

The proof for Lemma 1 is by induction on the definition of eval and apply.

Note that, since eval and apply depend on C:Class, the true signatures of eval
and apply are as follows :

eval : Class→Heap→Env→App→Val×Heap
apply : Class→Heap→Val→Val→Val×Heap

We write evalC H η a and applyC H vw if the argument C:Class is to be made
explicit.

b) The Parsing of the λ Term
Traditionally, the λ-term that is input is parsed as a long string which will

undergo several steps of parsing to get the translated code. The parsing will
create classes for the λ-term where in the case of a complex λ-term it will create
several levels of classes where the class of an upper level is an extension of
the lower level class. In order to simplify things and to concentrate on the most
important aspects of the problem we assume that the input is given as an abstract
term rather than a string. The parsing from a string to a term is a traditional
parsing problem which is of no interest here. What is interesting here is the
process of creating a system of C++ classes that represents a λ-term.

In order to give a recursive description of this process, we must assume that
the term in question is not the first term being parsed, but other terms (or sub-
terms) have been parsed before having created a system of classes. Furthermore,
if the term has free variables, then the types of these variables must be fixed by
an appropriate context. Therefore, the parser P has the following functionality :

P : Class→Context→Term→ App×Class

The rules for the parsing are as follows :

i) Parsing when the term is a number: PCΓn = (n,C)
ii) Parsing when the term is a variable: PCΓx = (x,C)

iii) Parsing when the term is a function with a list of arguments :

PCΓf [r] = (f [a], C ′)

where P*CΓ r = (a, C ′) and P* is defined in a smilar way as eval*.
iv) Parsing of an application: PCΓ (r s) = (a b, C ′′)

where PCΓr = (a, C ′), PC′Γs = (b, C ′′)
v) Parsing of a λ abstraction : PCΓ (λx : A.r) = (c[y], C ′[c 7→ (x : A;Γ ; a)])

where y = dom(Γ),PCΓ [x 7→ A]r = (a, C ′), and c = new C ′

meaning that c is a name of a class that is ”new” i.e. has not been used
before.

Remark: We only generate c[x] ∈ App with x ∈ list(Var) and not c[a] with
arbitary a ∈ list(App)

Lemma 2. i) PCΓr = (a, C ′) =⇒ C ⊆ C ′
ii) P*CΓ r = (a, C ′) =⇒ C ⊆ C ′

The proof for Lemma 2 is by induction on r respectively r.

3.4 The correctness of the translated code

The correctness proof of the translated code is based on a Kripke-style relation
between the C++ representation of the term (∈ Val× Heap) and its denotational
value (∈ D(A)). The relation is indexed by the class environment C and the type
A of the term. Since in the case of an arrow type, A→ B, extensions of H and
C have to be taken into account, this definition has some similarity with Kripke
models. The relation

∼CA⊆ (Val×Heap)×D(A)where A ∈ Typ , C ∈ Class

is defined by recursion on A as follows:

(v,H) ∼CInt n :⇐⇒ v = n

(v,H) ∼CA→B f :⇐⇒ ∀C ⊆ C ′, ∀H ⊆ H ′, ∀(w, d) ∈ Val×D(A) :

(w,H ′) ∼C′A d =⇒ applyC′H
′vw ∼C′B f(d)

We also set (η,H) ∼CΓ ξ := ∀x ∈ dom Γ (η(x), H) ∼CΓ (x) ξ(x) ∈ D(Γ (x))

Lemma 3.

(v,H) ∼CA d, C ⊆ C ′, H ⊆ H ′ =⇒ (v,H ′) ∼C′A d

The proof for Lemma 3 is by induction on A.

Our main theorem, which corresponds to the usual ”Fundamental Lemma” or
”Adequacy Theorem” for logical relations, reads as follows:

Theorem: If η : Env, ξ : FEnv, Γ ` r : A, ξ : Γ,PCΓr = (a, C ′), C ′ ⊆
C ′′, (η,H) ∼C′′Γ ξ, and H ⊆ H ′, then evalC′′H

′ηa ∼C′′A [[r]]ξ

The theorem can be proved by an induction on the typing judgement Γ ` r : A
using the Lemma 1-3 above. Due to limited space we omit details.

For a closed term r , we define Pr = P∅∅r.

Corollary(Correctness of the implementation):
If ` r : Int,Pr = (a, C), C ⊆ C ′, then for any heap H , evalC′ H η a = ([[r]], H ′)
for some H ′ ⊇ H

4 Conclusion

The aim of this paper was to introduce a new approach of integrating functional
programming into C++ and to show a method of proving the correctness of the
translation code produced by denotational semantics and logical relation. In the
past, several researches [2],[3] discovered that C++ can be used for functional
programming by representing first class functions and higher order functions
using classes, and by this technique we produced the translated code. There are
other approaches that have made C++ a language that can be used for functional
programming such as FC++ library [4] (a very elaborate approach), FACT! [12]
(extensive use of templates and overloading) and [2] (creating macros that allow
creation of single macro-closure in C++).The advantages of our solution are that
it is very simple, it uses classes and inheritance in an essential way and, most
importantly, we have a formal correctness proof.

In addition to the mathematical proof given in this paper, the correctness of
the translated code produced by the parser-translator program has been verified
by testing it with several types of λ-term from simple to complex ones.

References

1. Jung A., Tiuryn J.: A New Characterization of Lambda Definability. Typed Lambda
Calculus and Applications, 1993.

2. Kiselyov O.: Functional Style in C++ : Closures, Late Binding, and Lambda Ab-
straction. Poster presentation, Int. Conf. on Functional Programming, 1998.

3. Läufer K.: A Framework For Higher Order functions in C++. Proc. Conf. Object
Oriented Technologies(COOTS), Monterey, C.A., June 1995.

4. McNamara B., Smaragdakis Y.: Functional Programming in C++. ICFP ’00, Mon-
treal Canada,ACM Press, 2000.

5. Plotkin G. D.: Lambda Definability in the Full Type Hierarchy. To H.B. Curry;
Essays on Combinatoric Logic, Lambda Calculus and Formalism., J.P.Seldin , J.R.
Hindley, eds., 363-373, 1980.

6. Plotkin G. D.: LCF Considered As a Programming Language. Theoretical Computer
Science, 5:223-255, 1977.

7. Polak W.: Program Verification Based On Denotational Semantics. Proceedings of
the 8th ACM, SIGPLAN-SIGACT Symposium on Principles Of Programing Anal-
ysis. ACM Press, Jan. 1981.

8. Setzer A.: Java as a Functional Programming Language. Types for Proofs and Pro-
grams: International Workshop, Types 2002, Berg en Dal,April 24-28,2002. Selected
Papers, Geuver H., Wiedijk F., eds, 279-298, LNCS 2646, 2003.

9. Statman R.: Logical Relation and the Typed λ Calculus. Information and Control,
65:85-97, 1985.

10. Stoy, J: Denotational Semantics - The Scot-Strachey Approach To Language The-
ory. MIT Press, Cambride, 1977.

11. Scott, D., Strachey, C.: Mathematical Semantics For Computer Language. Tech.
Monograph PRG-6, Programming Research Group, University Of Oxford, 1971.

12. Striegnitz J. : FACT!-The Functional Side of C++.
http://www.fz-juelich.de/zam/FACT.

13. Tait W.: Intentional Intrepretation of Funtional of Finite Type I. Journal Of Sym-
bolic Logic, 32(2):198-212, 1967.

14. Winskel, G. : The Formal Semantics Of Programming Languages : an Introduction.
Massachusetts Institute Of Technology, 1993.

This article was processed using the LATEX macro package with LLNCS style

