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Abstract

This thesis identifies a technological framework that aids the development

of verified railway interlocking systems in the Agda theorem prover. The

thesis is in two parts, Part I deals with integrating interactive and automated

theorem proving in type theory, and Part II addresses verification in the

railway domain.

Part I presents a selection of techniques that combine automated and in-

teractive theorem proving paradigms. On the automated side, a novel, type

theoretic connection between interactive theorem provers and external the-

orem provers is theoretically developed and implemented for the interactive

theorem prover Agda. Also, Part I evaluates the technique against the cur-

rent state-of-the-art techniques for integrating interactive and automated

theorem provers. The greatest betterment of the techniques is that it can

be feasibly applied to larger industrial problems than existing techniques.

When exploring problem sets—mathematical and industrial—we obtained

promising results.

Two cases studies of the integration have been carried out. These are SAT

solving and CTL model-checking. Then CTL model-checking is refined to

symbolic model-checking, and subsequently further refined into a customised

logic for verifying programs that are definable by decidable Boolean valued

transition functions.

The part concludes by exploring, and implementing a more traditional

integration. This is where the external theorem prover provides a certificate

that Agda checks to be correct, and then converts into a proof-object. A

numerical comparison between these implementations is presented.

(continued on next page)
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Part II discusses the railway domain and developing verified interlocking

systems. This involves applying interactive theorem proving to prove that

a selection of signalling principles (lemmata from the railway domain) is

sufficient to guarantee high-level safety requirements. This reduces the vali-

dation problem by narrowing the gap between the verified statement and the

requirements. Then, for a given (concrete) interlocking system programmed

using ladder logic, it is shown how to determine, using automated theorem

proving, whether it fulfils the required signalling principles. This results in a

proof that the interlocking system fulfils the safety requirements. Following

the proofs-as-programs paradigm, verified, executable programs are obtained,

which we used for simulation purposes.

All work is carried out inside Agda; thus the obtained proofs are tractable.

Agda also extracts the verified programs from the proofs. Working within a

single tool improves the soundness assurances when compared to the alterna-

tive, where there are questions about the correctness of translations between

the tools.

This framework has been successfully applied to two different systems: a

digital interlocking and a mechanical interlocking.
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Chapter1
Introduction

Verifying the railway domain has been identified to be a grand challenge
in computer science [Bjø04], it falls under the UKCRC GC6 Dependable
Systems Evolution grand challenge. Challenges are ‘grand’ when they are
suitably novel and revolutionary, feasible with today’s knowledge and tech-
nology, require many thousands of man hours to complete, and, of course,
challenging. Regardless of the success or failure of a grand challenge, it is
the undertaking that is crucial because it promotes research into new ar-
eas. The use of grand challenges to focus research has been applied to many
disciplines; e.g. mapping the human proteome, putting a man on the moon
and unifying the four forces of physics. More information regarding grand
challenges in computer science can be found in [Hoa03].

The railway domain is captivating as it is large and encompasses many
topics, from the hardware and software, to the organisation and scheduling of
staff and trains. The concept of safety within the railway domain is explored
throughout this thesis, specifically with respect to a class of control systems
known as interlocking systems . These systems are responsible for preventing
undesirable events from occurring by restricting which commands are sent
to the hardware.

This thesis builds-up a type theoretic framework for the development of
verified interlocking systems, with the goal of producing verified, executable
interlocking systems. First, this entails abstractly defining models of the
railway (e.g. tracks, signals, trains), formalising signalling principles1 and
proving that the safety requirements follow by these models and principles.
Second, interlocking systems are modelled, and for a given interlocking sys-
tem, it is verified that it fulfils the necessary signalling principles to obtain a
proof that the system is safe. This is advantageous as it reduces what must
be validated, thus increasing trustworthiness of the verification.

1Abstract rules that describe how signals operate safely. See page 3 for more informa-
tion.
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2 1.1. Motivation

What makes this project interesting is that all the specifications, models
and verifications take place within the same framework, namely, the depen-
dently typed theorem prover and programming language Agda2. The frame-
work presented has been successfully honed on a sizable modern interlocking
system, obtained from the project’s sponsor. Once honed, this resulted in
the framework being efficient and feasible to use with today’s technology.

When verifying large, complex systems, the limiting factor is that vast
quantities of large proof obligations arise [WLBF09]. Many of these proof
obligations are theorems over finite domains. To prove these obligations by
hand, such that the proof can be mechanically checked, requires significant
effort, to such an extent that the process becomes unfeasible. However,
as these theorems are finite, there are purpose built theorem provers that
can determine the validity of these obligations automatically. During an
early phase of the project, it became apparent that for the framework to be
usable, Agda would need to be connected to external automated theorem
provers (ATP). To achieve this, we developed a novel technique to integrate
external provers in type theory. The novelty allows a better trade-off between
usability, efficiency and soundness when compared to existing techniques,
especially for industrial problems sets.

This thesis is structured into two parts: the first discusses integrating
external tools into Agda and the second discusses the development of verified
interlocking systems.

Introduction Structure. The remainder of the introduction gives the
motivation of the thesis, main achievements, and an elaborated overview of
the thesis.

1.1 Motivation

Accompanying the first generation of written computer programs, were soft-
ware bugs3 [Sha87, Wik12]. The notion of software errors dates back to at
least 1843, when Ada Lovelace described the difficulties she experienced writ-
ing correct software for Babbage’s Analytical Engine [Men43]. These errors
were due to a lack of understanding from early on of how to organise uncom-
plicated commands into a program so that its behaviour is predictable. The
study of computer science aims to understand these behaviours with math-
ematical rigour. Similarly, software engineering is a discipline that provides

2http://wiki.portal.chalmers.se/agda/
3The name ‘bug’ was taken from engineering, and referred to a defect in an apparatus

or its operation.

http://wiki.portal.chalmers.se/agda/
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a rigorous set of techniques and processes to develop software, one of which
is the project life cycle.

Traditionally a project’s life cycle would follow the well-known iterative
design-develop-test philosophy. If testing fails, then the project restarts at the
design phase. However, this was found to be expensive, and time consuming
as erroneous behaviours could only be found at the end of the project. Most
pertinent, with respect to critical systems is the issue of incompleteness of
the test cases—hence the application of formal methods to software projects.
These are methods that apply mathematical rigour at various points in the
life cycle. These methods range from mathematically specifying and mod-
elling the design of the software, to correctly producing the implementation
and verifying that the implementation is correct with respect to the model.
There is a significant amount of literature on the subject, and a multitude
of orthogonal and complimentary techniques that can be applied at different
points in the life cycle.

A plethora of tools have been developed to help apply these methods.
One of the longest-established tool sets is the Vienna Development Method
(VDM) [Jon90]; it provides a formal language for specifying software. An-
other landmark tool is the Prototype Verification System (PVS) [ORS92]; it
provides an interactive system to model and prove properties about models.
The practical use of these tools (and the tools not mentioned) has helped
to identify a number of mistakes and shortcomings in specifications and pro-
grams [WLBF09].

The application of formal methods to software development raised a new
challenge of validation. Validation is the process by which it is ascertained
that the specification against which the program is verified is in accordance
with the requirements. Notably, the specifications and models are determined
to be correct with respect to the domain of interest. Validation is crucial for
the result of the formal methods to be trustworthy, i.e. a proof corresponds
to its intended meaning. Complications arise as validation is typically non-
trivial, and it is required to be performed by experts from that domain.

One aim of this work is to simplify the validation process. Here, “simplify”
means the amount of information that needs to be validated is reduced. This
results in an increased trustworthiness of the formal methods, which in the
case of this thesis are used for the verification of safety requirements.

In the railway domain, safety is expressed in the form of signalling prin-
ciples. These are principles that explain, in general, the safe operation of
signals. For example, an intuitive signalling principle is that two opposing
signals should not both show green4 at the same time. These principles are

4Correctly, the signals show proceed or danger aspects and not a colour to prevent
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heuristics that pervade the whole railway domain. Railway experts devel-
oped them over time by experience, sometimes following accidents. They are
used while designing, developing and testing the interlocking systems. It is
essential that they are correct. It is a straightforward process to determine
for a given interlocking system whether it models a given signalling princi-
ple, but to determine which signalling principles should be verified in-order
to know the interlocking system is safe, requires validation by experts. Even
with the expert’s validation, there are no assurances that an unconsidered
situation could occur, in which a safety requirement is violated.

It is assumed in this thesis that trains obey the signals. There are safety
related devices outside the scope of the thesis that enforce obedience,
usually by automatically applying the breaks, to either prevent the train
passing the signal at danger or by stopping the train in a buffer zone
(overlap) beyond the signal.

Remark

Part of the framework defined in this thesis is to provide a mechanism to
formalise the signalling principles and high-level safety requirements. Then
it is proved that the signalling principles imply the safety requirements. In
doing so, the signalling principles might be found to be insufficient or incon-
sistent. This mitigates the uncertainty of knowing what to validate. The
intention is that the safety requirements are formulated at a high-level which
is intuitive and amenable to validation. For example, it is proved in Theo-
rem 8.4.2 that if the necessary signalling principles hold, then it is never the
case that two trains occupy the same region of the train line.

The second, aim of this work is to explore how to develop and verify a
substantial interlocking program in Agda. This aim is further split into two
goals:

1. Identify a framework for verified interlocking systems.

2. Provide tool support for this framework in the theorem prover Agda.

By tool support, it is meant to formalise the framework as an Agda library
and facilitate the use of external theorem provers for theorems over finite (or
finitisable) domains.

In summary, safety on the railway is guaranteed in two parts. First, a
direct, formal proof is given that the signalling principles and models imply

ambiguities.



1. Introduction 5

Martin-Löf type theory [MLS84, NPS90], of which Agda is an implementa-
tion, offers a powerful mechanism to construct mathematical formulæ and
write functional programs [TD88a, TD88b, NPS90, Ran94, Nor09]; it is es-
sentially typed λ-calculus with the dependent product and algebraic data-
types. By the Curry-Howard correspondence [Cur34, CFCC58, How80],
propositions can be represented as types, where an element of the type is
a proof of the proposition. Another perspective in type theory is that a
type is a specification of a problem such that its elements are programs
that satisfy the specification.

In general, this thesis aims to provide the first steps towards developing
Agda into a platform to develop and verify substantial software projects.
An emphasis is placed on efficiency and usability, so that it becomes
feasible to apply this method to extensive case studies.

Remark

the safety requirements. Second, automated tools are used to prove that a
concrete interlocking system fulfils the signalling principles.

1.1.1 Pelicon Crossing—A Motivating Example

The following is a basic example to illustrate the technique of verifying that a
control system is safe. Although the example is not from the railway domain,
it is amenable to the same verification techniques. The example used is the
Pedestrian Light Controlled (Pelicon) road crossing. These crossings are of
British design—although most countries have similar designs that facilitate
the local, municipal requirements. (See Section 10.4 for more information
and a formal treatment of the Pelicon crossing.) This example was chosen
as these crossings are prevalent throughout much of the world, and thus it
is presumed to be intuitive for most readers. An example from the railway
domain, at this point in the thesis, would require significant explanation,
however, the interested reader is directed to Part II of this thesis.

Scenario. A Pelicon crossing has a pedestrian operated button that when
pressed indicates that they want to cross the road. There are two sets of
lights: one is for pedestrians and the other is for road traffic, see Figure 1.1.

The Pelicon crossing is modelled by 5 areas:

Area ∶= {T1,T2,P1,P2,MUX}
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In the following, some code and other selected details for the Pelicon
crossing will be previewed without giving much explanation, this is in
order to get a first glimpse at the techniques. The full details will be
given later in the thesis.

Remark

MUX

T1

T2

P2

P1

Figure 1.1: Layout of a Pelicon crossing. They consist of two sets of lights,
the smaller set for pedestrians and the larger set for road traffic. In this
figure, only two aspects are shown for road traffic, but in practice a third
aspect for warning the lights are about to change would also present. There
is also a pedestrian operated button present, but not depicted. The ar-
eas T1 and T2 are for road traffic, P1 and P2 are for pedestrians, and MUX
(mutual-exclusion) represents the area of the crossing used by both road traf-
fic (travelling between T1 and T2 through MUX) and pedestrians (travelling
between P1 and P2 through MUX). See Section 10.4 for more details.

See Figure 1.1 for the location of these areas. The state of the crossing
is abstractly modelled by (1) the number/positions of cars and pedestrians
using the crossing, and (2) what aspects the traffic and pedestrian signals
display. Formally, for a given discrete time t the state is modelled as follows:

numbercarst ∶ Area→ N
numberpedst ∶ Area→ N
movingcarst ∶ Area→ Area→ N
movingpedst ∶ Area→ Area→ N

traffict ∶ {green, red}
pedestriant ∶ {green, red}

Initially, at time 0 it is assumed that there is no road traffic in, or moving
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into MUX; similarly for pedestrians. The initial axioms for road traffic are:

numbercars0 MUX ≡ 0 (pelicon-init)

movingcars0 T1 MUX ≡ 0

movingcars0 T2 MUX ≡ 0

The axioms for cars travelling between areas T1 and T2 (via MUX) are:

traffict ≡ red→movingcars(t+1) T1 MUX ≡ 0 (taxm1 )

∧movingcars(t+1) T2 MUX ≡ 0

movingcars(t+1) MUX T2 ≡ movingcarst T1 MUX (taxm2 )

movingcars(t+1) MUX T1 ≡ movingcarst T2 MUX (taxm3 )

movingcars(t+1) T1 MUX ≤ numbercarst T1 (taxm4 )

movingcars(t+1) T2 MUX ≤ numbercarst T2 (taxm5 )

numbercars(t+1) MUX ≡ (numbercarst MUX) (taxm6 )

+ (movingcars(t+1) T1 MUX)
+ (movingcars(t+1) T2 MUX)
� (movingcars(t+1) MUX T1)
� (movingcars(t+1) MUX T2)

where n � m = max(n − m,0). The axioms for the pedestrians travelling
between areas P1 and P2 (via MUX) are symmetric to the above 6 axioms
but not presented, i.e. substitute T1 for P1, T2 for P2, numbercars for num-
berpeds and movingcars for movingpeds. Implicit in the axioms, especially
axiom (taxm6 ), are the well-formdness conditions: cars are never in P1 or
P2 , and cars do not travel directly between T1 and T2. There are symmetric
well-formedness conditions for pedestrians.

Safety Requirements. In this setting, the high-level safety requirement—
which still remains to be validated (along with the other axioms) by domain
experts—is that, at any point in time, exclusive use of the crossing is given
to pedestrians or to road traffic. The requirement is formalised as:

∀t . numbercarst MUX ≡ 0 ∨ numberpedst MUX ≡ 0

pelicon-safety
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This is the desired property that we wish to prove.
In the following, safety principles are lemmata which all together im-

ply the safety requirements. A safety principle is an intermediate lemma,
typically deduced from principles, rules, or standards in the target domain.
Safety conditions are concrete formulæ (formulæ where the atomic proposi-
tions are variables in a concrete program), which reduce (e.g. via induction)
to formulæ over finite domains that are provable by ATP, and imply the
safety principles. For example, in the railway domain there is a large amount
of literature detailing various signalling principles , which in this thesis are
synonymous with safety principles.

A safety principle which implies this safety requirement is that, at any
point in time, only road traffic or pedestrians are allowed to enter the cross-
ing, but not both, and is formalised as follows:

∀t . (movingcarst T1 MUX ≡ 0 ∧movingcarst T2 MUX ≡ 0)
∨ (movingpedst P1 MUX ≡ 0 ∧movingpedst P2 MUX ≡ 0)

pelicon-principle

For a given Pelicon control system, giving a direct proof of the safety
principle or safety requirement would be a cumbersome activity as ATP tools
do not typically yield abstract solutions, but concrete solutions for concrete
problems. Our solution is to use the ATP tool to give a concrete proof of the
following safety condition:

∀t . traffict ≡ red∨pedestriant ≡ red

pelicon-condition

This condition has the semantics: for all time, pedestrians have a red light
or road traffic has a red light . In this setting the safety condition can be
viewed as signalling principle, however, in practice, signalling principles are
more complicated. It is provable that this implies the safety principle (and
in turn the safety requirement). It should be noted that the safety con-
dition is representable in terms of a concrete control system’s output (and
possibly input/internal) variables, whereas the safety principle is an abstract
formalisation.

We have shown in Agda that the stated safety condition implies the safety
principle which in turn implies the safety requirement. We have also shown
in Agda (using ATP) that a standard implementation of the Pelicon crossing
in Figure 1.2 implies this safety condition, via an inductive proof. Note
that the variables tlight.g and plight.g in the ladder program at time t
are mapped to the abstract variables traffict and pedestriant, respectively.
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Therefore, we have shown in Agda using a combination of ITP and ATP
that the implementation is safe up to the validation of the models. Using the
fact that Agda not only type-checks, but also compiles programs, we used
the compiler to extract a fully verified, executable Pelicon crossing control
system.

∣/∣ ∣ ∣ ( )
crossing req crossing

Rung 1

∣ ∣ ∣/∣ ( )
pressed crossing req

Rung 2

∣/∣ ∣/∣ ( )
crossing req tlight.g

Rung 3

∣ ∣ ( )
crossing plight.g

Rung 4

Figure 1.2: Pelicon Ladder. Here, −∣ ∣−, −∣/∣−, and −( ), mean holds, does not
hold, and becomes true, respectively. E.g. rung 1 is formalised as: crossing ∶=
¬ crossing∧ req. See Section 9.2 (page 191) for a full explanation of the
semantics of this diagram.

1.2 Main Achievements

The following itemises the main achievements of this thesis. Continuing in
the two part spirit of the thesis, the achievements are presented for each part
separately. In the next section, background information is provided, and the
thesis is summarised.
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Part I – Integrating Automated tools into Agda:

• New integration of ATP into ITP.

– Implemented in Agda.

– Feasible to use for industrial verification problems.

– Numerical evaluation.

– Mitigated risk of executing malicious ATP programs.

• Implementation of a traditional approach.

– Numerical evaluation, and compared with previous approach.

• Consistency analysis of built-in mechanism in Agda.

• Integration of SAT solving and CTL model-checking.

Part II – Verification in the Railway Domain:

• Formalisation of two real world interlocking systems.

– Modern digital interlocking programmed using ladder logic.

– Historic mechanical interlocking system.

• A two-step approach to verify the domain safety of interlocking systems.

– First step reduces the validation problem.

– Signalling principles are shown to imply safety requirements.

– Interlocking systems are shown to fulfil signalling principles.

– Fully tractable industrial scale proofs in Agda.

• Produced fully verified and executable interlocking systems.

• Analysed the completeness of mechanical interlocking systems.

1.3 Background and Overview

In this section, a brief overview of the thesis is presented along with the
corresponding chapters/sections which elaborate the discussions. Continuing
with the two part nature of this thesis, first, chapters integrating ATP into
ITP are summarised to describe the theoretical basis of the work, and then
chapters discussing verification in the railway domain are summarised to
describe application of the theory to real world problems.
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1.3.1 Part I – Theorem Provers

Before summarising Part I, background information relating to automated
and interactive theorem provers is presented.

Theorem proving tools can be placed into one of two categories: interac-
tive or automatic [Bou97]. The first category, ATP tools, attempt to prove a
theorem by automatically deducing the proof from already proved lemmata.
In some cases, intermediate lemmata are introduced and proved automati-
cally. The user has no direct influence over the derivation and proving pro-
cess. In this work, only ATP tools that coincide with decision procedures for
logics are considered as they are valid intuitionistically; examples are SAT
solving and model-checking. Conversely, the second category is formed by
ITP tools, i.e. proof assistants or proof checkers; they work by allowing the
user to guide the derivations and proofs of lemmata, culminating in a proof
of the desired theorem.

ATP Tools

These tools are very powerful when dealing with concrete theorems over
finite domains as in SAT and finitisable domains as with temporal logics. In
some cases ATP tools can be applied to theorems over infinite domains, as in
SMT [BSST09] and first-order provers, but this class of tools typically become
semi-decidable decision procedures [dMB09] and are not considered in this
work. Industrial hardware and software verification is archetypal of finite
concrete theorems—large but not inherently complex problems5. ATP tools
often allow the system to be modelled using an intuitive language, and the
desired properties of the system to be specified in the tool’s logic. The tool
will attempt to prove these properties. When this is not possible the tool will
either provide a counterexample of the property or declare an unknown result.
These unknown results typically occur as a result of attempting to prove a
theorem that has an infinite component and not knowing which lemma to
apply6 or when a resource (time or space) is not sufficient to complete the
proof.

ITP Tools

These tools are powerful when dealing with theorems over infinite domains,
which are not known, at least currently, how to mechanise (automate) their
proofs. To clarify the purpose of ITP tools, consider a theorem of the form

5We refer to this type of verification as industrial.
6Note that these semi-decidable theorem provers are not considered in this thesis.
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∀n.ϕ in which ϕ has an infinite component. It could be possible to prove it
using standard induction, but often the theorem needs to be strengthened
such that a new theorem ∀n.ϕ ∧ ψ implies the desired theorem. The choice
of this strengthened theorem, in general requires input from a human be-
ing. The reason is that when proving the inductive step, ϕ(n) might not be
sufficient to imply ϕ(n + 1); whereas a stronger theorem ϕ(n) ∧ ψ(n) might
be sufficient. In general, choosing ψ such that it is strong enough to allow
the theorem to be proved, without being so strong that it hinders the proof
is a complex task, and cannot be mechanised. ITP tools have the advan-
tage that unknown results do not occur as the user guides the proof and the
tool checks that the proof is correct. There is a useful body of work relat-
ing to automating inductive proofs, however, the techniques are inevitably
incomplete [BM90, Bun99].

Limitation of Exclusive use of ATP or ITP

As indicated, each class of theorem prover has advantages and disadvantages.
The following exemplifies why only using one class of theorem prover is not
adequate for industrial applications.

Consider a simple reactive system realised using Boolean valued equa-
tions which determine the next state from the current state and input vari-
ables. The most natural way to verify such a system is using a SAT based
verification. Assume a safety property7 P . One would have to create the
propositional formula which expresses that P holds in all reachable states,
i.e. ∀reachable state s.P (s). For small state spaces, it is possible to enumer-
ate all states and take their conjunction, but, for realistic systems, this is not
feasible8. Thus, the fastest method to determine whether the system models
P is to apply induction. This would yield two proof obligations which take
into account reachable states, namely the base case (initial state) and induc-
tive step (transition function). After the user has entered these into a SAT
solver and determined the validity of both cases, there is still a meta-step
to be performed by the user. The meta-step here is to prove the validity
of induction outside the SAT solver. The user can then assemble the three
proofs to verify that P always holds in all reachable states. SAT solving
alone is not sufficient to prove this theorem.

This example, perhaps contrived, shows the limitation of ATP alone, and
in general this final task of assembling proofs is more complicated. See Sec-

7A safety property is a property that must hold in all reachable states.
8Consider a system with 600 state variables (not uncommon within industrial appli-

cations), there would be 2600 conjuncts which is larger than the number of atoms in the
observable universe.
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tion 10.4 and Chapter 11 for substantial examples where various ATP proofs
are assembled to show that the Pelicon crossing, and a railway interlocking
system are safe, respectively.

When using ITP tools on large, finite, concrete, theorems the work del-
egated to the user is exorbitant [JGB10]. Industrial verification is a par-
ticular case where large numbers of mechanisable, and a small number of
un-mechanisable proof obligations arise [WLBF09]. Thus, it would be ben-
eficial to use ATP tools for the mechanisable proof obligations and ITP for
the un-mechanisable ones, and it will be shown how this can be achieved for
Agda.

Agda

Agda9 belongs to a family of theorem proving tools based on intuitionistic
type theory developed by the Swedish logician Martin-Löf. The first of the
family was called Another Logical Framework (Alf) [ACN90], developed in
1992. Alf was chronologically proceeded by Half, CHalf, Agda and Alfa.
Recently in 2007 Ulf Norell at Chalmers University started the current im-
plementation of Agda [Nor09]. Although it is the second version, Agda 2 is
known simply as Agda, and the original Agda is known as Agda 1.

Agda is a dependently typed (λ-calculus with the dependent product
and algebraic data-types) functional programming language and interactive
proof assistant. This work will extend Agda into a platform for specifying,
developing and verifying railway interlocking systems. The TYPES group at
Swansea University is involved with the development of Agda which provides
an ideal opportunity to extend Agda for our purposes. For information about
how Agda was extended see Chapter 5.

Part I Overview – Integrating ATP Tools into ITP

Over the past 30 years, there have been many attempts to combine theorem
proving tools (see Section 2.3.1 for a discussion of these methods). Briefly
these are: Oracle, Reflection, Certificate. The use of an ATP tool as an
oracle is when the ATP tool determines the validity of a theorem as: yes, no,
maybe, or unknown. Reflection is when an ATP is formalised and proved to
be correct in the ITP, and then a verified ATP tool is extracted. The final
approach is when the ATP tool provides certificates or justifications that are
then checked to be correct in the ITP. This last approach is widely regarded
as the state-of-the-art with respect to integrating ATP’s into ITP’s.

9See: http://wiki.portal.chalmers.se/agda/

http://wiki.portal.chalmers.se/agda/
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The approach formalised in Chapter 3 does not fit into these categories; it
is a mixture of the first two methods, i.e. combining an oracle with reflection.
This entails writing a decision procedure for a logic in Agda, proving its cor-
rectness in Agda, and then overriding it for closed terms by an external ATP.
At first glance this is cheating as the correctness proof used does not refer
to the ATP tool, however, this approach is sound as the ATP tool should
coincide with the Agda implementation. The soundness of the technique is
analysed in Section 3.2.1, and the technical implementation details of this
approach are contained in Chapter 5. The implementation of the technique
makes use of built-in functions in Agda; these are functions which have their
implementation overridden for closed terms. To determine whether the tech-
nique is sound, it was required to formalise these functions, see Section 5.1
for an analysis of the consistency of built-in functions. In Section 5.5 it is
considered how to prevent this integration from being used maliciously to
execute undesirable programs. For example, consider the situation where an
Agda module is obtained from the Internet, and then when type-checking it,
a malicious program is executed.

In Chapter 4, two principal case studies were selected to evaluate the
integration defined in Chapter 3, these are SAT solving (cf. Section 4.1) and
CTL model-checking (cf. Section 4.2). These theories were selected as they
are fundamental for industrial verification. CTL model-checking was refined
into symbolic model-checking (cf. Section 4.3), and then further refined in
Section 9.4.1 to a custom logic for systems realised by Boolean valued tran-
sition functions.

The certificate method identified above is implemented in Chapter 6.
This implementation is orthogonal to the previous technique in Chapter 3.
It allows for a very high-level of soundness assurances. These assurances
are that the external tool provides a trace of the proof of a theorem, and
then the trace is type-checked by Agda. The efficiency, and soundness of
this integration are evaluated against the previous technique. The result of
the analysis shows that for industrial problems the first integration performs
better, however, when the obtained certificates are not too complicated, the
second method performs better.

1.3.2 Part II – Railway Domain

The railway domain [Noc02, Lea03, KR01] is vast. In this subsection, a brief
background of the relevant parts of the domain is presented. This includes
an introduction to the modelling of the topology and interlocking systems.
For more information, there are in line references to the corresponding chap-
ter/section.
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See Appendix A for glossary of relevant railway terminology.

Remark

Systems in the railway domain are archetypal of industrial problems; a
good understanding of these problem sets will benefit many different com-
munities. In our case, it will aid the formal development and verification of
critical systems. Regarding the railway domain and formal methods, there
are the following correspondences:

Signature ≡ Topological layout of railway network
Specification ≡ Operational constraints of a topology
Model ≡ Computational model of an interlocking system
Implementation ≡ Instance of the model, i.e. an interlocking system

Previously, in the author’s masters thesis [Kan08, KMS09] an interlock-
ing verification process was developed. It applied SAT solver technology to
verify (finite domain) first-order theories with respect to safety. This the-
sis builds upon that previous work by not only considering the verification
(Chapter 10), but also how to prove that the verification implies the safety
requirements. This requires a formalisation of the signatures, specifications,
models and implementation. See Chapter 8 and Chapter 9 for these formali-
sations, respectively. Then, in Chapter 8 using these formalisations, abstract
theorems in the railway domain that relate the verification to the high-level
safety requirements are proved. Chapter 11 contains an elaborated example
of the whole process.

In the following sub-sections, these four correspondences are considered
in detail.

Topology

The topology of a Railway is concerned with how the physical “nuts and
bolts” of the railway network are configured. Briefly this consists of track
segments, connections between these segments and various types of signals.
Track segments are atomic components of the railway network.

The following diagram depicts common types of track segments. Track
segments are composed to form the railway lines, and then signals can be
placed between connected segments.

With just using the ‘linear’ and ‘set of points’ segments it is possible
to create complicated track-plans, i.e. the ‘set of points’ segments allow for
diverging and converging lines.
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In practice, although not considered in this work, the topology also entails
civil aspects of the railway network. This includes: bridges, tunnels and
level crossings.

Remark

Linear

ts1

Set of Points

ts2

Crossover

ts3

Figure 1.3: Common Track Segments.

The following track-plan is based on an existing station that was modelled
during this work (cf. Section 10.5). It depicts a terminal station with two
platforms. Trains arrive and leave on the right-hand side. The arrows (on the
right) indicate the direction of travel on the lines. The lines are subdivided
by hatch marks into track segments. There are four sets of points that allow
trains to transition between the top line and the bottom line. Signals are
placed between some of the segments. Note the orientation of the signal
relates to the direction that they are must be obeyed. For more information
about the topology, and the modelling see Chapter 8.

Platform 2

Platform 1

Figure 1.4: Example railway network. The leftmost signals are fixed at
danger and are not safety controlled, or modelled in this thesis, they are only
for illustrative purposes.
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Operational Constraints and Safety Requirements

Within standard railway design and development, the functionality of the
topology is specified by documents known as control tables. In their simplest
form, control tables list train routes. A route starts at a signal and terminates
at the proceeding signal on the line. All the track segments that a route spans
are specified; if one of these segments has multiple configurations, such as
a set of points, then the required configuration is also specified. The tables
also specify which signal aspect to display (e.g. danger, proceed, or proceed
with caution) and under what circumstances, which in turn (by the signalling
scheme) specifies the speed limit of the line ahead of the signal. In the case
of a danger/red aspect, the speed limit is constrained to zero. See Chapter 8
for a formalisation of these tables.

Thus, these control tables form specifications for the railway control sys-
tems. They are formal documents that are signed-off early in a project’s
life cycle, and then used to develop the control systems and derive test-cases
(among other things). It should be noted that the safety of the railway is
delegated to these tables.

From a control table, it is possible to determine incompatible route com-
binations. For example, any two routes that contain the same track segment
are incompatible. This notion of incompatible routes forms a basis of the
signalling principles .

Signalling principles are general rules that the interlocking system must
fulfil. In the UK, each railway line requires a slight variation of these rules.
This is for historical reasons as most of the train lines were originally built by
and operated by private companies that formed their own standards in lieu of
standardisation from government. For information regarding the history of
British railway signalling, see Section 9.1. In this thesis, signalling principles
are represented by Agda formulæ that formalise these rules. From experience,
they are expressible as first-order formulæ that quantify over the components
of the topology and routes. Each of these components has a number of as-
sociated atomic propositions which represent attributes of the components.
The signalling principles define relations between these atomic propositions.
For instance, some of these atomic propositions express whether a track seg-
ment is occupied, or not, and others relate to the positions of sets of points
and signal aspects.

As previously described, an abstract safety requirement is required. Typ-
ically it is also a first-order formula. The abstract safety requirements for
the railway domain considered in this thesis are given as follows:

• trains do not collide, and
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• trains do not derail (see Section 4 of [HP00]).

This safety requirement is intuitive. However, proving that it holds for a given
interlocking system, and railyard is non-trivial. In this thesis, the proof is
carried out in two parts. First, an abstract proof that the safety follows by
the signalling principles is performed once for each set of signalling principles.
Then it is proved that the interlocking system fulfils the necessary signalling
principles to guarantee the safety. See Section 8.4 for a detailed discussion
and an example of the abstract proof.

Computational Model and Implementation

Before formal verification of an interlocking system, the system must first be
formalised. This requires a computational model of the interlocking. The
model includes a language (syntax and semantics) used to program the in-
terlocking and relevant hardware. The hardware that needs to be formalised
depends on the interlocking design. For example, timers are part of the
hardware, but not necessarily directly supported by the language.

The interlocking systems explored in this thesis are realised using ladder
logic, a graphical representation of a Boolean circuit, specially tailored for
reactive systems, see Figure 1.2 for an example. This low-level language of
Boolean equations is particularly amenable to off-the-shelf verification with-
out much effort. See Chapter 9 for a formalisation of ladder logic programs.

The actual formalisation of the implementation of an interlocking system
is then an instance of this model. For the verification to be valid, these models
are required to define a decidable transition system, see Section 9.3. For now
it is noted that a well-formed ladder logic program produces a decidable
transition system.

Verification

The underlying technology used is a SAT solver10, so proving that the inter-
locking system fulfils the required signalling principles (first-order theorems)
requires translating the theorem into an equivalent propositional theorem.
This is possible as the signalling principles are built over finite sets of sig-
nals, track segments and routes, i.e. there are no infinite topologies. The
verification requires a link between the abstract world of the topology-model
and control tables, to the concrete world of the interlocking. This link spec-
ifies the meaning of the variables in the interlocking system; that is which

10CTL model-checking is also explored, but for efficiency reasons the use of SAT solving
is predominant in this thesis.
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variables control which pieces of hardware. See Chapter 10 for a technical
discussion of the actual verification, this includes defining correctness of a
ladder program and executing an external SAT solver.

It is also possible to determine whether the interlocking system correctly
refines a control table. This is a straightforward process that entails translat-
ing each entry in the control table into a verification condition. Provided the
link between the abstract models and the interlocking is complete, then the
translation is canonical. See Section 10.2 for information relating to control
table verification.

Thus, two types of verification are performed; the first verifying that the
interlocking system is safe, and the second verifying that the interlocking
system fulfils its specification.

Part II Overview – Railway Domain

Starting in Chapter 8 the railway domain is modelled. This includes for-
malising the topology and control tables, and then signalling principles and
abstract safety requirements are formulated. In Section 8.4.1, it is proved
that the safety requirements follow by the signalling principles.

Chapter 9 formalises interlocking systems defined by ladder logic pro-
grams. The chapter starts by discussing the history and motivation of British
railway signalling, including a summary of significant accidents, such as the
worst railway accident in British history: Armagh, 1889, where many school
children died in a collision. The remainder of the chapter formalises ladder
logic programs and provides a translation from ladder logic programs into de-
cidable transition systems. These decidable transition systems are required
to relate verified concrete statements (about a concrete interlocking) to a
corresponding statement in the abstract models.

The two previous chapters introduced abstract models of railways, and
interlocking systems. In Chapter 10, SAT based safety verification of inter-
locking systems is discussed. Briefly this involves creating a data-type of
reachable states, and then formulating the safety properties as for all reach-
able states . . . holds . Validity of these conditions is determined by the use
of an efficient SAT solver; typically, this is achieved by reducing the safety
conditions, by induction, to a base case and inductive step.

Chapter 10 also details the toy example of the Pelicon crossing, this in-
cludes producing a verified implementation that is simulated. Also, a number
of details about the industrial interlocking system that was verified are pre-
sented.

Finally, in Chapter 11 the full case study of Gwili Steam Railway is pre-
sented. The case study follows the techniques of the last three chapters. The
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topology and control table are modelled, and the interlocking system is mod-
elled, and then it is verified that it fulfils the relevant signalling principles.

The interlocking system at Gwili is of a mechanical design; thus it was
required to translate from mechanical interlocking systems into ladder logic
programs. This translation is elucidating as it clearly shows the weakness
of the mechanical interlocking systems, and why digital interlocking sys-
tems are more powerful. The reverse of the translation, where ladder logic
programs are encoded into mechanical interlocking systems is considered in
Appendix B.

1.4 Overview of Results

The main result of the thesis is that fully verified, executable, industrial
scale interlocking systems are produced. This is a fully worked out, practical
illustration of the proofs-as-programs paradigm.

Furthermore, from Part I, the main result is a new technique of integrating
ATP into ITP. This technique offers a better trade-off between soundness,
efficiency and usability than existing techniques when used for industrial
problem sets. This technique is evaluated on mathematical problem sets in
Section 5.4.1, and compared to a traditional, state-of-the-art technique in
Section 6.3.2. The evaluation clearly shows that the size and complexities
of the prime formulæ theorems that Agda can feasibly solve is increased by
a factor of 10–100, depending on the complexities of the problem set, than
was possible without the integration. However, the observed performance is
significantly worse than manually executing the solver outside of Agda, in
part this is due to inefficiencies in Agda (and the GHC run-time system).

The interface was also evaluated on industrial verification problem sets
of interlocking systems, see Section 10.5.1. It was successfully applied to a
ladder logic program with approximately 300 rungs and 250 inputs variables,
which when unfolded for the inductive step contained approximately 1500
propositional variables. This shows that it is feasible to use Agda as a formal
development platform for verified software. The traditional interface that was
also evaluated could not successfully determine the validity of the industrial
problem sets due to inefficiencies.

The main result for Part II is the feasible technique of the two-step veri-
fication procedure for railway interlocking systems. This is where, as a first
step, the signalling principles are proved to imply the safety requirements,
and then as a second step, a concrete interlocking system is shown to ful-
fil the signalling principles, thus a tractable proof showing that the system
fulfils the safety requirements is obtained.
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This technique was successfully applied to two interlocking systems. This
entailed formalising the topologies and interlocking systems, proving that the
safety requirements follow from the signalling principles, and verifying that
the interlocking systems fulfil the signalling principles. These verified inter-
locking systems were also compiled and executed, this allowed the verified
interlocking system to be simulated. See Appendix C for a simulation of
the Pelicon crossing example. In Chapter 11, a fully worked out example of
the verification of Gwili Steam Railway is presented. Also see Section 10.5
for information relating to the verification of a modern interlocking system,
although only partial results are presented for this interlocking system to pro-
tect the project sponsor, and not publish information that could potentially
be maliciously used to subvert safety.

The results of this thesis clearly show that the techniques which were
applied, facilitate feasible verification of substantial software projects within
a type theoretic setting. This is a respectable result as practical implemen-
tations of type theoretic tools will often result in exceeding large terms for
large concrete data structures, to such an extent that they become unfeasible
to use for industrial applications.

1.5 Notations Used

The two parts of this thesis are independent, however, the chapters in
each part are intended to be read sequentially.

Remark

This thesis follows standard mathematical syntax, with a few deviations.
In this section the notations used are explained. Much of the notation is close
to Agda notation. More information about Agda notation can be found in
Ulf Norell’s thesis [Nor07].

For a complete understanding of the formulæ provided in this thesis,
well-known inductive definitions of natural numbers, vectors and existential
quantification are provided in Agda-like syntax; also a summary of other
language constructs is provided. The following notations are used:

Set For historic reasons, this is what is meant by type in traditional pro-
gramming languages. So all small types (e.g. Booleans, natural num-
bers) are elements of Set. As Agda uses type hierarchies, large types
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are elements of Set1; in this work higher levels than Set1 are not needed.

a ∶A A typing judgement that a has type A.

Underscores are used for two purposes, first, as placeholders for mix-fix def-
initions. Secondly, they are expressions, such that they indicate that
the expression they are in-situ of is inferable by the type-checker.

∀x . B

(x ∶A)→B Both of these notations introduce the dependent function (Π)
type. Elements of this type are functions, which when applied to an
argument a ∶ A yield an element of type B with all occurrences of x
substituted by a. In general, ∀x is syntax for (x ∶ ).

∀{x} . B

{x ∶A}→B Both of these notations introduce the hidden function (Π)
type. Hidden parameters are used when they are inferable by the type-
checker. In general, ∀{x} is syntax for {x ∶ }.

{x} Applies a hidden parameter to a function with a hidden argument. This
is required when the hidden parameter is not inferable by the type-
checker. For instance, assume a function f ∶ {x ∶ A} . B x and
y ∶ A , then f {y} ∶ B y .

1.5.1 Definitions

The majority of definitions in this thesis are formulated using Agda syntax,
albeit with a small number of improvements. For example, sub and super
script parameters are used liberally. In the following, the basic syntax of
inductively defined data-types is introduced. To define the set

{red,blue,orange}

in Agda, the following code is declared:

data Colour ∶ Set where
red blue orange ∶ Colour
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Here, Colour is defined to be an element of Set; with red, blue and orange
defined as elements of Colour.

Natural numbers. However, to define more complex sets such as the nat-
ural numbers (without dependent types), the following code is declared:

data N ∶ Set where
zero ∶ N
suc ∶ N→ N

Here, N is defined to be an element of Set; N is inductively defined as the
least set containing zero and closed under suc.

Every data-type in Agda corresponds to a standard mathematical freely-
generated (co)inductively defined set, i.e. least (or greatest) set closed
under the constructors.

Remark

Vectors of type A of length n. The definition of Vec introduces a de-
pendent type, depending on an arbitrary set A and a natural number.

data Vec (A ∶ Set) ∶ N→ Set where
[] ∶ Vec A zero
∷ ∶ A→ Vec A n→ Vec A (suc n)

Vec is inductively defined using two constructors: [] constructs the vector of
type A of length 0 and the mixfix ∷ concatenation of an element of type A
to a vector of type A of length n constructs an element of Vec A (suc n).
The underscores denote the positions of the arguments and are not part of
the constructors name.

In the definition of Vec two different flavours of dependent types are
used. The first flavour is the named parameter A; it is fixed throughout
the definition of Vec. Both constructors refer to A and the resultant type
depends on it. Secondly, Vec A ∶ N → Set is indexed by elements of N
where the arguments and resultant type can refer to different indices.

In the definition of ∷ , a hidden argument is used, namely, n. Hidden
arguments can be omitted when the type-checker can infer its value. In this
case, n is inferred from the context and/or the second parameter. To clarify



24 1.5. Notations Used

the situation of hidden arguments, the definition of vectors is precisely given
as follows:

data Vec (A ∶ Set) ∶ N→ Set where
[] ∶ Vec A zero
∷ ∶ A→ {n ∶ N}→ Vec A n→ Vec A (suc n)

Here the curly braces denote hidden arguments. If a hidden argument is
to be given explicitly, to help the type-checker when it cannot be inferred
automatically, curly braces are also used. So a hidden parameter would be
specified by: {n}. For example, assume an a ∶ A and v ∶ Vec A n for
some n, then the hidden parameter in the constructor ∷ as follows:

∷ a {n} v

Functions. In Agda, functions are typically defined by case-distinction,
using a Haskell-like syntax, although with significant differences. As an ex-
ample of an inductive function definition in Agda, consider the Agda code of
the truth (or atom) function:

T ∶ Bool→ Set

T true = ⊺
T false = �

The above definition is by case-distinction on the set of Booleans. Agda
requires that the case-distinction is total, that is, the function fulfils the
inductive elimination principle of the types in question (above it is Bool). It
is also required that the definition passes a termination check, see below.

Recursion Inductive data-types allow for recursive function definitions.
In the case of natural numbers, a recursive function is defined by the use of
pattern matching:

double ∶ N→ N
double zero = zero
double (suc n) = suc (suc (double n))

Agda requires and checks that a function terminates. The termination
checker follows certain termination principles based upon primitive recursion
in higher types [Abe98].
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Records. Agda provides support for grouping values together, similar to a
tuple in other languages or a data-type with one constructor. This support is
by the record type. Consider the following example which pairs two natural
numbers, and defines the constructor pair.

record NPair ∶ Set where
field

A ∶ N
B ∶ N

constructor
pair

Records are equipped with projections, and as it is known that they only
have one constructor they will unfold. Thus, they are simpler to use as
case-distinctions are not required to unfold. From the above definition two
projections are obtained, one for each field.

NPair.A ∶ NPair→ N
NPair.B ∶ NPair→ N

An improved notation is used for the projections: assume x ∶ NPair, the
values of the fields are identified by Ax and Bx.

It is allowed for the fields to be dependently typed.

Remark

Moreover, elements of record types are given in one of two ways: First,
by the use of the constructor (if defined, as it is optional), and secondly by
a special record syntax. In the case of NPair, assume two naturals n and m,
the first method is as follows

x = pair n m

and secondly, when no constructor has been defined:

x = record { A = n ; B =m }

1.5.2 Formulæ

Implicitly, the mathematical formulæ in this thesis are within the model
of Agda unless explicitly stated otherwise. These formulæ are presented
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In this thesis, every proof has been carried out in Agda and corresponds to
a theorem in standard mathematics—continuous functions are not used.

The proofs of theorems proved in Agda are presented in a standard
mathematical way, albeit, in significant detail. This is to provide an
intuition of the proofs in Agda. Also, well-known mathematical theorems
are proved, for example, the pigeonhole principle.

Remark

using standard mathematical notation with a few exceptions where it is more
intuitive to use Agda notation.

In Agda formulæ are represented as sets. Following the BHK interpreta-
tion [TD88a] of the logical connectives, a proof of a formula is an element of
its set. That is, true is represented as the singleton set ⊺, with the canonical
element tt ∶ ⊺, falsehood is represented as the empty set �. Conjunction
of two formulæ ϕ and ψ is given as a pair (p, q) such that p ∶ ϕ and
q ∶ ψ . Disjunction of two formulæ ϕ and ψ is represented by a tagged union,
i.e. inj1 p or inj2 q, where p ∶ ϕ and p ∶ ψ . Universal quantification is rep-
resented by the dependent function type. A standard universally quantified
formula of the form

∀x∀y∀z ϕ

is written as

∀x y z . ϕ

to be close to the Agda representation.

The final connective is existential quantification. However, before intro-
ducing it, relations are considered.

Relations are given as functions that define sets. That is, in standard
mathematics the relation

R ⊆ A ×B

has the Agda type:

R ∶ A→ B → Set

In Agda, the type R a b is inhabited iff in standard mathematics, (a, b) ∈ R.

Existential quantifier. Assume A ∶ Set and ϕ ∶ A → Set. An element
of the type ∃ A ϕ (existential quantification) is a constructive proof that
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there exists an x ∶ A such that ϕ x is inhabited. It is given as the pair
(x , q) , such that q ∶ ϕ x . In Agda, it is defined using a record as follows:

record ∃ (A ∶ Set) (ϕ ∶ A→ Set) ∶ Set where
constructor
,

field
π0 ∶ A
π1 ∶ ϕ π0

This definition can be confusing at first glance. To help clarify its use consider
the statement: there exists an even natural number. To prove this statement
in Agda, define a unary relation Even ∶ N → Set with canonical semantics;
instead of Boolean values Even maps a natural number onto the singleton
set ⊺ or empty set �. The above statement would then become ∃ N Even.
A proof would be given as an element of this type, namely (2 , tt), where tt
is an element of Even 2. Conversely, there is no element of ∃ N Even of the
form (3 , p) because p would need to be an element of Even 3 which unfolds
to � (the empty type).

The definition of existential quantification is also known as the dependent
pair type or Σ type.

Remark

Ex falso quodlibet. When the principle of ex falso quodlibet is required,
the function efq is applied. This has the canonical signature:

efq ∶ ∀{A} . �→ A

1.5.3 Infinite Data

There are a couple ways to represent infinite data in Agda. The first method
is by the use of streams, i.e. for some type A, a stream of type A is an element
of the type N → A. In addition Agda has special support for representing
infinite data-types, or equivalently co-algebras. This is by the use of three
special built-in functions. These functions are used to box a computation,
and then unfold it, provided the computation is productive. These functions
are required to create objects by co-recursion, and then destruct these objects
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with co-induction. The functions have the signatures:

∞ ∶ ∀{A} . A→ Set

♯ ∶ ∀{A} . A→∞ A

♭ ∶ ∀{A} .∞ A→ A

Consider the example of a co-list, these are lists that have no nil element.
They are defined as follows:

data CoList (A ∶ Set) ∶ Set where
∷ ∶ A→∞ (CoList A)→ CoList A

It is possible to provide elements of a CoList by using co-recursion, i.e. a
co-list that is always 0 is defined as follows:

const-0 ∶ CoList N
const-0 = 0 ∷ (♯ const-0)

or a co-list that counts is given as follows:

cosuc ∶ N→ CoList N
cosuc n = n ∷ (♯ cosuc (suc n))

The co-lists can be destructed by using co-induction, such that each step is
productive. For instance two co-lists of natural numbers can be combined
into a single list by applying addition.

plus ∶ CoList N→ CoList N→ CoList N
plus (n ∷ ns) (m ∷ ms) = (n +m) ∷ (♯ plus (♭ ns) (♭ ms))

Here each unfolding of plus produces a constructor of a co-list.
It is required that co-recursive functions fulfil the guarded recursion prop-

erty. That is, each defining equation is a constructor applied to one recursive
call. For example, assume a co-inductive type A ∶ Set with the constructor
C ∶ B →∞A→ A , and define:

f ∶ B → A
f b = C b (♯ (f b′))

Here, there is no restriction on the size of b′ to be less than b. Therefore,
attempting to write a function that breaks the guardedness constraint, such
as summing a co-list into a number, which is defined as follows:

f ∶ CoList N→ N
f (n ∷ ns) = n + (f (♭ ns))

will fail the Agda termination checker.
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This is only a fragment of Agda, other important features are the built-in
and primitive functions, they are explained in Chapter 5 of thesis as they
are directly relevant to the research. There are other features of Agda not
considered as they are not relevant such as universe polymorphism and
irrelevance. The interested reader is directed to [Agd12, Nor07, BDN09]
for more information.

Remark

1.5.4 Font Faces

The following convention is used with regards to font faces,

Roman standard text
Italic Roman newly introduced concepts
Bold Roman headings, highlighting important information
Math font and Roman Agda definitions, e.g. data-types, functions
Sanserif programming code, usually Haskell
Teletype listing technical details
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Chapter2
Review of Literature

In this chapter an overview of related work is presented. It is given in two
parts. First, the work related to railways is presented. Then work pertain-
ing to combining interactive and automated theorem proving paradigms is
presented, with a focus on Agda and type theory.

2.1 Railways – A Grand Challenge

In 2004, Dines Bjørner declared understanding and effectively utilising the
Railway Domain as a grand challenge within the field of computer science
[Bjø04, Hoa03]. The first selection of reviewed literature pertains to the
identification of the grand challenge at IFIP 2004, and then other related
work will be looked at.

2.1.1 Articles from IFIP 2004

The TRain topical day was held at the 18th IFIP World Computer Congress,
Toulouse, France and organised by Bjørner. Papers relating to it are [Bjø04,
Sab04, MW04, PB04, ROTS04, GL04, Ogi04, BCJ+04], of which the opening
article [Bjø04] is of especial interest. That article lays out the problem of
domain analysis with respect to railways as a grand challenge called TRain1.
All subsequent papers further the topic.

The first paper [Sab04] is by Sabatier, it focuses on reusable formal mod-
els in the railway domain; it also provides advice for developing models that
are reusable. It advises designers to ask questions as the model is being con-
structed, such as “why do we want this property?” and “what can we assume
from the external environment?”. The paper also emphasises financial issues

1Project web page: http://www.railwaydomain.org/

31



32 2.1. Railways – A Grand Challenge

for the construction of reusable models. Notably it is suggested that creat-
ing reusable models costs more than creating tailored (non-reusable) models.
However, over time more money is saved by reusing models, than is invested
when compared to non-reusable models. The paper concludes by suggesting
that a central repository of such models should be setup.

The second paper [MW04] discusses how to apply Communicating Se-
quential Process (CSP) to create a high-level model of an Austrian railway
signal2. The abstract models are shown to be correct by applying model-
checking. Then they are successively refined to produce a working, verified
implementation. At a higher-level, the paper pays particular attention to the
issue of the abstract models being fail-safe. This means that if any part of
the system should fail, then it should fail into a safe state.

The third paper by Penicka and Bjørner [PB04] discusses a partial model
of the railway domain that covers many areas, although a short paper, its
references include full details of the model shown [Bjø03, BBM99, PSB03,
SPB03]. The model is constructed using the Rigorous Approach to Industrial
Software Engineering (RAISE) specification language (RSL), and it encom-
passes many aspects of the railway domain. These aspects include timetables,
staff rostering, routes and the underlying topographical anatomy of the rail-
way. It contains as well a discussion of the author’s experiences using other
techniques such as sequence charts, state charts and Petri nets within the
railway domain.

The Fourth paper is by Reif et al. [ROTS04], it is about application
of formal methods to train systems to ensure safety properties. The pa-
per contains a short case study about the verification of decentralised radio
controlled level crossings used by the German railway organisation Deutsche
Bahn. These level crossings have a decentralised control system. Briefly the
operation of these crossings is as follows. The train uses a radio signal to
inform the level crossing that it is approaching, then the level crossing uses
a sequence of timers to calculate when, and for how long it should lower the
barrier, and then safely raise it. The control system is also responsible for
setting the road facing signals. Reif et al. applied interval temporal logic
(ITL) along with fault tree analysis (FTA) and failure modes and effects
analysis (FMEA) to verify the device. The device was modelled using state
charts that were developed in a top-down manner. First, entities such as the
train, level crossing, communication system and environment were modelled,
then these components were decomposed. Furthermore, using an appropriate
model-checker, the safety requirements formalised as ITL formulæ were ver-
ified. The verification found some of the timers were incorrect, meaning the

2Montigel Dwarf Signal
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barrier could be raised too soon. The specification was amended, and then
safety verification was successful. The paper concludes with a discussion of
applying quantitative measures to the model. It states that FTA and FMEA
can be easily extended such that their quantitative values can be calculated.

The fifth paper is by Giras and Lin [GL04], in which they applied the
axiomatic safety-critical assessment process framework to a hypothetical case
study of a Maglev system. The result of this is a stochastic risk assessment
for the Maglev system. The following underlying techniques were used: fault
tree analysis, Markov chains and the use of a Monte Carlo risk assessment
algorithm.

CyberRail The final two papers [Ogi04, BCJ+04] discuss the CyberRail
project. The first of these introduces the aims and goals of CyberRail, the
second starts to define a RSL model of CyberRail. The CyberRail project
ambitiously attempts to modernise public transport by exploring how ubiqui-
tous computing could affect journeys. It describes a scenario where travellers
have a virtual travel companion which: provides them with the necessary in-
formation, books tickets when required, reschedules the journeys in case of
a missed connection, arranges taxis, and keeps the passenger entertained
while travelling. The name CyberRail was chosen because it exists within
“cyberspace” and it communicates with entities in the physical world such
as the railway network, staff and passengers. CyberRail can be decomposed
into three classes of objects:

Demand Objects that represent actual user demands, such as passenger
profiles, e.g. where they are travelling to, preferences, travel history
and current position.

Carrier Objects that represent transport mediums, e.g. trains, automobiles
and aeroplanes. The objects should have specific attributes such as
where they are, which passengers are travelling within the object, and
maintenance information.

Route This class represents objects that could be seen as timetables of
various transport mediums. For example, railway, motorcoach and avi-
ation routes along with times and constraints. These constraints could
be seasonal or sporadic, e.g. referring to national holidays or weather
conditions.
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2.1.2 Railway Specification and Modelling

The scope of the attempts originally pioneered by Bjørner [Bjø04, BGP95],
aim to capture the entire domain from the physical components, to staff
rostering, rescheduling a delayed train, timetable scheduling during holiday
seasons and much more. This comprehensive approach is known as domain
analysis and has been applied to other domains. Some domains of interest
include the aviation and maritime industries. It is suggested by Bjorner
that these domains (and others) can be combined to create an overarching
specification of the transportation domain [Bjø06].

Over the past 30 years, there have been many attempts to formally model
various aspects of railways. Some, including the grand challenge mentioned
previously, attempt to capture as much information as possible while creating
the models, these models are typically written using a specification language
such as VDM, RSL, B/Event-B or Casl [Jon90, Geo91, Abr96, ABK+02].

A well-known example of this algebraic specification approach is the
Paris metro, Métro Est Ouest Rapide (METEOR) [BBFM99]. METEOR
is a driverless metro line that was partly built by Matra Transport Inter-
national (now part of Siemens Mobility). The line is protected by an auto-
matic train protection (ATP) system and controlled by an automatic train
operation (ATO) system. The control systems for this line are distributed
over a large geographical area; some of the control is centralised, and some
is by decentralised control units that are located beside the track and on-
board the trains. This was an extremely complex system to develop, and
the fact that it was a critical system means that there was no margin for
error. Matra Transport decided to use the B-Method during development
[BBFM99, BG00, Sab04]; B [Abr96] is a formal language which is the suc-
cessor to Z. It is a complex language to use partly because the specification
and implementation are deeply intertwined [Abr96] which requires successive
refinements to obtain an implementation. There is extensive tool support
that simplifies the process; one such tool set is called Rodin [ABH+10]. Per-
haps Matra Transport decided to use the B-Method as it was developed in
France, so they had a wealth of local expertise. Using the B-Method Matra
Transport were able to verify 100% of the safety and liveliness requirements
of the ATP/ATO systems. It was claimed that no bugs were found during
the validation, in house testing, on-site testing and since METEOR went
live [BBFM99]. This is clearly an exceptionally meritorious result for such a
complicated, critical system.

Other work relating to the specification of railways acutely focus on
the topology and operational aspects. For example, the approach taken by
Hansen which originated from Monigel uses graph theory [Han98, Mon92].
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The basic idea is that track segments are vertices, and the edges are con-
nections between the segments. The edges are directed; hence they must
be doubly linked. The reason they are directed is that it allows the edges
to be annotated in only one direction. For example, signals are added to
the model by annotating edges, this allows the model to represent that the
signal is only visible in one direction (which is a requirement in the railway
domain). Hansen [Han98, Jon90] specified Danish interlocking systems using
the Vienna Development Method (VDM) specification language. This speci-
fication was simulated so that domain experts could validate its correctness.
The first attempt omitted manual overrides that are used for shunting and
controlling sets of points. The second attempt was augmented to provide
these manual overrides, then verified against the safety requirement that the
interlocking could not allow trains to collide or derail. Although safety con-
ditions that are more precise were not verified, this high-level requirement
is the ultimate goal of the interlocking with respect to safety (not liveliness)
properties. See Section 12.1 for a detailed comparison between Hansen’s
work and this thesis.

It is clear from Hansen’s work that using a graph as an underlying data-
type to represent the topology is flexible and extensible. There are a number
of different operations that can be applied, for example, the vertices relating
to routes can be coloured to determine incompatible combinations, or the
graph can be traversed to determine whether the topology is well-formed.

Another approach is to use predicates. They express a richer view of
information than the graph based approach. Predicate logic has been suc-
cessfully applied in several projects to model railways [Eri97a, Kan08]. Note
that a first-order predicate logic underpins the previously mentioned alge-
braic specification languages. It is straightforward to define n-ary relations
between objects: a Prolog-like syntax is suited well to this. For exam-
ple, this is the approach taken by Eriksson when modelling the Swedish
rail topology [Eri97a, Eri97b] and myself while modelling a London Un-
derground station [Kan08]. Eriksson provides an overview of a case study
in [Eri96]. Simply put, consider two track segments, ts1 and ts2, then
connected to(ts1,ts2) and connected to(ts2,ts1) are defined iff they
are connected in the physical world. Using objects and relations between
these objects, the physical world and abstract concepts (such as routes) can
be formally modelled. Provided the model adheres to a suitable nomencla-
ture the model will be readable by humans. Having a formal model of the
topology allows for information to be automatically deduced, e.g. pairs of
incompatible routes can be deduced as in [Kan08].
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RaCoSy/PRaCoSy

The UNU International Institute for Software Technology (IIST) undertook
the People’s Republic of China Railway Computing System (PRaCoSy) pro-
ject, which was sponsored by the Chinese Ministry of Railways. The project
goes a long way to developing an RSL model of the railway domain [BGP95].
The model is a precursor to the to the model presented in [PB04]. PRaCoSy
was developed from 1993 to 1996. It was primarily aimed to allow in-house
development of arbitrarily advanced railway related software, and secondar-
ily had the aim to internationalise commercialised railway software3. During
this project, a running map tool was developed. The tool helps to schedule
trains based on constraints entered by the user, the tool recommends so-
lutions, as opposed to only validation/simulation. This tool was developed
from the RSL model and delivered to the Chinese Ministry of Railways.

EURIS and LARIS

European Railway Interlocking Specification [BMS92] (EURIS) is a graphical
method of designing interlocking systems. It consists of four sub-languages;
three of these languages are used to model the topology and routes. The
final language models how the actual entities, such as a signal, operate. The
semantics of EURIS has not been fully defined, thus proving theorems about
a EURIS specification is difficult due to ambiguities. An attempt has been
made to verify safety properties of a EURIS program by translating the
program into a Petri net which has a precise mathematical meaning. There
are many tools that simulate and show properties of Petri nets, for example,
one such tool is ExSpect . A thorough discussion of this technique can be
found in [BBV95].

The lack of a formal definition of EURIS resulted in a second language
being defined. This language is called: Language for Railway Interlocking
Systems (LARIS). LARIS 1.0 was developed by Fokkink et al., at the CWI,
Amsterdam [FGHvV98]. LARIS modularises the interlocking. A module
sends messages to other modules or to the real world. Modules also receive
messages from the real world. All these modules are assumed to be asyn-
chronous; therefore, the order the messages are processed in is not fixed. The
language is designed to be easily formulated in a process calculi to aid in later
verifications.

3Typically developing countries will acquire railway systems from industrialised coun-
tries.
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2.1.3 Railway Verification

The formal verification of railway interlocking systems has been studied a
number of times over the past 20 years. Some attempts have already been
identified, such as the METEOR line in Paris; a selection of other attempts
is reviewed below.

The first verification attempts focused on determining whether an inter-
locking system satisfied concrete safety properties, i.e. formulæ represented
in terms of the input and output variables of the system. During the mid-
nineties, a notable body of work relating to the verification of the interlocking
systems at Hoorn-Kersenboogerd and Heerhugowaard (Netherlands) was un-
dertaken by Groote, Fokkink and Martens in [GvVK95, Fok95, Mer96]. In
that work, the process algebra µCRL (Common Representation Language)
was applied to model the interlocking systems. Although process algebra is
amenable to model-checking techniques, the available model-checkers of the
day were not able to explore the state space feasibly, so the formulæ were
translated into propositional logic, and then SAT solving technology was
applied instead. It is noted that the same SAT based techniques were suc-
cessfully applied in Sweden by Eriksson [Eri97a, Eri97b], where a serious flaw
in the interlocking system was identified. A number of years later in 2002,
the same stations/problem sets of Hoorn-Kersenboogerd and Heerhugowaard
were revisited by Eisner in [Eis02], where CTL model-checking was success-
fully applied in-place of SAT solving. The paper claims that interlocking
systems with approximately 600 variables were efficiently explored using the
symbolic model-checker RuleBase.

Orthogonally during the mid-nineties an effort was made to apply model-
checking to a more complicated class of interlocking systems that are pro-
grammed using the Geographic Data language [Mor96, SWD97]. One no-
table piece of work pertaining to the Geographic Data is Mathew Morley’s
thesis [Mor96]. In that thesis, he applies the Calculus of Communicating
Systems (CCS) and µ-Calculus [Sti01] to verify safety properties4 of West-
inghouse’s Solid State Interlocking (SSI). The SSI is based around a data
driven loop, there is one generic component akin to an interpreter that ex-
ecutes the various commands specific for the interlocking. Morley defined
how the interlocking and its interpreter can be modelled using CCS and also
defined a translation from the SSI’s command set into CCS, thus creating
a complete model of the interlocking. Then using µ-calculus and the Con-
currency Workbench, he verified safety properties. The project also verified
the communications between interlocking systems. An example of this inter-
interlocking communication occurs when a train route is spanned through

4µ-calculus can also be used for liveliness properties.
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multiple interlocking systems, and the interlocking systems must communi-
cate information regarding the whereabouts of the train and route status.
The transition from verifying a single interlocking system, to verifying the
communications between multiple interlocking systems was greatly simplified
through the use of CCS.

The verifications described thus far do not make safety verification tract-
able. They only provide a mechanism to perform verification of safety and/or
liveliness properties for interlocking systems. In [HP00] Anne Haxthausen
applied the RAISE specification language (algebraic specification) to per-
form safety verification on distributed interlocking systems. Notably, in that
work the high-level formalisations of safety are introduced. The safety for-
malisation used is that trains do not collide, or derail (the same high-level
formalisation used in this thesis). Although this is a noble safety require-
ment, little attention was paid to signalling principles, and what they had
to do with safety, as is done in this thesis. A good discussion of signalling
principles in relation to formal methods is found in [TRN02, RN03], where
control tables are synthesised based on a selection of signalling principles.

There have been a few similar attempts to model interlocking systems
and verify them using high-level formalisations. One of the earliest attempts
was by Bernardeschi in [BFG+98], where process algebra and ACTL (frag-
ment of CTL) was applied to verify a level crossing control system. In that
work, the use of high-level formalisations was not considered, the exam-
ples given were of a significantly lower-level than proving that trains do not
collide. Winter also implemented a similar interlocking verification process
in [Win02]. He modelled a number of interlocking systems using CSP and
proved them to be safe with respect to a selection of signalling principles
using the model-checker FDR. The selection of principles included the pre-
viously mentioned high-level formalisation. The author notes that process
algebra is not best suited to model the constraints in control tables. Later
Winter et al. in [WR03] applied the model-checker NuSMV [CCG+02] to
larger problem-sets; however, it is noted that the issue of an exploding state
space was encountered which limited the feasibility of such an approach.

During this work the same issues (using the same tool) were encountered
with model-checking interlocking systems as was identified in [WR03].

Remark

More recently, and closer to this aims of this thesis is the work by Sabatier
et al. in [SBRG12]. Although it is only a summary paper (4 pages), it is clear
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that Sabatier is working on a formal proof of a New York City subway control
system. The high-level safety requirements used are that trains do not collide,
derail or exceed the speed limit. The control system is distributed; each train
has an on-board control system. In this work, the underlying logic is Event-B.
However, no explicit reference is made to signalling principles; instead they
are generalised as assumptions from the target domain. The paper further
discusses rules-of-thumb to determine if they are good or bad assumptions.
For instance, one of these rules is that the validity of an assumption should
be obvious.

A comparison of this thesis to a selection of these papers [Han98, HP00,
Win02, SBRG12] will be carried out in Section 12.1. This comparison is
deferred until the end of thesis so that it is clear what has been done the
same, and what has been done differently.

Swansea Railway Verification Group

At Swansea University, we have formed a group of researchers dedicated
to exploring verification in the railway domain. The projects range from
safety verifications, to safely optimising capacity. These areas have been
explored using a multitude of techniques, some of which include SAT solving
and model-checking for the verifications, and creating formal models of the
railway domain for the specifications.

The rail group initially focused on safety verification of interlocking sys-
tems [Kan08, Jam10, Law11]. In these three projects, the techniques of
the safety verifications were explored and honed, in respective order, they
used: inductive SAT solving (the author’s masters thesis), SAT based model-
checking and the SCADE tool set5.

Subsequently the goals of the group were extended to include safely opti-
mising the capacitance of the railway network [MNR+12a, MNR+12b]. This
work explores different variants of the signalling principles, and what effect
they have on the capacitance of the network.

Another project is to explore the use of domain specific languages in the
railway domain [JR11]. This includes defining a graphical language that
the topology can be represented within, then automatically deriving from
one of these diagrams the required constraints for the network to be safe.
This information is then automatically translated into a control table, i.e. a
high-level specification of an interlocking system.

5SCADE is a propitiatory tool set developed by Esterel Technologies.
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2.2 Development of Verified Software

A few attempts have been made to automate the process of producing control
systems. These approaches are similar to Dines Bjørner’s domain analysis.
Typically, a specification of the railway is made using a formal specification
language such as RSL, then some refinement method is applied to produce
a working system that fulfils the specification. Assuming the specification
has been validated to be correct, then the control system will meet these
conditions, as well.

This is the procedure followed by the previously mentioned METEOR
project [BBFM99]. It was also followed by Anne Haxthausen and Jan Peleska
while attempting to automate the creation of tram control systems [HP02],
and distributed railway control [HP00] in Germany. The tramway domain
and distributed railway domain specification were created using RSL. Also,
each track-side functional module such as a signal or set of points is modelled
abstractly, and most importantly the states of these modules are modelled.

In the tramway example, these abstract models of the individual track side
modules are defined by small deterministic sequential state machines that
determine how a module switches from one state to another. Verification can
then proceed by deciding which states of the track-side functional modules
were in conflict, e.g. two opposing signals should not both show the proceed
aspect. All possible transitions into these “bad states” are computed from the
state machines, these transitions are then used to build a “safety monitor”
state machine.

The formal development of the distributed railway control systems was
performed in a more traditional manner. The specifications were made exe-
cutable, then using these high-level specifications of the distributed railway
domain, safety requirements such as “no collisions” and “no derailments”
were verified. Subsequent refinements were made preserving these properties
until a working system was produced.

Verification is carried out on multiple levels, one level of interest are
control tables. It is suggested that model checking could be used for this
verification in [HP02]. This article also suggests that the generated code can
be automatically verified against the control tables. In [FHG+98], Fokkink
et al. demonstrate how this can be implemented.

2.2.1 Frameworks

In recent years there have been a number of frameworks aimed at bringing
formal methods within the reach of the standard critical system developer
[Jon90, Geo91, ORS92, Abr96, ABH+10, RL12]. One of the first viable frame-
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The word framework (in software engineering) means a collection of
reusable and generic tools and libraries. However in this thesis a loose
characterisation of a framework is used, which is almost synonymous with
a platform. A framework is characterised as a collection of tools that
support the development of verified software, for instance the functional-
ity should include, but is not limited to: type-checking, formal methods,
pretty printing, interactive proving, support for automation and obtaining
fully functioning programs.

Remark

works of this kind was the Prototype Verification System (PVS) [ORS92].
Although VDM and RAISE predate PVS as development methods, PVS was
a framework, as opposed to a collection of tools. The goal of PVS was to pro-
vide an integrated interface that allowed developers to specify their control
systems at a high-level during an early phase of the design. The system then
facilitated specifying properties about the control system, essentially proving
that the models fulfilled the specifications is performed using an interactive
proof system. The system supported a number of tools that would auto-
matically attempt to discharge proof obligations. These obligations typically
arose from the use of refinement types, for example, the divide operator has
a refined type such that the denominator is not 0, then everywhere that divi-
sion is used a proof obligation must be discharged, namely that the provided
denominator is not 0.

The basic techniques used in PVS have been repeated in subsequent
frameworks. One of the more recent frameworks of this style is the Rodin tool
set [ABH+10]. It is based on Event-B and is still under active development at
the time of writing. A number of improvements have been made since PVS;
most notable of these is to provide a WYSIWYG (point-and-click) interface
implemented using the Eclipse environment. The idea is that the interface
is closer to what an end-user is accustom to (e.g. an office suite), such that
it provides helpful feedback and prevents making syntactical mistakes. After
the user has axiomatised the control system and provided a number of spec-
ifications to prove, the user is presented with an interactive proof interface.
The interactive proof interface is predominately tactic orientated. There are
a number of buttons which trigger the tactics. The available tactics depend
upon which plug-ins have been installed. The user is also presented with a
basic proof tree that shows the user where in the proof they are, and what
assumptions are available.
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The Rodin tool set appears to be a beneficial step towards bringing for-
mal methods to critical system developers. However, there are questions of
certification for using Rodin for critical system development. While review-
ing Rodin, I found the interface confusing, and overly constraining, perhaps
as I am not accustomed to proving properties by tactics. Especially the func-
tionality of these tactics is often not clear, at least not without looking in the
documentation for their definitions. Often it is necessary to prove the the-
orems on paper first. This is a common problem with proof user interfaces:
it is hard to facilitate expressive mathematical access while still maintain-
ing usability for programmers. In fact, Owre notes in [ORS92] that there
is a well-known trade-off between the expressiveness of the logic used in a
framework and the amount of automation that is possible.

Finally, another relevant framework was created by Russo and Laden-
berger [RL12]. The framework is called VeRaSiS and is specifically tailored
for the (Brazilian) railway domain. The framework is also based upon Event-
B, where the topology of the railyard is graphically formalised. The graphical
models also specify constraints on the equipment that must always be ful-
filled (i.e. specifications). Then these models are translated into a Boolean
equation system, and further translated into an Event-B model. Once repre-
sented as an Event-B model, the model-checker ProB is applied to determine
if the topology is correct, if it is not correct, a counterexample is emitted.
This project is developing; however, they have provided some early results
from a case study where an error was identified in an existing railway layout.
It appears that no attempt is made to prove the correctness of the transla-
tions, especially when translating from the graphical language into Boolean
equations. Similarly, no assurances are given about the correctness of the
specifications. Simulation was used to validate the specifications.

2.3 Theorem Proving

Theorem proving tools can be placed into one of two categories, interactive
or automatic, see Section 1.3.1 for more information about this distinction.
A good introduction to the various different flavours of theorem proving can
be found in [Har08], and a more technical analysis in [Bou97]. A review of
formal methods relating to industrial projects can be found in [WLBF09].

2.3.1 Integrating ITP and ATP

Since N. de Bruijn introduced AUTOMATH in the late 1960’s [dB70], the
ITP community has studied the issue of automatically solving problem sets



2. Review of Literature 43

In this thesis, the ATP tools that are of interest coincide with decision
procedures for logics.

Remark

many times [BGHL10, BN10, Bou97, FMM+06], and many more. During
this research the following three existing approaches were identified, none
of which categorises our approach, which is the subject of the next chapter.
Note the abbreviations in brackets, these will be used throughout the thesis
to refer back to the categories defined here.

Oracle (Only Oracle)

The use of an oracle, which is an operation that provides a proof of a theorem,
and which when invoked calls an external tool. See for instance approaches
by Owre and Rush in PVS; Tverdyshev, Müller and Nipkow in Isabelle; and
Bierman, Gordon and Langworthy in M [ORS92, MN95, BGHL10]. There
are too many interactive tools to list that use external tools as oracles, but
relevant to this project is the Rodin tool set [ABH+10] which is similar to PVS
in that it tries to help developers write verified software. The problem with
this approach is that the proof-object obtained from the oracle does not have
any reduction rules, and therefore it destroys the ability to execute proofs
as programs. Another problem is that it is not clear whether the external
tool is correct and whether the result of the external tool was interpreted
correctly.

Reflection (Only Reflection)

The correctness of a decision procedure is verified in the ITP tool, and then
from this proof a verified ATP tool is extracted [Bou97]. The extracted
program is then called by a tactic in the ITP tool to build a proof-object
for each application. This approach has for instance been taken by Verma;
Hendriks; and Lescuyer and Conchon [Ver00, Hen02, LC08], and has been
widely applied within the Coq [The04] community. Reflection requires a
correctness proof for an ATP tool in the ITP tool. Proving the correctness for
state-of-the-art theorem provers would be a cumbersome activity as efficient
solvers are typically unverified and utilise low-level machine code; also, one
would expect the stat-of-the-art tools to have significantly improved by the
time the proof is complete.
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Oracle with Justifications (Oracle + Justification)

One uses an ATP tool which provides in case of a positive answer a proof-
object [DT84], which can then be translated automatically into an ITP proof
of the corresponding ITP formula. Since the ITP proof is now checked, the
correctness relies entirely on the correctness of the ITP checker. Further-
more, for each application a proof-object is kept, and therefore, the ATP
has to be executed only once. This approach has been used for instance
by [PS07, BN10, DRS03, Web06, FMM+06, AGST10, YL97]. Problems are
that creating the proof-object slows down the ATP tool and that many ATP
tools do not provide a proof-object. Furthermore, the proofs provided by
the ATP tool might be particularly large (proof sizes of several hundred
Megabytes have been reported for Satisfiability Modulo Theories (SMT) solv-
ing [Stu09]). Therefore, checking translated ITP proofs might be infeasible,
especially when dealing with type theoretic ITP tools. This is due the size
of the proof terms and garbage collection issues.

In Chapter 6 an implementation of this technique taken by Armand
et al. [AGST10] for integrating a SAT solver in Coq is explored, and re-
implemented in Agda. However a number of efficiency problems were en-
countered.

2.3.2 Agda and ATP Tools

There have been a small number of successful attempts to integrate Agda
with automated theorem provers, these attempts are aimed at trying to prove
arbitrary Agda goals, whereas our approach is aimed specifically at industrial
verification. One of these attempts produced an extension to Agda known as
AgSy (Agda Synthesiser) [LB06]. AgSy performs simple inductive proofs. It
is sometimes necessary to provide hints to AgSy to help the proof search, they
are specified by function names. AgSy is categorised as approach (Oracle +
Justification). If it successfully proves the goal, then it will fill in the goal in
question with a normalisable proof-object.

Another early approach was by Makoto Takeyama [Tak09]. The motiva-
tion is the same as ours; he wants to facilitate feasible industrial verification
using Agda. However, the approach is slightly different. The first approach
he tried was (Only Oracle), where external tools are executed to determine
validity of theorems. An Agda program was written to correctly decompose
the goal to prove into sub-goals, then using an ATP tool these sub-goals
were proved. This is a two step procedure: first, during type-checking the
goal is correctly decomposed into postulated sub-goals, then secondly, after
type-checking the postulated sub-goals are discharged by ATP tools. This is
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achieved by writing an Input/Output (IO) Agda program that decomposes
the goal, executes the external tool and examines its output. This program is
type-checked, compiled and executed. If the tool could prove the sub-goals,
then the program will print out a success message, otherwise it will printout
a failure message. Therefore, checking that the Agda code is correct is a two
step process, first, type-check using Agda, then as a second step, compile the
program and execute it to determine the validity of the sub-goals.

Takeyama further extended his approach to (Oracle + Justification), this
is where the external tools produce certificates that Agda checks are correct.
This entailed augmenting the above procedure by writing an IO Agda pro-
gram that would check the certificate, this program is then type-checked and
compiled. Using the same method as before, the compiled program executes
the external tool. Instead of only examining the output, this time a verified
Agda program checks that the result of the tool is correct. This method was
successfully applied to a number of ATP tools, notably the model-checker
SPIN and the SMT prover Yices. This method is good as it is generic and
does not require modifications to the Agda source code. However, as the
programs are wrapped in the IO monad, it means that the tools cannot be
executed in interactive mode. Takeyama claims that there is little point run-
ning ATP tools in interactive mode as type-checking could take too long to
complete.

A recent attempt was by Simon Foster, where the theorem prover Wald-
meister was integrated into Agda [FS11]. This work involved modifying
Agda’s sources so that it will parse the output of the tool and reconstruct
the proof-object from it, possibly by introducing intermediate lemmata. This
approach is also categorised as (Oracle + Justification).

Another attempt has been made by Bove et al. [BDSR12]. This approach
is categorised as (Only Oracle), in this work they focus on proving first-order
properties of recursive functions. It is claimed that the technique is applicable
to inductive and co-inductive definitions. The integration is achieved by
creating a dependently typed model of type theory that is more general than
Agda’s model, then translating the goal to be shown into this model. They
have defined translations from theorems in this model into TPTP format
files, and then these files can be proved (or not) by any first-order TPTP
prover.
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Part I

Theorem Provers

AUTOMATH is not intended for automatic theorem proving. Theorem proving is a difficult and
time-consuming task for a machine. Therefore it is almost imperative to devise a special representa-
tion of mathematical thinking for any special kind of problem. Using a general purpose language like
AUTOMATH would be like using a ‘contraption that is able to catch flies as well as elephants and submarines’.

– N.G. de Bruijn
1970

[dB70]
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Chapter3
Oracles and Reflection

The three different approaches for composing ATP and ITP tools each suffer
from different issues outlined in the previous chapter. Notably, the current
gold standard of oracles that justify their results (Oracle + Justification)
can be surprisingly inefficient when the justifications become several hundred
megabytes in size. This approach will be referred to as (Oracle + Reflection).

When performing industrial verification, it is often not required to explore
these justifications; it is only necessary that a proof exists (oracle). These
issues led to the exploration of a new technique that aims to be light-weight,
fast (oracle) and sound (reflection). An oracle is used to provide one-step
reductions of decision procedures on ground terms, and reflection is used to
construct proof-objects when they are inspected.

In Section 3.3 an exploration into extending this technique to allow for
oracles with justifications is presented.

3.1 General Technique (Oracle + Reflection)

Assume a logic (such as propositional logic), and define the set of formulæ
and the satisfaction relation (semantics) with respect to the logic.

Formula ∶ Set

J K ∶ Formula→ Set

Then the decision procedure is implemented in Agda’s logic with the focus
on an easy proof of correctness rather than efficiency, in fact, it could be
näıve and highly inefficient. Later the decision procedure is overridden by a
call to an external tool, hence the Boolean valued result.

check ∶ Formula→ Bool

49
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It is then proved to be correct with respect to the satisfaction relation.

correct ∶ ∀ϕ . T (check ϕ)↔ J ϕ K (∗)

where the function T maps Boolean values into Set, i.e. true maps to ⊺ and
false maps to �, see Section 1.5 for the definition.

In Agda, a function’s implementation can be overridden for closed terms
by a native Haskell implementation. The native implementation is specified
in the Agda is source code and assumed to be correct, also the Agda function
is checked to fulfil a number of axioms before it is overridden, these axioms
are also specified in the source code, see Section 5.1 for more information.
The terminology built-in refers to overriding a function in such a way. Using
the built-in mechanism, the inefficient decision procedure is replaced by a call
to an external ATP tool. Evaluation of the decision procedure is as follows:
if applied to a closed term, the efficient ATP tool is executed; if applied to an
open term, the näıve (inefficient) Agda implementation is evaluated. Since
the correctness proof (∗) refers to open terms, it refers to the Agda imple-
mentation and not the ATP tool. If the resulting proof-object is inspected,
it is lazily evaluated using the näıve implementation; otherwise it behaves as
if it has been postulated.

To simplify validating that the native implementation is used correctly,
the input language of the overridden function should be an Agda data-type
that represents, as closely as possible, the input language of the tool. If
the original problem requires a translation into this input language, then we
define the correctness of the problem using the input language of the tool,
and define a translation of the original problem into this input language.
Then it is proved that if the correctness of the problem related to the input
language holds, then the correctness of the intended original problem also
holds. Therefore, the translation is provably correct.

An example of translating the input is performed in Section 4.2.2, with
CTL model-checking, where the transition relation is made total before ex-
ecuting the external tool. This is because the ATP tool requires that the
transition relation is total. The problem for the non-total transition relation
is inside of Agda reduced to this situation.

To increase trustworthiness, we log the inputs and outputs of the ATP
tool, thus, allowing a user to verify manually that the translation and the
tool’s result are correct. Our approach yields a high-level of soundness and
efficiency when using certified ATP tools. See Chapter 5 for technical details
on the embedding and Section 3.2.1 for a discussion of the soundness.

This concludes the conceptual overview. The following sections explore
aspects of the technique.
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3.1.1 Logic

When checking whether a formula holds in the logic, it is common that
the truth of the formula depends upon a model M (what’s constant) and
environment ξ (what varies). Thus, the satisfaction relation becomes:

J ⊧ K ∶ Model→ Formula→ Environment→ Set

For example, in CTL model-checking (see Section 4.2) the model consists
of a transition system and a state1; the environment is an infinite run of the
transition system from the state identified in the model. In SAT (see Sec-
tion 4.1), the model is trivial, but the environment assigns Boolean values to
variables in the formula. In the case of first-order theorems, the model con-
sists of the semantics of the signature, and the environment is an assignment
to variables in the formula.

3.1.2 Formulæ

Formulæ in the logic are inductively defined types who’s elements are finite.
These formulæ are defined over a model M and an environment ξ.

For example, in propositional logic the formulæ are inductively defined as
the least set closed under atomic propositions, conjunction, disjunction and
negation.

3.1.3 Decision Procedure

When performing tautology checking of a formula, the formula is checked to
hold for all environments; when satisfiability testing, a test is made that there
exists an environment such that the formula holds. In our experience, an in-
efficient simplistic definition that recurses over the structure of the formula,
model and environment is preferable as this helps with proving the correct-
ness. The decision procedure depends on the model and has the following
type:

checkM ∶ Formula→ Bool

Correctness of the decision procedure must then consider the following
quantification scheme:

correctM ∶ ∀ϕ . T (checkM ϕ)↔ ∀
∃ ξ.JM ⊧ ϕ Kξ

1It is a common misconception that the state is part of the environment, the state s is
fixed, i.e. ∀ or ∃ an infinite run from s in M such that . . .
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Here, the choice of quantification depends upon the ATP theory: ∃ is sat-
isfiability testing and ∀ is tautology checking. For example, in the case of
the Boolean satisfiability problem, we have “there exists a satisfying assign-
ment” (satisfiability testing) or “all assignments are satisfying” (tautology
checking). It is possible to define more complicated quantification schemes,
whereby the environment is split into sub-environments; however this is not
considered in this thesis.

3.1.4 Evaluation

The type theoretic implementation of checkM is typically inefficient com-
pared to purpose written tools, because checkM is defined näıvely to simplify
the proof of correctness. This inefficiency is exaggerated by many imple-
mentations of proof systems; specifically relating to this work, type systems
make heavy use of rewriting and normalisation resulting in large terms, which
would consume vast resources in attempting to evaluate checkM on all but
the simplest examples. For this reason, we override checkM with an external
ATP tool for an efficient implementation. See Chapter 5 for more information
regarding the implementation.

In order to maintain consistency, the ATP tool overriding the type theo-
retic implementation of checkM needs to be consistent with the decision pro-
cedure. Therefore, most examples of semi-decision procedures are excluded,
since a näıve implementation and an external ATP tool could disagree on
when to return an undefined result. A precise formulation of the consistency
of built-in functions is given in Theorem 5.1.1.

3.2 Comparison with Existing Techniques

Obviously, compared with only using an oracle (Only Oracle) the approach
has the advantage that proofs normalise and programs can be extracted.
Both the oracle and our approach (Oracle + Reflection) become inconsistent
if the result of the external tool is incorrect, see Theorem 5.1.1.

As pure reflection (Only Reflection) does not use any external tools, it has
the highest level of soundness of all approaches. It does however extract from
a proof of a correct decision procedure, a verified decision procedure that is
executed as if it were an external tool. In comparison, our approach (Oracle
+ Reflection), combines reflection with an oracle by using a (potentially
unverified) external tool in-place of the extracted decision procedure. So in
the case of open terms it is equivalent; but in the case of closed terms it
weakens soundness and significantly increases efficiency.
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The third approach (Oracle + Justification) where the external ATP tool
provides a justification is motivated in the literature [FMM+06] by the fact
that, in many cases, non-trivial translations into the ATP tool’s input lan-
guage are defined outside the logic of the ITP tool, making it hard to prove
that they preserve correctness. This problem is avoided in our approach by
defining all translations inside Agda, mitigating this requirement. It follows
by this, that in approach (Oracle + Reflection), the tools do not need to com-
pute justifications, and hence the tools can be more efficient, and the choice
of the tool is less restrictive. The chosen ATP tool can range from unveri-
fied state-of-the-art tools, to certified, but technologically less sophisticated
tools. In summation, approach (Oracle + Reflection) trades the high-level
of soundness assurances that the justifications provide, for an increase in ef-
ficiency, flexibility and usability; this soundness trade-off is minimal when
using certified external tools. The flexibility of the approach is that it easily
allows for updates/changes in the external theorem provers, and the addition
of new logics. Also in approach (Oracle + Reflection) there is no need for
the ITP tool to store and check the justifications.

One should as well note that whatever we do in order to guarantee the
correctness of proofs carried out using ITP, we can never obtain absolute
certainty. We will always rely on the correctness of the checker of theorems
in the ITP (which are usually not formally verified), and on the correctness
of its logic (most ITP tools substantially deviate from the underlying logical
theories in order to be more user friendly and efficient). Then we rely as well
on the correctness of the compiler (it is well known that most compilers have
errors) used to compile the ITP tool, and on the underlying operating system.
Ultimately, Gödel’s incompleteness theorem shows that it is impossible to
guarantee in an absolute way that the underlying mathematical theory is
consistent.

3.2.1 Soundness.

This approach is sound, provided the ITP tool (Agda) is sound and the
ATP tool gives the correct output, which means that it returns true, if the
formula to be proved is valid, and false if it is not. The reason is that one
shows in Agda that the inefficient function, which is to be overridden, fulfils
this property. Since there is only one such function, the overridden function
returns the same result as the original inefficient function defined in Agda.
So Agda with the function overridden is equivalent to Agda without it, and
if the latter is sound, so is Agda with the overriding mechanism.

The logging of the answers of the ATP tool gives the user the possibility
to check whether the instances used by the ATP tool gave the correct answer
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(e.g. by checking using alternative tools), and therefore reduces the reliance
on the soundness of the ATP tool.

We note as well that the input to the ATP tool will be done in the
language of the ATP tool (using a syntactic representation in Agda). The
translation of the original problem into the ATP tool’s input language is done
inside Agda, and thus shown to be correct. This avoids the problem of an
erroneous translation, which might for instance happen if the translation is
carried out by a program outside Agda.

We think as well that many ATP tools are at least as trustworthy as Agda
itself (if not even more), so this approach will not weaken the correctness of
Agda.

Intuitionism and Classic Provers.

We note that the use of SAT solvers based on classical logic are compatible
with the intuitionistic type theory of Agda: the SAT solver is only applied
to formulæ formed from decidable prime formulæ (e.g. formulæ of the form
T (b) for a Boolean term b), for which the principle of tertium non datur (law
of excluded middle) holds intuitionistically. The principle of tertium non
datur holds for all propositional formulae, provided it holds for the atomic
formluæ that these formulæ are built from, so for these formulæ, classical
logic holds in intuitionistic type theory. In the case of CTL, provided that
it holds for the atomic formulæ it is defined over, one can show as well that
the principle of tertium non datur holds.

In fact, the decidability of the validity of formulæ expresses construc-
tively that tertium non datur holds. Therefore, any constructive theory with
decidable validity fulfils the principle of tertium non datur, and vice versa.

3.3 Efficient Proof Reconstruction

With approach (Oracle + Reflection), it was remarked previously that it is
not efficient to explore the resulting proof-objects in entirety, and there are
issues when the decision procedure and ATP tool do not coincide. To remedy
this situation a second integration of automated theorem provers was carried
out. This second interface is classified as approach (Oracle + Justification),
and based upon the work of Armand et al. [AGST10]. In that work, they
apply reflexive methods to type-check SAT solver resolution traces produced
by zChaff [MMZ+01] and construct proof-objects in Coq [The04].

These techniques formed the basis of an alternate—traditional—interface
(cf. Chapter 6), where efficient proof-object reconstruction is possible by
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type-checking the justification. However, our implementation is consider-
ably more generic as it is not restricted to resolution proofs. This requires
that first the ATP tool provides a justification, and secondly that the two
functions below are defined in Agda. The first function decides whether a jus-
tification is correct with respect to the logic and original formula/theorem.
The second function constructs a proof-object from a correct justification.
The justifications are obtained by processing the tools output, in fact, the
Agda parser and type-checker are used to parse the tools output and trans-
late the result into an Agda term. Thus, it is possible for the tool to directly
output Agda terms that witness the proof, these terms are then checked to
be correct proofs. The proof that a justification is correct can be inferred
by the type-checker due to the Boolean nature of the check. Essentially the
following two functions are defined:

check ∶ Proof → Formula→ Bool

reconstruct ∶ ∀ϕ p . T (check p ϕ)→ ∀ξ . JϕKξ

For ground terms, reconstruct replaces the soundness proof of the previous
technique. It is remarked that in contrast to the previous method, when
applied to industrial problem sets, very high-levels of soundness assurances
are obtained at the expense of efficiency. If the obtained justification is not
correct, then a warning is generated; specifically, Agda warns that it cannot
infer a proof of �.

As before, the proof-object is only evaluated when inspected; otherwise it
behaves as if it were postulated. However, this time it is evaluated efficiently,
provided the justification is efficient. Full details are given in Chapter 6.
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Chapter4
Embedded Theories

During the project, two principal theories were embedded using (Oracle
+ Reflection): Boolean tautology checking (SAT) in Section 4.1 and CTL
model-checking in Section 4.2.

SAT was selected because it is an uncomplicated and useful theory. While
verifying control systems, it is often the case that obligations of the following
form arise:

T a1 ◻1 T a2 ◻2 ⋅ ⋅ ⋅ ◻n T an

where ◻i ∈ {∧,∨,→} and ai ∶ Bool. Using a SAT solver to discharge them
was an ambition of the project.

On the other hand, it was also beneficial to explore different, more expres-
sive theories. CTL model-checking is one such theory. Notably with regard
to this thesis, it allows properties not only concerning safety (as is the case
with SAT), but also liveness to be investigated of the control system.

Subsequently, CTL model-checking was later refined to symbolic CTL
model-checking (see Section 4.3); and in turn symbolic CTL was refined to
provide an interface for verifying ladder logic programs in Section 9.4.1, but
this last refinement will be presented after ladder logic programs have been
introduced in Chapter 9.

4.1 SAT

In this thesis, standard Boolean satisfiability is not applied; instead tautology
testing of an arbitrary Boolean formula with variables is explored, which is an
equivalent problem. Tautology checking was chosen over satisfiability testing
because SAT verification typically relates to checking safety properties, that
is, that something undesirable will never happen.

In the case of SAT, the model contains no information, and for com-
pleteness, it is the canonical element from a singleton set. The environment
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assigns Boolean values to the variables in the formula. Before introducing
the definition of Boolean formulæ with variables, the notion of finite sets
are introduced, they are used to index the variables. Finite, or enumer-
ation sets, Fin ∶ (n ∶ N) → Set are sets with n distinct elements, namely
Fin n ∶= {0, . . . , n − 1}; notably Fin 0 ≡ ∅. Finite sets are defined in Agda as
follows:

data Fin ∶ N→ Set where
zero ∶ ∀{n} . Fin (suc n)
suc ∶ ∀{n} . Fin n→ Fin (suc n)

Boolean formulæ are defined in module Boolean.Formula of Appendix F
as follows:

data BooleanFormula (n ∶ N) ∶ Set where
const ∶ Bool→ BooleanFormula n
var ∶ Fin n→ BooleanFormula n
¬ ∶ BooleanFormula n→ BooleanFormula n
∧ ∨ ⇒ ∶ BooleanFormula n→ BooleanFormula n

→ BooleanFormula n

Here the underscores ( ) denote syntactic positions of required arguments.
In the following we write xn for (var n).

By the Curry-Howard correspondence [Cur34, CFCC58, How80], the se-
mantics of ϕ ∶ BooleanFormula n with respect to an environment ξ ∶
Fin n → Bool is given by the Agda type J ϕ Kξ, which is built from ⊺ and �
by ×, + and →. It is defined as follows:

J K ∶ ∀{n}→ BooleanFormula n→ (Fin n→ Bool)→ Set
J const b Kξ = T b
J xi Kξ = T (ξ i)
J ¬ϕ Kξ = J ϕ Kξ → �

J ϕ ∧ ψ Kξ = J ϕ Kξ × J ψ Kξ
J ϕ ∨ ψ Kξ = J ϕ Kξ + J ψ Kξ
J ϕ⇒ ψ Kξ = J ϕ Kξ → J ψ Kξ

Here ×, + and → are the product, tagged union, and Agda function types,
respectively. See Section 1.5 for more information regarding Agda formulæ.

To define the decision procedure, first, define the function

instantiate ∶ {n ∶ N}→ BooleanFormula (suc n)→ Bool→ BooleanFormula n

that instantiates all occurrences of x0 with the second (Boolean valued) ar-
gument; all other variables are shifted down by one, i.e. xn+1 ↦ xn.

Lemma 4.1.1 (instantiate). Assume n ∶ N, ϕ ∶ BooleanFormula n and
ξ ∶ Fin n→ Bool, then the following holds

J ϕ Kξ ↔ J instantiate ϕ (ξ 0) K(ξ ○ suc)
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Proof. Proof is by induction on ϕ, the only case considered here is when
ϕ = xi as the other cases follow from the induction hypothesis. Note that
this case implies that n > 0. The obligation to prove is

T (ξ i)↔ J instantiate xi (ξ 0) K(ξ ○ suc)

which follows by side induction on i. There are two further cases to consider:

case i = 0: Trivial as the obligation unfolds to T (ξ 0)↔ T (ξ 0)

case i = suc i′: Also trivial as the obligation unfolds to

T (ξ (suc i′))↔ T ((ξ ○ suc) i′)

The decision procedure for tautology checking a BooleanFormula n is de-
fined näıvely when compared to using the Davis-Putnam approach [DPR61].
The reason is for this näıvety is that it simplifies the correctness proof. It
is defined by 2n applications of instantiate, then canonically with respect to
the logical operators.

tautology ∶ ∀n→ BooleanFormula n→ Bool
tautology zero (const b) = b
tautology zero (¬ ϕ) = ¬(tautology ϕ)
tautology zero (ϕ ◻ ψ) = (tautology zero ϕ) ◻ (tautology zero ψ)
tautology (suc n) ϕ = tautology n (instantiate ϕ true) ∧

tautology n (instantiate ϕ false)
Here ◻ ∈ {∧,∨,⇒}, and when ◻ is on the left-hand side, it is a constructor
of BooleanFormula and when on the right-hand side is a Boolean function.

Theorem 4.1.2 (tautology-correct).
Assume n ∶ N and ϕ ∶ BooleanFormula n, then the following holds

T (tautology n ϕ)↔ ((ξ ∶ Fin n→ Bool)→ J ϕ Kξ)
Proof. Proof follows by induction over n, and applying Lemma 4.1.1 in the
inductive step.

The above embedding of Boolean tautology checking has been imple-
mented in Agda requiring 39 lines of code for the decision procedure and
dependent definitions (including natural numbers and Booleans). The proof
of correctness requires an additional ≈ 100 lines of code which includes several
basic lemmata about products, sums and the function-type (Curry-Howard
isomorphism). The decision procedure is then overridden by a call to an
external SAT solver. See Section 5.4.1 for a discussion of the results. See
module Boolean.SatSolver in Appendix F for the Agda code of this solver.
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4.1.1 Use of Non-Dependent Functions

During the initial phase of the project, the SAT algorithm used was a non-
dependent version of the one presented here. This was for technical reasons
about linking dependently typed Agda functions to non-dependently typed
Haskell implementations; the restriction was lifted with the advent of pseudo
built-ins. These are special built-ins that are not overridden, but instead
known to the type-checker, and must fulfil a number of axioms. This meant
that the problematic functions that have dependently typed results, such as
instantiate, which are not required when calling the external tool, are not
overridden. See Section 5.2.1 for more information.

The non-dependent version required that formulæ are ranked by the index
of the greatest free variable it contains. This ranking is used to bound the
recursion of the function tautology. The environment would be a map from
N into Bool given by a list of Booleans where true values are assumed for
out-of-bound indices. Also, the correctness proof is slightly more involved
as it has to deal with lists that are shorter/equal/longer than the formula’s
rank.

Later parts of this thesis make use of a non-dependently typed version
of these definitions (i.e. Boolean formulæ and semantics); this is for effi-
ciency and usability reasons. Non-dependent Boolean formulæ type-check
significantly faster than the dependent versions as the type-checker does
not need to be concerned with inferring hidden parameters, especially in
the case of the finite variable indices. However, the decision procedure is
derived from the dependently typed version presented here by first com-
puting the formula’s rank.

Remark

4.2 CTL Model-Checking

The model-checking problem as introduced by Clark et al. [CGP99] is de-
scribed as follows: “given a Kripke structure M = (S,→, L) that represents
a finite-state concurrent system and a temporal logic formula ϕ expressing
some desired specification, find the set of all states in S that satisfy ϕ.” Note:
the transition relation in a Kripke structure is left-total, i.e. ∀s∃t . (s, t) ∈→.

The temporal logic formulæ considered in this thesis are known as Com-
putation Tree Logic (CTL) formulæ, and correspond to statements intuitively
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wanted when verifying programs, for example: eventually P will hold, Q al-
ways holds. There are many variants of CTL model-checking, for instance
plain, symbolic, and SAT-based. There are also different syntactic variants of
the CTL formulæ, although semantically equivalent. The variant presented in
this section is plain CTL model-checking that has a minimal set of combined
CTL connectives. That is the exists next (EX ϕ), exists globally (EG ϕ) and
exists until (E[ϕ1Uϕ2]) connectives. Exists next means that there exists a
next state (by →) such that ϕ holds. Exists globally means that there exists
a sequence of states ⟨s1 → s2 → . . . ⟩, such that ϕ holds for each state. Exists
until means that there exists a sequence of states ⟨s1 → s2 → . . . ⟩, such that
ϕ2 holds for some state sk, and for all j < k, ϕ1 holds for sj. See [HR04]
for more information about this variant. Subsequently CTL model-checking
will be formalised in Agda, but first the semantics is provided using standard
mathematics. Let M be as above, s be a state in M and ϕ,ϕ1, ϕ2 be CTL
formulæ. The semantics is as follows:

((M, s) ⊧ ⊺) ∧ ((M, s) /⊧ �)

((M, s) ⊧ p)⇔ (p ∈ L(s))

((M, s) ⊧ ¬ϕ)⇔ ((M, s) /⊧ ϕ)

((M, s) ⊧ ϕ1 ∧ ϕ2)⇔ (((M, s) ⊧ ϕ1) ∧ ((M, s) ⊧ ϕ2))

((M, s) ⊧ ϕ1 ∨ ϕ2)⇔ (((M, s) ⊧ ϕ1) ∨ ((M, s) ⊧ ϕ2))

((M, s) ⊧ ϕ1 ⇒ ϕ2)⇔ (((M, s) /⊧ ϕ1) ∨ ((M, s) ⊧ ϕ2))

((M, s) ⊧ EXϕ)⇔ (∃⟨s→ s1⟩((M, s1) ⊧ ϕ))

((M, s) ⊧ EGϕ)⇔ (∃⟨s1 → s2 → . . .⟩(s = s1)∀i((M, si) ⊧ ϕ))

((M, s) ⊧ E[ϕ1Uϕ2])⇔ (∃⟨s1 → s2 → . . .⟩(s = s1) ∧

∃i(((M, si) ⊧ ϕ2) ∧ (∀(j < i)(M, sj) ⊧ ϕ1)))

This variation was chosen as it is the easiest to implement and prove correct
in Agda. Plain model-checking is inherently the least efficient variant because
the model to be checked looses much of the structure of the original problem it
represents. In the subsequent section (4.3), the definitions in this section are
lifted to symbolic model-checking. The aim of this improved representation is
to preserve more structure of the original problem that the model represents,
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and increase usability.

Another approach would have been to use SAT-based bounded model-
checking. SAT-based model-checking crafts a number of propositional for-
mulæ that represent the problem as a SAT problem using k-induction1. The
benefit of SAT-based model-checking is that the resulting decision procedures
are more efficient, particularly when a counterexample exists after a small
number of steps, than traditional model-checking decision procedures.

Before formally defining CTL model-checking in Agda, a comment is made
about the following definitions. When dealing with decision procedures
that have substantial structure, such as model-checking (that is defined
over a transition system), it is essential to choose definitions that sim-
plify the embedding process. Moreover, the transitions systems used in
this section are finite and can deadlock, i.e. the transition relation is not
total. Whereas, the definition of CTL model-checking given above relies
upon deadlock-free transition systems. This design decision was taken to
simplify the process of defining the transition relation in Agda.

To account for the non-total transition relation, in the following def-
initions, an additional condition is placed on the semantics of all CTL
path. That is, they operate on infinite runs. This is noticeable in the for-
malisation of the EX operator, where above only one-step is considered,
but below, one-step into an infinite path is considered, thus preserving
deadlock freedom.

Efficient implementations of CTL model-checking decision procedures
are also defined over deadlock-free transition systems. Therefore, when
executing the external model-checker, the transition relation is made total
by adding a sink state, and a transition from each state into this sink state.
See Section 4.2.2 for more information.

Remark

Finite state machines (FSM) are the transition systems used in this work.
They are defined by the number of states, the number of (global) atomic
propositions, an initial state, a transition relation between states and a
labelling of the states. The transition relation is given by two functions:
arrow which determines for each state the number of transitions from it, and
transition which determines for each state and arrow from this state, the
successor state. The FSM’s are defined in module CTL.TransitionSystem

1P0 ∧ . . . Pk−1 ∧ (∀n . Pn ∧ ⋅ ⋅ ⋅ ∧ Pn+k−1 → Pn+k)→ ∀n . Pn
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of Appendix F as follows:

record FSM ∶ Set where
constructor

fsm
field

state ∶ N
atom ∶ N
arrow ∶ Fin state→ N
initial ∶ Fin state
transition ∶ (s ∶ Fin state)→ Fin (arrow s)→ Fin state
label ∶ Fin state→ Fin atom→ Bool

The model of the CTL model-checking is a pair consisting of the tran-
sition system M and current state s0. The environment (under combined

operators) is an infinite run < s0
a0→ s1

a1→ ⋯ > rooted at the current state s0,
where ai ∶ Fin (arrowM si); defined by means of the co-algebraic data-type:

data RunM (s ∶ Fin stateM) ∶ Set where
next ∶ (a ∶ Fin (arrowM s))→∞RunM (transitionM s a)→ RunM s

Here, ∞ prefixes a term that can potentially be unfolded infinitely many
times, see Section 1.5 for more information.

In the following, runi is the ith state in run = < s0
a0→ s1

a1→ ⋯si
ai→ ⋯ >. π

is used for finite paths and πi is the ith state in π.
CTL formulæ depend upon the number of atom propositions in the model

and are defined using a minimal set of combined CTL operators [HR04]: EX
- exists next, EG - exists globally, E[ U ] - exists until and P - state propo-
sition. CTL formulæ are defined in module CTL.Definition of Appendix F
as follows:

data CTL (n ∶ N) ∶ Set where
false ∶ CTLn
¬ ∶ CTLn → CTLn
∨ ∶ CTLn → CTLn → CTLn
∧ ∶ CTLn → CTLn → CTLn

P ∶ Fin n→ CTLn
EX ∶ CTLn → CTLn
EG ∶ CTLn → CTLn
E[ U ] ∶ CTLn → CTLn → CTLn

The semantics of a CTL formula is as follows: false, ¬, ∨ and ∧ are the
same as in propositional logic. P a has the meaning that atomic proposition
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a holds in the current state. The remaining cases specify properties about
infinite runs of the transition system rooted at some state s. Exists next
(EX ϕ) holds when there exists a run run from s such that ϕ holds at run1 ;
a run is required here because the transition system can dead-lock. Exists
globally (EG ϕ) holds when there exists a run from s such that at each point
i on the run, ϕ holds. Exists until (E[ ϕ U ψ ]) holds when there exists a
run from s such that there exists a point k where ψ holds, and for all points
j < k, ϕ holds.

The semantics of a CTL formula with respect to a model is formally given
as follows:

J , ⊧ K ∶ (M ∶ FSM)→ (Fin stateM)→ CTLatomM → Set
JM , s ⊧ false K = �
JM , s ⊧ ¬ϕ K = JM , s ⊧ ϕ K→ �
JM , s ⊧ ϕ ∨ ψ K = JM , s ⊧ ϕ K + JM , s ⊧ ψ K
JM , s ⊧ ϕ ∧ ψ K = JM , s ⊧ ϕ K × JM , s ⊧ ψ K
JM , s ⊧ P a K = T (labelM s a)
JM , s ⊧ EX ϕ K = ∃ (run ∶ RunM s) JM , run1 ⊧ ϕ K
JM , s ⊧ EG ϕ K = ∃ (run ∶ RunM s) (∀i . JM , run i ⊧ ϕ K)
JM , s ⊧ E[ ϕ U ψ ] K = ∃ (run ∶ RunM s) ∃ (k ∶ N) (

(∀j . j < k → JM , runj ⊧ ϕ K)
×JM , runk ⊧ ψ K)

Here, labelM is label projected from M, and the environment (RunM s) is
existentially quantified.

Determining whether a CTL formula holds in the logical cases is canoni-
cal with respect to the connectives and is not discussed further. The decision
procedure for the first substantial connective, EX ϕ (exists next), is imple-
mented by searching for a path of length stateM + 1 and checking that ϕ
holds at the second point, i.e. there exists a successor state where ϕ holds.
The argument for the correctness of this procedure is a simpler case of the
correctness proof for exists globally and thus follows by Lemma 4.2.1.

In the case of EG ϕ (exists globally), an infinite run is required such that,
at each point on this run, ϕ holds. Näıvely, checking each point on this run
would take an infinite amount of time; thus, the problem is finitised.

By the pigeonhole principle2 [Ded63] (which underlies the proof of the
pumping lemma [BHPS64]) and the finiteness of the transition system, the
decision procedure for EG only checks for a finite path of fixed length from
the state s such that ϕ always holds. If a path π of length stateM + 1 exists

2The pigeonhole principle states: if you put n things into m boxes where n > m, then
there exists at least one box that contains more than one thing .
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from s such that ϕ holds at each point, then it can be extended infinitely
many times into a run. This follows by Lemma 4.2.1.

Lemma 4.2.1 (M, s ⊧ EG ϕ). Assume a finite transition system M with n
states. There exists an infinite run from state s such that ϕ holds at each
point iff there exists a path π of length n + 1 from state s such that ϕ holds
at each point on π.

Proof.

⇒ An infinite run where ϕ holds at each point can be truncated to a path
of length n + 1.

⇐ By the pigeonhole principle, at least one state has been repeated in π,
i.e. ∃(0 ≤ i < j ≤ n) . πi = πj. Therefore a (possibly trivial) loop in
the transition system exists containing πi, this loop can be repeated
infinitely many times, and we obtain an infinite run.

In the case of exists until, things are a little more complicated. E[ ϕ U ψ ]
means there exists an infinite run run such that at some point k in the future
ψ must hold, but up to and not including that point, ϕ must hold. Intuitively,
the decision procedure checks for a path πϕ with length ≤ stateM such that ϕ
holds at each point, and then checks for a path πψ of length stateM+1 starting
at the end of πϕ such that ψ holds at πψ1 . This follows by Lemma 4.2.2.

Lemma 4.2.2 (M, s ⊧ E[ ϕ U ψ ]). Assume a finite transition system M
with n states. M, s ⊧ E[ ϕ U ψ ] holds iff there exists a path πϕ with length
≤ n from the state s such that ϕ holds at each point of πϕ, and there exists
a path πψ of length n + 1 such that the end of πϕ equals the beginning of πψ

and ψ holds at πψ1 .

Proof.

⇒ There exists a point k on the infinite run run, such that for all points
j < k, ϕ holds and at point k, ψ holds. We show that πϕ and πψ exist
by course-of-value induction on k:

case k ≤ n: We are done, πϕ is a prefix of the run, and πψ equals the
succeeding n + 1 states from k.

case k > n: By the pigeonhole principle there exists two points 0 ≤ l <
m < n + 1 such that run l = runm. Therefore a loop exists before
point k, this loop can be removed such that ϕ holds up to point
k−(m−l) and ψ holds at point k−(m−l). Let run ′ be the resulting
run. By the induction hypothesis and run ′, the assertion follows.
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⇐ By Lemma 4.2.1, path πψ can be extended infinitely many times, thus
an infinite run can be constructed consisting of πψ extended infinitely
many times concatenated to πϕ. As ϕ holds along πϕ, and ψ holds at
πψ1 , the infinite run satisfies ϕ until ψ.

Corollary. Following by Lemma 4.2.1 and Lemma 4.2.2, the decision pro-
cedures for EG and E[ U ] can be implemented by bounded traversals of the
transition system and taking disjunctions between choice points in the traver-
sals. The decision procedure for EX is a simplified case of EG. Let

ctlcheck ∶ (M ∶ FSM)→ (Fin stateM)→ CTLatomM → Bool

be the obtained decision procedure.

See module CTL.DecProc in Appendix F for the implementation of the
decision procedure, and module CTL.Proof for the correctness proof of the
decision procedure.

The implementation used here requires ≈75 lines of Agda code, which
includes definitions of Bool, N, Fin, transition system, CTL formulæ and the
decision procedure. Proof of correctness requires > 1000 lines of code. This
includes the proof of the pigeonhole principle (≈ 300 lines of code) and many
lemmata reasoning about finite sets and the transition system.

4.2.1 Pigeonhole Principle

The pigeonhole principle states: if you put n items into m holes where n >m,
then there exists at least one hole that contains more than one item.

Lemma 4.2.3 (Pigeonhole principle). Assume a function f ∶ A→ B where
A and B are finite, and the cardinality of A is greater-than that of B. Then
f is not injective. I.e. there exists a, b ∈ A such that a ≠ b and f a = f b.

Although the pigeonhole principle is canonical for a human to understand
to be correct, the proof in Agda is non-trivial.

Remark
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Proof. Induction on the cardinality of A, and side induction on the cardinal-
ity of B. Without loss of generality assume A = Fin n and B = Fin m, such
that n > m. The base cases where n ∈ {0,1} are trivial because no such f
exists. The inductive step remains where n = n′ + 1, there are three cases.
Note that f 0 ∈ Fin m, therefore m =m′ + 1.

Case 1: ∃(a b ∶ Fin n) . a ≠ b, f a = f b = 0. We are done.

Case 2: ∃(a ∶ Fin n) . f a = 0, (∀(b ∶ Fin n) . b ≠ a → f b ≠ 0). Without loss
of generality assume a = 0. Let

g ∶ Fin n′ → Fin m′

g x = f (x + 1) − 1

By the main induction hypothesis, there exists a′, b′ ∶ Fin n′ such
that a′ ≠ b′, g(a′) = g(b′). Since f (a′ + 1) > 0 and f (b′ + 1) > 0, we get
f (a′ + 1) = f (b′ + 1).

Case 3: ∀(a ∶ Fin n) . f a ≠ 0. Let

g ∶ Fin n→ Fin m′

g x = (f x) − 1

By side induction hypothesis, there exists a′, b′ ∈ Fin n such that
a′ ≠ b′, g a′ = g b′. Therefore f a = f b.

This proof searches for the two items that have been placed into the same
hole by consistently mutating f until the two items have been placed into
hole 0.

See module Data.Fin.Pigeon in Appendix F for the full formalisation of
the above proof.

4.2.2 CTLSink

The CTL theory presented allows for the transition systems to dead-lock,
but in practice the external model-checkers used require that the transition
system is dead-lock free by enforcing that the transition relation is total.
This is achieved by implicitly transforming the input passed to the tool by
adding a sink state to the FSM and adjusting the formulæ accordingly. A
sink (or error) state is one that is reachable from every state (including the
sink) in one transition. A new proposition is added that only holds in the sink
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state so that the formulæ can identify the sink state. Thus, the formulæ are
translated to prevent the characterised runs from passing-through the sink
state. All definitions in this section are in module CTL.Sink of Appendix F.

The CTL model and formula are translated into SinkCTL by two func-
tions: first, mkSink, translates a model, and secondly liftCTL, translates a
formula.

mkSink ∶ FSM→ FSM
mkSink M = fsm (suc stateM)

(suc atomM)
{0↦ 1 ; suc n↦ suc (arrowM n)}
(suc initialM)

{s a↦ {0 if s = 0 ∨ a = 0
suc (transitionM (s − 1) (a − 1)) otherwise

}

{s p↦ {labelM (s − 1) (p − 1) if s ≠ 0 ∧ p ≠ 0
s = 0 ∧ p = 0 otherwise

}

The result of the above function is the following transformation:

0
p0

1
p1 p2

2
p2

0
0

mkSink 1
p1

2
p2 p3

3
p3

0
p0

1
1

0

0

0

0

Figure 4.1: CTL Sink State

Let sink = P 0, the proposition that only holds in the sink state. Formulæ
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are lifted by the following function:

liftCTL ∶ ∀{n} . CTLn → CTL(suc n)

liftCTL false = false
liftCTL ¬ϕ = ¬(liftCTL ϕ)
liftCTL (ϕ ∨ ψ) = (liftCTL ϕ) ∨ (liftCTL ψ)
liftCTL (ϕ ∧ ψ) = (liftCTL ϕ) ∧ (liftCTL ψ)
liftCTL (P x) = P (suc x)
liftCTL (EX ϕ) = EX ((liftCTL ϕ) ∧EG ¬ sink)
liftCTL (EG ϕ) = EG ((liftCTL ϕ) ∧ ¬ sink)
liftCTL E[ ϕ U ψ ] = E[ (liftCTL ϕ) ∧ ¬ sink U (liftCTL ψ) ∧EG ¬ sink ]

The formulæ are translated such that they carve out the original structure
of the model in the translated model. In the cases of the CTL connectives
it is essential that the quantified runs never pass-through the sink state as
this does not exist in the original model. EX is an example of this as it
requires that a run exists such that in the second state of the run ϕ holds;
the translation of EX requires that from the second state where ϕ holds
there also exists a run such that it never passes-through the sink state. Note
that this does not apply to the first state of the run, as this is enforced by
Theorem 4.2.4 below and would be a truism otherwise. The translation of
EG is canonical as it restricts the run to never pass-through the sink state.
The final operator E[ ϕ U ψ ] splits the carved out run into two runs, the
first is a run that does not pass-through the sink state (and ϕ holds) up to
point k where ψ holds, then it is unconstrained. The second run starts from
point k in the first run, and it never passes-through the sink state.

In the translation of E[ ϕ U ψ ], the constraint that the first run never
passes-through the sink state is not required. This is because once a run
enters the sink state there is no possibility of it leaving, so the constraint
on the second run to never pass-through the sink state is sufficient to
ensure that the first run never passes-through the sink state.

However, explicitly stating that the first run does not pass-through
the sink state simplifies the following proof of correctness.

Remark

This is not a trivial transformation and if not correct would destroy cor-
rectness of this technique. As it is assumed that the external tool is correct
and that the input to the tool is correct, it is required to prove that the
transformation preserves the correctness of CTL.
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Theorem 4.2.4 (SinkCTL). Assume a FSM M, state s and formula ϕ,
then following holds:

JM, s ⊧ ϕ K⇔ J mkSinkM, suc s ⊧ liftCTL ϕ K

The proof is by induction on ϕ. The three cases of the logical connectives
are trivial and not presented, also in the case that ϕ = P x the proof follows
immediately by unfolding the definitions. The remaining cases of the CTL
connectives are quantified over runs; thus an equivalence is required between
runs of the original and runs of the translated transition systems. The equiv-
alence requires two functions that translate runs between these two systems,
then proving the translated runs preserve the semantics of CTL. The first
function translates a run from the original transition system into the sinked
transition system by applying suc to all the states and actions, i.e.

liftRunM ∶ ∀{s} . RunM s→ Run(mksinkM) (suc s)
liftRunM (next a r) = next (suc a) (♯ liftRunM (♭ r))

The second function translates runs in the other direction (by removing a
suc from each state and arrow), however it is required to also have a proof
that the run never passes through the sink state.

downRunM ∶ ∀{s} . (r ∶ Run(mksinkM) (suc s))
→ (∀n . J mksinkM, rn ⊧ ¬ sink K)
→ RunM s

downRunM (next zero r) p = efq (p 1 tt)
downRunM (next a r) p = next (suc a)

(♯ downRunM (♭ r) (p ○ suc))

The following three lemmata are required to prove the translations are
consistent with the semantics of the CTL connectives EX, EG and EU. Only
the lemma for EG is proved here as the other proofs are similar, however, as
usual the full proofs are in Appendix F.

Lemma 4.2.5 (sink-EG). Assume a transition system M and two CTL
formulæ ϕ and ψ, such that the following holds

∀s . JM, s ⊧ ϕ K↔ J mksinkM, suc s ⊧ ψ K

then the proof can be lifted to the EG connective, i.e.

∀s . JM, s ⊧ EG ϕ K↔ J mksinkM, suc s ⊧ EG (ψ ∧ ¬ sink) K

Proof.
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⇒ Assume s and (r, p) ∶ J M,s ⊧ EG ϕ K. Let r′ = liftRunM r. Then the
proof follows by showing:

∀n . J mksinkM, r′n ⊧ ψ ∧ ¬ sink K

Assume n, the left-hand conjunct follows by the assumption

∀t . JM, t ⊧ ϕ K→ J mksinkM, suc t ⊧ ψ K

applied to rn. N.B. r′n = suc rn by definition of liftRun. The right-hand
conjunct follows by the definition of liftRun.

⇐ Assume s and (r, p) ∶ J mksink M, suc s ⊧ EG (ψ ∧ ¬ sink) K. Let
r′ = downRunM r (λn→ π1 (p n)). Then the proof follows by showing:

∀n . JM, r′n ⊧ ϕ K

Assume n, the proof follows by the assumption

∀t . JM, t ⊧ ϕ K← J mksinkM, suc t ⊧ ψ K

applied to r′n. N.B. suc r′n = rn by definition of downRun.

Lemma 4.2.6 (sink-EX). Assume a transition system M and two CTL
formulæ ϕ and ψ, such that the following holds

∀s . JM, s ⊧ ϕ K↔ J mksinkM, suc s ⊧ ψ K

then the proof can be lifted to the EX connective, i.e.

∀s . JM, s ⊧ EX ϕ K↔ J mksinkM, suc s ⊧ EX (ψ ∧EG ¬ sink) K

Lemma 4.2.7 (sink-EU). Assume a transition system M and four CTL
formulæ ϕ and ψ, such that the following holds

∀s . JM, s ⊧ ϕ K↔ J mksinkM, suc s ⊧ ϕ′ K

and
∀s . JM, s ⊧ ψ K↔ J mksinkM, suc s ⊧ ψ′ K

then the proof can be lifted to the EU connective, i.e.

∀s . JM, s ⊧ EG ϕ K↔ J mksinkM, suc s ⊧ EG (ψ ∧ ¬ sink) K

The proof of Lemma 4.2.6 is a simpler case of Lemma 4.2.5. The proof
of Lemma 4.2.7 is similar to the proof of Lemma 4.2.5, neither proofs are
presented. The proof of Theorem 4.2.4 then follows by these lemmata.
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4.3 Symbolic CTL

As presented, CTL model-checking consists of a state space indexed by the
finite set 0, . . . , n − 1. In this form it is difficult to encode realistic programs;
also it is awkward to validate the models and formulæ. In contrast, a typical
off-the-shelf model-checker allows for the model to be specified by a finite
number of finite typed variables (e.g. enumeration sets), the transition func-
tion by a user friendly syntax, and formulæ reason about specific values of
specific variables. That is, the input to the model-checker is closer to an
actual program, easing the validation process. In this section, it is described
how to encode finite structures into numbers, with the objective of defin-
ing symbolic CTL model-checking by lifting the definitions of the previous
section.

The transition systems that are used for symbolic CTL are defined by
a list of natural numbers that define the cardinalities of the types of the
variables that define the state space, and associated to each state a list of
natural numbers that define the cardinalities of the types of the variables
that are required for a transition. An initial state and a transition function,
that for a given state and a valid input for that state (sequence of variables),
identifies the successor state.

Formulæ over these transition systems are as before (in Section 4.2) with
the exception that the connective P a (proposition a holds in current state)
is adjusted accordingly to reason about the state variables. I.e. P[x == y]
means variable x has value y in the current state.

The remainder of this section describes the embedding of this structure
and associated formulæ into the definitions given in Section 4.2.

The basic technique used is to implicitly define a universe of finite types,
and show that it is closed under multiplication and addition. See the work
of Altenkirch et al. [AMM07] for more information. Furthermore, in Theo-
rem 4.3.4, an isomorphism is defined that embeds a number of finite typed
variables into a larger finite type. This embedding will define an isomorphism
between the state space of symbolic CTL and CTL model-checking. Simi-
larly, Theorem 4.3.8 defines an isomorphism between the possible values of a
variable in a state and the atomic propositions of a CTL transition system.

4.3.1 Pairs

The embedding is built around the basic fact that for two finite sets A and
B, their Cartesian product A ×B is equinumerous to ∣A∣ ∗ ∣B∣.
Theorem 4.3.1 (fin-pair-iso). Assume n m ∶ N, an isomorphism exists
between Fin n × Fin m and Fin (n ∗m).
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This is proved by defining two structure preserving functions that are
inverses of each other. Namely, fin-pair and fin-unpair that will pair two
finite numbers, and unpair them, respectively; see module Data.Fin.Record

in Appendix F for the full definitions.

fin-pair ∶ ∀ {n m} . Fin n × Fin m→ Fin (n ∗m)
fin-pair {n} {m} (x, y) = (m ∗ x) + y

fin-unpair ∶ ∀ {n m} . Fin (n ∗m)→ Fin n × Fin m

fin-unpair {n} {m} z = z div m,z mod m

These pairing functions are shown to preserve structure:

Lemma 4.3.2 (fin-pair-1).

∀(n m ∶ N) (x ∶ Fin n) (y ∶ Fin m) . fin-unpair (fin-pair (x, y)) ≡ (x, y)

Proof. Assume n, m, x and y. The proof follows by equality reasoning.

fin-unpair (fin-pair (x, y)) ≡ (m ∗ x + y) div m, (m ∗ x + y) mod m

by definition

≡ x, y
by y <m

Lemma 4.3.3 (fin-pair-2).

∀(n m ∶ N) (z ∶ Fin (n ∗m)) . fin-pair (fin-unpair z) ≡ z

Proof. Assume n, m, x and y. The proof follows by equality reasoning.

fin-pair (fin-unpair z) ≡m ∗ (z div m) + (z mod m)
by definition

≡ z
by Euclidean division

The proof of Theorem 4.3.1 follows by Lemma 4.3.2 and Lemma 4.3.3.
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4.3.2 Finite Records

Finite records build upon finite pairs, such that they will be able to encode
the state space and inputs; they consist of a finite number of entries where
each entry is finite. Thus, they are n-ary products of finite types.

Theorem 4.3.4 (fin-record-iso). The following are isomorphic:

Fin n0 × Fin n1 × ⋅ ⋅ ⋅ × Fin ni−1

and
Fin (n0 ∗ n1 ∗ ⋅ ⋅ ⋅ ∗ ni−1)

This will be a corollary of Lemma 4.3.5 below, which is shown in detail
since it corresponds to the proof in Agda.

The number of, and cardinalities of the entries in a record are given by a
list l of natural numbers. Thus, the above types are inductively defined over
l by the following two functions:

Record ∶ List N→ Set

Record maps a list [l0, l1, . . . , li−1] to the type Fin l0 × Fin l1 × ⋅ ⋅ ⋅ × Fin li−1,
with the base case [] ↦ ⊺. The cardinality of Record l is defined by the
multiplicative product of l. That is by the function

Π ∶ List N→ N

which computes for a list [l0, l1, . . . , li−1] the product, given as l0× l1×⋅ ⋅ ⋅× li−1.
Notably, Π [] = 1.

Lemma 4.3.5 (fin-record-iso2). Assume (l ∶ List N). Record l and Fin (Π l)
are isomorphic.

This is proved by defining two structure preserving functions that are
inverses of each other. Namely, encode and decode that lift fin-pair and
fin-unpair to n-ary products; see module Data.Fin.Record in Appendix F
for the full definitions.

encode ∶ (l ∶ List N)→ Record l → Fin (Π l)
encode [] r = r
encode (l ∷ ls) r = fin-pair ((π0 r), encode ls (π1 r))

Here the hidden parameters of fin-pair (and fin-unpair below) are l and Π ls .

decode ∶ (l ∶ List N)→ Fin (Π l)→ Record l
decode [] z = z
decode (l ∷ ls) z = π0 (fin-unpair z),decode ls (π1 (fin-unpair z))

Often the list indexing these functions will be written in subscript. All
that remains is to show that encode and decode are structure preserving.
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Lemma 4.3.6 (fin-record-1).

∀(l ∶ List N) (x ∶ Record l) . decode l (encode l x) ≡ x

Proof. By induction on l

case l = []: Trivial, id (id x) ≡ x.

case l = (l′ ∷ ls):

Let z = encode l x = fin-pair ((π0 x), encode ls (π1 x)).

fin-unpair z ≡ (π0 x, encode ls (π1 x)) (∗)

by Lemma 4.3.2

decode l (encode l x) ≡ π0 (fin-unpair z),decode ls (π1 (fin-unpair z))
by definition

≡ π0 x,decode ls (encode ls (π1 x))
rewrite by (∗)

≡ π0 x,π1 x ≡ x
by induction hypothesis and η contraction

Lemma 4.3.7 (fin-record-2).

∀(l ∶ List N) (x ∶ Fin (Π l)) . encode l (decode l x) ≡ x

Proof.

case l = []: Trivial, id (id x) ≡ x.

case l = (l′ ∷ ls):

encode l (decode l x)
≡ fin-pair (π0 (fin-unpair x), encode ls (decode ls (π1 (fin-unpair x))))

by definition

≡ fin-pair (π0 (fin-unpair x), (π1 (fin-unpair x)))
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by induction hypothesis

≡ fin-pair (fin-unpair x) ≡ x
by η contraction and Lemma 4.3.3

The proof of Lemma 4.3.5 then follows by Lemmata 4.3.6 and 4.3.7. Also,
the proof of Theorem 4.3.4 follows, as it is a corollary of Lemma 4.3.5.

4.3.3 State Space

We want to embed a compound state that consists of the typed variables

a0 ∶ A0, a1 ∶ A1, . . . , ai−1 ∶ Ai−1

where A0,A1, . . . ,Ai−1 are finite types. It is trivial to define an isomorphism
between Aj and Fin ∣Aj ∣.

Thus, the compound state can be viewed as a finite product of the form:

Fin ∣A0∣ × Fin ∣A1∣ × ⋅ ⋅ ⋅ × Fin ∣Ai−1∣

By Theorem 4.3.4 this is isomorphic to the finite type:

Fin (∣A0∣ ∗ ∣A1∣ ∗ ⋅ ⋅ ⋅ ∗ ∣Ai−1∣)

Atomic Propositions

In this setting, each symbolic state s contains i variables. The propositions
are equality tests on these variables, i.e. aj == y ∶ Fin ∣Aj ∣, and are given by
a pair of type (x ∶ Fin (length l)) × Fin lx. Therefore, in the corresponding
FSM, each variable aj ∶ Fin ∣Aj ∣ induces ∣Aj ∣ atomic propositions, one for
each value that the variable can take. In total, the corresponding FSM has
Σ0≤j<i∣Aj ∣ atomic propositions.

There are redundancies on the propositions in the corresponding FSM. It
is not possible that aj == x and aj == y hold in the same state. This is
because when later translating a symbolic FSM into an FSM, the propo-
sition aj == z holds iff aj has value z in the original (symbolic) state.

Remark
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In the following let Σ be the standard summation of natural numbers,
that is Σ [] = 0 and Σ [a1, a2,⋯, an] = a1 + a2 +⋯ + an.

It is now shown that this enumeration of variables and values is isomorphic
to the product of a variable ax and a value y ∶ Ax from its domain.

Theorem 4.3.8 (fin-enum). Assume a list l of N, then Fin (Σ l) is isomor-
phic to (x ∶ Fin (length l)) × Fin lx

This is shown by defining two inverse functions encode-Σ and decode-Σ,
then proving that they define an isomorphism. See module Data.Fin.Record
in Appendix F for the full definitions.

encode-Σ ∶ ∀l . (x ∶ Fin (length l)) × Fin lx → Fin (Σ l)
encode-Σ [] (x, y) = efq x
encode-Σ (l0 ∷ l′) (0, y) = y
encode-Σ (l0 ∷ l′) (suc x, y) = l0 + (encode-Σ l′ (x, y))

decode-Σ ∶ ∀l . Fin (Σ l)→ (x ∶ Fin (length l)) × Fin lx
decode-Σ [] z = efq z

decode-Σ (l0 ∷ l′) z =
⎧⎪⎪⎨⎪⎪⎩

(0, z) if z < l0
(suc × id)(decode-Σ l′ (z − l0)) otherwise

Lemma 4.3.9 (Σ iso1).

∀(l ∶ List N) (x ∶ Fin (length l)) × Fin lx . decode-Σ l (encode-Σ l x) ≡ x

Proof. By induction on l, when l = [], proof follows from the absurd assump-
tion. So assume l = l0 ∷ l′. The proof follows by the following case analysis
on π0 x:

Case π0 x = 0:

decode-Σ l (encode-Σ l x)

≡
⎧⎪⎪⎨⎪⎪⎩

(0, π1 x) if π1 x < l0
(suc × id)(decode-Σ l′ (π1 x − l0)) otherwise

by definition

≡ (0, π1 x)
by π1 x of type Fin l0

≡ (π0 x,π1 x) ≡ x
rewrite by case analysis



78 4.3. Symbolic CTL

Case π0 x = suc x′: Let j = l0 + (encode-Σ l′ x′ (π1 x)).

decode-Σ l (encode-Σ l x)

≡
⎧⎪⎪⎨⎪⎪⎩

(0, j) if j < l0
(suc × id)(decode-Σ l′ (j − l0)) otherwise

by definition

≡ (suc × id)(decode-Σ l′ (j − l0))
by j /< l0

≡ (suc × id)(decode-Σ l′ (encode-Σ l′ x′ (π1 x)))
by l0 + a − l0 = a

≡ (suc × id)(x′, π1 x)
by induction hypothesis

≡ (π0 x,π1 x) ≡ x
by η contraction

Lemma 4.3.10 (Σ iso2).

∀ (l ∶ List N) (x ∶ Fin (Σ l)) . encode-Σ l (decode-Σ l x) ≡ x

Proof. By induction on l, when l = [], proof follows from the absurd assump-
tion. So assume l = l0 ∷ l′. The proof follows by case analysis on x < l0.

Case x < l0:

encode-Σ l (decode-Σ l x)

≡ encode-Σ l
⎛
⎝

⎧⎪⎪⎨⎪⎪⎩

(0, x) if x < l0
(suc × id)(decode-Σ l′ (x − l0)) otherwise

⎞
⎠

by definition

≡ encode-Σ l (0, x)
by case assumption

≡ x
by definition
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Case x /< l0:

encode-Σ l (decode-Σ l x)

≡ encode-Σ l
⎛
⎝

⎧⎪⎪⎨⎪⎪⎩

(0, x) if x < l0
(suc × id)(decode-Σ l′ (x − l0)) otherwise

⎞
⎠

by definition

≡ encode-Σ l (suc × id)(decode-Σ l′ (x − l0))
by case assumption

≡ l0 + (encode-Σ l′ (decode-Σ l′ (x − l0)))
by definition

≡ l0 + x − l0 ≡ x
by induction hypothesis and cancelling

Determining whether the xth variable in a state s has value y is accom-
plished by defining the following function:

lookup ∶ (l ∶ List N)→ Record l → ((x ∶ Fin ∣l∣) × Fin lx)→ Bool

lookup [] r i = efq (π0 i)
lookup (l ∷ ls) (e, r) (0, y) = e == y
lookup (l ∷ ls) (e, r) (suc x, y) = lookup ls r (x, y)

4.3.4 Transition System

It is now shown how the symbolic transition system is defined, and how it
is mapped into the underlying transition systems of 4.2. Symbolic transition
systems are defined in module CTL.RecordSystem of Appendix F.

record SymFSM ∶ Set where
constructor

fsm
field

state ∶ List N
arrow ∶ Record state→ List N
initial ∶ Record state
transition ∶ (s ∶ Record state)→ Record (arrow s)→ Record state



80 4.3. Symbolic CTL

The names used here are the same as for the definition of FSM’s. Where
the version cannot be determined by context the names/projections are pro-
ceeded by a super-script CTL or Sym. For example, to distinguish between
the projection of the field state in an FSM or SymFSM, the projections are
written as: stateCTL

M
and stateSym

M
.

The following constructs an FSM from an SymFSM. See Figure 4.2 for
an example of the translation.

toFSM ∶ SymFSM→ FSM
toFSM M =

fsm (Π stateM)
(Σ stateM)
(Π ○ arrowM ○ decodestateM)
(encodestateM initialM)
(λ s a→ encodestateM (transitionM (decodestateM s)

(decode(arrowM (decodestateM
s)) a)))

(λ s p→ lookup stateM (decodestateM s) (decode-ΣstateM p))

v0 == 0
v1 == 0

v0 == 1
v1 == 0

v0 == 0
v1 == 1

v0 == 1
v1 == 1

false

true

false

true∗

true

false

SymFSM

toFSM

0
p0,0 ¬p0,1
p1,0 ¬p1,1

1
¬p0,0 p0,1
p1,0 ¬p1,1

2
p0,0 ¬p0,1
¬p1,0 p1,1

3
¬p0,0 p0,1
¬p1,0 p1,1

0

1

0

1

∗

1

0

FSM

Figure 4.2: Example translation (toFSM) of a symbolic FSM (left) into an
FSM (right). The symbolic FSM state consists of two Boolean variables, and
the input consists of one Boolean variable. The translation clearly shows
how the states and atomic propositions are related. Note that the true and
false’s are a representation of Fin 2 for readability.
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Lemma 4.3.11 (transition-1). Assume M ∶ SymFSM, s ∶ Record stateM,
and a ∶ Record (arrowM s), then the following holds.

encodestateM (transitionSym
M

s a)
≡ transitionCTL

(toFSMM)
(encodestateM s) (encode(arrowM s) a)

Proof. The proof follows by equality reasoning.

transitionCTL
(toFSMM)

(encodestateM s) (encode(arrowM s) a)
≡ encodestateM (transitionSym

M
(decodestateM (encodestateM s))

(decode(arrowM (decodestateM
(encodestateM

s))) (encode(arrowM s) a)))
by definition

≡ encodestateM (transitionSym
M

s a)
by Lemma 4.3.6

Lemma 4.3.12 (transition-2). Assume M ∶ SymFSM, s ∶ Record stateM,
and a ∶ Fin (Π (arrowM s)), then the following holds.

encodestateM (transitionSym
M

s (decodearrowM a))
≡ transitionCTL

(toFSMM)
(encodestateM s) a

Proof. The proof follows by equality reasoning.

transitionCTL
(toFSMM)

(encodestateM s) a
≡ encodestateM (transitionSym

M
(decodestateM (encodestateM s))

(decode(arrowM (decodestateM
(encodestateM

s))) a))
by definition

≡ encodestateM (transitionSym
M

s (decodearrowM a))
by Lemma 4.3.6
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4.3.5 Runs

It is possible to define the runs over a symbolic transition system M as
the runs resulting from the translation in Section 4.3.4, i.e. Run(toFSMM).
However, this would result in obfuscation of the semantics of symbolic model-
checking (cf. Section 4.3.7), meaning that it would be harder to validate that
the semantics is correct. Instead, the runs are redefined using the language of
SymFSM and then used to define the semantics of symbolic model-checking.
The semantics will be shown to be equivalent to CTL model-checking in
Section 4.3.7.

A run over M is defined similarly to a run over an FSM:

data SymRunM (s ∶ Record stateM) ∶ Set where
next ∶ (a ∶ Record (arrowM s))

→∞ SymRunM (transitionM s a)
→ SymRunM s

where ∞ prefixes a term that can potentially be unfolded infinitely many
times.

A run over a symbolic transition systemM from state s is translated into
a run over a transition system by:

toRunM ∶ ∀s . SymRunM s→ Run(toFSMM) (encodestateM s)
toRunM (nextSym a r) = nextCTL (encode(arrowM s) a)

(♯ toRunM (transitionSym
M

s a) (♭ r))

The induction hypothesis used here requires a significant amount of equality
reasoning (not presented for clarity), which follows by Lemma 4.3.6 and
Lemma 4.3.11.

The inverse will also be required, and is defined as follows:

fromRunM ∶ ∀s . Run(toFSMM) (encodestateM s)→ SymRunM s
fromRunM (nextCTL a r) =

nextSym (decode(arrowM s) a)
(♯ fromRunM (transitionSym

M
s (decode(arrowM s) a)) (♭ r))

Similarly, the induction hypothesis used here requires equality reasoning that
follows by Lemma 4.3.6 and Lemma 4.3.12.

It is not required to prove that a composition of these translations yields
bisimilar runs. Although this does follow from how a symbolic transition
system is translated into an FSM, and by Lemma 4.3.11 and Lemma 4.3.12.
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4.3.6 Formulæ

Symbolic CTL formulæ (SymCTL) are the same as CTL formulæ (in Sec-
tion 4.2) with the exception that the operator P a (proposition a holds in the
current state) is adjusted accordingly to reason about equality tests on state
variables. That is P[x == y] stands for variable x has value y in the current
state.

For a given SymFSM transition system M system defined over the list
l = [∣A0∣, ∣A1∣, . . . , ∣Ai−1∣], the set of formulæ are defined as follows:

data SymCTL (M ∶ FSM) ∶ Set where

false ∶ SymCTLM

¬ ∶ SymCTLM → SymCTLM

∨ ∶ SymCTLM → SymCTLM → SymCTLM

∧ ∶ SymCTLM → SymCTLM → SymCTLM

P[ == ] ∶ (x ∶ Fin i)→ Fin ∣Ax∣→ SymCTLM

EX ∶ SymCTLM → SymCTLM

EG ∶ SymCTLM → SymCTLM

E[ U ] ∶ SymCTLM → SymCTLM → SymCTLM

Mapping ϕ ∶ SymCTLM into CTL(toFSMM) is canonical with respect
to the operators. In the case of an atomic proposition x == y, it must be
translated into the proposition which holds iff variable x has the value y.
Let toCTL be the name of this map, given by:

toCTLM ∶ SymCTLM → CTL(toFSMM)

toCTLM false = false

toCTLM (¬ ϕ) = ¬ (toCTL ϕ)
toCTLM (ϕ ∨ ψ) = (toCTLM ϕ) ∨ (toCTLM ψ)
toCTLM (ϕ ∧ ψ) = (toCTLM ϕ) ∧ (toCTLM ψ)
toCTLM (P[ x == y ]) = P (encode-Σ l (x,y))
toCTLM (EX ϕ) = EX (toCTLM ϕ)
toCTLM (EG ϕ) = EG (toCTLM ϕ)
toCTLM (E[ ϕ U ψ ]) = E[ (toCTLM ϕ) U (toCTLM ψ) ]

4.3.7 Correctness

The semantics of symbolic CTL model-checking is similar to the semantics of
CTL model-checking; however, there are two differences. First, the formula
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P[ x == y ] is assigned the semantics that variable x has the value y in the
current state; this is opposed to a given proposition holding in the current
state. The second is that the runs are built over a symbolic transition system.

The semantics can be given as follows:

J , ⊧ K ∶ (M ∶ SymFSM)→ (Record stateM)→ SymCTLM → Set
JM , s ⊧ false K = �
JM , s ⊧ ¬ϕ K = JM , s ⊧ ϕ K→ �
JM , s ⊧ ϕ ∨ ψ K = JM , s ⊧ ϕ K + JM , s ⊧ ψ K
JJJM , s ⊧ P[ x == y ] KKK = T ( lookup stateM s (x,y))
JM , s ⊧ EX ϕ K = ∃ (run ∶ SymRunM s) JM , run1 ⊧ ϕ K
JM , s ⊧ EG ϕ K = ∃ (run ∶ SymRunM s) (∀i . JM , run i ⊧ ϕ K)
JM , s ⊧ E[ ϕ U ψ ] K = ∃ (run ∶ SymRunM s) ∃ (k ∶ N) (

(∀j . j < k → JM , runj ⊧ ϕ K)
×JM , runk ⊧ ψ K)

Below, Theorem 4.3.13 states that a given symbolic transition systemM,
and a state s in M models a formula ϕ built over M, iff their translations
into CTL holds. Following by this theorem: it is sound to lift the ctlcheck
decision procedure for plain CTL to symbolic CTL. That is, the following
function is defined:

symctlcheck ∶ (M ∶ SymFSM)→ (Record stateM)→ SymCTLM → Bool
symctlcheck M s ϕ = ctlcheck (toFSMM) (encodestateM s) (toCTLM ϕ)

See module CTL.RecordSystem in Appendix F for more information. In the
next chapter, this function will be overridden such that an efficient external
tool will be executed in it’s place. This is good because the input to the
external model-checker is defined over a symbolic model, hence, better per-
formance is obtained as more structure of the original problem is preserved.
Subsequently in Section 9.4.1, the transition relation will be replaced by a
Boolean valued program, this will provide optimal performance when using
the external tools as all the structure is preserved.

Theorem 4.3.13 (correctness).

∀M s ϕ .

JM , s ⊧ ϕ KSym ↔ J toFSMM , encodestateM s ⊧ toCTLM ϕ KCTL

Proof. By induction ϕ. The logical connectives and constants are trivial.
Regarding the CTL connectives, only the proof of the cases where ϕ = P[ x ==
y ] and ϕ = EX ϕ′ are carried out below. The remaining cases are left to the
reader.



4. Embedded Theories 85

Case ϕ = P[ x == y ]:

J toFSMM , encodestateM s ⊧ toCTLM ϕ KCTL

≡ T (lookup stateM (decodestateM (encodestateM s))
(decode-Σ stateM (encode-Σ stateM (x, y))))

by definition

≡ T (lookup stateM (decodestateM (encodestateM s)) (x, y))
rewrite by Lemma 4.3.9

≡ T (lookup stateM s (x, y))
rewrite by Lemma 4.3.6

≡ JM , s ⊧ ϕ KSym

by definition

Case ϕ = EX ϕ′: The goal is

∃(run ∶ SymRunM s) . JM , run1 ⊧ ϕ′ KSym

↔ ∃(run ∶ Run(toFSMM) (encodestateM s)) .
J toFSMM , run1 ⊧ toCTLM ϕ′ KCTL

by definition

Each direction is treated separately.

“⇒” Assume r ∶ SymRunM s, p ∶ J M , r1 ⊧ ϕ′ KSym, and let
r ′ = toRunM s r . It is now shown that r ′ fulfils

J toFSMM , r ′1 ⊧ toCTLM ϕ′ KCTL

r ≡ nextSym a r ′′

by definition

r ′1 ≡ transition(toFSMM) (encodestateM s)
(encode(arrowM s) a)

by definition

≡ encodestateM (transitionM s a)
by Lemma 4.3.11

≡ encodestateM r1 (∗)
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by definition

Therefore

J toFSMM , r ′1 ⊧ toCTLM ϕ′ KCTL

≡ J toFSMM , encodestateM r1 ⊧ toCTLM ϕ′ KCTL

rewrite by (∗)

This follows by induction hypothesis applied to p.

“⇐” Assume r ∶ Run(toFSMM) s,
p ∶ J toFSMM , r1 ⊧ toCTLM ϕ′ KCTL,

and let r′ = fromRunM s r . It is now shown that r′ fulfils

JM , r ′1 ⊧ ϕ′ KSym

r ≡ nextCTL a r ′′

by definition

r1 ≡ transitionCTL
(toFSMM)

(encodestateM s) a
by definition

≡ encodestateM (transitionSym
M

s (decode(arrowM s) a))
by Lemma 4.3.12

≡ encodestateM r′1 (∗)

by definition

Therefore

p ∶ J toFSMM , encodestateM r ′1 ⊧ toCTLM ϕ′ KCTL

by (∗)

The proof follows by the induction hypothesis applied to p.



Chapter5
Modification made to Agda

A substantial portion of this thesis is concerned with modifying Agda to
facilitate soundly (and securely) calling external tools during type-checking.
Previously in Chapter 3 the underlying theory of the integration was pre-
sented, then in Chapter 4 the examples of SAT and CTL were explained.
In this chapter, it is shown how to take advantage of the existing built-in
mechanism in Agda to allow external tools to be executed—according to the
integration in Chapter 3.

In the next chapter, an alternative integration is explored. This is when
the external tool provides justifications that are then checked by Agda.

Chapter Overview. In Section 5.1, the built-in mechanism is introduced.
Briefly it is a system to allow the type-checker to execute Haskell code during
type-checking. Also in that section it is explained how to extend the built-in
mechanism to allow external tools to be executed. In Section 5.3.1 and Sec-
tion 5.3.2, the built-in mechanism is modified to achieve the SAT and CTL
interfaces, respectively. The techniques learnt from these sections are gener-
alised in Section 5.4, where a generic interface is presented. In Section 5.5 it
is considered how to prevent malicious programs being specified. A technical
how-to relating to these modifications can be found in Appendix D, along
with selected code listings of the modifications that were required.

Orthogonally, other experimental modifications have been explored such
as the extended lambda expressions in Section 5.6.2, and profiling of the
reduction machinery in Section 5.6.1.

5.1 Built-In Mechanism

A common problem with implementations of type-theory + inductive con-
structions, is the usability of natural numbers [Bra05, AGST10]. Natural
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numbers are mathematically defined inductively as the least set containing 0
and closed under successor. The elements consists of the terms of the form:

suc (suc (. . . (suc 0) . . . ))

From a usability perspective it is desirable to use a base 10 representation
of a natural number, and for closed terms efficient (machine) evaluation of
mathematical operations such as + and ∗ .

To achieve this Agda uses a system of built-in terms; these are terms
defined in Agda’s type-checker. When one of these terms is encountered
during type-checking (identified by a “BUILTIN” pragma) they are checked
to fulfil a number of hard-coded constraints. For an inductive construction,
its type, the number of and types of its constructors are checked; and for a
function definition, its type and definition is checked against a set of axioms.
Thus, it is possible1 for the type-checker to know up to isomorphism what
the built-in terms are and how they behave.

Moreover in the case of built-in inductive constructions, bijective maps
toTerm and fromTerm are given which translate between an Agda term and
a Haskell term. For non-dependently typed constructions such as natural
numbers and lists, this is trivial as Haskell has corresponding constructions.
This is also possible for dependently typed constructions, but the maps re-
quire significant attention to ensure that they are consistent. In the case
of built-in functions, assuming that their types are constructed from built-
in types (e.g. natural numbers, lists) it is possible to override their Agda
implementation when applied to closed terms by an efficient Haskell imple-
mentation.

fromTerm toTerm

f ′

f

Agda

Haskell

Figure 5.1: The implementation of a built-in function f can be replaced by
the Haskell function f ′, such that the above diagram commutes.

1Assuming the constraints are correct.
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To exemplify this, consider the addition of natural numbers. First, the
set of naturals is defined as follows:

data N ∶ Set where
zero ∶ N
suc ∶ N→ N

The type-checker is informed that this is the set of natural numbers by the
following three pragmas.

1. {−# BUILTIN NAT N #−}
Checks that N is an inductive construction of type Set that has two
constructors, the types of the constructors are not checked yet.

2. {−# BUILTIN NATZERO zero #−}
Checks that zero is a constructor of N and has the type N.

3. {−# BUILTIN NATSUC suc #−}
Checks that suc is a constructor of N and has the type N→ N.

Anton Setzer and myself discovered an inconsistency in Agda’s built-in
mechanism for natural numbers. The inconsistency was rapidly fixed by
the developers. A description is as follows: The problem was that the
parser would happily read base-10 representations of natural numbers be-
fore all 3 of the built-in pragmas for natural numbers had been processed.
This was exploited by defining an empty set of natural numbers with
two mal-typed constructors, then only processing the first pragma, hence,
the constructors do not have their types checked. When the parser en-
countered a base-10 number, it internally assumed that it was a natural
number, and thus an element of the non-wellformed natural numbers was
obtained. This was further exploited to obtain a proof of absurdity. This
inconsistency was fixed by requiring the parser ensure that all three nat-
ural number pragmas had been processed successfully before parsing a
base-10 representation.

Remark

The definition of addition is given as follows:

+ ∶ N→ N→ N
zero +m =m
suc n +m = suc (n +m)
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It has a run-time complexity linear to the number of constructors in its
first argument. However, computers have dedicated hardware that add two
numbers (less than some bound, e.g. 232) efficiently. To this end the following
pragma

{−# BUILTIN NATPLUS + #−}

notifies the type-checker that x + y is to be evaluated for closed terms x and
y by using Haskell’s integer addition operator. More accurately it is when
fromTerm does not fail on x and y that the Haskell implementation is used.
In cases where fromTerm fails, the definition is β-reduced using the above
definition. E.g. 2 + x reduces to suc (suc x) in three steps.

Agda does not make provide any assurances that the Haskell function
behaves like the slow Agda function. For this reason adding new built-in
functions should be done with caution, and requires a recompilation of the
Agda source code. This recompilation ensures that novices do not acciden-
tally create inconsistencies.

It should be made clear that the built-in system does not facilitate en-
tering Haskell terms into Agda files, it only notifies the type-checker that
an Agda term has been identified with a tag. As an example, above the
tag is “NATPLUS”. The type-checker then chooses what action to take,
e.g. check the term has a given type, or bind it to a primitive implementa-
tion. In the case of natural numbers (and similarly for other literals), the
Agda parser has been tweaked to allow base-10 representations, these are
translated on-demand into the correct inductive construction identified by
the tags: NATZERO, NATSUC.

Agda also has the notion of a primitive function; these are similar to
built-in functions but do not β-reduce for open terms. A primitive function
is not implemented in Agda (only its signature), and thus it behaves as a
black box and is not checked.

For more information about Agda in general, please see Ulf Norell’s thesis
[Nor07] and the Agda wiki.

5.1.1 Theory of Built-Ins

In this section, a complete understanding of Agda is assumed, built-in and
primitive functions are defined by their observed behaviour, then proofs
about their sound and consistent use are presented.
Caveat:
In the following, proofs are carried out about Agda without a full formal-
isation of Agda, by instead referring to what is derivable in Agda, in the
consistent fragment of Agda. Therefore, these proofs are not fully formal,
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and therefore, strictly speaking the theorems are not fully mathematical the-
orems. A full formalisation would require a formal formalisation of Agda,
and its consistent fragment. This goes beyond the scope of this thesis which
is focused on practical verification of railway interlocking systems. Making
it fully formal would as well obfuscate the message in technicalities. All
definitions, theorems and lemmata on the following issue are subject to this
caveat.

By deriving something in Agda from some code, it is meant that only
Agda constructs are used, which by themselves only construct consistent
Agda content. That is it is not possible to derive an element of the empty
type �.
Assumptions:
In this section, we assume a complete formalisation of Agda based on Martin-
Löf’s logical framework, without built-in or primitive functions. Assume
that the reduction rules are given by equations in Agda, and the standard
reductions of the logical framework. Define the reduction relation r Ð→ s for
terms r and s, s.t. if r Ð→ s and r ∶ A, s ∶ A, then r ≡ s ∶ A.

We assume that the termination checker of Agda passes non-recursive
definitions by pattern matching; also assume the definitions of the equality
type, and �.

We assume that Agda is consistent with any reduction strategy. Without
loss of generality, the reduction relation is just the call-by-value reduction,
i.e. it reduces the innermost term to which a reduction applies first.

In the following, it is explained what it is meant to add a built-in, and a
primitive function to some Agda code.

Definition (built-in function). Assume the following Agda code:

f ∶ A→ B
f a1 = b1

⋮ = ⋮
f an = bn

{−# BUILTIN C f #−}
Here f is defined by total pattern matching on the non-overlapping cases ai
of A, and bj are arbitrary terms of type B. Assume the (non-Agda) function

fC
external ∶ A→ B

mapping closed terms to closed terms, which corresponds to the built-in C.
The effect of this code is to add to the model a new constant f , and for each
i ∈ {1, . . . , n} the reduction rule

f ai Ð→ bi
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provided ai is an open term, and for closed terms a ∶ A

b = fC
external a

a reduction rule
f aÐ→ b

that takes precedence over the previous reductions.

Definition (primitive function). Assume the following Agda code:

primitive

f ∶ A→ B

and the non-Agda function

fexternal ∶ A→ B

mapping closed terms to closed terms, which provides the implementation of
f . The effect of this code is to add to the model a new constant f , and for
all closed terms a ∶ A

b = fexternal a

a reduction rule
f aÐ→ b

N.B. Primitive functions do not reduce on open terms.

The following theorem describes a subtle case relating to overriding func-
tions using the built-in mechanism that might lead to inconsistencies. Note
that in this thesis it is assumed that in any Agda the built-in pragma imme-
diately follows the function to be built-in.

Theorem 5.1.1 (Built-In Function Inconsistent). Assume consistent Agda
code, and extend it with a built-in function f ∶ A → B that is overridden by
an implementation fexternal ∶ A→ B such that both of the following hold:

• If there is a closed term a ∶ A and a defining equation of f of the form
f a = b, then b = fexternal a;

• There exists an element a ∶ A, such that f a reduces to a different result
from fexternal a.

Then the extended Agda code is inconsistent.
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The first condition of the above theorem is necessary, as seen by the
following: If a function f ∶ A → B has a defining equation of the form
f a = b for some closed a ∶ A, and it is overridden by fexternal, such that
fexternal a Ð→ b′. Then f a will always evaluate to b′ and we do not have
access to the defining equation f a = b any more. So after overriding, f
behaves as if it had the defining equation f a = b′.

As an example, consider the following consistent Agda code:

f ∶ N→ N
f 0 = 1
f (suc n) = suc (f n)
{−# BUILTIN IDENTITY f #−}

f ′ ∶ N→ N
f ′ 0 = 1
f ′ (suc n) = suc (f n)

Here, the functions f and f ′ are defined by the same case distinctions,
with f ′ intentionally referring to f on the right-hand side. The function f
is overridden by the identity function, which violates the first condition.

For closed terms f is replaced by the identity function, therefore, f 0
reduces to 0. It can not be derived that f 0 was defined to reduce to 1, and
hence, it can not be proved (provided the built-in pragma directly follows
f) that ∀n . f n ≡ f ′ n. See the following proof for more information.

Remark

Proof. Let f ′ be a function of type A→ B, which is defined in Agda by using
the same case-distinction as f , however at the right-hand side by referring to
f rather than recursively calling f ′. By using the same case-distinction as f
for f ′, it follows immediately that we can prove in Agda ∀x ∶ A . f x ≡ f ′ x
(since for an open term a, the definition of f is not overridden, and for a
defining closed term a, we have that f a and f ′ a coincide).

Let a ∶ A be a closed term, such that the original value of f a differs from
fexternal a. In the recursive evaluation of f a there must be a term a′ (which
can be a itself), such that f a′ is evaluated incorrectly by fexternal, but all
recursive calls used in evaluating f a′ are evaluated correctly. Therefore f ′ a′

returns the result of the non-overridden function f , whereas evaluating f a′

returns a different result (because it is being overridden). We obtain a proof



94 5.2. Extending The Built-In Mechanism

that f a′ ≢ f ′ a′, contradicting ∀x ∶ A . f x ≡ f ′ x.

Theorem 5.1.2 (Primitive Function Sound). Assume a primitive function
f ∶ (a ∶ A) → B, such that its implementation fexternal is definable (in princi-
ple) in Agda by a finite case-distinction, terminates for all closed terms, and
would pass the termination checker. Then if Agda was sound without f , it is
sound with f .

Should the result type of a primitive function f be empty for some ar-
guments, then Agda becomes inconsistent. Similarly should fexternal not
terminate for some arguments, then Agda becomes inconsistent.

Remark

Proof. Assume some Agda code, extend it by defining the function f ′, such
that f ′ is defined using the same case-distinctions and equations as fexternal

would be, but in Agda. Then for all closed terms f ′ and fexternal reduce to
the same normal-form. However for open terms f ′ will attempt to reduce,
and fexternal will not. Therefore the revised code proves more theorems than
the original code with f . Since the revised code is sound, the original code
is sound as well.

5.2 Extending The Built-In Mechanism

It became apparent that the built-in mechanism could be used to provide
an efficient implementation for decision procedures, especially for non-trivial
problems. A built-in decision procedure can call an external tool and re-
turn the result to Agda in one reduction step. This involves providing the
fromTerm function for the problem set and toTerm for the resulting value,
a number of equations that the decision procedure must fulfil, and a Haskell
function that replaces the decision procedure.

This is a significant amount of work as not only the three items listed
above are required, but also that all types referenced must be declared as
built-ins (requiring associated toTerm and fromTerm functions), and all func-
tions referenced must also be declared as built-ins (requiring axioms and
Haskell implementations).

In Section 5.3.1 this technique is applied to connect Agda with a SAT
solver. However, it soon became apparent that, for complex decision proce-
dures such as CTL model-checking, this technique would become unmanage-
able. This gave rise to the notion of pseudo built-ins.
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5.2.1 Pseudo Built-Ins

The motivation behind the introduction of pseudo built-ins is clearly seen
when overriding an Agda function (decision procedure) that refers to other
Agda functions. Without pseudo built-ins this requires to define these func-
tions and the functions they depend on as built-ins, because their axioms
and types can only refer to other built-ins.

Defining non-trivial Agda decision procedures as built-ins that depend
upon Agda functions is cumbersome for the following two reasons. The
first is the amount of effort/development time involved to define a decision
procedure as a built-in. The second is that dependent/large types have no
canonical translation into Haskell, and require hand crafted solutions.

The first issue is that the same decision procedure (built-in function) and
associated definitions are written three times, once in Agda, once Agda’s
source code as an axiom check (inc. type signature), and once in Haskell.
For example, consider the simple Agda function:

test ∶ N→ N→ Bool
test n m = n ∗ n <m ∧ n ≠ 0

To build it in, first, a Haskell implementation - which should behave equiva-
lently - must be provided. To mitigate any issues that the Agda and Haskell
implementations do not coincide, an axiom check is also specified. This ax-
iom check amounts to implementing the function a third time. That is, it
checks that the function test has the correct type, which in this case would
require that N and Bool are built-in types. It also checks that each defining
equation is defined correctly, which in this case checks that test n m is
definitionally equal to n ∗ n < m ∧ n ≠ 0. To formalise the axiom check it is
required that the terms used in the definition are also built-in, which in this
case includes ∗ , < , ≠ and 0.

In the above example, most of the auxiliary types/functions are already
built-in, however, for complicated decision procedures this is not the case.
Importantly, if the function is to be replaced by an external tool, then the
Haskell implementations of the auxiliary functions are never executed, re-
sulting in a wasted effort.

The second issue relates to the difficulties of building in dependently
typed functions. As an example, consider the atom function T ∶ Bool→ Set.
It is trivial to define it in Agda, and with a little bit of work, it can be defined
in the Agda source. However, defining it in Haskell is not canonical because
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Haskell does not support large types. Instead, it can be defined directly on
the internal representation of Agda terms (lists of lists); this amounts to
defining the same function as Agda would have constructed automatically
during type-checking, and more importantly, consistently.

Pseudo built-ins. To simplify building in decision procedures that depend
upon auxiliary functions, what is needed are constants, for which we can
enforce certain defining equations without the need for the implementation
to be overridden. These are called pseudo built-ins, however they could have
been called axiomatised constants. Pseudo built-ins behave the same as non-
built-in functions, i.e. they are not overridden; but they still have axiom
checks. Essentially, they are Agda functions that we ensure during type-
checking fulfil a number of defining equations (axioms), and in the same
way that built-in functions are associated to a tag, they are also associated.
Their purpose is to allow for the axiom check of the main decision procedure
to be formalised. Therefore, using pseudo built-in functions for auxiliary
functions alleviates difficulties with the decision procedure using dependently
typed functions, they also reduce the number of types that require toTerm
translations defined. As they are not overridden, there are less points in the
system that could cause inconsistencies.

For example, in Section 5.4, to ensure that a proof of the soundness of
the decision procedure is defined, a term of the following type is required
(which is also a pseudo built-in):

∀ϕ . T (check ϕ)→ ∀ξ . J ϕ Kξ

To formalise its type for the axiom check, requires that the function T is
built-in (i.e. referencable). For the issues discussed above, this function is
awkward to build-in, therefore, a pseudo built-in is used. This is achieved
by checking that T fulfils the axioms T true = ⊺ and T false = �, and then
associating T with a tag that can be used to later reference it. However, T
is never overridden by a Haskell implementation. In the case of T, the terms
true, false, ⊺ and � would also need to be built-ins (as they are referenced).

The pseudo built-ins allow significantly complex decision procedures to be
built-in with less work than before, because, all types and functions required
by a decision procedure are declared as pseudo built-ins instead of normal
built-ins. However, the decision procedure remains a normal built-in as its
implementation will be overridden by a Haskell function.
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5.3 Specific Branches

Two branches of the Agda source were taken, one that implements a connec-
tion to a SAT solver and the other to a CTL model-checker. These branches
have the necessary axioms, for the decision procedures they implement, hard
coded. These branches make use of both built-in and pseudo built-in tech-
niques.

5.3.1 SAT

The SAT branch facilitates a non-dependent version of the algorithm from
Section 4.1 to be defined as a built-in. This was the first attempt at con-
necting Agda to an external tool, and was implemented before the concept of
pseudo built-ins was formalised; thus all referenced functions and data-types
must also be built-in. Importantly, this was feasible for a non-dependently
typed näıve SAT algorithm due to the small number of lines of code required.

It involved defining Bool ∶= {true, false}, along with the functions ∧ ,
∨ and ¬ as built-ins. Here, it is clear that there is little (or no) advantage

when defining these trivial functions as built-ins, because there is an overhead
when translateing terms between Agda and Haskell. In the case of natural
numbers, which are already built-in, the max function was required, and it
is overridden by Haskell’s integer max function. The other built-ins added
relate to the decision procedure.

First, the set of Boolean formulæ are defined in Agda and Haskell as

BooleanFormula ∶= {true, false, ∧ , ⇒ , ∨ ,¬ ,var }

where the variables are indexed by N. The functions toTerm and fromTerm
are canonical maps between the constructors. Then the function

rank ∶ BooleanFormula→ N

computes the index of the largest variable in the Boolean formula, and the
function

instantiate ∶ BooleanFormula→ Bool→ BooleanFormula

which instantiates variable 0 with the second argument and shifts all other
variables down by one, i.e. maps variable x to x−1. Two decision procedures
are defined over BooleanFormula. The first is for formulæ with no variables,
however, as this is non-dependent, it is required to assume that all variables
encountered are assigned true. The second recursively makes a conjunction
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that instantiates variable 0 to true in one conjunct and false in the other, the
recursion is bounded by an arbitrary natural.

All the functions mentioned up-to this point must be built-in, and are
required to be implemented 3 times.

Finally, the top-level decision procedure is given by the decision procedure
for formulæ with variables, where the bound is given by the function rank
applied to the formula. This is enforced by an axiom check of the decision
procedure. The Haskell implementation of the top-level decision procedure
would call an external SAT solver, pass it the negated formula presented
in TPTP format [Sut09], wait for a result and return this result to Agda.
(See module Boolean.TPTP in Appendix F for the TPTP presentation of
a formula.) The result was either satisfiable (false), unsatisfiable (true), or
error; the error result would be presented to the user as a type-checking error.

This amounts to 9 new built-in functions, one data-type, and 7 construc-
tors, the Bool data type was already defined as a built-in. This required the
addition of approximately 626 lines of source code to a vanilla 2.2.8 Agda.
Listing of the SAT solver plug-in code is in Appendix D.

5.3.2 CTL

CTL model-checking theory as defined in Section 4.2 has significantly more
structure than SAT solving. Using only non-dependently typed structures
would have made the decision procedure and associated correctness proofs
significantly more complicated. The theory is built around finite state ma-
chines, which in turn are built over finite sets of numbers. In the following,
it is demonstrated how to build-in finite numbers.

Finite Numbers

Within Agda, finite sets (or enumeration sets) are defined using dependent
types as follows:

data Fin ∶ N→ Set where
zero ∶ ∀{n} . Fin (suc n)
suc ∶ ∀{n} . Fin n→ Fin (suc n)

These are represented in Haskell by a pair of numbers (x, y), where x is
the value, and y is the bound/size of the set. Elements of this are given by
the partial2 function mkFinNum which is only defined when x < y.

2Partiality is by the use of the Haskell term (undefined ∷ a), for all a. It acts like a
“bomb” that crashes the program when its value is computed.
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data Fin i teNumber = Fin Nat Nat

mkFinNum : : Nat −> Nat −> Fin i teNumber
mkFinNum n s | ( unNat n ) < ( unNat s ) = Fin n s

| otherwise = undefined

Assuming that the elements of FiniteNumber are only constructed by mk-
FinNum, then it is a simple matter defining finite numbers as a built-in data-
type. The fromTerm and toTerm functions destruct/construct the inductive
structure and are linear to the size of the number being translated.

Three built-ins were added, one for the type Fin, and one for each of its
constructors.

A key issue here is that these finite numbers are efficient to work with
as they are represented by machine integers, providing that a significant
computation is carried out by a built-in function. This is because Agda does
not support finite numbers in the internal syntax as literals in the same way
that it supports natural numbers. For example, consider the addition of two
finite numbers a b ∶ Fin n, there would be no advantage as these numbers
would have to translated into machine integers from a number of applications
of suc to zero, added together by hardware then translated back into an Agda
representation by applying suc constructor a+ b times to zero. These are the
same steps that would be carried out for addition when directly implemented
as an Agda function, in fact, slightly worse as b would be destroyed and re-
constructed instead of copied.

Moreover, this method of embedding a dependent type into Haskell is not
mechanisable. In general, there are better methods that do scale, such as the
approach identified by McBride in [McB02]. Recent versions of GHC with
generalised algebraic and promoted data-types allow for a limited, native
encoding of dependent products.

CTL Decision Procedure

The data-types for finite state machines and CTL formulæ were built-in.
The CTL formulæ required one built-in for the type and one for each of
the 8 constructors. The FSM’s required one built-in for the type, one for
the constructor and 6 pseudo built-ins for projections from the FSM. These
projections were required when constructing the types of subsequent built-
ins. None of the built-in functions return a FSM structure; thus it was not
required to implement toTerm on FSM’s. This meant that the process was
simplified as the Haskell representation of a FSM is an over approximation
due to dependent typed definitions in the Agda representation.

The two functions from Section 4.2.2 that added a sink state to the FSM
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and adjusted the formulæ were pseudo built-ins, one further pseudo built-
in was also required that ensured a proof of Theorem 4.2.4 (SinkCTL) was
given.

The remaining 9 built-ins implement the CTL decision procedure; all
except the top-level decision procedure are pseudo built-ins. These include
basic functions such as the Boolean operators ∧, ∨ and ¬; as well as more
complicated functions that check (finite) runs of the transition system for
properties. The implementation of these functions is hinted at in Section 4.2.

The final built-in is the top-level decision procedure. It is replaced by
a Haskell function which executes NuSMV [CCG+02]. This is implemented
in such a way that it first translates the CTL problem using the functions
mkSink and liftCTL. Then this problem is canonically translated into a
format that NuSMV understands by explicitly constructing the transition
relation, and the result is passed to NuSMV. The result of NuSMV is handled
with the same method as the SAT solver.

In total 32 built-ins were added (including 3 for the finite numbers), 3
types, 11 constructors, 11 pseudo and 1 traditional. This required 1,130 lines
of code added to a vanilla Agda 2.2.8, and the plug-in/CTL library required
1,300 lines of Agda code.

CTL Example

As an example of whole the process, from entering a CTL problem in Agda,
through to executing NuSMV, consider the transition system in Figure 5.2.
Suppose EX (P 0) is the property to be checked to hold in the initial state
1.

0
p0 ¬p1

1
¬p0 ¬p1

2
¬p0 p1

Figure 5.2: Simple Transition System

The problem is entered into Agda by creating an FSM and a CTL formula
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that represents these structures as follows:

M ∶ FSM
M = record {

state = 3 ;
atom = 2 ;
arrow = { 1↦ 2 ; ↦ 1 } ;
initial = 1 ;

transition = { 0 0↦ 0 ; 1 0↦ 0 ;
1 1↦ 2 ; 2 0↦ 1

} ;

label =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 0↦ true ; 0 1↦ false ;
1 ↦ false ; 2 0↦ false ;
2 1↦ true

⎫⎪⎪⎪⎬⎪⎪⎪⎭
}

problem ∶ CTLProblem
problem =M,1 ⊧ EX (P 0)

Here, CTLProblem is syntax that wraps up a compatible model, state and
formula. When these definitions are applied to the decision procedure, they
are implicitly given a sink state (state 0), and a new proposition 0 that only
holds in the sink state. That is, the model is applied to the function mkSink,
and the following model is obtained:

mkSinkM ≡ record {
state = 4 ;
atom = 3 ;
arrow = { 0↦ 1 ; 1↦ 2 ; 2↦ 3 ; 3↦ 2 } ;
initial = 2 ;

transition = { 0↦ 0 ; 1 1↦ 1 ; 2 1↦ 1 ;
2 2↦ 3 ; 3 1↦ 2

} ;

label =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 0↦ true ; 0 1↦ false ; 0 2↦ false ;
1 0↦ false ; 1 1↦ true ; 1 2↦ false ;
2 ↦ false ;
3 0↦ false ; 3 1↦ false ; 3 2↦ true

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

}

The above model and CTL formula are then automatically output in NuSMV
format, note that for technical reasons the non-referencable atomic proposi-
tion −1 is required:

MODULE main

IVAR

input : {0,1,2};

DEFINE



102 5.4. Generic Interface

labels := [{ -1,0},{ -1,1},{ -1},{ -1,2}];

VAR

state : {0,1,2,3};

INIT

state = 2;

TRANS

next(state) =

case

state = 0 & input = 0 : 0;

state = 1 & input = 0 : 0;

state = 1 & input = 1 : 1;

state = 2 & input = 0 : 0;

state = 2 & input = 1 : 1;

state = 2 & input = 2 : 3;

state = 3 & input = 0 : 0;

state = 3 & input = 1 : 2;

TRUE : 0;

esac;

SPEC

EX ((1 in labels[state]) & (EG (!(0 in labels[state]))));

It is seen from this output that an arrow (input) and state have been
added, the initial state is 2, and the transition (next) function is total. Each
state has a set of atomic propositions (labels) attached to it, for technical
reasons the set of labels for a state cannot be empty thus each set contains
the label ‘-1’. This label is non-referenceable in Agda, and hence by the
generated output.

The above output has a fixed number of outgoing arrows from each state,
but the Agda representation allows for different states to have different num-
bers of outgoing arrows. Using the sink state this is simulated: any arrow
taken that has not been defined in Agda will transition into the sink state
(via the catch-all clause ‘TRUE : 0’). As the formula has been adjusted not
to accept runs that pass-through the sink state this effectively simulates the
Agda representation.

5.4 Generic Interface

The insights from implementing SAT and CTL as plug-ins for Agda as de-
scribed in Section 5.3.1 and Section 5.3.2 highlighted a number of shortcom-
ings. The most notable was that the decision procedures, in order to preserve
soundness, required an axiom check which was equivalent to writing the deci-
sion procedure twice; once in Agda and once in Agda’s source code. Without
the pseudo built-ins, a third implementation would also be provided, namely
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a Haskell function implementing the built-in function; the pseudo built-ins
and motivation for them are discussed in Section 5.2.1.

This was thought to be an inhibiting factor of creating new plug-ins for
different theories because an intimate knowledge of Agda’s internals is re-
quired, and the ability/will to re-compile Agda. For this reason, a generic
interface was explored and implemented. It does not require any per plug-
in modifications to the Agda source code. The interface is implemented by
using pseudo built-ins to reference the necessary Agda terms.

The generic interface does not perform an axiom check of the decision pro-
cedure, but instead requires that a proof of correctness is provided. There is
also no possibility to determine whether the correct external tool is executed.

In Chapter 6 a sounder method is introduced. It is based on a different
method than this generic interface, where axiom checks are not required,
and the possibility of executing the wrong external tool is mitigated. How-
ever, the method presented here is faster for practical applications.

Remark

In total 6 pseudo built-ins and one standard built-in were added. The
standard built-in executes the external tool indicated by one of the pseudo
built-ins, and returns the result to Agda. Typically when defining a decision
procedure, the problem set is defined first, then the decision procedure is
given over this definition. This is modelled by the following two built-ins:

Problem ∶ Set

{−# BUILTIN ATPPROBLEM Problem #−}

DecProc ∶ Problem→ Bool

{−# BUILTIN ATPDECPROC DecProc #−}

The second built-in depends upon the first, if omitted, then the second built-
in will not type-check. In the case of SAT the problem set (Problem) is a
propositional formula, and in the case of CTL the problem set is a 3-ary
dependent pair of the model, state in the model and a CTL formula (that
depends on the model).

Evaluating DecProc executes the external tool. This requires that Agda
knows which external tool to execute, and how to translate Problem into a
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format that the external tool understands. This is achieved by the following
two built-ins:

Input ∶ Problem→ String

{−# BUILTIN ATPINPUT Input #−}

Tool ∶ String

{−# BUILTIN ATPTOOL Tool #−}

For completeness the sets Bool and String are built-in by the standard library.
In the interest of preventing malicious programs being specified, the tool

is only specified by an identifier. The Agda configuration has been extended
to allow for a selection of external tools to be specified by pairs of names and
paths, see Section 5.5 for more information.

This provides Agda with enough information to execute the external tool,
and wait for its response, but this is potentially unsound for the following
reasons:

• The tool might be inconsistent with decision procedure, or

• the translation (Input) might not be correct.

To mitigate these issues, we recommend that the translation of the problem
set into a string is canonical, and can be verified by a human. Any non-trivial
transformations such as adding a sink state in CTL (Section 4.2.2) should
be Agda functions, and should be proved to preserve correctness, although
this is not required. This is different from many other ATP/ITP integrations
that perform non-trivial translations outside the logic of the ITP, which is a
primary motivation for an external tool providing a justification that can be
mechanically checked. To increase trust that the input to the tool is correct,
it can be inspected and manually checked on-demand for a given problem,
this is because the translation is an Agda function.

If the tool is inconsistent with the decision procedure, this would be either
accidental or malicious. If malicious, this technique provides no support3;
moreover, any oracle based ATP/ITP integration is susceptible to malicious
attacks. In order to mitigate accidentally entering the wrong tool, i.e. a SAT
solver in-place of an SMT solver, there is also little support, but it is hoped
that the user will notice strange behaviours. However if the user constructs
the decision procedure incorrectly, then the interface does provide support.

3See the Linux command false, that always fails.
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The user provides the semantics of the decision procedure (probably by read-
ing from a book and entering it directly using Agda’s Unicode support), then
they must also provide a proof of correctness to enable use of the external
tool.

The proof of correctness is not required for the evaluation of the decision
procedure, but the intention is that it will assist the user to validate the plug-
in before using it. This means that if the user has worked hard in proving
that their decision procedure correctly implements their chosen theory, with
respect to the semantics which they also provide. Then there is significantly
less chance they would enter the wrong tool. It is recommended in the interest
of soundness that a certified tool is used, but a widely used and trusted tool
would also be admissible. The following three built-ins are now added:

Semantics ∶ Problem→ Set

{−# BUILTIN ATPSEMANTICS Semantics #−}

Sound ∶ (γ ∶ Problem)→ T (DecProc γ)
→ Semantics γ

{−# BUILTIN ATPSOUND Sound #−}

Complete ∶ (γ ∶ Problem)→ Semantics γ
→ T (DecProc γ)

{−# BUILTIN ATPCOMPLETE Complete #−}

Here, it is also required that the atom function (T) mapping Bool into Set
is a pseudo built-in that fulfils the necessary axioms, which in turn requires
that the unit type ⊺ and empty type � are built-in. To simplify what must be
built-in, the correctness proof is split into two functions Sound and Complete.
Otherwise, the product type would also have to be built-in. For a concrete
example, see the built-in pragmas in modules Boolean.CommonBinding and
Boolean.SatSolver of Appendix F.

When the function DecProc is reduced on an element of the problem set
γ, the type-checker will first ensure that Sound and Complete have been
provided and that the environment variable AGDA EXECUTE PERMISSION is
set. Then it will execute the external tool named by Tool. It first applies
the function Input to γ that yields a string in the tool’s input language.

The Boolean valued result is computed by examining the return value of
the tool. Should the tool return 0, a true value is used, should the tool return
1 then false is used; any other value results in a type-checking error being
raised and the tools output dumped into the log. These values were chosen
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to be in accordance with POSIX standards where 0 indicates success and 1
indicates failure. Typically it is required to write a simple wrapper for the
external tool that parses the output and sets the return values appropriately.
The implementation of DecProc is by the following Haskell function, albeit
with the technical details omitted and function names changed for clarity.
See Appendix D for the full code.

p r i m i t i v e D e c P r o c : : Term −> TCM Bool
p r i m i t i v e D e c P r o c t = do

p r i m i t i v e S o u n d
p r i m i t i v e C o m p l e t e
i n p u t <− p r i m i t i v e I n p u t t
t o o l <− p r i m i t i v e T o o l
path <− l ookupToo lPath t o o l
e x i t c o d e <− executeCommand path i n p u t
case e x i t c o d e of

1 −> return F a l s e
0 −> return True
−> t h r o w E r r o r

Here, the primitive functions reference the corresponding Agda term that was
tagged by the built-in declaration.

The generic interface has been tested with the SAT algorithm Section 4.1,
notably the dependently typed version was used which also simplified the
correctness proofs when compared to the non-dependently typed version.
It was also used to implement CTL model-checking, symbolic CTL model-
checking, and CTL model-checking of ladder logic programs, see Section 4.2,
Section 4.3 and Section 9.4.1, respectively. In the case of model-checking
a ladder, the function Input was replaced with an efficient translation that
preserved the original structure of the ladder, see Figure 9.7.

The implementation of this generic interface required adding 164 lines to
the Agda source code, circa development version 2.3.1.

Chapter 6 builds upon the generic interface presented here to facilitate
proof reconstruction, this yields a very high-level of soundness as it mitigates
issues where the wrong tool is executed.

5.4.1 SAT Evaluation

A number of experiments have been undertaken using the SAT solver plug-
in, some toy problems and an industrial test case. The toy problems were
used for testing purposes. Each toy problem consists of two data sets. The
first is for generating the formulæ, executing the external tool and exploring
the proof-object. The second set evaluates the same code as the first set
but does not execute the external tool. This triggers the inefficient decision
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procedure and typically will require exponential resources. Each of these
data sets consists of a number of plots, these are:

Total CPU time taken to type-check the file, this includes garbage collection
(GC) and waiting for the external tool to finish executing. CPU time
was chosen over the actual time taken (from the users perspective)
as the actual time is affected by a number of issues. These include
caching, page swaps, multiple cores4 and other processes competing
for resources. The remaining plots breakdown the total time into is
constituent components.

Mutator is the CPU time that was spent executing Agda’s Haskell code.
The mutator plot does not include the time that Agda waited for the
external tool to complete execution.

GC is the CPU time that was spent performing garbage collection while
running Agda, this statistic was gathered using the GHC RTS.

Tool is the approximate wall time5 that the external tool took to decide the
problem set. This include the time that wrapper scripts took to process
the output of the tool to determine satisfiability/unsatisfiability.

Two toy problems were used to explore the integration. The problems
were chosen to test different aspects of the integration. Problem set 1 is the
law of excluded middle, and problem set 2 are the first unsatisfiable instances
of the pigeonhole principle (PHPn+1

n ). Results relating to industrial problem
sets can be found in Section 10.5 and a full application in Chapter 11.

Problem set 1 explores the limit of the number of variables that a formulæ
can contain, such that the resulting proof-objects are feasible to explore.
In a nut-shell, the formulæ have the form

xn−1 ∨ ⋅ ⋅ ⋅ ∨ x1 ∨ x0 ∨ ¬(xn−1 ∨ ⋅ ⋅ ⋅ ∨ x1 ∨ x0)

where n is the size of the test. Let ϕn be the above formula. The
majority of SAT solvers can trivially solve instances of this formula
with many hundred variables as they uncover the underlying struc-
ture, namely the law of excluded middle. However, the näıve Agda

4Although Agda only uses one core, when executing external tools it is possible that
the operating system executes part of Agda (mainly GC) while waiting for the tool to
finish. This can result in > 100% core usage.

5The wall time is the total time taken for the external tool from the users perspective,
for example it includes paging and IO waiting.
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In early tests it was discovered that up to 95% of the total time was spent
performing garbage collection (GC), this was mitigated by rewriting the
tests/functions so they do not cause this undesirable behaviour from the
GC. For example, the following function induces a lot of GC:

f ∶ (n ∶ N)→ BooleanFormula n
f 0 = false
f (suc n) = var 0 ∨mapsuc (f n)

Here, mapsuc applies suc to each variable in the formula. The problem is
that the function continually creates and destructs Boolean formulæ which
is detrimental to the GC algorithm. This is because all Haskell terms are
immutable when in memory, so for each update the whole structure is
copied (in memory) before it is updated. The solution is to rework the
above function as follows to mitigate this issue:

f ′ ∶ (n m ∶ N)→ (g ∶ Fin n→ Fin m)→ BooleanFormula m
f ′ 0 g = false
f ′ (suc n) g = var (g 0) ∨ f ′ n (g ○ suc)

Remark

implementation of a SAT solver used in this work has the lower-bound
complexity Ω(2n).
A test of size n proceeds as follows,

• Type-check that

tautology-sound n ϕn tt ξ

has the type JϕnKξ, where ξ is the map {0↦ true ; ↦ false}. The
function tautology-sound is obtained from the correctness proof
of the SAT solver, see Theorem 4.1.2. The decision procedure is
triggered when type-checking:

tt ∶ T (tautology n ϕn)

If the decision procedure has been overridden by an external tool,
then the tool is executed here, otherwise the näıve decision pro-
cedure is executed.
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• The proof-object is computed by tautology-sound, and the instan-
tiate lemma (Lemma 4.1.1). However, as all the variables have
concrete values assigned by ξ, there is no exponential blowup, but
a tower of n applications of Lemma 4.1.1 is constructed. This has
a quadratic complexity. That is the following execution sequence,
for clarity some of the arguments are omitted as they are large.

taut-sound n ϕn tt ξ

↓

lem-inst n (taut-sound (n − 1) (inst ϕn (ξ 0)) tt (ξ ○ suc))

↓

lem-inst n (lem-inst (n − 1) (taut-sound (n − 2)

(inst (inst ϕn (ξ 0)) (ξ 1)) tt (ξ ○ suc ○ suc)

↓ ∗

lem-inst n (. . . (lem-inst 1 (taut-sound 0

(inst 1 . . . (inst ϕn (ξ 0)) . . . (ξ (n − 1))) tt (ξ ○ sucn))) . . . )

This is n applications of lem-inst to the Curry-Howard correspon-
dence. Each application of lem-inst performs induction over the
formula ϕn (or a partially instantiated instance).

• The resulting proof-object is explored to identify which variable
has been assigned true. The proof-object consists of a number
of applications of the sum type, so the exploration proceeds by
repetitively breaking open the proof-object into the left or right
until the variable which has been assigned true has been identified.

The tests are lazy, so if instead of setting variable 0 to be true, variable
n − 1 is set to true. This variable is the first to be inspected while
exploring the result, so the result is computed much faster.

See Figure 5.3 for a cubic plot when the näıve SAT solver is overridden
by Z3 [dMB08]; and see Figure 5.4 for a logarithmic plot when no
external tools are used. In both of these plots, the mutator plot is the
most significant as it is the actual time the type-checker required.

These plots show that connecting Agda to external SAT solvers yields
at least a 10 fold increase in the number of variables that an instance of
the excluded middle problem set can contain, whilst still being solvable
in the same (or less) time. Execution without the external tool is
exponential—it evaluates the näıve decision procedure. When using
the external tool Z3 the complexity is reduced to ≈ n3.15. It is not clear
why the complexity is worse than quadratic; possibly this is because
of a lack of sharing in the type-checker, or general inefficiencies in the
Agda source code. It is clear that as the size of the problem set grows,
then so does the percent of time spent performing garbage collection;
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Figure 5.3: This plot shows the type-checker executing Z3, time spent ex-
ecuting Z3 was a at most 0.03 seconds and is not plotted. Greatest total
time is 1660.69 seconds. 158 samples were taken, between 1-280 they were
alternate, between 280-330 every 5, and between 330-400 every 10.

this is because as the memory becomes full the garbage collection cycles
take longer6. For instance, the test with less than 100 variables spent
roughly equal time executing the type-checker and performing garbage
collection, but towards the end of the tests (circa. test 400) the garbage
collection required almost 50% more time than the type-checker, i.e. 610
seconds vs 1049 seconds.

Problem set 2 is the Pigeonhole principle. The pigeonhole is widely used
as a benchmark problem set for theorem provers, including SAT solvers,
due to its hard complexity. The pigeonhole formulæ are denoted by

6This is due to the computer memory (RAM) filling-up, and the garbage collection
algorithm reacting by compacting parts of the memory, see the GHC documentation for
more information.
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Figure 5.4: This plot shows the type-checker executing the näıve SAT solver.
The lower bound is 2n, and upper bound is slightly worse. The largest value
for total time is 3,018.48 seconds.

PHPn
m, which represents placing n pigeons into m holes. Each instance

has n ∗m propositions, pi,j, that represent pigeon i is in hole j. The
pigeonhole formulæ are defined as follows:

PHPn
m = (⋀

i<n

(⋁
j<m

pi,j))⇒ (⋁
i<n

(⋁
j<m

pi,j ∧ ( ⋁
i′<n∧i≠i′

pi′,j)))

This formula intuitively has the semantics that if n pigeons are placed
into m holes, then these exists a pigeon that shares its hole (with an-
other pigeon). Clearly when n >m, instances of PHPn

m are universally
true. The instances used are PHPn+1

n . These are the first unsatisfiable
instances, and also have the greatest complexity to prove.

The purpose of these tests is not to explore how large the problem is,
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but how the complexity of the problem affects computing a result. The
tests proceed in a similar fashion as the previous tests of problem set 1
did, however, instead of the test searching for which variable is assigned
true, it searches for which hole is occupied by more than one pigeon.
First, for a test of size n, the following is type-checked

tautology-sound n PHPn+1
n tt ξ ∶ JPHPn+1

n Kξ

where ξ is the map {pi,0 ↦ true ; ↦ false}, i.e. it puts all the pigeons in
hole 0. Hole 0 is the last hole to be inspected below, thus this results in
the worst case performance. The function tautology-sound is obtained
from the correctness proof of the SAT solver, see Theorem 4.1.2. The
decision procedure is triggered when type-checking:

tt ∶ T (tautology n PHPn+1
n )

If the decision procedure has been overridden by an external tool, then
the tool is executed here, otherwise the näıve decision procedure is
executed. The same comments as said for problem set 1 about the
computation hold here as well, i.e. that a tower of n ∗m applications
of instantiate are evaluated before a proof-object is obtained.

Inspecting the proof-objects of PHPn+1
n , yields a function that produces

a proof-object for any combination of n+1 pigeons being placed into n
holes. Further inspecting this second proof-object reveals a hole that is
shared by two pigeons. This inspection proceeds by repeatedly breaking
open the sum type into a left and right, until it has identified a pi,j that
shares its hole. However, it does not further explore the proof-object
to determine which pigeon shares its hole.

See Figure 5.5 for a logarithmic plot when the näıve SAT solver is
replaced by Z3. See Figure 5.6 for a logarithmic plot when no external
tools are used.

These plots also show a significant speedup when using an external
tool to solve the problem set. When no external tool was used it was
not possible to explore instances that had more than 4 holes due to
lack of resources. For this reason, it was not possible to analyse the
results in full or construct a meaningful plot in Figure 5.6; it is however
presumed to be exponential. In Figure 5.5, for n ≥ 9, the majority of
the time is used by the external tool. It is clear that solving instances
of PHP require exponential time for Z3, inspecting the proof-objects
also required exponential time, although of a lesser magnitude.
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Figure 5.5: This plot shows the type-checker executing the external tool to
solve instances of the PHP problem set. The majority of the time spent was
for the external tool to solve the problem. The largest value for total time is
23,527.56 seconds.

Test Platform

All tests were carried out on a x86 64 GNU/Linux (Ubuntu Lucid) that had
a x86 64 GHC 7.0.4. Agda 2.3.1 dated “Thu Feb 2 09:24:47 GMT 2012”
was used for the tests, it was patched using the techniques described in
this thesis. The GHC run-time system was provided with the option -M7G

which specifies the maximum heap that can be allocated, this maintained
efficient computations during type-checking by preventing use of the swap
space. When the maximum heap is specified the GHC GC algorithm changes
its behaviour, once > 30% of the heap is used. These changes result in an
increased time performing GC, but less heap usage. More information can be
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Figure 5.6: This plot shows the type-checker solving instances of the pigeon-
hole problem. The largest value for total time is 9,795.36 seconds.

In Figure 10.3, the time statistics of applying the verification framework
considered throughout this thesis to an industrial problem are not com-
petitive. In part, this is because the formula representing the problem set
is generated by a function from a large data-type, and thus it must be nor-
malised twice, once for the type, and once for the soundness proof/SAT
solver.

Remark

found in the GHC documentation7 under “compacting garbage collection”.

More technical notes about the hardware: dual core CPU at 3GHz, 4MB
cache; 8GB of dual channel RAM at 800MHz.

5.4.2 CTL Evaluation

A number of experiments were made with toy problems, such as the Pelicon
crossing. Although even with a state space of size 3, Agda was unable to
inspect the proof-object obtained. It was possible to execute the model-
checker (NuSMV) successfully on the Pelicon crossing, but Agda was unable

7http://www.haskell.org/ghc/docs/7.0.4

http://www.haskell.org/ghc/docs/7.0.4
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to inspect any proof-objects within the given time limit. This is due to the
highly inefficient decision procedures that were used, and the fact that the
decision procedure is written mutually recursively. So it will execute parts
of the näıve decision procedure while inspecting the proof-object. This is
orthogonal to SAT where the decision procedure is not mutually defined,
so each recursive call is replaced by a call to the SAT solver, resulting in
significant performance increases.

Moreover, the various CTL interfaces used were never able to verify a
substantial problem set of the industrial test case of an interlocking system
written in ladder logic (cf. Section 9.2). The problem was translated into the
tools input language by preserving as much of the structure of the original
program as possible; that is a Boolean variable in the program mapped to
a Boolean variable in the model, and assignments to these variables formed
part of the transition function in the model. This failure to verify an actual
interlocking system was due to the chosen model-checker (NuSMV) failing to
terminate successfully within a generous amount of time. It was left running
for ≈ 6 weeks, after which time execution was halted due to a segmentation
fault. A number of different command line options were given to NuSMV,
but they were unsatisfactory.

In conclusion, it became apparent that the CTL interfaces in their current
form are unusable. For small toy problems, inspecting the proof-object is not
feasible; and for larger problems, executing the external model-checker was
not possible. In the next chapter, where certificates produced by external
tools are checked, it is not clear what the resulting certificates for CTL model-
checking would be, and whether Agda would have had enough resources to
check them.

5.5 Security

The issue of securing against malicious code execution has not been dis-
cussed yet, with the exception of a reference to the environment variable
AGDA_EXECUTE_PERMISSION.

By security, it is meant that it is not possible while type-checking an
Agda module that a malicious program is executed. This is significant be-
cause type-checking a function, could require that other functions are evalu-
ated. If the function being checked references the built-in decision procedure
described previously, then it will execute the external tool. It is undesirable
to download an Agda module, which, while type-checking, executes some
malicious program, such as wiping the users home directory.

To prevent malicious programs from being executed consideration needs
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to be payed to where the path to the executable is stored. In the specific
branches, the program path is hard-coded into the Agda source code, and
would require recompilation to change it. Securing a path by recompilation
is secure enough for the average user, while still allowing the power-user to
customise the program path.

The generic branch has the goal of not requiring to be recompiled for
different solvers. Thus, the program path cannot be stored in the Agda
binaries. Instead, two layers of security are applied the first disables the
ability to execute external tools without having first explicitly enabled the
functionality, and the second abstracts the path of the external tool out of
the Agda modules.

The first layer disables/enables the ATP interface; it prevents accidental
use of the interface without the user having explicitly enabled it. It is im-
plemented by using the environment variable AGDA_EXECUTE_PERMISSION, it
could equally have been implemented by adding a command line flag. If this
variable is undefined, then type-checking any expression that requires the
external tool will result in a descriptive type-checking error. The value that
this variable is set to does not matter, although, during development, the
value 1 was always used. When using Emacs mode, the variable can easily
be set using the following command sequence

M-x setenv RET AGDA_EXECUTE_PERMISSION RET 1 RET

and then reloading Agda.
The second layer abstracts the path of the tool from the name of the

tool; it is intended to prevent malicious programs being specified in the Agda
modules. It works by configuring Agda with a list of paths and names, then
the built-in string ATPTOOL references these names. The point is that the
configuration of these names and paths is disjoint from the Agda modules.
So in an Agda module, only the name of a tool is specified, and not the path.
This means that the existing pragma system in Agda is not sufficient as the
pragmas are specified in the modules. Also, using command line arguments
is not sufficient as the Emacs mode does not use them. It is required that the
configuration of the paths cannot be changed during an execution of Agda as
this could result in inconsistencies. So it was decided to implement this layer
by a further environment variable AGDA_EXTERNAL_TOOLS, that is formatted
as follows:

tool1=path1;tool2=path2;...;tooln=pathn

This means that there is no possibility of updating the list of paths without
modifying the variable and restarting Agda. As this variable must be for-
matted, as described above, the Emacs mode was extended to configure the
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variable. Then, before GHCi/Agda is executed, it sets the variable accord-
ingly. The variable is configured in Emacs mode by

M-x customize-group RET agda2 RET

then scrolling down to Agda2 External Tools, and expand it to edit. For
example after configuring Agda to call Z3, the configuration might look like:

Agda2 External Tools: [Hide Value]

[INS] [DEL] Cons-cell:

Tool Name: z3

Executable Path: /opt/bin/z3

[INS]

[State]: SAVED and set.

Names and paths of external tools.

New tools are added by using the [INS] button, and old tools are removed
by the [DEL] button.

5.6 Experimental Modifications

Understandably, a number of different modifications were thought-out, and
some were implemented.

5.6.1 Basic Profiling by Counting

During the early phase of the project, there were a number of occasions
where it was not clear why type-checking certain definitions, particularly
in relation to decision procedures and the proofs of correctness was very
time consuming. In many of the cases, the definitions could be checked by
hand in a fraction of the time Agda took, due to knowing when and where to
normalise a term. This is a well-known issue with Agda, and there is no clear
solution. Currently the recommended solution is to place the troublesome
definitions into an abstract block to inhibit the unfolding.

To help diagnose these problems and pinpoint the definition that was
being unnecessarily normalised, a profiling feature for the type-checker was
thought-out and implemented. This entailed adding a pragma to the Agda
language which would match a regular expression against each function as
it was unfolded. If the function name is accepted by the regular expression,
then a counter is incremented. Each function has its own counter8. After

8The counters were provided by adding a hash-table to the type-checking monad that
mapped Agda terms (functions) to integers.
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type-checking, normalising a term, or inferring the type of a term, a tabular
printout was placed into the log window that showed the matched functions
and number of times they were unfolded. The pragma is of the form

{−# OPTIONS --regex-profile REGEX #−}

where REGEX is a regular expression. The pragma is placed in the preamble
of the file to be type-checked, or given at the command line in the same way
that the other pragmas are.

This profiling provided a limited method of exploring a computation in
Agda, it was particularly adept at identifying functions that were applied
many times. However, after this profiling had been applied a number of
times it became apparent that it was simpler and faster to identify these
terms by hand.

5.6.2 AIM – XIII

During Agda’s Implementers Meeting (AIM) XIII, I participated in two small
projects, both of which were accepted into Agda’s source code. The first was
to refactor the built-in mechanism as it was now being used in ways that
it was never intended, and the second was to implement anonymous case-
distinctions by extending lambda expressions.

Refactoring Built-Ins

The other participants were Nicolas Pouillard and Simon Foster who where
both also interested in exploring an expansion of built-ins. The problem
was that the machinery for the built-in system was originally intended to
provide support for machine integers and strings, but soon grew (as did Agda)
to support a number of advanced concepts such as propositional equality
and co-algebraic data-types9. Although these features worked, they were in
many cases hacked into Agda one-by-one resulting in code that was hard to
understand, spread through many files and hard for normal users to modify
for their own experiments.

We collated details about all the official built-ins that were in the Agda
source code, along with our own views of uses of built-ins such as pseudo
built-ins. Using this information 5 categories of built-ins were defined.

Data Types This includes the types of natural numbers and Booleans,
given by a type (typically Set) and a list of constructor names. The

9These features are only fully supported by the type-checker once the correct definitions
are given and declared as built-ins.
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term tagged by one of these built-ins is then checked that its type
matches the given type and that it has the correct number of construc-
tors.

Constructors Almost self explanatory, this includes the constructors of
data-types; each constructor is given by a type. The term tagged by
one of these built-ins is then checked that its type matches the given
type and that it is a constructor.

Primitive These are built-in functions that have a primitive (Haskell) im-
plementation that replaces them for closed terms. These are given by
their primitive implementation (from which the type is derived) and an
axiom check, that if fails results in a type-checking error.

Postulates In Agda, there are a small number of types that are provided
as black boxes such as Strings and floating point numbers. These are
only used for communicating with the underlying system, i.e. when
performing IO in a compiled program. It is possible to compute with
these types, but only using primitive functions. These are defined as
postulated built-ins and are only given by a type.

Other Anything built-in that does not fit into a previous category is put
into the unknown category. This category has an optional type and an
optional axiom check. The pseudo built-ins are implemented using this
category by giving a type but omitting the axiom check. Moreover, this
category can be used just to tag an arbitrary term in Agda by omitting
the type and axiom check.

This facilitated one large list of all built-ins (except co-inductive) in Agda.
More importantly it has simplified the process of adding custom built-ins—
without intimate knowledge of Agda’s internals—which is of benefit to the
whole community.

These changes resulted in removing 57 lines from the Agda source code.
The only noticeable change was that the IO type now had to be declared as a
built-in, as it had previously been hacked into Agda. The work of refactoring
the built-ins took two days.

Extended Lambda Expressions

The other participants were Fredrik Forsberg and Noam Zeilberger. Pre-
viously Agda only allowed simple lambda expressions, that in all but the
absurd cases did not allow for case-distinction. That is,

λ x0 . . . xn−1 → t
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and

λ x0 . . . xm−1 ()

were valid expressions. This had the limitation that a non-absurd case-
distinction on xi was not possible. Moreover, the only method of performing
a case-distinction in Agda was as part of a function definition, and their was
no provision to include case-distinction within a term. Thus, we introduced
new syntax that allowed for anonymous functions/in-line case-distinctions
within terms. These had a very natural form of

λ { true→ t1 ; false→ t2 }

in the case of Booleans and in the case of natural numbers:

λ { zero→ t1 ; (suc x)→ t2 }

Before explaining how these were implemented, a brief outline of Agda’s
internal structure is required. There are three layers of syntax, first is a
concrete representation of the file being type-checked. The second is a pre-
processed syntax that aims to simplify the type-checking by normalising the
input. The final layer is the result of type-checking the preprocessed input.
It is also necessary to provide reverse translations (although not necessarily
consistent) when presenting information/errors to the user. These layers can
be seen in Figure 5.7.

Concrete Syntax (Parse Tree)

Abstract Syntax (Preprocessed)

Internal Syntax (Type-Checked)

Type-Check

Figure 5.7: Agda’s syntax architecture, based on notes taken from Andraes
Abel (an Agda developer) at AIM XIII.

To implement the extended lambda expressions, the concrete and ab-
stract syntaxes where extended with the extended lambda syntax. When
translating from concrete to abstract syntax, a fresh function is generated
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that realises the extended lambda, including its case-distinction. When type-
checking the abstract syntax, the abstract lambda terms behave as function
call sites.

There were still two issues remaining. The first is the reverse direction
used for pretty printing, this required identifying which functions had been
implicitly generated, and replacing their pretty print functions by an ex-
tended lambda pretty print. A second issue was the Emacs mode. It required
modifications to enable support for interactive case-distinctions of extended
lambdas. As the extended lambda’s are already treated as functions inside
Agda, the simplest option was to take advantage of this, and tweak the output
(by string manipulations) in the Emacs mode. That is, the case-distinction
procedure is called as normal, but before updating the Agda file with the
output, for each case, the function names are dropped, the ‘=’ are replaced
by ‘→’, and the ‘\n’ are replaced by ‘;’.

5.7 Concluding Remarks

In this chapter, a number of modifications to Agda have been presented.
These include (with respect to integrating external tools) two specific bran-
ches of SAT and CTL interfaces that offer high-levels of soundness due to
the axiom check that is performed, and a generic interface that trades some
soundness for usability. In the case of the SAT interface, a numerical analysis
has been presented.

There were also experimental modifications that include the addition of
extended lambda expressions, re-factoring of the built-in machinery and basic
profiling of the head normal-form reductions.

5.7.1 Built-In Algebraic Data

If possible, adding built-in data-types should be avoided for two reasons:
first if not done carefully, they can result in lower performance (with the
exception of a few literals that Agda supports in the internal syntax) due
to needless toTerm/fromTerm calls. Secondly, mapping dependently typed
data to Haskell data (and back) must be done carefully to ensure consistent
computations. See the previous discussion of declaring finite numbers as
built-ins in Section 5.3.2.
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5.7.2 Future Work

On the technical side, there are two more areas that would have been benefi-
cial to explore. First, creating a modularised plug-in interface, and secondly
using the quote goal feature to discover formula codes.

Externalised Plug-In Interface

As future work, it remains to implement a plug-in mechanism for external
ATP tools. The idea being that all built-in data-types and functions are
defined in pseudo-Agda files. These files are implicitly loaded and type-
checked when a built-in pragma is found. This type-checking would enforce
the axiom and inductive checks on functions and data-types, respectively.

This file would also define the corresponding Haskell and Agda terms,
and any dependencies between built-ins.

For instance the natural numbers are characterised by their induction
principle.

(A ∶ N→ Set)→ A 0→ (∀n . A n→ A (suc n))→ ∀n . A n

This would be proved (trivially) for a standard definition of the natural
numbers, and contained in the pseudo-Agda file as follows:

f ∶ (A ∶ N→ Set)→ A 0→ (∀n . A n→ A (suc n))→ ∀n . A n
f A p q 0 = p
f A p q (suc n) = q n (f A p q n)

When type-checking the built-in pragma for natural numbers, the above def-
inition (and proof of) would be type-checked. The only significant issue here
is a mapping between the names (0, suc, N) used by the definition being
built-in, and those used in the pseudo-Agda file.

Furthermore, in the case of addition on natural numbers, there are two
defining equations. Therefore, the two formulæ contained in the pseudo-Agda
file that must be type-checked are:

(A ∶ N→ Set)→ ∀ n . A (n + 0)→ A n

and
(A ∶ N→ Set)→ ∀ n m . A (n + (suc m))→ A (suc (n +m))

Provided + is defined correctly, then the proofs of these formulæ are trivial.
For instance the following two functions are defined:

g ∶ (A ∶ N→ Set)→ ∀ n . A (n + 0)→ A n
g A n p = p
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h ∶ (A ∶ N→ Set)→ ∀ n m . A (n + (suc m))→ A (suc (n +m))
h A n m p = p

Here, there is as well an issue of mapping the + from the function being
built-in, to the pseudo-Agda file. There is also the added complexity that
addition depends upon the natural numbers being built-in first, thus (0, suc,
N) also need to be mapped to the relevant terms.

Quote Goal

Another area that could be explored is to use the quote goal feature of Agda.
It is a language construct that provides access to an internal representation
of the current goal. This representation is given by a built-in data-type of
terms, such as literals, applications and variables.

It was suggested by Makoto Takeyama (an Agda developer) that the quote
goal mechanism could be used to analyse the given goal, and generate a code
of the formula representing the original problem, which could be passed to
an external tool to determine the validity. That is, given the problem of
proving T (p ∨ ¬p) always holds for some p ∶ Bool, the quote goal would
give the underlying term, such that is possible to deduce that T is applied
to p ∨ ¬p, ∨ is applied to p and ¬p, and that ¬ is applied to p. Thus, it is
possible to generate a propositional formula representing this goal, namely
p ∨ ¬p. Currently, when these codes are needed they are manually entered
into the soundness proof.

Quote goal should be compatible with our technique. It is already used
for the purpose of producing formulæ for solvers, e.g. the ring-solver in the
standard library.
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Chapter6
Reconstructing Justifications

The ATP integration approach (Oracle + Reflection), which has been de-
scribed so far, is limited in that it assumes that the external tool operates
correctly. However, there are occasions where an exceedingly high-level of
assurance is required, and assuming that the tool operated correctly is in-
sufficient. For these cases, the (Oracle + Justification) approach was imple-
mented: that is the justifications produced by the external tools are checked
to be correct and converted into proofs. The implementation is based on the
work of Armand et al. in [AGST10], where Coq [The04] was extended by a
function that would call the SAT solver zChaff [MMZ+01], and then type-
check the resulting refutation proof. However, our implementation is more
generic as it allows for the justifications to give a direct proof (i.e. natural
deduction), as well as a proof by refutations.

In this chapter, techniques are built-up that allow this interface to be
defined in type theory, and then an example is presented of integrating
the propositional fragment of the first-order theorem prover eProver [Sch02,
Sch04]. eProver was used to generate a propositional calculus proof for a
propositional Agda formula. By proof it is meant a data structure represent-
ing a derivation in a natural deduction system [Pel99, Gen35]. The proof
is then type-checked to obtain a proof-object. There are many SAT solvers
that emit refutation traces, but few that include in the derivation, details
of how the formula was translated into a conjunctive normal form (CNF).
These low-level justifications were the motivation for selecting eProver. This
is because it mitigates having to write an Agda function to translate for-
mulæ into CNF efficiently and in a way that preserves enough structure of
the original problem to help the solver.

Chapter Overview. First, in Section 6.1 an Agda model of an abstract
inference rule system is provided. In Section 6.2 the details of how to soundly
connect an instance of this rule system to an external tool are discussed.
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Finally in Section 6.3, the specific case of successfully integrating eProver is
discussed and results are presented.

6.1 Inference Rule System

The proof reconstruction interface has been designed to be generic, such that
it is possible to embed an arbitrary logic based on inference rules, provided
the logic is provable in Agda. The rule systems specified here form a nat-
ural deduction system, and the proofs in this system are represented by a
list of derivations. To simplify the process of interpreting the obtained jus-
tifications, the definition of a derivation rule is in two parts: a syntactical
correctness check, and a soundness proof. The correctness and soundness of
the rules are then lifted to the derivation lists. Such that from a proof of
the correctness of a derivation list applied to the soundness proof an Agda
proof-object is obtained for the theorem proved by the derivation.

The following has all been formalised in Agda, see module Proof.List in
Appendix F.

Remark

First the logic that the external tool is built over (e.g. propositional logic)
requires formalising. The logics are defined by a set of formulæ Φ, a set of
environments Ξ, and a semantic relation J ⊧ K between the environments and
formulæ. In the following it is assumed that the formulæ in Ψ are sequents,
however, this is not made explicit until later sections. This is a similar
definition to that described in Chapter 4.

For a given logic, a rule system ∆ is defined. They are defined by a set of
inference rules. These inference rules are formalised by a set of rule identifiers
∆ids , and the semantics of the rules are given by the following two functions.
The first assigns an arity to each rule:

arity ∶ ∆ids → N

The second defines a decidable correctness relation on inferences of the rules.
That is, from the correct number of correct premises, the result is correct.

correct-rule ∶ (δ ∶ ∆ids)→ VecΦ (arity δ)→ Φ→ Bool

This function typically checks that an inference of the rule is syntactically
correct, and must be decidable by the type-checker (hence the result is Bool
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and not Set), or the proof reconstruction will fail. Determining the correct-
ness of the rule’s application by syntactical methods requires that Φ has
decidable propositional equality, i.e.

==Φ ∶ Φ→ Φ→ Bool

The way that the correctness check has been specified above means that
the bookkeeping of assumptions must be internalised into Φ. This is
because each rule is considered in isolation and does not know the context.
In most cases, this will result in Φ being defined as a sequent. There are
situations where assumptions are not required, for example, resolution
proofs in SAT.

Remark

Finally, the soundness of the rule system must be proved. The soundness
will reify from a proof that the rule has been correctly used, a function
that takes the correct number of semantic arguments (premises) and yields
a semantic object (conclusion). The soundness of a rule system ∆ is given
as follows:

sound-rule ∶ (δ ∶ ∆ids)
→ (premises ∶ VecΦ (arity δ))
→ (conclusion ∶ Φ)
→ T (correct-rule δ premises conclusion)
→ Vec∗

λϕ→∀ξ . J ξ⊧ϕ K premises

→ ∀ξ . J ξ ⊧ conclusion K

Here, Vec∗fv is a dependently typed vector whose length is determined by
the vector v, the types of the elements in Vec∗fv are defined by the family f
which is indexed by elements in v. For instance, the ith element in Vec∗fv has
the type of the ith element in v applied to f . It is defined as follows:

data Vec∗ ∀{A} . (F ∶ A→ Set) ∶ ∀{n} . VecA n where
[] ∶ Vec∗F []
∷ ∶ ∀{n a} {v ∶ VecA n} . (x ∶ Fa)→ (xs ∶ Vec∗F v)→ Vec∗F (a ∷ v)

Derivations in ∆ are then defined as simply typed syntactic objects, rep-
resented by a list of proof nodes. Each proof node in the derivation represents
an application of a rule to a list of numeric references to previous points in
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In the following, the use of simple types was initially because of a techni-
cal restriction when interfacing with Haskell code (via the built-in mech-
anism). Subsequent improvements meant that this restriction vanished,
but it was observed that preserving the simple typed definitions resulted
in better performance.

Remark

the derivation list, which form the premises; and to a formula that is the
conclusion of the rule. Thus, the proof nodes only depend on the sets ∆ids

and Φ and do not enforce correctness.

record ProofNode∆ids

Φ ∶ Set where
constructor

proofnode
fields

rule ∶ ∆ids

formula ∶ Φ
premise ∶ VecN (arity rule)

A (possibly incorrect) derivation is then canonically given as a list of nodes.
That is

ProofList∆ids

Φ = List ProofNode∆ids

Φ

where the head of the list is the first derivation, and the last node in the list
is the conclusion.

It is then possible to define the correctness of a derivation with respect
to the correctness defined in the rule system.

correct-list ∶ ProofList∆ids

Φ → Bool

This proceeds by structural induction over the list, checking that each node
references valid premises that occurred previously in the derivation, and that
the premises and conclusion have the correct syntactical structure. The in-
tuition is that this correctness check can be executed implicitly by the type-
checker to determine if the external tool’s output is a correct derivation.

Assume a theorem ϕ ∶ Φ, a derivation of ϕ is a correct proof list l, such
that ϕ is the conclusion of root of the list.

derivation ∶ Φ→ ProofList∆ids

Φ → Bool
derivation ϕ [] = false
derivation ϕ l = ϕ ==Φ formula(last l) ∧ correct-list l
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From a proof that the list is correct it is possible by using the sound-
ness proof of each rule to reconstruct a proof-object of the desired theorem.
This proceeds in the same method as checking the correctness, i.e. by struc-
tural induction over the list. By Theorem 6.1.1, a function of the following
signature is obtained.

sound-list ∶ (ϕ ∶ Φ)→ (l ∶ ProofList∆ids

Φ )
→ T (derivation ϕ l)→ ∀ξ . J ξ ⊧ ϕ K

Theorem 6.1.1. Assume theorem ϕ, let l be a derivation of ϕ in a sound
rule system such that derivation ϕ l holds, then

∀ξ . J ξ ⊧ ϕ K

holds.

Proof is by simple induction on l; it then follows by the proof of correct-
ness and soundness for each rule.

6.1.1 Classical Propositional Logic

To illustrate the use of the rule system, consider the standard example of
classical propositional logic. A full formalisation of this section is in module
Proof.PropLogic of Appendix F. Although canonical, for completeness the
inference rules of classical propositional logic are repeated in Figure 6.1. The
propositional formulæ used are a simply typed variant of the propositional
formula defined in Section 4.1, where the variables are indexed by natural
numbers instead of finite numbers. As the inference rules require that as-
sumptions are made, the set of formulæ are defined in sequent-style. That is
the set of formulæ Φ is given by pairs of contexts (given by a list of formulæ)
and a formulæ. To aid readability a sequent is defined using the following
data-type:

data [ ⇒ ] (A ∶ Set) (B ∶ Set) ∶ Set where
⇒ ∶ List A→ B → [A⇒ B]

The set of formulæ Φ is defined as follows:

Φ = [BooleanFormula⇒ BooleanFormula]

The environments are functions mapping natural numbers to Boolean values.

Ξ = N→ Bool

The semantic relation is canonical with respect to propositional logic, Curry-
Howard isomorphism, and the environment.
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Γ1 ⇒ ϕ Γ2 ⇒ ψ

Γ1 ∪ Γ2 ⇒ ϕ ∧ ψ ∧+ Γ⇒ ϕ ∧ ψ
Γ⇒ ϕ

∧−l
Γ⇒ ϕ ∧ ψ

Γ⇒ ψ
∧−r

Γ⇒ ϕ

Γ⇒ ϕ ∨ ψ ∨+l
Γ⇒ ψ

Γ⇒ ϕ ∨ ψ ∨+r
Γ1 ⇒ ϕ ∨ ψ Γ2 ⇒ ρ Γ3 ⇒ ρ

Γ1 ∪ (Γ2 ∖ {ϕ}) ∪ (Γ3 ∖ {ψ})⇒ ρ
∨−

Γ⇒ ψ

Γ ∖ {ϕ}⇒ ϕ→ ψ
→+ Γ1 ⇒ ϕ→ ψ Γ2 ⇒ ϕ

Γ1 ∪ Γ2 ⇒ ψ
→−

Γ⇒ �
Γ⇒ ϕ

efq
Γ⇒ �

Γ ∖ {¬ϕ}⇒ ϕ
raa

Γ ∪ {ϕ}⇒ ϕ
ax

Figure 6.1: Classical Propositional Inference Rules

These 11 rules represent an instance of the rule system. Each rule has an
identifier and an arity, which are canonically definable from Figure 6.1, i.e.

∆ids = {∧+,∧−l ,∧−l ,⋯, raa,ax}

and

arity = {∧+ ↦ 2 ; ∧−l ↦ 1 ; ∧−l ↦ 1 ; ⋯ ; raa↦ 1 ; ax↦ 0}

The formation of these rules define the syntactical correctness of the rule sys-
tem. Restricting the contexts in the conclusion of a rule instead of explicitly
weakening the context of the respective antecedents was chosen to simplify
the Agda implementation. The correctness is formulated as follows:

correct ∧+ [Γ1 ⇒ ϕ1,
Γ2 ⇒ ϕ2

] (Γ3 ⇒ ϕ3) = (ϕ3 ≡ (ϕ1 ∧ ϕ2)) ∧ (Γ1 ++Γ2 ⊑ Γ3)

correct ⋮ ⋮ ⋮ = ⋮
correct raa [Γ1 ⇒ ϕ1] (Γ2 ⇒ ϕ2) = (ϕ1 ≡ false) ∧ (Γ1 ∖ (¬ϕ2) ⊑ Γ2)

where

[ϕ1, ϕ2, . . . , ϕn] ⊑ [ψ1, ψ2, . . . , ψm] =
n

⋀
i=1

(
m

⋁
j=1

ϕi ≡ ψj)

and

[ϕ1, ϕ2, . . . , ψ, . . . , ϕn] ∖ ψ = [ϕ1, ϕ2, . . . , ϕn]

Note that the omitted cases of the correctness follow trivially from Figure 6.1
by appropriately reusing/modifying the above definitions.
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All that remains is to show the soundness of each rule. As Agda is based
on intuitionalistic type-theory, all of these rules except reductio ad absurdum
hold in general and follow by the Curry-Howard isomorphism.

In the case of reductio ad absurdum (raa), it is required to show that the
law of excluded middle holds for propositional formulæ intuitionalistically. It
trivially holds for atomic propositional formula (by case-distinction), and is
shown to hold for the propositional connectives, if it holds for their operands.
Therefore by induction it holds for arbitrary propositional formula, and is
used to prove soundness of the raa rule.

Thus from a derivation for the theorem [] ⇒ ϕ that is proved to be
syntactically correct, a proof-object of the form ∀ξ . J ξ ⊧ ϕ K is obtained.

It should be noted that SAT solvers do not typically emit derivations using
this set of (low-level) rules; instead their derivations are high-level functions
that compute normal-forms and introduce intermediate variables that are
equivalent to sub-formulæ. This is the case of eProver and is discussed in
Section 6.3. However, first (in the next section) it is discussed how to connect
Agda in a sound way to external tools to obtain a ProofList.

6.2 Primitive Implementation

This section explains how to implement the (Oracle + Justification) approach
described in Section 2.3.1. Note that this is orthogonal to the (Oracle +
Reflection) approach presented in previous chapters.

The implementation presented here is based upon the work of Armand
et al. [AGST10] where they used reflexive methods to type-check SAT solver
traces in Coq. This entailed writing a Coq program that had as inputs a
clause set and a refutation trace produced by zChaff, and then determined
whether the refutation trace was correct with respect to the clause set. This
program was then executed by Coq after the SAT solver had been executed
to determine the correctness of the result. See Section 2.3.1 for more infor-
mation on the general technique. The paper also presents promising results
that compete with the current gold standard of proof reconstruction in ITP
tools.

In this work, the implementation is abstracted from the concrete ATP
theories. This has the advantage that a simple bidirectional interface is
provided to connect Agda to ATP tools, and more generally, any external
tool. This simplicity is at the expense of being able to craft individual and
efficient data-types that Agda uses to communicate with the ATP tool; that
is no data-types dependent on the rule system, or instances of the rule system
are built-in. Instead, we rely on Agda building the input string for the tool,
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and parsing the output string from the tool. In fact, Agda’s internal parser
is used, and thus it is possible to parse Agda terms directly, as if they had
been manually typed into the Agda code.

In the following, two primitive functions are introduced that allow for the
execution of arbitrary external programs in a safe way. The first of these
functions is a parser and illustrates the techniques used by the second prim-
itive function, which, in addition executes an external tool. These primitive
functions are independent of the rule systems discussed previously.

Recall that a primitive function behaves as if it had been postulated,
except that it reduces on closed terms, for which it reduces in one step.
Following by Theorem 5.1.2, a primitive function is sound to use provided
for all possible inputs, the result type is never empty, and the implementation
of the function is compatible with Agda’s logic. Therefore, following by the
first constraint that the result type is never empty: it is safe to define the
following primitive function that takes as input a string, and returns a maybe
result of some type.

primitive
primParser ∶ (A ∶ Set)→ String →Maybe A

Of course, this function could always return nothing, but consider the sce-
nario when it attempts to parse the string using Agda’s parser, and then
type-checking that the resulting term has type A. If it does have type A,
then the function returns the result, however, if parsing fails, or type-checking
fails, then nothing is returned. That is the following Haskell function provides
the implementation, albeit with the technical details omitted and function
names changes to make the definition clear.

p r i m P a r s e r : : Type −> S t r i n g −> TCM ( Maybe Term )
p r i m P a r s e r t y s = c a t c h E r r o r

(do t <− p a r s e s
t <− typeCheck t t y
return $ J u s t t )

( return Nothing )

It is easy to see that this function will always return a result, hence by
Theorem 5.1.2 provided the parser it implements can be defined in Agda,
at least in principle, then it is a conservative extension. Näıvely thinking,
parsers can be implemented in Agda directly so the function should be defin-
able in Agda directly; however, this is not the case because the Agda parser
depends upon the context/scope from which it is called. This is because
as new definitions (functions, data-types, etc.) are made, the Agda parser
is extended with their names, for instance the following code sequence is
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inconsistent:

A ∶ primParser N “f 0” ≡ nothing

A = refl

f ∶ N→ N
f = suc

B ∶ primParser N “f 0” ≢ nothing

B = λ ()

C ∶ �
C = B A

The problem here is that the language that the parser recognises is extended
between type-checking A and B, from which an inconsistency is derived.

To repair this problem the language that primParser recognises is fixed
when the primitive function is defined. That is when the code

primitive
primParser ∶ (A ∶ Set)→ String →Maybe A

is type-checked, the current scope (e.g. function definitions, data-types, im-
ported modules) is saved. Then when primParser is reduced this saved scope
is recalled, and the term is parsed in the original scope. When importing
a module hierarchy that has defined primParser, the current module cannot
re-define it, nor can it import a second module that has also defined prim-
Parser. This effectively fixes the language recognised by primParser. As the
parser is written in Haskell, it is reasonable to assume that a specialisation
of the parser fixed to this language could have been written directly in Agda.

This concludes the first primitive function; however, it does not form part
of the interface to the external tool and is only presented to illustrate the
functionality of the parser. The second primitive function is an extension of
the first, such that instead of parsing a string provided by the user, it parses
the string obtained from the output of executing an external tool. There is
a caveat relating to the external command, namely that the command must
be functional in nature. That is, for two equal inputs the outputs should
be equal. When using the above function to execute an external decision
procedure this is not a problem, provided the obtained term a ∶ A does not
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contain any superfluous information, such as time/date that the tool was
executed.

The second function is parametrised by two strings. The first string is
the name of the command to execute, see Section 5.5 for information about
the name of the tool and how it is translated into a path. The second string
is fed to the external tool as input. The function has the following signature:

primitive
primExternal ∶ (A ∶ Set)→ (tool input ∶ String)→Maybe A

In such a situation the primitive function executes the command indicated
by tool , passes it the string input and parses the output of the tool using
the Agda parser and type-checker, as before. That is the following Haskell
implementation is obtained, as usual the technical details are omitted and
function names changed to aid readability.

p r i m E x t e r n a l : : Type −> S t r i n g −> S t r i n g −> TCM ( Maybe Term )
p r i m E x t e r n a l t y t o o l i n p u t = do

path <− l ookupToo lPath t o o l
output <− executeCommand path i n p u t
scope <− l o o k u p P a r s e S c o p e
c a t c h E r r o r

(do t <− p a r s e I n S c o p e scope output
t <− typeCheck t t y
return $ J u s t t )

( return Nothing )

Thus, primExternal represents an external command in Agda. As was
discussed previously, the parsing functionality is safe to use provided the
scope is fixed and the external command is referentially transparent.

This concludes the second primitive function, and the underlying mecha-
nism to call external tools. This second function provides a powerful mech-
anism to connect Agda to various different tools. It is emphasised that not
only theorem provers in the traditional sense are compatible, but in general,
it is possible to delegate large computations to custom, unverified programs.
Then these programs compute the result and produce a certificate that can
easily be checked by an Agda program. This method of using unverified tools
that produce checkable certificates was identified by de Bruijn in [dB70],
where he gave the example of the magic square problem. In fact, it is possi-
ble for the external tool to provide semantic proofs directly, but this option
was not explored.
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6.2.1 Type-Checking Derivations

In this subsection (and the next) assume a rule system ∆ that has been
defined for the external theorem prover X, such that the set of formulæ are
defined in a sequent-like manner. That is, let Φ′ be the set of formulæ X is
defined over, then

∆Φ = [Φ′⇒ Φ′]
and the following function is defined:

toStringX ∶ Φ′ → String

It transforms a formula into a string in the tool’s input language.
Define the function which calls the external tool, and then attempts to

reconstruct a derivation from the result. However, as the formulæ are defined
by sequents and in this work, we are interested in theorems, so the left-hand
side of the sequent is omitted, i.e.

createList ∶ Φ′ →Maybe ProofList∆ids

∆Φ

createList ϕ = primExternal “id of X” (toStringX ϕ)

where “id of X” is the name under which the tool X was registered in Agda.
To check that a derivation obtained from createList is correct requires

lifting derivation∆ (which is obtained from the rule system) to a maybe
type. This is achieved by the following function:

derivation-maybe∆ ∶ Φ′ →Maybe ProofList∆ids

∆Φ
→ Bool

derivation-maybe∆ ϕ nothing = false
derivation-maybe∆ ϕ (just l) = derivation∆ ([]⇒ ϕ) l

As usual the result is of type Bool as it helps Agda to infer the proofs while
type-checking. Note that here the formula ϕ is explicitly made into a theorem
by ensuring that the left-hand of the sequent is empty.

Soundness

Much of the discussion in Section 3.2.1 relating to (Oracle + Justification)
is relevant here. In addition, it is emphasised that using Agda to type-check
the derivations made by the external tool reduces the number of points in
the system that must be trusted when compared with our other method of
integrating tools. This is because the other method assumes that the external
tools are consistent with the chosen ATP theory, should this not be the case,
then Agda would become inconsistent, see Theorem 5.1.1.
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This method of using a primitive function to call the SAT solver means
that there is no Agda implementation of the function, so whatever result is
returned by the primitive function will not yield in an inconsistency, provided
the external tool fulfils the functional property. An important caveat to this
is that the return type is non-empty, i.e. maybe a derivation. If it was
sometimes empty, then it could be possible to derive an inconsistency, see
Theorem 5.1.2. The obtained derivations are then checked to be correct
by Agda functions. Therefore, no trust is placed in the implementation of
createList.

However, it should be noted that absolutely no assurances are made, or
even needed about the completeness of this method. It is entirely possible
that for some reason (such as a parser error while pre-processing the tools
output) a theorem does not produce correct a derivation.

Implementing this interface required adding 179 lines of code to the Agda
source code, circa development version 2.3.1.

6.2.2 Efficient Reconstruction

The final step is to reconstruct proof-objects from the derivations efficiently.
By efficient, it is meant that it is efficient when compared to the method
previously used by (Oracle + Reflection). In this subsection, let ∆ and Φ′

be as in the previous section (see page 135).
After accounting for the maybe result of a derivation, the reconstruction

follows by Theorem 6.1.1. That is

reconstruct-maybe∆ ∶ (ϕ ∶ ∆Φ)→ (l ∶ Maybe ProofList∆ids

∆Φ
)

→ T (derivation-maybe∆ ϕ l)
→ ∀ξ . J ξ ⊧ ϕ K

reconstruct-maybe∆ ϕ nothing p = efq p
reconstruct-maybe∆ ϕ (just l) p = sound-list∆ ϕ l p

It is then trivial to assemble all the parts to provide a high-level interface to
the reconstruction mechanism as follows:

reconstruct∆ ∶ (ϕ ∶ Φ′)→ T (derivation-maybe∆ ϕ (createList ϕ))
→ ∀ξ . J ξ ⊧ ϕ K

reconstruct∆ ϕ p = reconstruct-maybe∆ ϕ (createList ϕ) p

This definition, when applied to a theorem ϕ will trigger the external tool to
execute, then type-check the resulting derivation. Should the derivation not
be correct, then type-checking will fail as there is no element in �. Should
the resulting proof-object be inspected, then it is constructed from the proof
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of correctness of the derivation. This reconstruction is linear to the length
of the derivation.

In tests, this method of reconstructing the proof-objects from justifica-
tions is significantly faster than evaluating the näıve, Agda implementation.
This is because many of the choices that the decision procedure would have
to take are recorded in the justifications, this results in an essentially lin-
ear complexity (depending on the inference rules used) to the number of
nodes in the derivation. Results of the SAT reconstruction are presented in
Section 6.3.2.

6.2.3 Aside about using Built-Ins

During the implementation of the (Oracle + Justification) interface, a variety
of different techniques were explored. One of these techniques—which is
worth noting—was to implement in full the derivations as a built-in data-
type. This meant that instead of using the Agda parser to interpret the
result of executing the external tool, the tool would output (in binary) a
representation of a derivation, which Agda would decode into a Haskell data-
type. As these data-types are built-in, they can simply be translated into an
internal Agda term. The issue here is that the data-structures are created
once by the external tool, and then transferred into Agda by a serialisation
process, mitigating the need to trigger the parser.

Unsurprisingly using serialisation instead of parsing resulted a better per-
formance, but required an amount of hackery to allow the rule identifiers
(from an arbitrary rule system) to be built-in. A limitation of this approach
was that the set of formulæ used in the derivation is fixed to be first-order se-
quents; this is so there is a common language to interface Agda with Haskell
(via. the built-in mechanism). First-order formula were chosen because, at
present, the majority of automated theorem provers are equivalent to first-
order, or a fragment of it. This fixing of the formula resulted in derivations
of the form:

ProofList∆ids

[FOF⇒FOF]

So part of the correctness check of the derivation would determine whether
the derivation is convertible to a derivation of the form

ProofList∆ids

∆Φ

which the correctness of the rule system is defined over.
Moreover, this method significantly restricts the choice of tool, by re-

quiring it to communicate with Agda in a special binary format. For this
reason, it is deprecated in-favour of the presented method that uses primitive
functions and the Agda parser. That is flexibility was chosen over efficiency.
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6.3 eProver – The Propositional Fragment

The first-order theorem prover, eProver [Sch02], was used for producing
propositional justifications of a propositional theorem. eProver is based upon
the superposition calculus [BG94, Sch02], although, in this work, only the
propositional logic fragment is considered. This tool was selected due to
its comprehensive justifications presented clearly in the widely supported
TSTP format [Sut09]. Many of the other theorem provers considered (iProver
[Kor08], MiniSat [ES03], Vampire [RV02], Spass [WBH+02], Paradox [CS03],
zChaff [MMZ+01]) would require that either the input was transformed into
conjunctive normal-form (CNF), or that the output derivation steps for trans-
lating the input formula into CNF were omitted. Due to the micro-level proof
reconstruction of our technique, these large and complex derivation steps
were problematic. Conversely, techniques that perform macro-level proof re-
construction, such as the Sledgehammer sub-system in Isabelle [BN10], do
not encounter these problems as the steps are fed into an internal, verified
ATP tool, e.g. Sledgehammer uses Metis. The internal ATP reconstructs the
proof-object directly as an internal data structure for the ITP tool. Vampire
was a close contender to eProver, but due to its lack of an open-source licence
(hence source code availability), its use was deprecated.

6.3.1 Rules

It was discovered by examining the output justifications and browsing the
source code, that the rules in Figure 6.2 were used by eProver (v1.4). See
module Proof.EProver in Appendix F for more information. The rules
presented have been slightly modified to account for the post-processing of
the justifications, specifically this modification allows for fresh variables to
be defined in a way that is easy to use for the correctness proof in Agda.

The following functions are used in Figure 6.2:

a[b/c] Syntactical substitution, replace all occurrences of b for c in a. This
function is defined in module Boolean.PL-Formula.Substitute of Ap-
pendix F.

¬ϕϕϕ Negation. It was chosen to remove ¬ from the constructors of the Boolean
formulæ. This was to simplify equivalence tests between formulæ.
Thus, the negation symbol is the map ϕ↦ ϕ⇒ false.

mknnf Transforms a formula into negated normal-form, although there are
no explicit negations there are absurd implications. The mknnf func-
tion pushes these absurd implications to the literals (without building
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Γ⇒ ϕ

Γ⇒ const-rm (mknnf ϕ) fof nnf
Γ⇒ ϕ

Γ⇒ const-rm ϕ
fof simplification

Γ⇒ ϕ1 ∧ ϕ2 ∧ ⋅ ⋅ ⋅ ∧ ϕn
Γ⇒ ϕi

split conjunct
i∈{1...n}

Γ⇒ ϕ

Γ⇒mkdist ϕ
distribute

Γ⇒ ϕ

Γ⇒ const-rm ϕ
cn

Γ ∪ {ϕ}⇒ ϕ
axiom

Γ⇒ �
Γ ∖ {¬ϕ}⇒ ϕ

unsat

Γ1 ⇒ ϕ1 Γ2 ⇒ ϕ2

Γ1 ∪ Γ2 ⇒ ϕ1[¬ϕ2/�]
rw1

Γ1 ⇒ ϕ1 Γ2 ⇒ ¬ϕ2

Γ1 ∪ Γ2 ⇒ ϕ1[ϕ2/�]
rw2

Γ1 ⇒ ϕ1 Γ2 ⇒ ϕ2

Γ1 ∪ Γ2 ⇒ const-rm (ϕ1[¬ϕ2/�])
sr1

Γ1 ⇒ ϕ1 Γ2 ⇒ ¬ϕ2

Γ1 ∪ Γ2 ⇒ const-rm (ϕ1[ϕ2/�])
sr2

Γ1 ⇒ ϕ1 Γ2 ⇒ ϕ2a↔ ϕ2b

Γ1 ∪ Γ2 ⇒ ϕ1[ϕ2b/ϕ2a]
apply def

Γ ∪ {xi↔ ψ}⇒ ϕ

Γ⇒ ϕ
fresh

Figure 6.2: eProver derivations, note that unsat is the classical reductio ad
absurdum law. The rw and sr rules form standard propositional refutation.
The fresh rule introduces a new variable xi and has the side conditions xi ∉
FV (ϕ ∧ ψ) ∪ FV (Γ).

chains of absurd implications), and pre-existing implications are re-
placed by material implications. A side-effect of this procedure is that
a number of constant values are introduced into the formula which
must be removed; they are removed by const-rm. The translation
is achieved by defining two mutually recursive, symmetric functions
that keep track of whether the formula has been negated. See module
Proof.EProver.NNF in Appendix F for the complete definitions.

mknnf ∶ BooleanFormula→ BooleanFormula
mknnf (ϕ ∧ ψ) = mknnf ϕ ∧mknnf ψ
mknnf (ϕ ∨ ψ) = mknnf ϕ ∨mknnf ψ
mknnf (ϕ⇒ ψ) = ¬mknnf ϕ ∨mknnf ψ
mknnf ϕ = ϕ
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and

¬mknnf ∶ BooleanFormula→ BooleanFormula
¬mknnf (ϕ ∧ ψ) = ¬mknnf ϕ ∨ ¬mknnf ψ
¬mknnf (ϕ ∨ ψ) = ¬mknnf ϕ ∧ ¬mknnf ψ
¬mknnf (ϕ⇒ ψ) = mknnf ϕ ∧ ¬mknnf ψ
¬mknnf (var x) = ¬(var x)
¬mknnf true = false
¬mknnf false = true

const-rm Removes the constants (true and false) from a formula. Removing
constants from a propositional formula, amounts to evaluating/simpli-
fying the formula, in some cases the whole formula will collapse down
into a constant and will not be able to be simplified any further. This
is achieved by starting at the root of the formula and replacing each
connective node (∧,∨,⇒) by a function that will attempt to evaluate
that node, after its operands have been evaluated. If evaluation suc-
ceeds, then these functions will return a Boolean value, and otherwise
they will reconstruct the original node. For example, in the case of the
∨ node, it is replaced by the function:

map-or ∶ BooleanFormula→ BooleanFormula→ BooleanFormula
map-or true ψ = true
map-or false ψ = ψ
map-or ϕ true = true
map-or ϕ false = ϕ
map-or ϕ ψ = ϕ ∨ ψ

The remaining two cases are similar, and are formalised in module
Boolean.PL-Formula.RemoveConstants of Appendix F.

mkdist Constructs a CNF formula by distributing the disjunctions over
conjunctions. It assumes that the formula is in negated normal-form
(i.e. implication only occurs as absurd implication on the literals), no-
tably it treats implications as literals—because the only implications
that remain in a negated normal-form formula represent negations of
the literals. It is implemented by the three functions below, and the full
code is in module Boolean.PL-Formula.Distribute of Appendix F.
Note that the underlined types are only for intuitive understanding,
and they are synonymous with BooleanFormula to mitigate having to
translate the result back into a BooleanFormula. We note that if Agda
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supported sub-types/refinement types, then their types could have been
given explicitly.

dist-clause ∶ Clause→ CNF→ CNF
dist-clause cl (ϕ ∧ ψ) = (dist-clause cl ϕ) ∧ (dist-clause cl ψ)
dist-clause cl ϕ = cl ∨ ϕ
dist ∶ CNF→ CNF→ CNF
dist (ϕ1 ∧ ϕ2) ψ = (dist ϕ1 ψ) ∧ (dist ϕ2 ψ)
dist ϕ ψ = dist-clause ϕ ψ

mkdist ∶ BooleanFormula→ CNF
mkdist (ϕ ∨ ψ) = dist (mkdist ϕ) (mkdist ψ)
mkdist (ϕ ∧ ψ) = (mkdist ϕ) ∧ (mkdist ψ)
mkdist ϕ = ϕ

The negated and conjunctive normal-form functions do not construct true
normal-forms. In the case of negated normal-form it leaves junk in the
formula that must be removed by const-rm, and conjunctive normal-form
does not consider the associativity of conjunction and disjunction. The
latter issue does not matter as in the following the formulæ are flattened.

Remark

Checking that the derivations obtained from eProver are definitionally
correct with respect to Figure 6.2 was troublesome to achieve. In part, this is
because eProver was not internally verified by Agda, so the implementation of
the rules provided in Agda produced syntactically different (but semantically
equivalent) formulæ. For example a sequence of nested conjuncts/disjuncts
could change its order, thus definitional equality in Agda would fail to hold.
Although a lot of work was put into attempting to achieve definitionally
equivalent results from eProver, it was decided to sacrifice some efficiency by
defining an equivalence between propositional formulæ.

The equivalence works by first flattening the syntax of the formulæ. The
flattening (greedily) transforms formulæ built over binary operators into
formulæ built over semantically equivalent n-ary operators. The flattened
formula are defined in module Boolean.PL-Formula.Equivalence of Ap-
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pendix F as follows:

data Flattened ∶ Set where
true false ∶ Flattened
∧ ∨ ∶ List′ Flattened→ Flattened
⇒ ∶ Flattened→ Flattened

var ∶ N→ Flattened

Here, List′ is a non-empty list, i.e. the nil constructor [] is replaced by [ ] ∶
A→ List′ A.

The equivalence relation is defined between two flattened formulæ, intu-
itively it means that the two formulæ have the same semantical structure.
The equivalence on flattened formulæ is defined as follows:

equiv ∶ Flattened→ Flattened→ Bool
equiv (∧ Γ) (∨ ∆) = (all-equiv ∆ (∧ Γ)) ∨ (all-equiv Γ (∨ ∆))
equiv (∨ Γ) (∧ ∆) = (all-equiv ∆ (∨ Γ)) ∨ (all-equiv Γ (∧ ∆))
equiv (∨ Γ) (∨ ∆) = (equiv-operands Γ ∆)

∨ (all-equiv Γ (∨ ∆)) ∨ (all-equiv ∆ (∨ Γ))
equiv (∨ Γ) ψ = all-equiv Γ ψ
equiv (∧ Γ) (∧ ∆) = (equiv-operands Γ ∆)

∨ (all-equiv Γ (∧ ∆)) ∨ (all-equiv ∆ (∧ Γ))
equiv (∧ Γ) ψ = all-equiv Γ ψ
equiv ϕ (∨ ∆) = all-equiv Γ ϕ
equiv ϕ (∧ ∆) = all-equiv Γ ϕ
equiv (ϕ1 ⇒ ψ1) (ϕ2 ⇒ ψ2) = (equiv ϕ1 ϕ2) ∧ (equiv ψ1 ψ2)
equiv ϕ ψ = ϕ ≡ ψ

where

all-equiv [ϕ1, ϕ2, . . . , ϕn] ψ =
n

⋀
i=1

equiv ϕi ψ

and

equiv-operands [ϕ1, ϕ2, . . . , ϕn] [ψ1, ψ2, . . . , ψm] =

(
n

⋀
i=1

(
m

⋁
j=1

equiv ϕi ψj)) ∧ (
m

⋀
j=1

(
n

⋁
i=1

equiv ψj ϕi))

This relation was proved to be an equivalence, i.e. reflexive, symmetric
and transitive. Deciding the relation results in an exponential algorithm.
Assume two flattened formula ϕ and ψ, an upper bound on the complexity
of equiv ϕ ψ is computed as follows. Let n be the greatest width of ϕ and
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ψ, and bk be the upper bound on the complexity for a formula of height at
most k, such that b0 = 1, then

bk = 2n2bk−1 + 2nbk−1

= 2n(nbk−1 + bk−1)
= 2n(n + 1)bk−1

= (2n(n + 1))k

Therefore, let h be the maximum height of ϕ and ψ, the complexity is given
as (2n2)h.

Figure 6.3 presents an example of the flattening and the equivalence on
the flattened formulæ.
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Figure 6.3: Determining equivalence between two formulæ ϕ and ψ, is done
by collapsing the binary propositional operators into semantically equivalent
n-ary operators. Then checking that the roots of the flattened formulæ are
equal, and their operands are equivalent. This equivalence allows for reorder-
ing and duplication of the operands. After ϕ and ψ are flattened, the roots
(∧) are checked to be definitionally equal and that each of the operands that
one structure has, so does the other. Consider the boxed sub-formulæ, these
are equivalent operands of the roots.

Implementing proof reconstruction for eProver required 1,607 lines of
Agda code. The majority of this related to proving soundness of the rules.
A third of the code (566 lines) is for the equivalence relation.
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Wrapper Program

A small wrapper program was required to pre-process the output of eProver.
The output is formatted using TSTP [Sut09]. The wrapper program then
translates it into a compatibly formatted derivation (i.e. ProofList). The
principal feature provided by this pre-processing is that the assumptions used
by each rule are made explicit into a context; this saves the Agda program
that checks whether the derivation is correct, from performing a number of
look-ups in a (potentially) large list. As a general heuristic, it is faster to
perform such operations outside Agda. The process of the wrapper script is
given by:

• Parse the output,

• Construct a ProofList

• Pretty print the ProofList in Agda format.

Each of these steps is considered in more detail below.

Parsing. The wrapper made use of the logic-TPTP parser, available from
Hackage. However, due to the diverse nature of TSTP files the program
needs fine-tuning for different ATP tools. This is mainly due to there not
being a fixed set of rules that are used to represent the derivations, and that
different tools annotate the rules in different ways.

During the early phase of the project, it was the intention for Agda to
support the full parse tree of logic-TPTP, but it soon became clear that this
level of detail was not necessary, and it was not clear whether processing this
low-level representation in Agda would be efficient.

For example, when the wrapper program looks-up a rule application, it
is required to search a list, resulting in a large number of equality tests.
To perform this same operation in Agda would be significantly slower; also
performing these operations outside of Agda allows for the use of library code.
For example, the wrapper program uses the Haskell Data.Generics library to
extract parts of the parse tree without having to perform full case-distinctions
on it, which would have to be done in Agda.

Construction. The output of eProver, once parsed from TSTP format is
given as a list. The head of the list is the first derivation, and the last node
in the list is the conclusion of the derivations. The list has the type

List (N ×BooleanFormula ×Rule × List N)
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where the first natural number is the identifier of the derivation, the formula
is the conclusion of the derivation, Rule is the derivation identifier, and the
list of numbers are references (pointers in the list) to the premises. It is
noted that this list typically forms a partial map, where the identifiers form
the domain. This is because eProver will directly omit steps of the derivation
which are not useful for proof reconstruction.

To recall, a proof list essentially has the type:

List (List BooleanFormula ×BooleanFormula ×Rule × List N)

Instead of each rule explicitly stating its identifier, its position in the list
determines its identifier. Also, a list of formulæ are added that forms the
context, i.e. contains the assumptions. Finally, the list of premises are ad-
justed accordingly as the identifiers of the derivations have changed.

This is translated by induction on the list, building up a list of proof
nodes, and a mapping between the old identifiers and the new identifiers.
When an axiom is found, it is added to the context. In general, the con-
texts are constructed according to Figure 6.2. At the end of the deriva-
tion, it might not be the case that the context is empty because free vari-
ables were introduced during the derivation using the TSTP “introduced”
annotation. These annotations are replaced by the “axiom” (assumption)
rule, which are then discharged at the end of the derivation by applying
the “fresh” rule. See Figure 6.2 for the formalisation of “fresh”, and mod-
ule Boolean.PL-Formula.DropEquivalence in Appendix F for the technical
details.

There are also a number of smaller translations undertaken, such as re-
moving superfluous derivations (e.g. TSTP answers), and unfolding com-
pound applications of the same derivation, as the proof nodes do not support
compound applications. Negation is replaced by absurd implications. The
introduced variables previously mentioned are identified by strings and not
natural numbers, so there is also an added step of scanning the derivation,
finding how many variables it contains, then mapping these introduced vari-
ables to fresh, natural number indices, as required by the constraints of the
“fresh” rule.

For more information regarding the use of this wrapper program, example
inputs and outputs, see Appendix E.

Printing. The output is printed direct to the standard output stream (std-
out). Printing is a fairly trivial process; a Haskell function traverses the pro-
duced derivation, and prints it in the same ASCII format that can be fed
directly into Agda, and type-checked.
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6.3.2 Evaluation

The eProver proof reconstruction presented has been used to explore various
problem sets, especially the excluded-middle and pigeonhole principle prob-
lem sets, see Figure 6.4 and Figure 6.7, respectively for comparative plots to
those in Section 5.4.1. The propositional formulæ, functions used to explore
the proof-objects and the meaning of Total, GC, Mutator, and Tool are the
same as defined in Section 5.4.1. The difference in these plots is that instead
of obtaining proof-objects by Theorem 4.1.2, they are instead obtained by
the external tool and Theorem 6.1.1.

The first plot (Figure 6.4) is of the excluded-middle problem set. The
plot shows that the number of variables the formula can containe while be-
ing feasible to type-check, is greater than 10 fold than using the (Oracle +
Reflection) approach, cf. Figure 5.3. This is because eProver was able to
elucidate the hidden structure of the problem. Hence the obtained deriva-
tions were of a constant number of steps, whereas in (Oracle + Reflection)
the proof-objects were reconstructed using the soundness proof of the näıve
tautology checker, which is bounded by the number of variables in the for-
mula. There are two steps to the process: first is to obtain and type-check
a derivation, and the second is to explore the resulting proof-object. In Fig-
ure 6.4 the composition of both steps is plotted, and in Figure 6.5 only the
first step is plotted. The first plot had an observed run-time complexity
of n2.25, whereas the latter plot’s complexity (which includes deciding the
equivalence relation) is n1.25. It is not entirely clear why there is such a large
difference (see below), in part this is due to a lack of sharing in Agda and
over normalisation. The construction of the proof-object by Theorem 6.1.1
performs induction on the derivation list and applies the soundness proof for
each rule, culminating in a proof of the theorem. This proof has the form:

∀ξ . J xn−1 ∨ ⋅ ⋅ ⋅ ∨ x1 ∨ x0 ∨ ¬(xn−1 ∨ ⋅ ⋅ ⋅ ∨ x1 ∨ x0) Kξ

This is applied to the environment

{0↦ true ; ↦ false}

to obtain a proof-object of the form:

inj2 (inj2 (⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1 times

(inj1 tt)⋯))

This object is obviously linear to explore.
The second problem set is the pigeonhole principle. It has a worse perfor-

mance than using no external tools at all, compare Figure 5.6 with Figure 6.7.
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Note that for n = 3 in Figure 5.6 the time of the mutator is 15 seconds, where
in Figure 6.7 it is 369 seconds. The plot in Figure 6.6 is the time required
to type-check that a derivation for the pigeonhole principle is correct. When
using no external tools, Agda could explore a larger instance, namely when
n = 4, than was possible when reconstructing the proof-object. This is be-
cause the complexity of the derivations grows faster than exponential (see
number of steps in the table below) as the problem set grows (i.e. as n grows
larger). Instead, when using no external tools the näıve decision procedure is
exponential on the number of variables (brute force), so the complexity of the
pigeonhole principle is not relevant. For instance, the derivations generated
by the wrapper program and piped to Agda had the sizes, and numbers of
steps:

n = 1 n = 2 n = 3 n = 4
Size 14KB 73KB 464KB 3.5MB
Number of steps 30 81 279 1257

To put these numbers into perspective, at the time of writing, all the code in
the standard library is 948KB; whereas the sizes above relate to a single Agda
term (ProofList). These inputs are then parsed by Agda, and type-checked.
It is noted that type-checking the derivation for n = 4 was not possible, the
type-checker was left running for 20 hours after which time it started to use
swap space, so it was terminated. From this table and Figure 6.7, it is clear
that as the derivations grow in complexity (number of nodes), so to does the
type-checking.

It was also tried on an industrial problem set (cf. Section 10.5), but the
testbed had insufficient resources (RAM) to type-check any derivations. For
instance, the initial case resulted in a derivation that was approximately
20MB, Agda quickly consumed all the systems resources and was then ter-
minated. The inductive case produced a derivation that was approximately
118MB, which is far beyond the current capabilities Agda. It should be
noted that the output from eProver for the same problem was approximately
80KB. One reason for this blow-up is that the final rules to be applied to
the derivation were “raa” and “fresh”, both of these add information to the
context, which is propagated throughout the derivation (contexts). This is
by design as it helped to reduce the amount of work done in Agda (i.e. not
having to look-up axioms), however, for large problem sets it appears to have
a detrimental effect, although it only creates a blow-up linear to the length
of the derivation.
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6.4 Remarks

Enabling proof reconstruction using this method allows for in most cases
larger and more complicated proof-objects to be created and explored than
was possible before, provided that the derivation for the theorem to be proved
is not too large. Therefore, there is a trade-off between this approach, and
the previous approach (Oracle + Reflection) with respect to the number of
variables and number of nodes in the derivation.

However, there are a number of issues that have become apparent with
the implementation. First, the equivalence relation defined on flattened for-
mulæ is exponential. This relation was required to simplify the process of
integrating eProver, i.e. not requiring definitionally equivalent results. How-
ever, it should be possible to formalise in Agda versions of mknnf and mkdist
that coincide with the versions defined inside eProver, possibly by copying
their definitions from the eProver source code. This would mean that Agda
and eProver would give definitionally equivalent results, hence the equiva-
lence relation would not be required. Alternatively, it might be possible to
pre-process the output into a normal-form, particularly with an ordering on
the variables before it is passed to Agda, this would reduce the workload of
deciding whether two formulæ are equivalent in Agda.

A second issue is that assumptions are explicitly carried around inside the
derivation. This was to simplify the correctness check inside Agda. However,
it should be possible to replace axioms (assumptions) by numerals, similar
to what is done in natural deduction. For example, the style of natural
deduction pioneered by Supps in [Sup99] would be particularly suited.

We remark that while integrating eProver with Agda, it became apparent
that eProver contained a bug in the outputting of the justifications. The bug
did not affect the soundness of eProver, but it was enough to prevent Agda
from being able to type-check the derivations. Specifically when introducing
a new variable, instead of using a provable equivalence to define the value
of the introduced variable, only an implication in the wrong direction was
output. Essentially the following rule was used

p ϕ→ p

ϕ

where p ∉ FV (ϕ). This resulted in breaking the proof reconstruction in
Agda, the error was brought to the attention of Stephan Schulz (developer
of eProver) who quickly fixed it. This shows the advantage of performing
micro-step proof reconstruction (i.e. each proof step is used directly), be-
cause eProver has been used for macro-step proof reconstruction in a num-
ber of other interactive theorem provers without the bug being detected.
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Macro-step reconstruction is where the proof steps are fed into a second
(verified) theorem prover that attempts to make sense of them, and then
translates them into a proof-object. For an example of macro-step recon-
struction see [Hur05], where the automated theorem prover Metis is used to
interface between tools such as eProver and Isabelle.
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Figure 6.4: This plot shows the reconstruction of instances of the excluded
middle problem set. The largest value for total time is 1,087.45 seconds. The
tests were not limited by space, and it would have been possible to continue
to larger magnitudes; however, this would not have been enlightening as
the observed complexity is clearly visible above. 671 samples were taken at
varying distances, at the beginning, samples were taken at a spacing of 10,
towards the end, samples were taken at a spacing of 50.
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Figure 6.5: This plot shows only the stats for checking whether an instance
of the excluded middle problem produced a correct derivation. The greatest
time is 144.2 seconds. 449 samples were taken at a spacing of 10.
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Figure 6.6: This plot shows the time required to check that an obtained
derivation for an instance of the pigeonhole principle was correct. The value
for the largest total time is 36,489.55 seconds, it was not possible to run
larger tests due to a lack of resources.
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Figure 6.7: This plot shows the reconstruction of instances of the pigeonhole
problem. The value for the largest total time is 369.3 seconds, compared
to 344.9 seconds above for the same size, it was not possible due to lack of
resources to run larger tests.
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Chapter7
Summary

In this part, various methods of integrating Agda with external tools have
been explored. Specifically two techniques have been explored. First, a
new approach of combining an oracle with reflection was explored (Oracle
+ Reflection). Using this technique, significantly larger problem sets were
explored than was possible without the technique. The technique entailed
defining a decision procedure in Agda for a logic and proving that is correct,
then overriding the implementation of the decision procedure for closed terms
by a call to an external tool. Two different techniques were applied to override
the implementation of the decision procedure. The first technique required
that the Agda source code was modified for each new decision procedure,
such that it would only execute the external tool if the decision procedure (in
Agda) fulfilled a number of axioms. The second technique traded soundness
for usability by not requiring modifications to Agda sources for each different
decision procedure. However, it is possible for the standard user to derive
inconsistencies by specifying the wrong external tool to execute.

Using this approach the decision procedures for SAT solving, CTL model-
checking, and symbolic model-checking were overridden by a call to an exter-
nal tool. A number of plots were presented that clearly showed that connect-
ing Agda to external tools using this approach allowed significantly larger
problem sets to be verified, and the resulting proof-object to be explored.

Subsequently a second approach of integrating Agda with external tools
was implemented, this was the (Oracle + Justification) technique in Chap-
ter 6. In this approach, the decision procedure for the logic is not defined in
Agda. Instead, the logic that the external theorem prover operates within
is formalised, notably the inference rules are formalised. Then a primitive
function is provided that will execute the external tool, and obtain a deriva-
tion from it. These derivations are translated into Agda terms and type-
checked, thus reducing the kernel of trust to the Agda type-checker itself.
This technique was demonstrated by implementing the propositional frag-
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ment of eProver’s paramodulation calculus.

The use of eProver caused a number of problems with trying to obtain
definitionally equal formulæ. This resulted in having to design an equivalence
between propositional formula; however, this equivalence requires exponen-
tial time. The plots show that when the proofs are not complicated, such as
the excluded-middle problem sets, this approach is more efficient than our
previous approach. However, as the complexities of the derivation grow the
former method is more efficient.

7.1 Future Work

As future work, the oracle and reflection approach could be extended into a
plug-in mechanism. These plug-ins would be defined in an almost Agda file
format. This format would specify for each built-in data-type, its inductive
elimination principle and corresponding Haskell data-types. It would also
specify for each function definition a number of axioms (which are given by
Agda formulæ), and a Haskell implementation of the function. Then during
type-checking when a built-in declaration is encountered, the corresponding
plug-in file is also type-checked. This type-checking would ensure that if it
is a data-type that is to be built-in, then it fulfils its inductive elimination
principle; or if it is a function to be built-in, then it is of the correct type and
fulfils the required axioms. Of course, these plug-ins would be dependent
upon each other, e.g. decision procedures are dependent upon the definition
of Booleans. The fundamental issue here is that these plug-in files should
not be something that the standard Agda user touches, thus plug-ins are
trusted to be implemented correctly. One possibility is that the plug-ins are
required during Agda’s compilation, the intention being that the standard
user does not compile Agda themselves. Implementing such a system would
yield a high-level of soundness assurances, provided the implementations of
the plug-ins are correct.

It has been identified that the proof reconstruction interface is limited by
two factors, firstly an equivalence relation that requires exponential time to
decide, and secondly, by the explicit representation of the assumptions. As
future work, it would be beneficial to represent assumptions in the derivation
by numerals, rather than explicitly, i.e. how it is normally done for natural
deduction. This would require that the formulation of a rule system and the
correctness check would need to be amended to reference previous points in
the derivation. The benefit of performing this transformation would be that
less space is required to represent the derivations and that when checking
they are correct, the checks on the contexts would be vastly simplified. That
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is instead of checking whether two contexts are equivalent by checking they
contain the same formulæ (possibly in different orders), one would only have
to check they contain the same numerals.

The exponential equivalence relation should be removed in-favour of ei-
ther computing a normal-form outside of Agda for the formulæ in the deriva-
tion during pre-processing, or perhaps more interestingly by internally verify-
ing eProver. By internally verifying eProver, it is meant that the algorithms
used by eProver should be formalised in Agda, and proved correct. Then
instead of using approximations of these functions, as is currently the case,
requiring an equivalence, they could be directly computed, resulting in def-
initionally equivalent formulæ. While internally verifying eProver, it might
be the case that bugs are identified in its internals.

7.2 Automated Provers Explored

Throughout the project, a selection of different automated theorem provers
were explored. Although this project is concerned with formulating a frame-
work in Agda for developing verified control systems, the ATP’s that were
focused on were selected not only for speed but also by usability. For instance
there are a number of acclaimed SAT solvers, such as zChaff [MMZ+01],
that only take as input conjunctive normal-form (CNF) formula. These tools
would then have required an external translation into CNF, further increasing
the amount of trust required. The tools are described below.

Z3 v3.2 [dMB08] Possibly the best theorem prover used in this work. It is
fast, versatile and has a user-friendly input/output. Z3 supports the
use of many different file formats, one of which is Thousand Problems
for Theorem Provers (TPTP), the format used in this work. However, it
was never discovered how to get proof reconstruction working for it. It
appears that Z3 supports dumping the unsatisfiable core of a theorem,
but after a number of attempts it was not identified how to dump the
core for propositional problems. The documentation only refers to the
core dump under SMT theorem proving. A second limitation is that
Z3 is free for research purposes, but not for industrial applications.

incremental-sat-solver v0.1.7 [Fis12] During the early phases of the pro-
ject, this SAT solver was integrated into Agda. It was selected because
it is freely available in Hackage, the same package manager used by
Agda, and thus it could be install automatically with Agda (via a
dependency). As the SAT solver was imported into the Haskell pro-
gram as a function of the type Formula → Bool, it did not require
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being wrapped up in an IO monad, thus simplifying the connection. In
fact, the built-in decision procedure in Agda was bound to the actual
imported library function. It was soon discovered that incremental-
sat-solver had efficiency issues (time and space) for our industrial test
cases, so its use was deprecated.

Paradox / minisat [CS03, ES03] The Paradox and Equinox tool set was
explored after the incremental-sat-solver proved itself inefficient. These
tools are also written in Haskell and make use of minisat. Although
fast, and interfaced using TPTP, occasionally Paradox was unstable.
This instability was because of the use of Haskell’s foreign function
interface. Paradox was executing minisat (C code) library functions
that would conflict with GHC’s run-time memory allocations, and this
was manifested by an unpredictable segmentation fault.

iProver v0.8.1 / eProver [Kor08] Subsequently the iProver tool was used.
It interfaces using TPTP. Internally iProver operates on CNF formulæ,
and the input is translated into CNF using eProver’s clauseifier. The
use of iProver was largely successful. It was not the most efficient tool,
but it worked; however when considering proof reconstruction, iProver
was unable to provide justifications for its proofs.

eProver v1.4 [Sch02] Following on from iProver, eProver was explored. It
is a nice tool-set that could interface using TPTP/TSTP formats and
provides many features. Most importantly, with regards to this the-
sis was a tool called eproof that would extract from an execution of
eProver a sequence of justifications for an unsatisfiable theorem. Dur-
ing this project, a bug was identified in how one of these justifications
was presented (circa v1.2). After notifying the developer, the bug was
rapidly fixed. The bug related to an implication in the wrong direc-
tion after a fresh variable was assigned a value. The eProver tool was
used for both the (Oracle + Reflection) and (Oracle + Justification)
approaches. However, Z3 performs faster for the (Oracle + Reflection)
SAT interface (cf. Section 5.4.1 and Section 6.3.2).

SpassSpassSpass and Vampire [WBH+02, RV02] Although these well-known and re-
spected tools were considered for proof reconstruction, they were re-
jected. Spass was rejected as it did not support outputting in TSTP
format; instead it used its own format. Apparently a script does exist
to translate into TSTP format, but the author was not able to locate
it after much searching.
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The Vampire prover was rejected for being closed-source. This is be-
cause when performing proof reconstruction, in essence an approxima-
tion of the tools internals is verified. If access to these internals is not
possible, then it is harder to define (and prove) the reconstruction in
Agda when compared to eProver which is open-source.

NuSMV v2.5.2 [CCG+02] The model-checker NuSMV is used for the CTL
interface. However, it was never able to operate on the industrial test
case. Various command line options were tried, but either it would
consume all available memory then start swapping or would take a lot
of time, and then terminate with a segmentation fault. It appears as
though (at least at the time of writing) NuSMV is inherently unsta-
ble because there have been numerous discussions on the nusmv-users
mailing list about segmentation faults/crashes on a variety of operating
systems. It was surprising that NuSMV was unable to verify the test
case as it is presented by its creators as an industrial model-checker.

Apart from the automated theorem provers above, the Haskell package
logic-TPTP-0.2.0.7 was used. This package provides a parser that was
used to interpret the results of the provers and construct a parse-tree. The
package was particularly useful.

Finally, a number of different automated theorem provers are available
on-line at http://www.tptp.org . These provers are executed on the server
and take TPTP format files. This allows for quickly testing different theorem
provers on a problem set, it was used on a number of occasions during the
project to identify which tools would be suitable for proof reconstruction.

As future work, it would be appealing to connect Agda to the on-line
tools, and allow the user to select which tool they would like to execute.
This is the same behaviour as the use of Sledgehammer in Isabelle.

Remark

http://www.tptp.org
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Part II

Railways

Excerpt from Armagh Rail Disaster Report: The effects of the collision were most disastrous,
the rear three vehicles of the excursion train being completely destroyed, their débris being thrown
principally to the right of the direction in which they had been running, down the slope of an embankment
(about 46 1

2
high) on which the railway is here carried. On the collision occurring, the engine of

the ordinary train—which consisted of engine and tender, horse box, brake van, three carriages, and
third class brake van, fitted with the non-automatic vacuum brake—was separated from its tender and
thrown over to the right upon its right side (left wheels uppermost) on to the top of the slope of the
embankment. The rear five vehicles broke away from the horse box, ran back down the incline, and
were stopped by the guard in the rear brake van applying his hand brake after they had run back about
a quarter of a mile. The tender and horse box also ran back and were stopped by the driver—who,
upon the crash occurring had turned round and was holding on by the tender coal plate—applying the
tender hand brake (which had remained in working order) a few carriage lengths short of the rear five vehicles.

– Major Gen. C.S. Hutchinson
Assistant Secretary

Board of Trade (Railway Dept.)
1889
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Chapter8
Railway Specification

One goal of this work is to use Agda to aid in the development of verified
railway critical systems. The remainder of this thesis will focus on the railway
domain, and using Agda to verify properties in this domain.

Grand Challenge Dines Bjørner proposed a grand challenge of computer
science is to develop formally, and verify railway systems [Bjø04, Hoa03].
This is not limited to critical systems. Part of the challenge includes the
specification of these systems. The railway domain was proposed to be a
grand challenge due to the number of different systems operating with dif-
ferent types of data, see the bullet points below. Over recent years, there
have been many successful attempts to specify different parts of the railway
domain, some of which are presented in this chapter. The parts of the grand
challenge relevant to this research include:

• The topology of the network, how all the train tracks and signals are
connected.

• The operational behaviour of the topology, when a signal can show a
proceed aspect.

• Interlocking systems1 that control the topology.

The grand challenge also encompasses other issues (not considered here) such
as:

• Fare management i.e. consistency between stations,

• Train timetables, and

• Staff rostering.

1An interlocking system is a critical system that is responsible for safety on the railway.
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Chapter Overview. This chapter discusses this project’s contribution to
modelling the topological (Section 8.1) and operational aspects (Section 8.2)
of railways. The models presented here have been used to model railyards
in Agda (and form the basis of the verification), thus they are minimal with
respect to the information they contain. It should be an easy matter to
extend them to facilitate the verification of a wider range of properties.

From Section 8.3 onwards a framework is identified that facilitates proving
theorems in the railway domain, namely that the domain safety requirements
follow by a selection of signalling principles (lemmata). In this case, domain
safety is that trains do not collide or derail. This framework facilitates ex-
ploring which signalling principles are required to guarantee domain safety.
The signalling principles, domain safety, and models should be validated by
domain experts. The advantage of performing this meta-verification is that
it elucidates the required verification conditions that a given control system
must satisfy in-order to guarantee domain safety. Although these sections
are specifically concerned with proving theorems in railway domain, the ap-
proach can be applied to other domains, in such a situation, the signalling
principles are synonymous with safety principles.

Specifically the sections from Section 8.3 onwards are as follows: in Sec-
tion 8.3 an abstract model of the railway domain is developed. In Section 8.4
signalling principles and domain safety are introduced. Then in Section 8.4.1
using this abstract model a number of signalling principles are shown to
imply domain safety.

Modelling and verifying the implementation of a train control system
with respect to the railway domain models presented here is deferred until
Chapter 9 and Chapter 10. There is a case study of the verification in
Chapter 11.

8.1 Physical Layout

Initially, when designing a railway, it is required to fix a physical layout
(topology) of the involved hardware, i.e. track segments, sets of points, sig-
nals, platforms, emergency systems, balises, etc. In practice, the physical
layout is specified by a document called a “track plan”, see Figure 8.3 for an
example. The track plan uses a graphical notation for precisely determin-
ing what each piece of equipment is, and in some cases how the pieces are
connected together.

Each class of hardware previously indicated can be broken down into sub-
classes that determine their attributes. For example, signals are sub-classed
into main, distant, call-on or shunt; each of these sub-classes has a different
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purpose, track plan notation and attributes. The main signals and distant
signals are further categorised by the aspects they can show.

The railway domain has a well-developed terminology that was created
and has been evolved over the past 200 years by engineers. Many of these
terms are not-intuitive as they were first used to describe the behaviour
of, at the time, present day technology. One such example: the terms
normal and reverse which today are mostly used to describe the position
of a set of points, but historically referred to the position of a lever (in a
signal box) that controlled the set of points, reverse being the case where
the lever was pulled from the normal position. For a listing of the relevant
terminologies please see Appendix A.

A fuller description of railway signalling can be found in [KR01, Noc02,
Lea03], a series of books published by the Institution of Railway Signal
Engineers.

Remark

Many techniques have been used to define formal models the physical
layout of a railway network [P07], some of the successful techniques include
algebraic specification [BGP95, Bjø06], graph theory [Han98, Mon92] and
predicate logic [Kan08, Eri97a]. Common between all the approaches is that
the layout contains all identifiers of the components, what these components
are, their relationships to other components, and their attributes. From a
mathematical perspective, the layout forms a signature for subsequent def-
initions. Notably these signatures (and a logic) form the language which
defines the interlocking system. In the interest of feasibility, a railway net-
work consists of a number of composable layouts, typically one (or more) per
railyard, e.g. station or junction.

As a running example in this chapter, consider the basic topology map
in Figure 8.3 that depicts a set of points and a number of signals. Figure 8.1
and Figure 8.2 describe the components of the diagram.
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A B

C

Figure 8.1: Basic track segments, a hatch mark (vertical line) delimits the
segment. Left: a singular track segment. Centre: 3 connected segments.
Right: a set of points, a singular track segment consisting of two units. The
normal and reverse configurations of the set of points is depicted by the break
in the line near A, e.g. normal is when travel between A and B is possible,
and reverse is when travel between A and C is possible.

A B

Figure 8.2: Selection of different signals. Left: 1 aspect signal, only shows
danger aspect. Centre left: 2 aspect signal, shows danger or proceed aspects.
Centre right: 3 aspect signal, shows danger, caution or proceed aspects.
Right: signal is only visible when travelling from A to B, also known as
facing direction.

s1

s3 s5

s2

s4 s6

ta tb

tc td te tf tg

Figure 8.3: Topology of a set of points te and adjacent track segments; te
consists of two units, the first unit from s3 to s5 forms the normal position
and the second from s1 to s5 forms the reverse position. There are 7 track
segments (ta, tb, . . .) and 6 signals (s1, s2, . . .).

Although, the layouts essentially consist of a number of sets and relations
on these sets, choosing a definition for the layout in Agda that would help
and not hinder the proofs or verifications required a significant amount of
exploration. A number of different definitions were explored in an attempt
to find a suitable trade-off between specifying and proving properties about
the layouts. The specification was required to be in a human readable format
that is close enough to the actual railway documents to ease validation. In
this thesis, a simplified layout is used where only main signals and track
segments are considered. The layout consists of the connections between
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track segments, and locations of the signals (given by a pair of connected
track segments). Although simple, these layouts are expressive enough to
model a wide variety of topologies; no information is provided about the
functionality of a track segment, e.g. set of points, cross-over or turntable.
In essence, these models form a graph where the nodes are track segments
and the directed edges are directed connections; an edge can be annotated by
signals. These layouts are specified in module RDM.RailYard of Appendix F
as follows:

record PhysicalLayout ∶ Set1 where
field

Segment ∶ Set
Signal ∶ Set
connections ∶ Segment→ List Segment

Connected ∶ Segment→ Segment→ Set
Connected ts1 ts2 = ts2 isin connections ts1

field
signalLocation ∶ Signal→ SignalLocationSegment,Connected

Here Segment and Signal are sets of identifiers for track segments and signals,
respectively. The field connections is a function mapping a track segment
onto a list of its adjacent neighbours. The relation Connected s t is inhab-
ited iff segment s is directly connected to segment t; it is realised by the use
of the relation isin, which is defined as follows:

isin ∶ ∀ {A} . A→ List A→ Set
a isin [] = �
a isin (a′ ∷ as) = a ≡ a′ ∨ a isin as

The field signalLocation maps a signal to a SignalLocation. This is a struc-
ture that wraps up two adjacent track segments; adjacency is enforced with
the use of the relation Connected. SignalLocation is defined as follows:

record SignalLocation (S ∶ Set) (R ∶ S → S → Set) ∶ Set where
field

facing ∶ S
trailing ∶ S
connected ∶ R facing trailing

The topology shown in Figure 8.3 can be coded as a physical layout by
defining the sets as Segmentfig8 .3 = {ta, . . . , tg} and Signalfig8 .3 = {s1, . . . , s6}.
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Definition of connectionsfig8 .3 is canonical from Figure 8.3,

connectionsfig8.3 ta = [tb] , . . . , connectionsfig8 .3 te = [tf , td, tb]

Depending on the direction of travel a signal s might not be visible, this is
encoded by the naming of the fields in the SignalLocation record, i.e. “s2 is
observable when travelling from tb to ta” is encoded as:

signalLocation s2 = record {
facing = tb ; trailing = ta ; connected = inj1 refl }

There is no attempt to model the state of these topologies here, but the
operational behaviour is described by the control tables (see next section).
Instead, theses layouts are only meant as a signature for subsequent defini-
tions. Later in Section 8.3 abstract layouts are introduced, and shown to
follow from these layouts. It is these abstract layouts which will have their
states modelled.

8.1.1 Track Segments

These models are intended to be extensible with respect to track segments.
In early attempts, explicit provisions were made for sets of points, but this
became cumbersome and raised questions about which types of track seg-
ments should be supported. Therefore, it was decided to allow connections
between segments to be non-symmetric, and allow an individual segment ts
to maintain a list of which other segments it is possible to travel to, from ts .
These possible moves are because track segments can change their state. For
example, a set of points can be in the normal or reverse position.

It might be preferable when modelling track segments generically to split
up the list of connected segments into two disjoint lists (left and right). This
would allow for removal of impossible moves over track segments by requiring
that a train does not both enter and leave a track segment from the same
list; however, complicated track segments, such as a turn table, would not
be formalisable. For example in Figure 8.3, regardless of the configuration of
the set of points, te, it should not be possible to travel from tb to te, and then
directly to td. The splitting of the connected segments here would ensure
that a train entering from the left would leave from the right (or vice versa).
A detailed discussion of generic track segment modelling can be found in
[BGP95].

In these abstract specifications and models, it is not required to know the
underlying state of a track segment. This is because much of this thesis is
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concerned with safety verification, in which, it is crucial the track segment
does not change its state while in use, but which state it is in, is not as
important. Therefore, the track segment needs to be locked while in use; this
lock will be explained later.

The control tables enrich the information here; they identify which track
segments have what functionality. For example, sets of points are identified
in the control table but not in the physical layout.

8.2 Control Table

The physical layouts presented do not describe the operational requirements
of the topology, e.g. when a signal can show a proceed aspect. Following the
long-standing practices in the railway domain, the operational requirements
are defined by control tables. These consist of a number of (tableau) docu-
ments detailing when a piece of hardware can be controlled to do something.
Moreover, the control tables form a specification of the control system, and
are signed-off by domain experts before the development of the control sys-
tem begins. For this reason, the safety of the railway is delegated to control
tables.

The control tables could become difficult to understand, particularly when
there is a complex arrangement of signals and sets of points. Signal engineers
simplify the definition of a control table by the abstract concept of a route.
Informally, routes start at signals and consist of a sequence of contiguous
track segments up-to the next visible signal. From the perspective of rail-
way signalling, routes form the smallest unit of the topology that a train
is authorised to occupy. Routes are abstract as they do not correspond to
any physical entity in the layout. In this work, due to the simplicity of the
physical layouts, the control tables only define the conditions under when a
route can be set2, this includes which track segments must be unoccupied,
and the required states of selected track segments.

These conditions determine when it is permissible to set a route. They
form an abstract specification for a portion of the railway network, and are
relations between physical objects in the layout and abstract concepts such as
routes, see Figure 8.4 for an archetypal control table. One use of these tables
is during the development of interlocking software; in such cases, control
tables and layouts are used as a specification by developers, and testers derive
test cases from them.

2The route must also be requested, in addition to these constraints holding, for it to
be set.
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Route
Signal

Tracks
Points

Facing
Start End Normal Reverse

R1 s1 s5 te tf – te –
R2 s3 s5 te tf te – –
R3 s6 s2 te tb – te te
R4 s6 s4 te td te – te

Figure 8.4: Control table for topology in Figure 8.3. R1 can be set when
track segments te and tf are unoccupied and set of points te is in the reverse
position. The minimal information depicted here is typical of the railway
domain, in practice there is more information pertaining to speed limits,
emergency events and specific signalling schemes.

R1

s1

s3 s5
s2

s4 s6

ta tb

tc td te tf

R2

s1

s3 s5
s2

s4 s6

ta tb

tc td te tf

R3

s1

s3 s5
s2

s4 s6

ta tb

tc td te tf

R4

s1

s3 s5
s2

s4 s6

ta tb

tc td te tf

Figure 8.5: Routes from control table in Figure 8.4 depicted.

Automatically deriving verification conditions from the control tables is
possible. This is because the semantics of the control tables are well defined.
Thus, if an interlocking system fulfils these conditions, then it correctly re-
fines the control table. Therefore, assuming the verification system is cer-
tified, this would considerably reduce the amount of effort/money required
to test the system is correct. This problem is not inherently interesting and
has not been explored in depth, in this work; however, a basic verification
condition generator is outlined in Section 10.1.

From an abstract mathematical perspective, control tables are sentences
built over a physical layout. In this work, the control tables are defined to be
a list of relations built over a set of route identifiers and components of the
physical layout. The only relation considered here formalises the conditions
under when a route can be set, which corresponds to an entry in the table
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of Figure 8.4. Moreover, each entry of the control table corresponds to a
route. It would be an easy matter to extend the relations considered, but it
was not necessary for the verifications performed during this work. Let p be
a physical layout, Segmentp and Signalp are the set of segments and signals
projected from p. An entry of the control table is defined as follows:

record ControlTableEntryp ∶ Set where
field

start ∶ Signalp
segments ∶ List Segmentp
normalpoints ∶ List Segmentp
reversepoints ∶ List Segmentp
facing ∶ List Segmentp

This is a syntactical object, correctness is enforced by the definition of the
control table. An instance

record {
start = x ; segments = Ð→ts ;
normalpoints = Ð→np ; reversepoints = Ð→rp ;

facing = Ð→f }

expresses that an unnamed route starts at signal s, uses track segments ts i
and requires points npj/rpk to be in the normal/reverse position, respec-

tively. f⃗ identifies all segments (typically sets of points) in the route that are
traversed in the facing direction. Although it is possible to compute the list
of normal/reverse points and facing segments from the physical layout, they
have been added to simplify subsequent definitions (and keep accordance
with practices in the railway domain). In this representation, the end signal
is omitted as it would require many parallel routes when a route terminated
at a track segment that contained multiple signals; this is because the next
route would have been defined by the end signal of the current route, hence,
there would need to be a number of parallel routes that only differ by the end
signal. The control table maps routes to control table entries, and provides
proofs about the well-formedness of the table. The first part of the table is
defined as follows:

record ControlTablep ∶ Set where
field

Route ∶ Set
RouteEq ∶ (r1 r2 ∶ Route)→ r1 ≡ r2 ∨ r1 ≢ r2

entries ∶ Route→ ControlTableEntryp
connections ∶ Route→ List Route
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Decidable propositional equality will be required on the set of routes for
subsequent proofs.

Before introducing the second part of the table that formalises the well-
formedness of the first part of the table, an improved notation is introduced.
For a given route rt in control table c, its fields can be projected out from
its entry in the table by omitting the entry. That is, instead of writing

segmentsentriesc rt

to obtain a list of segments in route rt. When ambiguities do not arise, we
omit entriesc. The above is simply written as follows:

segmentsrt

To express the well-formedness of a control table, we define the following
relations over the first part of the table, and they form part of the definition
of the ControlTable record.

Connected ∶ Route→ Route→ Set

Connected rt1 rt2 = rt2 isin (connections rt1)

SegInRoute ∶ Segmentp → Route→ Set

SegInRoute ts rt = ts isin segmentsrt

FacingInRoute ∶ Segmentp → Route→ Set

FacingInRoute ts rt = ts isin facingrt

NormalInRoute ∶ Segmentp → Route→ Set

NormalInRoute ts rt = ts isin normalpointsrt

ReverseInRoute ∶ Segmentp → Route→ Set

ReverseInRoute ts rt = ts isin reversepointsrt

The well-formedness of the table is then given by a number of axioms that
guarantee properties such as all routes must contain at least one track seg-
ment, or that all pairs of connected routes have their first/last track segments
connected with a signal. A conjunction of the following 7 axioms defines the
well-formedness. These axioms form the second part of the table where each
axiom becomes a field.

∀rt ∃ts . SegInRoute ts rt (NonEmptyRoutes)
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∀rt1 rt2 rt3 . Connected rt1 rt2
→ Connected rt3 rt2
→ (∃ts . SegInRoute ts rt1 ∧ SegInRoute ts rt3)

(WellFormed)
∀rt1 rt2 . Connected rt1 rt2

→ facingsignalLocationp (startrt2)
≡ segmentsrt1[last]

∧ trailingsignalLocationp (startrt2)
segmentsrt2[0]

(RoutesConnected)
∀rt i . 0 ≤ i < (length (segmentsrt − 1))

→ Connectedp segmentsrt[i] segmentsrt[i + 1]
(Continuous)

∀rt ts . FacingInRoute ts rt→ SegInRoute ts rt (InRoute1 )

∀rt ts . NormalInRoute ts rt
→ SegInRoute ts rt ∧ ¬(ReverseInRoute ts rt)

(InRoute2 )

∀rt ts . ReverseInRoute ts rt→ SegInRoute ts rt ∧ ¬(NormalInRoute ts rt)
(InRoute3 )

Informally, for a given route rt these axioms ensure that segmentsrt is
not empty and that the segments are contiguous. The segments identified by
normalpointsrt, reversepointsrt and facingrt are all contained in segmentsrt.
For two connected routes rt1 and rt2, i.e. travel from rt1 to rt2 is possible,
then the last segment of rt1 and first segment of rt2 are connected, and that
there is a signal facing in the correct direction between these two segments.
For two routes rt1 and rt3 that are both connected to rt2, then rt1 and rt3
share a common track segment. This common track segment (usually the
berth segment of rt2) is required for subsequent proofs, it will help to show
that at most one train enters rt3 at a time.

The formal definition of a control table is in module RDM.RailYard of
Appendix F.

To prove the theorems in Section 8.4.1, it is not required for the routes
to not contain other signals. However, in practice to mitigate sources of
confusion for the drivers, routes do not contain facing signals.

Remark

8.3 Abstract Layout

The physical layouts and control tables that have been presented are low-
level representations corresponding to actual documents found in the railway
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domain. When attempting to show that the signalling principles imply do-
main safety, many of the actual details are not required and are not in a
directly amenable format. For this reason, an abstract representation of lay-
outs is considered. This abstract representation combines the relevant parts
of the physical layout and control table into a signature expressive enough
to represent the signalling principles and domain safety.

The abstract layouts are concerned with trains, routes, and how the routes
are connected. This is because routes are the smallest unit of the topology
that a train is allowed to occupy, and they are guarded by signals. It is
required to know which segments belong to a route, but the order of these
segments (or even if they are connected at all) is irrelevant. The routes are
required to fulfil the axiom (WellFormed ) from the previous section. The
abstract layout is defined in module RDM.fixedtrains of Appendix F as
follows:

record Layout ∶ Set1 where
field

Segment ∶ Set
Train ∶ Set
TrainEq ∶ (t1 t2 ∶ Train)→ t1 ≡ t2 ∨ t1 ≢ t2
Route ∶ Set
RouteEq ∶ (r1 r2 ∶ Route)→ r1 ≡ r2 ∨ r1 ≢ r2

RouteConnected ∶ Route→ Route→ Set
SegInRoute ∶ Segment→ Route→ Set
FacingInRoute ∶ Segment→ Route→ Set
WellFormed ∶ ∀rt1 rt2 rt3 .

→ RouteConnected rt1 rt2
→ RouteConnected rt3 rt2
→ ∃ts . SegInRoute ts rt1 ∧ SegInRoute ts rt3

In the later proofs, decidable propositional equality is required on trains
and routes. It should be noted that, in this model, the set of trains is fixed,
therefore, the models do not allow for trains to couple (or decouple). One
problem with allowing trains to couple or decouple is that there would be two
trains in the same segment. Possibly this could be modelled by (1) explicitly
representing the front and rear positions of trains, (2) having a minimum
safe speed, or (3) allocating special track segments for these manoeuvres.

A remark about facing segments: In the layout, it was decided not to in-
clude a track segment connection graph, the types of the segments (e.g. set of
points, cross-overs, diamonds, or a yet to be designed track segment), and the
possible states of these segments (e.g. normal or reverse for a set of points). If
this information had been included, then it would be possible to deduce, for
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a given route, which segments are traversed in the facing direction. Instead,
it was decided to include a relation indicating which segments are traversed
in the facing direction, this information is specified in the control table, and
it is critical that it is validated. This was decided because it would have been
an awkward activity to undertake while maintaining extensibility for new de-
signs of track segments. Although this is possible in Agda due to dependent
types, it is left as future work. Essentially the layouts would need to be
augmented with a set of track segment types, and each segment type would
be assigned a state space. A relation would be needed on segment states
that will determine whether it is possible to transition from one segment to
another.

In these models, the lie (e.g. state) of a track segment is not relevant
to the safety of the railway, but the lie is only relevant when verifying that
a system correctly refines a control table. For linear track segments, their
lie does not change so it is irrelevant. For a set of points, the lie is either
normal or reverse; the set of points are safe regardless of the lie. However,
it is critical that the lie does not change while being traversed in the facing
direction, this is because the nose of the point will get jammed on the wrong
side of a wheel, resulting in a derailment. Note that when traversed in the
trailing (converging) direction, if the lie is changed, it is not a safety concern
as the train will not derail as the wheels will not get jammed on anything.

The abstract layouts are trivially constructable from the physical layout,
control table and set of train identifiers. For completeness the translation is
given as follows:

toLayout ∶ (p ∶ PhysicalLayout)
→ ControlTablep
→ (Train ∶ Set)
→ ((t1 t2 ∶ Train)→ t1 ≡ t2 ∨ t1 ≢ t2)
→ Layout

toLayout p c t teq = record {
Segment = Segmentp ;
Train = t ;
TrainEq = teq ;
Route = Routec ;
RouteEq = RouteEqc ;
RouteConnected = Connectedc ;
SegInRoute = SegInRoutec ;
FacingInRoute = FacingInRoutec ;
WellFormed = WellFormedc }
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8.3.1 Layout State

Up to this point all the models presented do not consider the state of the
topology. The state defines whether the track segments are locked, and what
aspect a signal displays; also part of the state includes the position of the
trains. It has previously been noted that these models are concerned with
safety and not operational correctness, therefore, the lie of a track segment is
not included, only whether it is locked. For information about the operational
correctness, including the lie of a track segment see Section 10.2.

The semantics of a locked segment is that 1) it cannot have its lie changed
by the control system, and 2) that it is detected (and clamped) to be in a
valid position. Valid in this sense means that it is not in-between recognised
positions. For instance, a locked set of points is mechanically clamped in
the normal or reverse positions, and it did not get jammed between these
positions. Historically, it was common place that pieces of coal fell from
the trains steam engine, and sometimes they would fall between the blades
of the points and prevent them from being normal or reverse. For obvious
reasons, 1) is required to prevent derailments occurring due to controller
error (possibly a human), and 2) ensures that the segment does not move
after being controlled into a position, perhaps because of vibrations caused
by the train, or general wear-and-tear. In both cases, the concern is that
when a train travels over the segment in the facing (diverging) direction, the
train attempts to travel along orthogonal segments, resulting in a derailment.
When travelling in the trailing (converging) direction over an unlocked seg-
ment there is only a small chance of derailment, it is more likely, if it is not
in a valid position, that the segment will be damaged. It should be noted
that the vast majority of train derailments are attributed to faulty sets of
points; modern high-speed train lines exaggerate this issue, since it might
lead to significant of loss of life. For this reason, in the UK, it became a legal
requirement that all facing moves by passenger trains over sets of points must
be locked [Cal92]; this gave rise to widespread adoption of locks known as a
facing-point lock or FPL.

The state of a signal is determined by the aspect it displays. In this
work, only 2-aspect signalling is considered. A 2-aspect signal displays either
a proceed or danger aspect. To avoid ambiguities, the aspect of a signal is
not given by a colour, but instead by its intended meaning; this is partly
for historical reasons, as different train operators used different signalling
schemes.

The state of an abstract layout l is defined in module RDM.fixedtrains
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of Appendix F as follows:

record LayoutStatel ∶ Set where
field

trainRoute ∶ Trainl → Routel
signalAspect ∶ Routel → Aspect
locked ∶ Segmentl → Locking

where
Aspect ∶= {Proceed,Danger}

and
Locking ∶= {Locked,Unlocked}

The control systems that are of interest, in this work, are discrete and
are modelled by a stream of topological states indexed by time.

nthStatel ∶ N→ LayoutStatel

In Chapter 9 it is shown how to define the implementation of this function
from a ladder logic program.

In the following, an improved notation is used to reference the components
of a state. For an abstract layout l, time t and train tr, instead of writing

trainRoute(nthStatel t) tr

when no ambiguities occur, nthStatel is omitted, and the above is written as
follows:

trainRoutet tr

Similarly for the other components of the state.
For an abstract layout l, the function nthStatel models an arbitrary (infi-

nite) sequence of states. Many of the potential sequences are undesirable, for
instance, a sequence that contains a state where two or more trains occupy
the same route, or a sequence that contains successive states where a train
moves ad-hoc between possibly unconnected routes. There are two distinct
issues here. The first is that some sequences are unsafe (according to the do-
main’s safety) and are discussed in the next section. The second issue is that
some of these sequences are physically impossible. The issue of trains mov-
ing ad-hoc is physically impossible under normal operations, assuming that
helicopters (or similar) are not picking up the trains and moving them be-
tween unconnected routes. This issue is avoided by placing a well-formedness
constraint upon the sequences by requiring that nthStatel fulfils the axiom:
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∀t train . (trainRoutet train ≡ trainRoutet+1 train) ∨
(RouteConnectedl (trainRoutet train) (trainRoutet+1 train) ∧

signalAspectt (trainRoutet+1 train) ≡ Proceed)

Correct-Train

Informally, this axiom states that trains only travel between two connected
routes, and where the guarding signal between these routes displays a proceed
aspect.

8.4 Domain Safety and Signalling Principles

In this section, it is demonstrated how to remove unsafe sequences from the
models. This is done by defining a property which expresses the domain
safety, and then showing that this property holds for all states in an arbi-
trary sequence. In general, showing this property always holds requires that
a number of assumptions are made about the sequences. These assumptions
formalise a minimal selection of the domain’s safety principles . Informally a
safety principle is a rule-of-thumb used by the designers and testers of a crit-
ical system. In a formal setting, the safety principles are lemmata expressing
domain knowledge. Importantly, with respect to the railway domain, safety
principles are synonymous with signalling principles. In later chapters, it
will be shown how to prove that an implementation of nthStatel fulfils these
safety principles (assumptions).

Initially the concept of domain safety, must be validated and formalised.
The formalisation of safety should be clear and easy to understand by domain
experts. For instance, in the Pelicon crossing example from Section 1.1.1, the
concept of safety is given as follows:

at any point in time exclusive use of the crossing is given to pedestrians or
road traffic, but not both

In the railway domain, one such safety requirement is that

at any point in time trains do not derail or collide

To express this requirement over the domain models presented, it is required
to formalise what a derailment and a collision are. In Section 8.3.1, it was
discussed that a major cause of derailments is when trains travel in the facing
direction over a set of points that are not in a well-formed lie, or changes
its lie while occupied. Therefore, the condition that trains do not derail is
formalised as follows:
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∀t train segment . FacingInRoutel segment (trainRoutet train)
→ lockedt segment ≡ Locked

S1

This states that whatever route a train is in, all segments in that route which
are traversed in the facing direction are locked. As the facing segments are
identified in the control table, and for this condition to be trustworthy it is
imperative that the control tables are validated.

The formalisation that trains do not collide is given by a statement that
ensures that no two trains occupy the same segment. In this setting, an over
approximation is made, such that the potential segments that two distinct
trains are allowed to occupy do not overlap.

∀t train1 train2 segment . train1 ≢ train2 →
¬(SegInRoutel segment (trainRoutet train1) ∧

SegInRoutel segment (trainRoutet train2))

S2

Therefore, safety in the railway domain is given by a conjunction of (S1 ) and
(S2 ). In this work, the above formalisations of safety and the models have
not been validated; this is because of time constraints on the project.

Before proving that (S1 ) and (S2 ) always hold, it is required to introduce
4 signalling principles. These principles, as already noted, will remove the
unsafe sequences.

∀t route1 route2 segment . route1 ≢ route2

→ SegInRoutel segment route1 ∧ SegInRoutel segment route2

→ signalAspectt route1 ≡ Danger ∨ signalAspectt route2 ≡ Danger

Signalling Principle 1. (Opposing Signals)

The opposing signals principle ensures that for two distinct signals that pro-
tect the same part (or portion) of track must never both be set to proceed as-
pects. The issue here is straightforward, suppose the situation in Figure 8.6,
where there is a train at x and another at z, and both are attempting to
enter the same portion of track (y). Should there be no train on y, then at
most one of these trains should be shown a proceed aspect, or else there is a
significant risk of a collision occurring. That is, signal 1 or signal 2 can clear,
but not both.
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x y z

1

2

Figure 8.6: Opposing Signals

∀t train segment route . SegInRoutel segment (trainRoutet train)
→ SegInRoutel segment route
→ signalAspectt route ≡ Danger

Signalling Principle 2. (Signals Guard)

The guarding signals signalling principle prevents a signal being cleared
while a train is occupying the portion of track that the signal is protecting.
See Figure 8.7, suppose there are two trains located on segments x and y,
and the signal cleared before the train located at y vacated the segment, then
the train located at x could collide with the train located at y.

x y

1

Figure 8.7: Signals Guard

∀t route segment . signalAspectt route ≡ Proceed
→ FacingInRoutel segment route
→ lockedt segment ≡ Locked

Signalling Principle 3. (Proceed Locked)

The proceed locked signalling principle formalises that if a signal is clear,
then all segments protected by the signal in the facing direction are also
locked. That is the situation in Figure 8.8; if signal 1 is cleared, then the
set of points y is locked. The same constraint is not applied to signal 2
as it is protecting y in the trailing direction. The motivation behind this
constraint is that if a train should traverse an unlocked set of points in the
facing direction, then there is a significant risk of a derailment.

∀t train segment . SegInRoutel segment (trainRoutet+1 train)
→ lockedt segment ≡ Locked
→ lockedt+1 segment ≡ Locked

Signalling Principle 4. (Train Holds Lock)
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y

1

2

Figure 8.8: Proceed Locked

The final signalling principle prevents a segment in an occupied (or about
to be occupied) route from being unlocked, if it was locked in the previous
state. If a set of points is unlocked while occupied, then there is a risk that
the lie of the points could change, which could result in a derailment.

8.4.1 Proof that Safety Follows

In this section, we prove by induction over time that the signalling principles
implies the safety requirements. For this, we define following axioms that
correspond to the base-cases of (S1 ) and (S2 ).

∀train segment . FacingInRoutel segment (trainRoute0 train)
→ locked0 segment ≡ Locked

S1-Init

∀train1 train2 segment . train1 ≢ train2 →
¬(SegInRoutel segment (trainRoute0 train1) ∧

SegInRoutel segment (trainRoute0 train2))

S2-Init

The following two theorems prove that safety follows by the signalling
principles. The first theorem proves that the facing-point locks are engaged
for all facing moves over the segments. The second theorem shows that the
trains do not collide. This order of presentation is because the first theorem
is simpler. See module RDM.fixedtrains in Appendix F for full technical
details.

Theorem 8.4.1 (Facing-Point Lock). Assume an abstract layout l, and as-
sume axioms (Correct-Train), (S1-Init), and signalling principles 3 and 4
hold. Then (S1) holds.

Proof. Recall that (S1 ) is defined as follows:

∀t train segment . FacingInRoutel segment (trainRoutet train)
→ lockedt segment ≡ Locked

Proof by induction on time t
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Case t = 0: Follows by (S1-Init ).

Case t = t′ + 1: Define

Stationary ∶ Trainl → Set
Stationary tr = trainRoutet tr ≡ trainRoutet′ tr

Note that because of the decidability of the equality on routes, we can
make the full case-distinction:

Case Stationary train:

FacingInRoutel segment (trainRoutet′ train)
→ lockedt′ segment ≡ Locked

by induction hypothesis

FacingInRoutel segment (trainRoutet train)
→ lockedt′ segment ≡ Locked

(∗)

rewrite induction hypothesis using (Stationary train)

FacingInRoutel segment (trainRoutet train)
→ lockedt segment ≡ Locked

apply (∗) to signalling principle 4

Case ¬(Stationary train):

signalAspectt′ (trainRoutet train) ≡ Proceed (∗)

by case assumption applied to (Correct-Train)

FacingInRoutel segment (trainRoutet train)
→ lockedt′ segment ≡ Locked

(∗∗)

apply (∗) to signalling principle 3

FacingInRoutel segment (trainRoutet train)
→ lockedt segment ≡ Locked

apply (∗∗) to signalling principle 4
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Theorem 8.4.2 (Collision Free). Assume an abstract layout l, and assume
axioms (Correct-Train), (S2-Init), and signalling principles 1 and 2 hold.
Then (S2) holds.

The proof is structurally similar to the proof of Theorem 8.4.2. Both
proofs make a case analysis over the trains changing routes.

Remark

Proof. Recall that (S2 ) is defined as follows:

∀t train1 train2 segment . train1 ≢ train2 →
¬(SegInRoutel segment (trainRoutet train1) ∧

SegInRoutel segment (trainRoutet train2))

Proof by induction on time t

Case t = 0: Follows by (S2-Init ).

Case t = t′ + 1: Define

Stationary ∶ Trainl → Set
Stationary tr = trainRoutet tr ≡ trainRoutet′ tr

Note that because of the decidability of the equality on routes, we can
make the full case-distinction:

Case Stationary train1 ∧ Stationary train2:

¬(SegInRoutel segment (trainRoutet′ train1) ∧
SegInRoutel segment (trainRoutet′ train2))

by induction hypothesis

¬(SegInRoutel segment (trainRoutet train1) ∧
SegInRoutel segment (trainRoutet train2))

rewrite induction hypothesis by case assumption
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Case ¬(Stationary train1) ∧ Stationary train2:

signalAspectt′ (trainRoutet train1) ≡ Proceed (1)

by case assumption applied to (Correct-Train)

Assume the antecedent of (S2 )

∃s . SegInRoutel s (trainRoutet train1) ∧
SegInRoutel s (trainRoutet train2)

(∗)

signalAspectt′ (trainRoutet train1) ≡ Danger (2)

apply (∗) to signalling principle 2

By (1) and (2), we get a contradiction.

Case Stationary train1 ∧ ¬(Stationary train2): As the previous case,
but with train1 and train2 interchanged.

Case ¬(Stationary train1) ∧ ¬(Stationary train2):

signalAspectt′ (trainRoutet train1) ≡ Proceed ∧
signalAspectt′ (trainRoutet train2) ≡ Proceed

(1)

by case assumption applied to (Correct-Train)

Assume the antecedent of (S2 )

∃s . SegInRoutel s (trainRoutet train1) ∧
SegInRoutel s (trainRoutet train2)

(∗)

signalAspectt′ (trainRoutet train1) ≡ Danger ∨
signalAspectt′ (trainRoutet train2) ≡ Danger

(2)

apply (∗) to signalling principle 1

By (1) and (2) we get a contradiction.

Corollary (Always-Safe). Assume an abstract layout l. Assume axioms
(Correct-Train), (S1-Init), (S2-Init), and signalling principles 1, 2, 3 and 4
hold. Then trains do not collide, nor do they derail.

Proof. The proof is a conjunction of Theorem 8.4.1 and Theorem 8.4.2.
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8.5 Experiences

A significant amount of effort was put into finding the correct representations
for the railway domain. In part, this is because the definitions were required
to be type-checked by Agda, so clean mathematical definitions that were used
on paper during the design were not directly amenable. For example, the use
of finite sets for modelling the topology could cause efficiency and usability
issues when pattern matching, however, they do result in clean definitions of
the abstract models.

It was not clear what level of abstraction was required for the models.
This is a common issue that can be seen in general when exploring the
literature relating to verification of railway control systems. Many attempts
get ‘bogged down’ in the details of the models, to such an extend that is it
is not clear that the details are required, and resulting in a model that is
difficult to validate. For example, in [Bjø06] there is an extensive discussion
about extensible modelling of track segments, to the extent that each track
segment is a state machine with a common interface. By common interface,
it is meant that the segments know how to be composed with other segments.
However, in this thesis it was chosen to abstract from details such as these,
and instead focus on the core issues of safety and correctness.

The choosing and formalising of the signalling principles was also a cum-
bersome task as in the UK there are no formal mathematical definitions of
these principles, only informal, natural language descriptions [IRS01]. In-
stead, they are documented using a non-formal language. More information
regarding the experiences of finding the correct signalling principles is given
in Section 11.2.2. This information includes an example of a mistake that
was made during formalising one of the principles.

Reversing Trains. It is noted that the models presented here do not allow
trains to be reversed because of signalling principle 2. Consider the scenario
in Figure 8.9. There are two routes depicted by the arrows, the first from
signal 2 to signal 4 and the second from signal 3 to signal 1. Without loss
of generality, assume that a train is in one of these routes, then it will never
be able to enter the other route because the centre segment is used by both
routes. Therefore, a reversing train violates signalling principle 2.

42

1 3

Figure 8.9: Reversing Trains
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At one point during the project the concept of a partial route release was
considered to be added to the model. A partial route release is terminology
from the railway domain for when part of a route that a train has already
traversed is released [KR01]. This would solve the problem in the above
example. Partial route releases were not implemented in our models for
simplicity, and lack of time.



Chapter9
Interlocking Systems

In the previous chapter, a number of discussions about modelling aspects
of the railway domain were presented. Importantly the chapter introduced
safety with respect to railways. In this chapter, a standard implementation
of safe (interlocked) railway control systems is developed, and in the next
chapter, a framework is presented to show that the control systems are safe.

Much of the domain knowledge relating to safe railways has been devel-
oped over many years. It is sad to say that the majority of this knowledge
has been gathered by investigators after tragic disasters. Following these
disasters, a number of recommendations were made, and often these recom-
mendations became enshrined in law. This work is based upon UK railway
signalling; as such many of the references given for these disasters are from
Her Majesty’s Railway Inspectorate1 (HMRI).

Chapter Overview. First, the history of railways is presented, this his-
tory shows the need for safety on the railways; hence interlocked control sys-
tems. Then the programming language known as ladder logic is introduced
and formalised. These ladder logic programs are shown to define decidable
transition systems, and then these decidable transition systems are used to
construct the nthState of an abstract layout. The chapter is concluded with
a discussion of LadderCTL and the Geographic Data programming language.

9.1 History of Interlocking Systems

Since the times of the Greek and Roman empires, the concept of railways or
wagonways have been recognised [Lew01]. The early railways were used for a

1In recent years (2006 onwards), the organisation responsible for overseeing safety on
Britain’s railways has been re-branded a number of times. At the time of writing, it is
known as the Office of Rail Regulation
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limited number of tasks such as helping miners get their ore out of a mine, or
getting produce to market. These historic railways were typically powered by
people or suitable animals, and the wheels and rails were typically made from
wood. Little attention was paid to safety; even a collision would not normally
result in a loss of life. Since these early years, a number of improvements have
been made. The most notable of which is the speed that the rolling stock
travel. This speed increase required a number of technological improvements.

During 1750-1820, arguably one of the most significant advents for rail-
ways was developed, rolled wrought iron track [Bir24]. During this period,
a number of small development were made that contributed to the start of
modern rails, from the production of high quality iron to the design of the
wheels and cross sectional shape of the track. These new wheels and tracks
could withstand the weight of a steam engine, which was undoubtedly the
next significant advancement.

The birth of modern British railways was in 1825; it started with the
opening of the Stockton and Darlington Railway and used the aptly named
Locomotion No 1 steam engine [Kir02]. From 1825, a plenitude of railways
opened, often referred to as the golden age of railways. It was not long
(1928) before loss of life accidents started occurring, although many of these
accidents were not catastrophic. They include incidents such as people falling
out of overcrowded moving trains due to doors not being locked. The precise
details and numbers of these incidents cannot be verified; this is because it
was not until 1840 that the HMRI2 was formed as a result of the Railway
Regulation Act 1840. Initially HMRI was only tasked with the investigation
of serious incidents, and to report back to Parliament; the rail companies
were not required to notify the regulators of minor misdemeanours.

As an example of the type of incidents that HMRI dealt with, in 1840,
there was a significant incident where 4 people lost their lives. This was due
to railway staff not correctly fastening an iron casting in a goods carriage,
attached directly behind the tender. The result was that an iron casting fell
off the goods carriage, which caused the derailment of the passenger carriages
behind the goods carriage [Smi40]. The result of this investigation was the
recommendation of how to delegate responsibilities between different staff.
Notably, in this case the goods department should have ensured the fastenings
were fit for purpose.

Many of the early reports by HMRI describe bad practices with the rail-
way staff and companies. These include gate-keepers at level crossings going
into their houses and not closing the gate, or debris on the track. Other
issues include hardware failures, a number of axle breaks, and a number of

2Initially part of the Board of Trade (BoT)
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tunnel and bridge collapses were reported. These early issues were mitigated
after a small number of years by better training of the staff, and engineers
understanding the requirements of the railways. However, there was still an
underlying issue of even the best trained human making signalling errors.
One of the early reported cases of a signalling error was at Blue Pits, Lan-
cashire, UK, where a head on collision occurred on a foggy night because of
a set of points being wrongly set [Wyn49]. This was attributed to a combi-
nation of dense fog and the pointsman making a mistake.

These accidents and many more prompted a tremendous effort directed
toward controlling the trains that run on the railways in a careful way so
that they do not collide, derail or deadlock. This was important because a
single accident on the railway has the potential of killing many people. Also,
the financial value of trains and the railway infrastructure are considerable,
and the reputation of a railway company is badly damaged when a train
derails or worse. The control which prevents trains from colliding known as
signalling.

In the early days of signalling, policemen were responsible for ensuring
safety by using a system of coloured hand held flags (or in some cases hand
gestures) during the day and oil lanterns by night. It was the lines running
between stations that were of primary interest, i.e. there was a policeman at
each station and junction signalling to the trains when it was safe to travel
down the line. There was no communication between the policemen, and
they simply relied upon a time interval system to prevent following trains
from running into the train ahead. The policeman would show a red flag
to following trains for 5 minutes after a train had passed him, and a green
flag for a further 5 minutes. Only after more than 10 minutes had passed
would a white flag be shown to approaching drivers. If a train stopped
unexpectedly after passing a policeman and out of his sight, then the driver
of a following train only had his own vision for warning. This obviously had
serious ramifications for safety. The ongoing advents of the electric telegraph
(circa 1837) helped to mitigate these issues, and laid the foundations for block
signalling . This development involved providing a fail-safe communication
medium between the policemen so that a train would only be allowed to enter
a block of track, should the policeman at the other end have observed the
previous train leaving it, and the poiceman has sent the all clear message
back.

During the period 1830 to 1860, block signalling was developed; it was
based upon the ideas of a policeman waving coloured flags to indicate that a
section of track was clear or not. Block signalling divides the track up into
disjoint blocks. Each of these blocks is protected by a semaphore signal; these
are signals that can show a clear or danger aspect. There were still a number
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of problems with this implementation of the block system, primarily, the
signals and sets of points were individually controlled. No attempt was made
to prevent unsafe combinations of signal aspects, such as with the opposing
routes signalling principle in the previous chapter. Another problem with
this implementation of the block system is that it was not clear where trains
should stop when signalled to do so. Responsibility was delegated to the
train drivers to select a safe location to stop.

With the growing demand, and hence complexity of the railway network,
advents were required to simplify the signalman’s job (who took over the
policeman’s responsibilities) and reduce mental strain. One such advent was
when groups of related signals and sets of points had their controls juxta-
posed. Typically each station or junction would have all its controls juxta-
posed, the locations (buildings) containing the juxtaposed controls became
known as a signal box. Inevitably, even the most well-trained signalman
could make mistakes and configure the signals into unsafe scenarios. As an
example of such a situation, in 1867 at Walton Junction, near Manchester,
UK, a collision between a passenger train and coal train occurred due to
signalling error. There were 8 fatalities and 73 injured [Yol67]. It is noted in
the accident report that previously there had been a minor incident at this
junction, and a recommendation previously made by Captain Tyler (from
HMRI) “that the most improved apparatus should be applied for working
the points and signals in connection with one another” was not adopted.
Col. Yolland then remarks “if Captain Tyler’s recommendations had been
adopted, the recent collision at Walton junction certainly would not have
happened.” [Yol67].

The apparatus that Captain Tyler referred to is what is now known as an
interlocking system. Traditionally these were apparatuses installed between
the controls (levers) and the actual signals and sets of points. The apparatus
ensures that the configurations of signals and sets of points are safe. Fig-
ure 9.1 shows the conceptual model of the interlocking system with respect
to the signalman and railway.

Traditionally signal boxes (Figure 9.2) were buildings with a good vantage
point of the railyard, and housed levers that controlled the signals and sets
of points. The signal box also housed the interlocking system, typically
on the floor below the levers. These mechanical interlocking systems were
essentially 3D jigsaws , with a number of rods and tappets. Each lever would
be connected to a number of rods. When a lever is moved from its normal
position into its reverse position, it moves its associated rods, if they are
free to move. The design of this jigsaw was such that when certain levers
were moved, others could not, Figure 9.2 shows this. These mechanical
interlocking systems were specified by a document known as a locking table,
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Signalman

Interlocking

Railway

Requests

Response (Yes/No)

Command

Track State

Figure 9.1: Conceptual Responsibility of Interlocking, the yes/no response
was achieved by the lever being free to move.

see Section 11.1.2 for more information about these tables.

Figure 9.2: A traditional signal box (left) with the associated interlocking
(right). Photographs courtesy of Invensys Rail.

As previously noted, the growing complexities of the railway network
meant that the strain on the signalman’s mental abilities—memory—was
significant. The introduction of the interlocking system significantly aided
the signalman in their duties. For this reason, in 1889 following one of the
worst rail disasters in the UK, at Armagh, where there were 78 fatalities and
262 injuries, many of whom were children [Hut89], it became law that all pas-
senger train services must be protected by interlocking systems. HMRI/BoT
was given powers under Regulation of Railways Act 1889 to regulate the
railway companies in full, and ensure, among other things, that interlocking
systems and facing-point locks were in-place for all passenger trains [Cal92].

9.1.1 Modern History

It is clear that these mechanical interlocking systems are limited by the equip-
ment and materials. Coupled with the advent of valves, digital interlocking
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systems were developed. This progressed through relays and finally to mi-
croprocessors. It is worth noting that currently on UK railways there are
various types of interlocking systems in use. There are still signal boxes,
such as the one in Figure 9.2, operating on quieter lines, albeit augmented
with electromechanical locks to fulfil legal requirements. The rationale for
keeping the mechanical interlocking systems is that they have worked for
many years, and there is no real need to modify them, besides maintenance,
as long as the railyard’s topology is not modified, such as adding new signals
or track. It is also an extremely costly business replacing an interlocking
system.

The first digital interlocking system used in the UK was the British
Rail Solid State Interlocking (SSI). The SSI project was established in 1976
[Cri87], first piloted at Leamington Spa, and was specified using the formal
language Z [Kin94]. This was a great success and paved the way for sub-
sequent interlocking systems. A significant advantage of digital interlocking
systems is that they take as inputs not only the requests, but also the state
of the topology. Typically the digital interlocking will detect

• occupied track segments,

• positions and locks of sets of points,

• blown light bulbs (signal proving), and

• emergency situations.

Figure 9.1 then becomes:

Control System

Interlocking

Railway

Requests

Response (Yes/No)

Command

Track State

Track State

Figure 9.3: Conceptual Responsibility of Digital Interlocking.

One digital interlocking that has been studied extensively during this
project is the Westrace. The Westrace is a newer, and simpler (lower-level)
interlocking design than the SSI and is programmed using ladder logic.
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Figure 9.4: Westrace interlocking system. Photograph courtesy of Invensys
Rail.

9.2 Ladder Logic

Interlocking systems are realised using a multitude of techniques; systems
programmed using ladder logic are the focus of this research. Ladder logic
(IEC 61131-3) is a discrete time, linear system of Boolean valued equations,
relating Boolean valued inputs and internal state to Boolean valued outputs.
Originally developed in the electrical engineering discipline, ladder logic is a
graphical representation of a reactive logic circuit consisting of a sequence of
Boolean valued assignments to latches.

As an example ladder logic program, consider the program in Figure 1.2
that realised a toy Pelicon crossing control system. The semantics of these
diagrams is as follows: each assignment (or rung) assigns to the variable on
the right in rounded brackets the result of (propositionally) evaluating the
circuit on its left. These circuits are built out of the operators ∧, ∨ and ¬;
and a global set of variable identifiers. Consider Figure 9.5, rung 1 depicts
the assignment c ∶= a ∧ ¬b and rung 2 depicts d ∶= a ∨ c.

The assignments are partitioned into two groups, assignments to output
variables and assignments to internal variables; input variables obtain their
values from observations about the real world and are not assigned values
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∣a∣ ∣ /b ∣ (c)Rung 1

∣a∣ (d)

∣c∣

Rung 2

Figure 9.5: An example ladder logic diagram that depicts two rungs. Rung 1
is the assignment: c ∶= a∧¬b, and rung 2 is the assignment: d ∶= a∨ b. These
assignments are sequential, i.e. earlier assignments affect later ones.

In this project these diagrams were translated into an equivalent proposi-
tional formula by reusing work from the author’s masters thesis [Kan08].

Remark

by the ladder, but instead contribute to the value of the internal and output
variables. Conceptually, a ladder logic program with n rungs and m input
variables is the following imperative program:

Initialise(a0, . . . , an)
while true {

ReadInputs(b0, . . . , bm)
a0 ∶= ϕ0

⋮
an ∶= ϕn
WriteOutputs(a0, . . . , an)

}

Here ai are state/output variables, bj are input variables, and ϕk are propo-
sitional formulæ built from conjunctions, disjunctions and the propositions
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{a0, . . . , an, b0, . . . , bm,¬a0, . . . ,¬an,¬b0, . . . ,¬bm}. The loop iterates infinitely
many times; at the end of each iteration after all the assignments, when the
outputs are written, correctness needs to be shown, see Section 10.1.

It was found that differentiating between the internal and output variables
was not required and resulted in two issues: first, the correctness properties
are unable to reference the internal variables (by definition), and secondly
when formalising and proving properties about ladder logic in Agda, all the
definitions are required to carry this extra information, e.g. Boolean formulæ,
safety properties, lemmata and generation of problem sets for the external
tool. Thus in the following, only state variables are considered which consist
of the union of internal and output variable sets.

In Agda ladder logic programs are represented by the number of input
and state variables, an initial state and a list of assignments between state
variables and Boolean formulæ. Ladder logic programs are defined in module
Ladder.Core of Appendix F as follows:

record Ladder ∶ Set where
constructor

ladder
field

statevars ∶ N
inpvars ∶ N
rungs ∶ List (N ×BooleanFormula)
initialstate ∶ List (N ×Bool)
inp-correct ∶ BooleanFormula

where
BooleanFormula ∶= {true, false, ∧ , ⇒ , ∨ ,¬ ,var }

Although the connective ⇒ is not used in a ladder, it is included to simplify
later definitions, e.g. formalising verification conditions. The variables are
indexed by N. A variable with index i is a state variable if i < statevars, and
an input variable if inpvars ≤ i < (statevars + inpvars), otherwise it is badly
formed. Badly formed variables are considered later. That is the following
number line is observed:

0 1 statevars (statevars + inpvars)

state variables input variables invalid

The motivation behind this simple typed definition of a ladder is: usability
over a clean mathematical definition. For instance, the rungs and initial state
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assignments contain the index of the variable being assigned a value, instead
of using their position in the list to determine their indices. Therefore, the
variable indices do not need to coincide with the order of the rungs or order of
the initial state assignments, which results in an intuitive and easy definition
to validate. For example, a ladder with the initial state

[(n1, b1), . . . , (nk, bk)]

expresses that variable ni is initialised to value bi, and all variables not men-
tioned are initialised to false. A ladder with the following rungs

[(m1, ϕ1), . . . , (mj, ϕj)]

expresses the following assignments, where each ϕi depends upon the assigned
values of mj for j < i, and unassigned values of mj for j ≥ i.

ani
∶= ϕi

Subsequently, the well-formedness of a ladder will be defined by decidable
predicates. This well-formedness will include ruling out variables with in-
valid indices, and rungs/initial states that assign duplicate values to vari-
ables. However, first the formula inp-correct is considered; it expresses an
invariant on the input variables. This invariant is required due to the fact
that a number of combinations of the input variables might not be physically
possible. For instance, a 3-way switch that has a contact for each of the 3
positions should never make contact with more than one of these contacts at
a time. In essence, inp-correct expresses domain knowledge specific to the
context of the ladder program.

As an example of the formalisation of a ladder program, below is an
instance that represents the ladder in Figure 9.5.

record {
statevars = 2 ;
inpvars = 2 ;

rungs = [(ĉ, â ∧ ¬b̂), (d̂, â ∨ ĉ)] ;
initialstate = [(ĉ, true)] ;
inp-correct = true }

where â = 0, b̂ = 1, ĉ = 3 and d̂ = 2. Here d gets the initial value of false as it
is not explicitly defined, and the indices of c and d are not required to match
the execution order of the assignments.

A state of the ladder l, denoted by Statel, is defined as

Statel = (s ∶ List Bool) × (length s ≡ statevarsl)
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and an input, denoted by Inputl, is of the type

Inputl = (i ∶ List Bool) × (length i ≡ inputvarsl) × J inp-correctl Ki

where J K has the same definition from Section 4.1 with the exception that
the environments have the type (N → Bool). It is often convenient to repre-
sent these environments by lists (or lists paired with proofs); in which cases
the lists are implicitly lifted to functions by assuming a default value of false
for all indices that fall outside the bound of the list, and/or any relevant
projections. That is, for a list x given as an environment, the following map
is used

n↦
⎧⎪⎪⎨⎪⎪⎩

x[n] if n < length x

false otherwise

In Section 9.3 these ladders are translated into transition systems. For
now it is noted that l is well-formed iff it fulfils the following axioms:

∀i . i < (length initialstatel)→ π0 (initialstatel[i]) < statevarsl (init-map<)

∀i j . i < j ∧ j < (length initialstatel) (init-map≠)

→ π0 (initialstatel[i]) ≢ π0 (initialstatel[j])

∀i . i < (length rungsl)→ π0 (rungsl[i]) < statevarsl (trans-map<)

∀i j . i < j ∧ j < (length rungsl) (trans-map≠)

→ π0 (rungsl[i]) ≢ π0 (rungsl[j])

These four axioms ensure that the initial state and rungs that are given by
lists of pairs form partial finite maps. Before defining the final axioms, it is
required to introduce a function

bound ∶ (n ∶ N)→ (ϕ ∶ BooleanFormula)→ Bool

that returns true, iff all variables in ϕ are less than n. The penultimate
axiom ensures that all variable indices are within the correct range

∀i . i < (length rungsl) (rung-bound)

→ bound (statevarsl + inputvarsl) (π1 (rungsl[i]))

and the final axiom ensures that the input invariant only references variables
in the input

bound inputvarsl inp-correctl (invar-bound)
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These axioms are required as the definition of a ladder is simply-typed,
this decision was taken to improve performance and readability in Agda.
For instance, had finite numbers been applied here, then Agda would
have required significant amounts of time and space for type-checking
large ladders. This is because there is no primitive implementation for
finite numbers. With the definitions outlined in this section, the natural
numbers are built-in, so are the comparisons on them. Therefore, deter-
mining whether a ladder is well-formed is in a large part is performed
with machine/CPU integers and operations on these.

Remark

9.3 Decidable Ladder

Defining the nthState function (required in Chapter 8) requires a decidable
transition system. These are obtained by proving that a decidable transition
system follows by a well-formed ladder, which is the subject of this section.

In this section, initially basic transition systems are defined, and a trans-
lation from ladder logic into these systems is given. Then these transition
systems are shown to be decidable, if the ladder was well-formed.

The definition of a transition system is canonical in Agda. They are
defined in module TransitionSystem of Appendix F by a set of states, set
of inputs/actions, a transition relation between the states and a set of initial
states as follows:

record TransitionSystem (Input ∶ Set) ∶ Set1 where
constructor

ts
field

State ∶ Set
Initial ∶ State→ Set
Transition ∶ State→ Input→ State→ Set

To translate a ladder logic program l into these generic transition systems,
the types of the inputs and states are given by Inputl and Statel, respectively.
To define the initial state relation, first a Boolean formula is given that holds
iff the given state is as defined by initialstatel. Intuitively the formula is
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defined by the following map

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[] ↦ true ;

[(n1, b1), (n2, b2), . . . , (nm, bm)] ↦ (varn1 ⇔ b̂1) ∧
(varn2 ⇔ b̂2) ∧

⋮
(varnm⇔ b̂m)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

where b̂i is bi injected into BooleanFormula. The formula is generated by
the following function mkinit; it is defined in module Ladder.Core of Ap-
pendix F.

mkinit ∶ List (N ×Bool)→ BooleanFormula
mkinit [] = true

mkinit ((a, b) ∷ as) = (var a⇔ b̂) ∧mkinit as

The initial relation on states is then given as follows:

λs . J mkinit initialstatel Ks

The transition relation is more complicated as it formalises the assignments;
thus it introduces new variables. These introduced variables, due to notation,
will be referred to in the following as primed variables; they represent the
variable after it has been assigned a value by a rung. At any intermediate
point, while evaluating the rungs of the ladder, only the un-primed or primed
version of the variable being assigned the result of the rung is accessible, this
is due to the sequential nature of the evaluation. For instance before the
rung

x ∶= ϕ
is evaluated, only x is accessible, after its evaluation only x′ is accessible.
For this reason, while translating the rungs into a Boolean formula, a list of
visited/processed state variables is built-up. The function mktrans produces
this formula from a list of processed rungs, and a list of unprocessed rungs.
Before formally defining this function, the transition formula is intuitively
given by the following map between a list of rungs and a Boolean formula.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[] ↦ true ;
[(n1, ϕ1),
(n2, ϕ2),

⋮
(nm, ϕm)]

↦

(varn′1 ⇔ ϕ1) ∧
(varn′2 ⇔ ϕ2[n1 ∶= n′1]) ∧

⋮
(varnm⇔ ϕm[n1 ∶= n′1] . . . [nm−1 ∶= n′m−1])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the primed index n′ = n + statevarsl + inputvarsl; if the ladder is well-
formed, then these primed indices are fresh. Here x[t ∶= s] means substitute
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all occurrences of t in x by s. The resulting formula references variables in a
pair of states and an input; it characterises a valid transition of the ladder.
Thus, the number line of the variable indices is adjusted as follows:

0 1 statevars
(

statevars
+ inpvars

) (
2 ∗ statevars
+ inpvars

)

old state input new state invalid

The compound substitutions above are defined by the following function
that is indexed by the size (N) of the shift, and the substitution depends
upon a list of visited rungs.

shift′n ∶ List N→ N→ N
shift′n [] a = a

shift′n (x ∷ xs) a =
⎧⎪⎪⎨⎪⎪⎩

x + n if x = a
shift′n xs a otherwise

This definition is trivially lifted to Boolean formulæ by applying it to each
variable, this lifting results in the following signature:

shiftn ∶ List N→ BooleanFormula→ BooleanFormula

Lemma 9.3.1.

∀ϕ ξ n xs . J shiftn xs ϕ Kξ ≡ J ϕ Kξ ○(shift′n xs)

Proof. By induction on ϕ. Without loss of generality ϕ = var a, as the proof
in the other cases follows by the induction hypothesis. It remains to show

J shiftn xs (var a) Kξ ≡ J var a Kξ ○(shift′n xs)

which follows by definition

J shiftn xs (var a) Kξ ≡ J var (shift′n xs a) Kξ
≡ T (ξ (shift′n xs a))
≡ J var a Kξ ○(shift′n xs)

Lemma 9.3.2 (shift elimination). Assume a list of naturals r, and two nat-
urals k and n. Then

(∃i . r[i] ≡ k) ∧ (shift′n r k ≡ n + k)

or
(∀i . r[i] ≢ k) ∧ (shift′n r k ≡ k)
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Proof. Follows by simple induction on r, and decidable equality on naturals.

The function mktrans is also indexed by the shift amount and is defined
as follows:

mktransn ∶ List (N ×BooleanFormula)
→ List (N ×BooleanFormula)
→ BooleanFormula

mktransn v [] = true
mktransn v ((a,ϕ) ∷ r) = (var (a + n)⇔ shiftn v

′ ϕ)
∧ mktransn (v ++[(a,ϕ)]) r

where v′ is a list of the indices extracted from v. The accumulated list could
be simplified by only storing the indices as they are not used here, however,
due to use later, it is not simplified. The transition relation is then defined
as follows:

λs i s′ . J mktrans [] rungsl K(s++ i++ s′)

The above definitions will translate a ladder logic program into a transi-
tion system. The following function defines this translation:

mkts ∶ (l ∶ Ladder)→ TransitionSystem Inputl
mkts l = ts Statel

(∀s . J mkinit initialstatel Ks)
(∀s i s′ . J mktrans [] rungsl K(s++ i++ s′))

In the proofs to follow, for a ladder l the expressions Initial(mkts l) and
Transition(mkts l) are defined by the function mkts.

Remark

Decidable Transition System. It still remains to show that these trans-
lated transition systems are decidable, if the ladder was well-formed. In
this context decidable means that the next step of the transition system is
computable from a given state and input, and that the next step is permit-
ted by the transition relation. To show this, first, for a transition system
ts the definition of a decidable transition system is introduced in module
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TransitionSystem.Decidable of Appendix F as:

record DecidableTransitionSystemts ∶ Set where
field

initialState ∶ Statets
initialCorrect ∶ Initialts initialState
transitionFunction ∶ Statets → Inputts → Statets
transitionCorrect ∶ ∀s i . Transitionts s i (transitionFunction s i)

where Inputts is the set of inputs that the transition system was built over.
From this definition, it is a trivial matter to define a function

nthStatedts ∶ (inputs ∶ N→ Inputts)→ (n ∶ N)→ Statets

that for a given stream of inputs, produces a stream of states. It calculates
the nth state by starting from the initial/0th state, and applying the transition
function n times, together with the associated first n − 1 inputs.

It is now shown that a decidable transition system (dts) follows by a
well-formed ladder.

Initial State. The initial state of the dts is canonically constructed from
the initial state (of type List (N × Bool)) defined in the ladder, which is
possible because (init-map≠) ensures that each of the variable indices in the
list is unique. Therefore, the uniqueness defines a partial map. This map is
made total by assigning a default value, of false, to the unmapped elements
in the domain. The total map is constructed by the function

lookup ∶ ∀{A} . List (N ×A)→ A→ N→ A
lookup [] d n = d

lookup ((i, x) ∷ l) d n =
⎧⎪⎪⎨⎪⎪⎩

x if i ≡ n
lookup l d n otherwise

which takes a partial map, default value and produces a total function. As
(init-map<) holds, all the indices are bounded by statevarsl. The initial state
of the dts is then a list of length statevarsl defined point-wise, from the initial
state in the ladder.

mkInitialState ∶ ∀l . Statel
mkInitialState l = lookup initialstatel false

See module Ladder.Decidable in Appendix F for the technical details.
Theorem 9.3.3 shows that the initial state, as computed above, is cor-

rect provided the ladder is well-formed. In the following, the lemmata are
presented top-down to improve readability.
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Theorem 9.3.3 (initialCorrect). Assume a ladder l and (init-map≠, see
page 195) holds, then

Initial(mkts l) (mkInitialState l)

holds.

Proof.

Initial(mkts l) (mkInitialState l) ≡ J mkinit initialstatel K(mkInitialState l)

by definition

≡ J mkinit initialstatel K(lookup initialstatel false)

by definition

The proof then follows by Lemma 9.3.4 applied to (init-map≠).

Lemma 9.3.4 (mkinit). Assume a list l ∶ List (N ×Bool) such that

∀i j . i < j ∧ j < (length l)→ π0 (l[i]) ≠ π0 (l[j])

holds, then
J mkinit l K(lookup l false)

holds.

Proof. By induction on l.

Case l = []: Trivial as mkinit [] ≡ true.

Case l = (n, b) ∷ l′: There are two obligations to prove, the first is

J var n⇔ b̂ K(lookup ((n,b)∷l′) false)

which unfolds to T b⇔ T b, and follows trivially.

The second obligation is

J mkinit l′ K(lookup ((n,b)∷l′) false)

which by Lemma 9.3.5 is equivalent to

J mkinit l′ K(lookup l′ false)

and holds by induction hypothesis.
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Lemma 9.3.5 (lookup-fv). For all a ∶ N and b ∶ Bool. Assume a list
l ∶ List (N ×Bool) and x ∈ FV (mkinit l), such that

∀j . j < length l → a ≠ π0(l[j])

holds, then
lookup l false x ≡ lookup ((a, b) ∷ l) false x

holds.

Proof. Assume x = a. By Lemma 9.3.6

∃j . j < length l ∧ π0(l[j]) = a

A contradiction, therefore x ≠ a. The proof follows by rewriting obligation
by x ≠ a.

Lemma 9.3.6 (init-fv). Assume l ∶ List (N×Bool) and x ∈ FV (mkinit l).
Then there exists a j < length l such that x = π0(l[j]).

Proof. Induction on l. When l = [] there is no such x, therefore assume
l = ((a, b) ∷ l′). As x ∈ FV (mkinit l) there are two cases to consider.

case x ∈ FV (var a⇔ b̂): Therefore j = 0 and x = a.

case x ∈ FV (mkinit l′): Proof follows by induction hypothesis.

Transition Function. Defining the transition function requires that an
evaluation of Boolean formulæ under an environment is given. Assume a
function

eval ∶ BooleanFormula→ (N→ Bool)→ Bool

with canonical semantics, such that

∀ϕ ξ . T (eval ϕ ξ)↔ J ϕ Kξ (eval-correct)

holds. The value of eval is then used to evaluate each rung under the correct
environment. The environment is updated after each rung is evaluated to
reflect the assignment. After all the rungs have been evaluated, the resulting
environment is the next state. This gives rise to the function

executeLadder ∶ List (N ×BooleanFormula)→ Statel → Inputl → Statel
executeLadder [] s i = s
executeLadder ((a,ϕ) ∷ r) s i = executeLadder r (s[a ∶= eval ϕ (s++ i)]) i
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where x[i ∶= y] behaves like x, except the ith element is assigned y. In
the following three lemmata, properties regarding executeLadder are shown;
these will be required in subsequent proofs to follow about the correctness of
the transition function. See module Ladder.Decidable in Appendix F for
the complete definition of all definitions in this sub-section.

Lemma 9.3.7 (executeLadder). Assume lists of rungs r1 and r2, lists of
Booleans ξ and ζ, then the following holds.

executeLadder (r1 ++ r2) ξ ζ ≡ executeLadder r2 (executeLadder r1 ξ ζ) ζ

Proof. Follows by induction on r1.

Lemma 9.3.8 (executeLadder2). Assume list of rungs r, lists of Booleans ξ
and ζ, and k ∶ N such that

∀i . i < length r → π0(r[i]) ≢ k

Then the following holds

(executeLadder r ξ ζ)[k] ≡ ξ[k]

Proof. By induction on r, when r = [] proof follows by definition. Therefore
assume r = (a,ϕ) ∷ r′.

(executeLadder ((a,ϕ) ∷ r′) ξ ζ)[k]
≡ (executeLadder r′ (ξ[a ∶= eval ϕ (ξ ++ ζ)]) ζ)[k]

by definition

≡ ξ[a ∶= eval ϕ (ξ ++ ζ)][k]
by induction hypothesis

≡ ξ[k]
since a ≠ k

Lemma 9.3.9 (executeLadder3). Assume a list of rungs r, two lists of
Booleans ξ and ζ, a formula ϕ and an a ∶ N. Such that

a < length ξ

Then the following holds:

eval ϕ ((executeLadder r ξ ζ)++ ζ) ≡ (executeLadder (r++[(a,ϕ)]) ξ ζ)[a]
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Proof.

(executeLadder (r++[(a,ϕ)]) ξ ζ)[a]
≡ (executeLadder [(a,ϕ)] (executeLadder r ξ ζ) ζ)[a]

by Lemma 9.3.7

≡ (executeLadder r ξ ζ)[a ∶= eval ϕ ((executeLadder r ξ ζ)++ ζ)][a]
by definition

≡ eval ϕ ((executeLadder r1 ξ ζ)++ ζ)
since a < length s

When the function executeLadder is applied to all rungs of a ladder, it
yields a decidable transition function.

mkTransitionFunction ∶ ∀l . Statel → Inputl → Statel
mkTransitionFunction l = executeLadder rungsl

Theorem 9.3.10 shows that the transition function defined above is correct
with respect to the transition relation. The following lemmata are presented
top-down to aid readability.

Theorem 9.3.10 (transitionCorrect). Assume a ladder l such that (trans-
map<, see page 195), (trans-map≠) and (rung-bound) hold. Then

∀s i . Transition(mkts l) s i (mkTransitionFunction l s i)

holds.

Proof.

∀s i . Transition(mkts l) s i (mkTransitionFunction l s i)
≡ ∀s i . J mktrans [] rungsl K(s++ i++(mkTransitionFunction l s i))

by definition

≡ ∀s i . J mktrans [] rungsl K(s++ i++(executeLadder rungsl s i))

by definition

The proof follows trivially by Lemma 9.3.11.
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Lemma 9.3.11. Assume a ladder l and its induced transition system ts, and
assume axioms (trans-map<), (trans-map≠) and (rung-bound). Partition its
rungs into two lists r1 and r2, such that

r1 ++ r2 ≡ rungsl

Then the following holds

∀s ∶ Statel ∀i ∶ Inputl . J mktrans r1 r2 K(s++ i++(executeLadder (r1 ++ r2) s i))

Proof. By induction on r2

Case []: Trivial as mktrans r1 [] = true.

Case (a,ϕ) ∷ r′2: Let

ξ = s++ i++(executeLadder (r1 ++[(a,ϕ)]++ r′2) s i)

and
n = statevarsl + inputvarsl

and
a′ = a + n

Unfolding the obligation to prove yields

J var a′⇔ shiftn r1 ϕ Kξ ∧ J mktrans (r1 ++[(a,ϕ)]) r′2 Kξ

The right-hand conjunct follows by the induction hypothesis and asso-
ciativity of ++. The left-hand conjunct is further expanded to

T (ξ a′)↔ J shiftn r1 ϕ Kξ (∗)

Let
ξ′ = (executeLadder r1 s i)++ i

By axiom (eval-correct) a proof of

T (eval ϕ ξ′)↔ J ϕ Kξ′

is obtained. (∗) follows by (eval-correct) after the following equality
reasoning.

J ϕ Kξ′ ≡ J ϕ Kξ ○(shift′n r1)

by Lemma 9.3.12

≡ J shiftn r1 ϕ Kξ
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by Lemma 9.3.1

and

eval ϕ ξ′ ≡ executeLadder (r1 ++[(a,ϕ)]) s i a
by Lemma 9.3.9

≡ executeLadder (r1 ++[(a,ϕ)]++ r′2) s i a
by Lemma 9.3.8 and Lemma 9.3.7

≡ ξ a′

by Lemma 9.3.13

Lemma 9.3.12 (executeLadder-shift). Assume a list of rungs r, and two
list of Booleans s and t, and n ∶ N such that

r = r1 ++((a,ϕ) ∷ r2)

and

n = length (s++ t)

and

bound ϕ n

and

∀i . i < length r → π0(r[i]) < length s

and

∀i j . i < j ∧ j < length r → r[i] ≠ r[j]

Then the following holds

JϕK((executeLadder r1 s i)++ i) ≡ JϕK(s++ i++(executeLadder r s i))○(shift′n r1)

Proof. By induction on ϕ. Assume that ϕ = var x, since the other cases
follow by the induction hypothesis. Therefore the obligation to prove is

((executeLadder r1 s i)++ i)[x] ≡ (s++ i++(executeLadder r s i))[shift′n r1 x]

By Lemma 9.3.2 there are two cases to consider.
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case ∃i . π0(r1[i]) ≡ x:

(s++ i++(executeLadder r s i))[shift′n r1 x]
≡ (s++ i++(executeLadder r s i))[n + x]

by Lemma 9.3.2

≡ (executeLadder r s i)[x]
by Lemma 9.3.13

≡ (executeLadder ((a,ϕ) ∷ r2) (executeLadder r1 s i) i)[x]
by Lemma 9.3.7

≡ (executeLadder r1 s i)[x]
by Lemma 9.3.8

≡ ((executeLadder r1 s i)++ i)[x]
by Lemma 9.3.14

case ∀i . π0(r1[i]) ≢ x:

(s++ i++(executeLadder r s i))[shift′n r1 x]
≡ (s++ i++(executeLadder r s i))[x]

by Lemma 9.3.2

≡ (s++ i)[x]
by Lemma 9.3.14

≡ ((executeLadder r1 s i)++ i)[x]
by Lemma 9.3.8 and Lemma 9.3.15

Lemma 9.3.13 (extend-env). Assume two lists of Booleans ξ and ζ. Given
an x ∶ N less-than the length of ξ, then the following holds

ξ[x] ≡ (ζ ++ ξ)[(length ζ) + x]

Proof. Follows by simple induction on ζ.

Lemma 9.3.14 (extend-env2). Assume two lists of Booleans ξ and ζ. Given
an x ∶ N less-than the length of ξ, then the following holds

ξ[x] ≡ (ξ ++ ζ)[x]
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Lemma 9.3.13 also holds when ξ and ζ ++ ξ are lifted to maps, in which
case the restriction on x is not required.

Remark

Proof. Follows by induction on ξ and side induction on x.

Lemma 9.3.15 (substitute environment). Assume three lists of Booleans ξ1,
ξ2 and ζ, a unary relation P on natural numbers, such that

length ξ1 = length ξ2

and

∀i . P i→ ξ1[i] ≡ ξ2[i]
Then the following holds

∀i . P i→ (ξ1 ++ ζ)[i] ≡ (ξ2 ++ ζ)[i]

Proof. Follows by induction on the length of ξ1.

Finally, assembling the initial state and transition function into a decid-
able transition system is defined in the following corollary:

Corollary (Decidable Ladder). Assume a well-formed ladder, then the lad-
der defines a decidable transition system.

Proof. Define the function

mkdts ∶ (l ∶ Ladder)→ DecidableTransitionSystem(mkts l)

mkdts l = record {
initialState = mkInitialState l ;
initialCorrect = Theorem 9.3.3 ;
transitionFunction = mkTransitionFunction l ;
transitionCorrect = Theorem 9.3.10 }

9.3.1 Architectural State

As previously noted, the function nthState is definable from a decidable
transition system. This induced function will generate a sequence of states
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from the transition system and a stream of inputs. For a decidable ladder l,
the stream of inputs is given by the following type:

Inputsl = N→ Inputl

What is required in Chapter 8 is a sequence of architectural states, or equiva-
lently states of the abstract layout. Therefore, a mapping is required between
states of the interlocking (lists of Bool) and architectural states (signal as-
pects, train routes and segment locks).

From the experience, gained while verifying a variety of interlocking sys-
tems, the signal aspects and segment locking state are directly extractable
from the state of an interlocking. In the case of mechanical interlocking sys-
tems, these relate to the configuration of a lever. With modern interlocking
systems, these are Boolean values stored in memory.

At least with the interlocking systems explored, identifying which route a
train currently occupies requires some work. This is because the interlocking
systems are only equipped with track detection inputs. These inputs do
not know which train is occupying which route (or segment), only that a
segment is occupied. Internally the interlocking systems keep track of which
routes have been allocated, but this information does not identify which
train is in the route. Therefore, a train simulator was devised. Each train
is allocated an initial route and an input stream that defines whether the
train is attempting to move or not. When it attempts to move, the input
also identifies which route the train is requesting to traverse. For an abstract
layout a, the train input streams are given by the following type

TrainInputsa = Traina → N→ {Move route,Stationary}

and the following functions are assumed:

initPositiona ∶ Traina → Routea

trainInputa ∶ TrainInputsa

Provided with such input streams, we define a train simulator, such that it
satisfies the (Correct-Train) axiom. The simulator is split into two parts,
the first selects a route that has a proceed aspect from a selection of routes
(or selects a default route, if none of the routes are set to proceed), and the
second part recursively calculates the position of the train. Note that it is
required that the abstract layout a is defined over the physical layout p in
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the following.

trainPositionl,a ∶ Inputsl → TrainInputsa → N→ Traina → Routea
trainPositionl,a inp tinp 0 tr = initPositiona tr
trainPositionl,a inp tinp (suc t) tr =

if (tinp tr t = Move rt)
∧ (rt isin (connectedp (trainPositionl,a inp tinp t tr)))
∧ “rt is set to proceed in (nthStatel inp t)”

then rt
else trainRoute t tr

Proving that this definition fulfils the (Correct-Train) axiom is only done for
concrete instances of the layouts, see Section 11.1.3 for a concrete example
of the simulation.

This simulator only allows a train to transition between two connected
routes which have a proceed aspect. If a train’s input stream indicates that
it should move past a danger aspect, or to an unconnected route, then the
simulator will overturn that request and stop the train. In effect, it is assumed
that trains operate correctly. This assumption is not too significant because
modern trains are fitted with a wide range of safety equipment that will
prevent it passing a danger aspect (i.e. automatic train protection).

The above comment is not entirely accurate as there are certain cases
where trains are allowed to passed danger signals, one example of this is
when manually performing call-on manoeuvres (typically these manoeu-
vres are used to combine two trains). Another situation is where the
signalling scheme explicitly makes provisions for trains accidentally pass-
ing a signal at danger, such as when train stops are in use. These are
devices fixed to the track adjacent to the signal; they will ensure that a
train passing a danger aspect will automatically apply its breaks and stop
safely in a buffer zone beyond the signal known as an overlap. A radio
link is also required in these situations; it informs the driver and train
when the signal has cleared, and it is safe to proceed. Nonetheless, these
examples are the exception and not the rule, so it is valid to assume that
trains do not pass signals at danger.

Remark

While proving that the signalling principles held for a concrete interlock-
ing system, it was found that it was required to assume the inputs and states
are consistent with the computed train routes. Namely the track detection
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inputs to the interlocking, and the internal route allocations are consistent
with the trains routes.

Therefore, it is a simple matter to define a mapping between the inter-
locking states, and the architectural states. However, these mappings are
dependent upon the interlocking and should be validated (by domain ex-
perts). For instance, modern interlocking systems can have many different
variables with very similar semantics, and selecting the correct variable to
project into the architectural state is non-trivial. Similarly, when assuming
that trains operate correctly, it must be validated that the assumption is
sound in terms of domain validation and that it is consistent with previous
definitions.

9.4 Related Interlocking Work

The remainder of this chapter focuses on work related to interlocking sys-
tems that was undertaken during this project, but not directly related to
the previous discussions. This consists of two parts, the first defines Lad-
derCTL, a variant of symbolic model-checking specific to ladder logic (or
more generally Boolean programs). The second part discusses an attempt
at formalising the Geographic Data programming language used for the SSI
family of interlocking systems.

9.4.1 LadderCTL

This section has been deferred from Chapter 4, because the definition of
ladder logic was required first.

Remark

The symbolic CTL model-checking that was previously defined in Sec-
tion 4.3 was an attempt to wrap the CTL model-checking (Section 4.2) in
a layer of structure. That is the states are defined by variables (from finite
domains), and the inputs are also defined by variables (from finite domains)
instead of a single variable (from a finite domain). However, the symbolic
model-checking interface does not provide any structure with respect to the
transition function. Recall (on page 79) that the transition function for a
SymFSM is defined as the abstract function:

transition ∶ (s ∶ Record state)→ Record (arrow s)→ Record state
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where state is a list of N.
As the function behaves as a black box, when generating the transition

relation for input to an external model-checker, the only option is to enumer-
ate the state space, and for each state the possible inputs. This information
is then written to a file/piped to the model-checker. This of course results
in a blow-up (state space explosion), to such an extent that the ladder logic
programs relating to this project could not be output to the model-checker.
For instance, consider a ladder with 100 state and 50 input variables (the
data-sets donated to the project have over 300 state variables), the result-
ing translation would explicitly generate a transition relation with 2100 ∗ 250

cases. Writing such a formula to a file is infeasible.
To mitigate this issue, we defined a new model-checking theory (Lad-

derCTL) over symbolic CTL. The purpose of LadderCTL is to facilitate a
high-level and usable interface between Agda and the model-checker NuSMV.
It builds upon the definition of symbolic CTL model-checking, but fixes all
variables to be Booleans. That is, in effect only propositional logic is consid-
ered. The principal motivation behind LadderCTL is that it structures the
transition function as a sequence of Boolean valued assignments. Therefore,
when outputting the problem to an external model-checker, the precise struc-
ture of the ladder is canonically encoded. That is each variable in the ladder
becomes a Boolean variable in the model, either input or state; each rung
of the ladder becomes an equation in the model defining how the variable’s
value changes over time. Therefore, the state space is not explicitly computed
by Agda, see Figure 9.6 for a comparison between the two approaches.

J l ⊧ ϕ K?

LadderCTL

SymCTL

CTL

SinkCTL

NuSMV

blowup

tostring
tostring, preserving ladder structure

Figure 9.6: Where l is a ladder and ϕ is a CTL formula, the above shows the
different translation options.

To define the plug-in interface for LadderCTL the 7 built-ins from Sec-
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tion 5.4 must be defined. See module CTL.Ladder in Appendix F for the
technical details of the definitions below. As already noted, the definitions
from symbolic CTL are reused. The ladders as defined previously defined
might not be decidable, for simplicity they are redefined as follows:

record Ladder ∶ Set where
field

statevars ∶ N
inpvars ∶ N
rungs ∶ List (Fin statevars ×BooleanFormula (statevars + inpvars))
initialstate ∶ VecBool statevars

Here
BooleanFormula n = {false,¬ , ∧ , ∨ ,var }

and the variables are indexed by Fin n.
The formula are similar to SymCTL except that the state propositions

are testing the truth of Boolean values.

data LadderCTL (l ∶ Ladder) ∶ Set where

false ∶ LadderCTLl

¬ ∶ LadderCTLl → LadderCTLl

∨ ∶ LadderCTLl → LadderCTLl → LadderCTLl

∧ ∶ LadderCTLl → LadderCTLl → LadderCTLl

P[ ] ∶ (x ∶ Fin statevarslll)→ LadderCTLlll

EX ∶ LadderCTLl → LadderCTLl

EG ∶ LadderCTLl → LadderCTLl

E[ U ] ∶ LadderCTLl → LadderCTLl → LadderCTLl

Note that in the following for a ladder l

Statel = VecBool statevarsl

and

Inputl = VecBool inpvarsl

In the interest of simplicity, the executeLadder function previously defined
(on page 202) is trivially lifted to vectors instead of lists. Therefore the
following transition function is obtained:

mkTransitionFunctionl ∶ Statel → Inputl → Statel
mkTransitionFunctionl = executeLadder rungsl
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Runs of the ladder are canonically defined as follows:

data LadderRunl (s ∶ Statel) ∶ Set where
next ∶ (i ∶ Inputl)

→∞LadderRunl (mkTransitionFunctionl s i)
→ LadderRunl s

The semantics is given as follows:

J , ⊧ K ∶ (l ∶ Ladder)→ Statel → LadderCTLl → Set
J l , s ⊧ false K = �
J l , s ⊧ ¬ϕ K = J l , s ⊧ ϕ K→ �
J l , s ⊧ ϕ ∨ ψ K = J l , s ⊧ ϕ K + J l , s ⊧ ψ K
JJJ l , s ⊧ P[ x ] KKK = T (((sss[xxx])
J l , s ⊧ EX ϕ K = ∃ (run ∶ LadderRunl s) J l , run1 ⊧ ϕ K
J l , s ⊧ EG ϕ K = ∃ (run ∶ LadderRunl s) (∀i . J l , run i ⊧ ϕ K)
J l , s ⊧ E[ ϕ U ψ ] K = ∃ (run ∶ LadderRunl s) ∃ (k ∶ N) (

(∀j . j < k → J l , runj ⊧ ϕ K)
×J l , runk ⊧ ψ K)

That concludes the definition of LadderCTL. In the following, it is ex-
plained how to show that LadderCTL is correct with respect to symbolic
CTL model-checking.

As LadderCTL defines the state space and inputs by the number of
Boolean variables, and SymCTL defines the state space and inputs by list
of natural numbers. Which in the case of LadderCTL would be lists of ‘2’,
where each ‘2’ represents the values each Boolean variable can take. Thus
in the following, the following function is required that constructs lists of
constant values.

repeat ∶ ∀{A} . A→ N→ List A
repeat a 0 = []
repeat a (suc n) = a ∷ repeat a n

Lemma 9.4.1 (vector-record-iso). Assume n ∶ N. The following types are
isomorphic: VecBool n and Record (repeat 2 n)
Proof. Follows by simple induction on n, and by Bool being isomorphic to
Fin 2.

In the following the bijection between Bool and Fin 2 is given as follows:

false↦ 0

true↦ 1
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By Lemma 9.4.1, for ladder l the following pair of isomorphic functions
exist:

toStatel ∶ Statel → Record (repeat 2 statevarsl)
fromStatel ∶ Record (repeat 2 statevarsl)→ Statel

toInputl ∶ Inputl → Record (repeat 2 inpvarsl)
fromInputl ∶ Record (repeat 2 inpvarsl)→ Inputl

Translating a ladder with n state variables and m input variables into a
symbolic FSM, results in a SymFSM with the state space given by an n-ary
product of Fin 2, and the inputs are fixed to a constant m-ary product of
Fin 2. The following is defined:

toSymFSM ∶ Ladder→ SymFSM
toSymFSM l =

fsm (repeat statevarsl)
(λ → repeat inpvarsl)
(toState initialstatel)
(λ s a→ toStatel (transitionl (fromStatel s) (fromInputl a)))

By Lemma 9.4.1, the toRun/fromRun functions previously introduced for
SymRun are trivial to lift to LadderRun. That is, for a ladder l the following
functions are obtained

toSymRunl ∶ ∀s . LadderRunl s→ SymRun(mkSymFSM l) (toStatel s)
fromSymRunl ∶ ∀s . SymRun(mkSymFSM l) (toStatel s)→ LadderRunl s

and the formulæ are translated as follows:

toSymCTLl ∶ LadderCTLl → SymCTL(toSymFSM l)

toSymCTLl false = false

toSymCTLl (¬ ϕ) = ¬ (toSymCTLl ϕ)
toSymCTLl (ϕ ∨ ψ) = (toSymCTLl ϕ) ∨ (toSymCTLl ψ)
toSymCTLl (ϕ ∧ ψ) = (toSymCTLl ϕ) ∧ (toSymCTLl ψ)
toSymCTLlll (P[ xxx ]) = P [ x == 111 ]
toSymCTLl (EX ϕ) = EX (toSymCTLl ϕ)
toSymCTLl (EG ϕ) = EG (toSymCTLl ϕ)
toSymCTLl (E[ ϕ U ψ ]) = E[ (toSymCTLl ϕ) U (toSymCTLl ψ) ]

Finally, the correctness is given by the following lemma:
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Lemma 9.4.2 (ladderctl-correct). Assume a ladder l, a state s of the ladder
and a CTL formula ϕ. Then the following holds

J l, s ⊧ ϕ KLadder ↔ J toSymFSM l, toStatel s ⊧ toSymCTLl ϕ KSym

Proof. Follows by induction on ϕ. The propositional cases follow by in-
duction hypothesis, the quantified CTL cases follow the same argument as
Theorem 4.3.13 but using the isomorphism Lemma 9.4.1. It remains to prove
the case when ϕ = P[x]. The obligation to prove is

T (s[x])↔ T (lookup (repeat 2 statevarsl) (toStatel s) (x,1))

which follows by side induction on s and x.

The built-in function ATPInput (see page 104) then simply recurses over
the list of assignments, translating them into assignments that NuSMV un-
derstands. This is slightly worse than linear time because the assignments
in the NuSMV are unordered, whereas, in the ladder, the order of the as-
signments matters. Therefore, ATPInput keeps track of which rungs have
been processed (and which have not), it then adjusts any reference to the
processed variables with the next function. This means that it fetches the
next value of the variable, instead of the current value. See Figure 9.7 for an
example of the Pelicon crossing ladder.

Concluding Remarks The LadderCTL example demonstrates the power
and flexibility of this approach; it was quick (approximately 2 days) to im-
plement this extension on top of symbolic model-checking.

In practice, this interface was only successfully used with toy examples,
i.e. that of the Pelicon crossing. When tried with a large ladder with ap-
proximately 300 state variables and 200 input variables, it was discovered
that NuSMV was not terminating in a reasonable amount of time. Agda
could generate the input files in a couple of minutes. The same problem set
the SAT solver could inductively solve in < 1 second, could not be solved by
NuSMV in ≈ 46 days. The test was terminated due to a segmentation fault.
A number of different command line arguments for NuSMV were explored,
but either it would run out of memory, or take significant amounts of time
during a reachablity analysis.

For this reason, a much larger portion of this project was done by SAT
solvers.
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MODULE main

IVAR

pressed : boolean;

VAR

requested : boolean;

crossing : boolean;

plightg : boolean;

tlightg : boolean;

ASSIGN

init(requested) := FALSE;

init(crossing) := FALSE;

init(plightg) := FALSE;

init(tlightg) := FALSE;

next(crossing) := (!(crossing) & requested);

next(requested) := (pressed & !(next(crossing)));

next(plightg) := next(crossing);

next(tlightg) := (!(next(crossing)) & !(next(requested)));

SPEC

!(E[!(FALSE) U !((!(plightg)) | (!(tlightg)))]);

Figure 9.7: Structure preserving translation of Pelicon ladder from Figure 1.2
into NuSMV input. The property to be checked is there does not exist a path,
such that at some point on the path ¬(¬plightg ∨ ¬tlightg) holds, which is
equivalent to for all paths its always the case that ¬plightg ∨¬tlightg holds.
See module CTL.Pelicon in Appendix F for more information.

9.4.2 Geographic Data

During this project, an attempt was made to formalise the geographic data
language. This language is used to program solid-state interlocking (SSI)
systems [Cri87, Net05]. These are conceptually different from the ladder logic
interlocking systems. The name geographic data refers to the geographically
customised part of the interlocking program. Thus, an interlocking program
consists of two parts, generic and specific. The generic part is the same across
all SSI’s, whereas the specific part is changed depending on the topology and
signalling principles.

The computational model of the SSI is based upon sending and receiv-
ing telegrams with the track-side equipment, other control systems and the
trains. These telegrams have a fixed binary representation. When a telegram
is received, an associated block of instructions is evaluated; these instructions
prepare an output telegram, or a number of them. This computational model



218 9.4. Related Interlocking Work

is amenable to being verified using a process calculi based technique—as was
done successfully by Mathew Morley in [Mor96].

The geographic data was explored in this work because of the problem
that ladder logic had to be translated from a graphical language into propo-
sitional logic outside of Agda. This means that trust must be placed in an
external tool that implemented the translation. It was the goal to directly,
or almost directly, copy and paste the geographic data into Agda, then using
Agda’s flexible parsing, parse the geographic data into an Agda data-type.
From this data-type, it would be possible to verify properties, and hence
safety of the geographic data.

Significant portions of the geographic data and generic part of the SSI
were formalised into Agda. But it soon became clear that there were two
issues

Non-Termination: The generic part of the interlocking program allowed
for non-terminating programs to be written. Namely, when calling
blocks of code that would test bits in telegrams, these blocks could
reference other blocks resulting in non-termination. This issue was
raised with Invensys Rail, who stated that this is a known problem.
Further, it was also stated that a newer version of the language had
been devised with strict rules to mitigate non-termination, but the
coders did not like using it due to the restrictions. Sadly, the newer
version was never formalised in this work.

There was also a non-termination issue when performing map-searches,
the discussion is omitted due to the technical nature of a map-search.

Parsing: A second issue was that parsing the geographic data directly (using
the Agda parser) would have required an “explosion” of data construc-
tors. This issue was also related to testing bits in a telegram, where
the tests were specified by a string of characters. In most cases these
characters were un-ordered, so the test “abc” is equivalent to the test
“bca”. In essence, a pre-processing of the data would have been re-
quired that ordered these strings. This was not desirable as the main
reason for exploring geographic data was to directly verify the source
code. There were also small issues with special symbols in Agda such
as the full-stop.

These issues resulted in the geographic data branch of the project to
be abandoned. However, it is conjectured that due to the Boolean/binary
nature of the data, tests on the data, and internals of the SSI that SAT based
verification of the interlocking is possible.



Chapter10
Verification

Chapter 8 showed how to model safety in the railway domain, and Chapter 9
introduced railway interlocking systems realised by ladder logic programs.
This chapter presents a method of showing interlocking systems, realised by
ladder logic programs, fulfil the domain safety by using a combination of
SAT and interactive theorem proving. This framework has been successfully
applied to two interlocking systems.

Chapter Overview. In Section 10.1 the issue of how expressive the prop-
erties that need to verified is explored; then a type of verification conditions
is defined. To illustrate how these verification conditions can be used, a
method of systematically generating them from a control table is presented
in Section 10.2. Section 10.3 discusses how verification conditions are defined
to show that an interlocking system fulfils the necessary signalling principles,
and Section 10.4 demonstrates how to prove that the pelicon crossing ladder
from Chapter 1 is safe. In Section 10.5 remarks are made about our experi-
ence verifying industrial railway interlocking systems using this framework.
Finally Section 10.6 discusses how to extract an executable control system
from the verification framework.

The next chapter contains a complete example of the verification for Gwili
Steam Railway.

10.1 Verification Conditions

The first step to proving safety properties about ladder logic programs is to
formalise the properties that we wish to prove. Then, from these formali-
sations, a framework is defined which is expressive enough to represent the
properties with respect to a ladder logic program.

Recall from Section 9.2 that ladder logic programs are transitions systems

219
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that consist of states, and arrows between these states. Some of the safety
properties that are of interest only reference a singular state, or equivalently
an output as there is no distinction made between output and state variables.
For instance, one such condition would be for all (reachable) states, two
opposing signals are not both set to proceed . This property should always
hold1, regardless of the previous state and inputs. There are also properties
which depend upon the input and output of the ladder. For instance, one such
property is if a track segment protected by a signal is occupied, then that signal
displays the danger aspect . Furthermore, the most expressive properties that
are required to hold in this work also depend upon the previous state. Thus,
the properties of interest here are relations between two states and an input,
i.e. transitions. For a given transition system ts , the type of a verification
condition is given by

Statets → Inputts → Statets → Set

which, in the case of

ts = mkts l (∗)

for some ladder l, becomes

Statel → Inputl → Statel → Set

In most of this chapter, the transition systems considered follow from ladder
programs, i.e. as in (∗) above.

Intuitively, the correctness of a verification condition ϕ is formalised by
requiring that for all reachable states s, and inputs i,

ϕ s i s′

holds, where s′ is the resulting state from being in state s and following arrow
i. That is, verification conditions are defined over transitions.

Before formally defining correctness, it is required to consider reachable
states. Due to the dependent type theory that Agda is built on, it is possible
to define the type of reachable states for a transition system, provided there
is an initial state.

In general, this can be achieved by applying induction-recursion [DS01].
However, the transitions systems used here allow for a simpler definition of
reachable states. An inductive data-type is given that witnesses for a given
state a trace from the initial state to this state. For a transition system

1It might not be the case in manual/maintenance mode.
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ts , the data-type of reachablity is given in module TransitionSystem of
Appendix F as follows:

data ReachableStatets ∶ Statets → Set where
initial ∶ (s ∶ Statets)→ Initialts s→ ReachableStatets s
next ∶ (s ∶ Statets)

→ (r ∶ ReachableStatets s)
→ (i ∶ Inputts)
→ (s′ ∶ Statets)
→ Transitionts s i s′

→ ReachableStatets s′

The correctness of a verification condition ϕ for transition in the transition
system ts is now formalised as follows:

Correctts ϕ = (s ∶ Statets)
→ ReachableStatets s
→ (i ∶ Inputts)
→ (s′ ∶ Statets)
→ Transitionts s i s′

→ ϕ s i s′

In the case of ladder logic’s transition systems, verification conditions are
given by Boolean formulæ that reference variables in the previous state, input
and successor state. The correctness of a transition system is then lifted to
ladder logic in module Ladder.Core of Appendix F as follows:

LadderCorrect ∶ Ladder→ BooleanFormula→ Set
LadderCorrect l ϕ = Correct(mkts l) (λ s i s′ . J ϕ K(s++ i++ s′))

Correctness. In this chapter, proving a verification condition ϕ over a
ladder program uses the principle of induction. This works by (1) proving
that ϕ holds for all the initial transitions; and (2) that for any transition
which satisfies ϕ, all the next transitions also satisfy ϕ. A transition here is
the tuple < s, i, s′ > such that Transitionts s i s′. It is a well-known issue that
some states might be unreachable, causing false negatives while applying an
inductive proof strategy. A full discussion of this issue in the context ladder
logic and the railway domain can be found in [JR10].

In the system presented here, membership decidability of the correctness
condition for ladder logic is by a Boolean formula. This results in Boolean
valued proof objectives. In practice, interactively proving the validity of these
formulæ is a tedious job, especially for industrial applications. Therefore, the
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use of an integrated SAT solver, as presented in the first part of this thesis
is applied. The Boolean formulæ representing (1) and (2) are given as

base-obligation ∶ Ladder→ BooleanFormula→ BooleanFormula
base-obligation l ϕ = (mkinit initstatel) ∧ (mktrans [] rungsl)⇒ ϕ

(1)

and

ind-obligation ∶ Ladder→ BooleanFormula→ BooleanFormula

ind-obligation l ϕ = (ϕ ∧ (mktrans [] rungsl)∧
(shiftstatevarsl inp-correctl)∧
(shift(n+statevarsl) inp-correctl)∧
(shiftn (mktrans [] rungsl)))⇒ shiftn ϕ

(2)

where n = statevarsl + inpvarsl. To clarify the formulæ above, two number
lines are presented. First, for the base case (1) the following number line is
used for the variable indices:

0 1 statevars
(

statevars
+ inpvars

) (
2 ∗ statevars
+ inpvars

)

state s input i state s′ invalid

It splits up the variables into a state s, an input i and a state s′. The beauty
of this technique is that it is trivial to shift the formulæ for the inductive
case (2) and adjust the number line as follows:

01 statevars
(

statevars
+ inpvars

) (
2 ∗ statevars
+ inpvars

) (
2 ∗ statevars
+ 2 ∗ inpvars

) (
3 ∗ statevars
+ 2 ∗ inpvars

)

state b input i′ state s input i state s′ invalid

Although all the pieces are available to prove/dis-prove these safety prop-
erties automatically, it is cumbersome to use. One significant issue faced was
with the soundness proof of the SAT solver: if applied in certain ways, then
the ladder would be normalised inside of Agda a number of times. This
excessive normalisation reduced efficiency, particularly when generating the
transition relation for large ladders. This inefficincy was mitigated by de-
vising a tactic-like function. It is an abstractly2 defined Agda function that
encapsulated the soundness proof, and inductive strategy. Thus, when ap-
plied, the user would only have to provide the proofs of (1) and (2), which are

2Under normal circumstances in Agda, an abstract function does not β-reduce.
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decided by a SAT solver. This resulted in the end-user not having to under-
stand anything about any of the translations, transition systems or reachable
states. Due to the technical nature of this function, only the type signature
is presented in Agda code, and an intuitive proof is given for its implemen-
tation. However, the full definition can be found in module Ladder.Core of
Appendix F.

inductiveProof ∶ (l ∶ Ladder)
→ (ϕ ∶ BooleanFormula)
→ {p ∶ T (tautology (base-obligationl ϕ))} (1)

→ {q ∶ T (tautology (ind-obligationl ϕ))} (2)

→ {bi ∶ T (bound statevarsl (mkinit initstatel))} (3)

→ {bt ∶ T (bound n (mktrans [] rungsl))} (4)

→ {bϕ ∶ T (bound n ϕ)} (5)

→ {binv ∶ T (bound inputvarsl inp-correctl)} (6)

→ LadderCorrect l ϕ

where n = statevarsl + inputvarsl + statevarsl. In the above, tautology is
replaced by a call to a SAT solver, thus when using this tactic, first, the SAT
solver is called on the base-case (1), then it is called on the inductive-case (2).
Finally, Agda checks that the formulæ are well-formed (3), (4), (5) and (6).
The result is a proof-object that states that ϕ always holds for all reachable
states of ladder l.

Proof. The proof of inductiveProof is by induction on the reachable states.
First, assume a reachable state s, and a proof of its reachability r, an input
i and a second state s′ such that t is a proof that s′ is reachable from s by
input i.

case r = initial s x: By Theorem 4.1.2 the following function is obtained:

J (mkinit initstatel) ∧ (mktrans [] rungsl)⇒ ϕ K(s++ i++ s′)

The proof follows by Lemma 9.3.14 applied to x and (3).

case r = next b r′ i′ s t′: Let n = statevarsl + inpvarsl. By Theorem 4.1.2 and
the induction hypothesis, the following function is obtained:

u

ww
v

(ϕ ∧ (mktrans [] rungsl)∧
(shiftstatevarsl inp-correctl)∧
(shift(n+statevarsl) inp-correctl)∧
(shiftn (mktrans [] rungsl)))⇒ shiftn ϕ

}

��
~

(b++ i′ ++ s++ i++ s′)
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The obligation to prove is:

(J ϕ K(b++ i′ ++ s)∧
J mktrans [] rungsl K(b++ i′ ++ s)∧
J inp-correctl Ki′∧
J inp-correctl Ki∧
J mktrans [] rungsl K(s++ i++ s′))→ J ϕ K(s++ i++ s′)

Which follows by (4), (5), (6), Lemma 9.3.13 and Lemma 9.3.14.

As this function is intended to be applied to closed terms, the proof-
objects (1..6) should be decidable during type-checking. If any of the
proof-objects fail to be inferred by Agda, either because of an open term
or that they do not hold, then Agda will output a message stating that
there is a hidden open term that could not be inferred. Also in the Emacs
mode, the call-site of the function will be highlighted, indicating to the
user that something has gone wrong.

Remark

10.2 Control Table Verification Conditions

It was hinted at in Chapter 8 that it is possible to derive verification condi-
tions from a control table automatically. In this section, a basic framework
is outlined for this purpose. It should be noted that this form of verifica-
tion refers to operational correctness, rather than safety. The operational
correctness means that the system does what it is supposed to do, i.e. fulfils
its specification. Traditionally operational correctness is checked by testers,
who check the system against a number of test-cases, which are derived
from the specifications during the design of a system. From the author’s
experience, automatically verifying operational correctness is of interest to
industry, namely because it allows for erroneous behaviours to be eradicated
at an early stage of the development cycle; otherwise these behaviours might
not be identified until the software has been passed to testers, increasing the
total development time.

Intuitively, a ladder l is a model of a control table c iff l never violates the
constraints in c. It is noted that some, but not all of the signalling principles
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previously identified follow from control tables, one such principle would be
signals guard .

From the definition of a control table c (see page 169), there is the field
entriesc that maps a route to a control table entry. Thus to determine whether
an interlocking system fulfils these constraints, a mapping from control table
entries into verification conditions (Boolean formulæ) is required. Although
it is possible to craft these formulæ by hand, it is preferable to automate the
process. This automation requires the inverses of the projections from Sec-
tion 9.3.1. That is maps from elements in the physical layout to the variables
in the interlocking that represent properties of these elements. For example,
a map from signals to the variables that represent when a signal shows a
proceed or stop aspect is required. Along side the maps from Section 9.3.1,
one additional map is required that relates routes (from the control table)
to formulæ that represent whether they have been selected. In practice,
these maps produce a Boolean formula rather than a single variable. This is
because an abstract property in the model can be represented by a combina-
tion of interlocking variables. For example, when multiple routes start at the
same signal, a route indicator is also present that indicates to the train driver
which route the signal’s aspect corresponds to; this means from a verifica-
tion perspective that each route has a distinct signal, but is represented by
multiple variables, one for the signal aspect and one for the route indicator.

To formalise the correctness of a ladder logic program l with respect to a
control table c, defined over the physical layout p, assume the following maps
are correct:

rtSet ∶ Routec → BooleanFormula

Whether the route is currently in use.

segNormal ∶ Segmentp → BooleanFormula

Whether the segment is being controlled normal.

segReverse ∶ Segmentp → BooleanFormula

Whether the segment is being controlled reverse.

segLocked ∶ Segmentp → BooleanFormula

Whether the segment is locked.

segOccupied ∶ Segmentp → BooleanFormula
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Whether the segment is occupied.

sigProceed ∶ Signalp → BooleanFormula

Whether the signal displays proceed.

Then the verification condition that l correctly implements a control table
entry is given by the following function:

CorrectTablec ∶ Routec → BooleanFormula
CorrectTablec rt =

⎛
⎝

rtSet rt ⇒ (
length normalpointsrt

⋀
i=0

segNormal normalpointsrt[i])

∧ (
length reversepointsrt

⋀
i=0

segReverse reversepointsrt[i])

∧ (
length facingrt

⋀
i=0

segLocked facingrt[i])
⎞
⎠

∧

⎛
⎝

sigProceed rt ⇒ (
length segmentsrt

⋀
i=0

¬ segOccupied segmentsrt[i])
⎞
⎠

It looks-up for a given route, its entry in the table. Then using the maps, con-
structs a Boolean formula that represents if the route is selected, then all seg-
ments identified as normal/reverse/locked should be normal/reverse/locked
and if a signal displays a proceed aspect, then its associated route is selected
and all required segments are unoccupied.

The formalisations of control tables in this work only have one entry,
namely entries that define routes. In practice, there are many different types
of entries, and the method outlined above is easily extended to allow for
these.

Some verification conditions depend upon multiple control table entries,
an example of such a condition would be “routes that share at least one track
segment cannot both be set”. This requires considering all pairs of routes. It
is a straightforward matter to define a version of CorrectTable that depends
upon multiple entries, but this is left to the reader.

Once all conditions have been generated, then just taking their conjunc-
tion formalises when a ladder logic program correctly refines the control table.
It is then possible to apply the function inductiveProof described previously
to determine automatically whether the ladder logic program is a correct
model of the control table.
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In this framework, the control table entries have no formal semantics; they
are a collection of identifiers, routes, signals, tracks, etc. The verification
conditions give semantics to the entries, as inputs and outputs are related
back to the layout. Moreover, verification conditions are sentences built
over a physical layout; they can be generated from the relations in the
control table by instantiating a template sentence. For instance, the route
entry can be mapped to a correctness relation which states “if a track
segment in the route is occupied, then the signal shows a danger aspect”.

Remark

It should be noted that this project is concerned with verifying whether
an interlocking system is safe, and not by whether it is a correct model of
a control table. However, it is conjectured that safety verification can be
directly performed on the control tables.

For this reason, a generic framework to determine whether an interlocking
system is a correct model of a control table was not implemented. What was
successfully done, was to perform control table verification on a small number
of interlocking systems of various sizes. This involved having to alter the
formalisation of a correct table to reflect the interlocking systems technology.
For example in Chapter 11, the interlocking cannot detect occupied segments,
so the second conjunct of CorrectTable had to be removed. The control
table verifications explored showed that it is feasible, at least in the railway
domain to determine the correctness of an interlocking system with respect
to its specification automatically.

10.3 Signalling Principles – Tying the Knot

Proving that an interlocking system is safe, as was discussed in Chapter 8,
requires a proof that the interlocking system fulfils the four signalling princi-
ples (cf. Section 8.4). In the case of interlocking systems realised with ladder
logic, verification conditions can be given that imply the signalling principles.
Formulating these conditions requires maps from components in the physical
layout to the variables. These are the same maps previously identified on
page 225. It is important that these maps are validated.

It is often the case that the signalling principles are too abstract for a SAT
solver to prove directly, usually this is the case because the maps are applied
to an open term, such as a term quantified route or signal. Thus, case-
distinctions are required on these data-types that the principle is quantified
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over. This is the case with the opposing routes signalling principle, where
any two routes that share a track segment cannot both be clear at the same
time. To prove this, first, all pairs of routes that share a track segment are
identified (by case-distinction and a dependent type formalising non-disjoint
track segments), and then, for these pairs, it is shown that, for all time,
they are never both clear. After identifying the pairs of routes, the formula
representing the signalling principle becomes concrete enough (as the routes
are now concrete) to be represented by a concrete Boolean formula, which a
SAT solver then decides.

However, it was found that for large interlocking systems, performing
these case-distinctions could become rather slow. This was because of un-
necessary normalisations. In attempts to mitigate this, the nthState function
was made abstract, which in effect inhibited unfolding of the decidable lad-
der. Also, the functions that generated propositional formula representing
the ladder were marked as abstract3, this prevented a large blow-up in the size
of the terms, and significantly reduced the time required for type-checking.

10.4 Pelicon Crossing

A full Agda code listing is in Appendix F, under the modules that begin
with Pelicon.

Remark

The Pelicon crossing example from Chapter 1 was the main toy example
explored. It was verified using SAT and CTL; also safety verification was
performed (including SAT). In this section, a formal treatment of the safety
verification of the Pelicon crossing is presented. The verification builds upon
the definitions in Section 1.1.1 of the Pelicon model, safety requirement and
safety principle. To aid the reader, the relevant definitions are repeated
below.

numbercars0 MUX ≡ 0 (pelicon-init)

movingcars0 T1 MUX ≡ 0

movingcars0 T2 MUX ≡ 0

movingcars(t+1) MUX T2 ≡ movingcarst T1 MUX (taxm2 )

3These formulæ were still un-folded before executing the SAT solver, but only for this
purpose.
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movingcars(t+1) MUX T1 ≡ movingcarst T2 MUX (taxm3 )

numbercars(t+1) MUX ≡ (numbercarst MUX) (taxm6 )

+ (movingcars(t+1) T1 MUX)
+ (movingcars(t+1) T2 MUX)
− (movingcars(t+1) MUX T1)
− (movingcars(t+1) MUX T2)

Note that the pedestrian axioms paxm2 , paxm3 and paxm6 are symmetric
to taxm2 , taxm3 and taxm6 , respectively.

∀t . (movingcarst T1 MUX ≡ 0 ∧movingcarst T2 MUX ≡ 0)
∨ (movingpedst P1 MUX ≡ 0 ∧movingpedst P2 MUX ≡ 0)

pelicon-principle

∀t . numbercarst MUX ≡ 0 ∨ numberpedst MUX ≡ 0

pelicon-safety

From examining the axioms that show how cars and pedestrians interact
with the crossings, it is clear that axiom taxm6 and the pedestrian counter
part paxm6 are stream equations. These stream can be simplified by the
following lemmata.

Lemma 10.4.1 (stream simplify). Given two streams X and Y of natural
numbers, such that X0 ≡ Y 0. If

∀n . X(n + 1) ≡Xn + Y (n + 1) − Y n

holds, then

∀m . Xm ≡ Y m

holds.

Proof. Follows by induction on n. Here, Xn−Y n is safe, and always zero by
the induction hypothesis.

Lemma 10.4.2 (pelicon simplify). Assume a pelicon control system that ful-
fils axioms (pelicon-init), (taxm2), (taxm3) and (taxm6) (also the pedestrian
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versions of these axioms (paxm2), (paxm3) and (paxm6)), then for all time
t ∶ N the following holds

numbercarst MUX ≡ movingcarst T1 MUX +movingcarst T2 MUX

and

numberpedst MUX ≡ movingpedst P1 MUX +movingpedst P2 MUX

Proof. Only the left conjunct is proved, as the right is symmetric. By
(taxm2 ) and (taxm3 ) applied to (taxm6 ) the following is obtained.

numbercars(t+1) MUX ≡ (numbercarst MUX)
+ (movingcars(t+1) T1 MUX)
+ (movingcars(t+1) T2 MUX)
− ((movingcarst T1 MUX)
+ (movingcarst T2 MUX))

Therefore by Lemma 10.4.1 applied to

X t ∶= numbercarst MUX

Y t ∶= movingcarst T1 MUX +movingcarst T2 MUX

We obtain

∀t . numbercarst MUX ≡ movingcarst T1 MUX +movingcarst T2 MUX

Lemma 10.4.3 (pelicon safe). Assume a pelicon control system that ful-
fils axioms (pelicon-init), (taxm2), (taxm3) and (taxm6) (also the pedestrian
versions of these axioms (paxm2), (paxm3) and (paxm6)), and the safety
principle (pelicon-principle) holds, then (pelicon-safety) holds.

Proof. Assume t. By (pelicon-principle) the following is obtained

(movingcarst T1 MUX ≡ 0 ∧movingcarst T2 MUX ≡ 0)
∨ (movingpedst P1 MUX ≡ 0 ∧movingpedst P2 MUX ≡ 0)

Without loss of generality assume, as the proof for the other case is symmet-
ric.

movingcarst T1 MUX ≡ 0 ∧movingcarst T2 MUX ≡ 0

Proof follows by Lemma 10.4.2.
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For full technical details of the above definitions, see Appendix F, module:
Pelicon.PeliconModel.

The ladder logic program in Figure 1.2 is translated into the nthState
function using the same methods as previously described in Section 9.3. See
module Pelicon.Ladder of Appendix F. This nthState is then translated into
the architectural signal aspects. See module Pelicon.State of Appendix F.
The following two functions perform this translation:

traffic ∶ Statef ig1.2 → Bool
traffic s = s[tlight .g]

pedestrian ∶ Statef ig1.2 → Bool
pedestrian s = s[plight .g]

The whole architectural state is a little more complicated; recall that the
architectural state of the Pelicon crossing also contains the number of cars
and pedestrians there are in each of the 5 areas, and the number that are
transitioning between these areas. This information is not contained within
a state of the ladder; thus a simulator is provided. The simulator works in a
similar manner as the previously described train simulator. The input to the
simulator, at a given time, is a 4-ary tuple < t1 , t2 ,p1 ,p2 >, where each com-
ponent is of type N, and represents the number of cars or pedestrians that are
approaching the crossing. For instance, t1 describes the number of cars em-
barking the crossing in area T1 . This information is then used to construct
an architectural state, where movement of the cars/pedestrians is inhibited
while a red signal is displayed to the cars/pedestrians, respectively. It is a
straightforward matter to prove that this simulator fulfils the required ax-
ioms. The car positions and movements are given in module Pelicon.State

of Appendix F by the following (mutual) functions. The pedestrian versions
are similar but not presented. In the following, let i be a stream of inputs to
the ladder, and ui be a stream of 4-ary tuples.

carmove ∶ N→ Area→ Area→ N
carmove 0 = 0
carmove (suc t) T1 MUX = if traffic (nthState i t)

then carpos t T1 else 0
carmove (suc t) T2 MUX = if traffic (nthState i t)

then carpos t T2 else 0
carmove (suc t) MUX T1 = carmove t T2 MUX
carmove (suc t) MUX T2 = carmove t T1 MUX
carmove (suc t) = 0
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carpos ∶ N→ Area→ N
carpos 0 = 0
carpos (suc t) T1 = carpos t T1 + (ui t)t1 − carmove (suc t) T1 MUX
carpos (suc t) T2 = carpos t T2 + (ui t)t2 − carmove (suc t) T2 MUX
carpos (suc t) MUX = carpos t MUX+(carmove (suc t) T1 MUX

+ carmove (suc t) T2 MUX )
−(carmove (suc t) MUX T1
+ carmove (suc t) MUX T2 )

carpos (suc t) = 0

It still remains to show that the ladder logic program fulfils the signalling
principle. This is done by defining a less abstract instance of the signalling
principle that can be represented in terms of the ladder logic program, i.e. a
verification condition. One such condition is

¬(var tlight .g) ∨ ¬(var plight .g)

which is provable for the ladder in Figure 1.2. From this condition it is
obtained that:

∀i t . J ¬(var tlight .g) ∨ ¬(var plight .g) K(nthState i t)

The safety principle (pelicon-principle) follows by this because at time t
without loss of generality assume the left disjunct. By unfolding the definition
of carmove and traffic, it follows that

carmove t T1 MUX ≡ 0 ∧ carmove t T2 MUX ≡ 0

In Section 10.6 the ladder program of the Pelicon crossing is compiled, and
executed. For now the interested reader can see the result of the simulation
in Appendix C, and the implementation in modules Pelicon.Simulator and
Pelicon.SimulatorFull of Appendix F.

The proof that the Pelicon crossing is safe demonstrates how the verifi-
cation framework presented in this thesis can easily be applied to other
domains. In such situations, what has previously been referred to as
signalling principles for the train domain, are synonymous with safety
principles in general.

Remark
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10.5 Industrial Test Cases

Throughout the project, two interlocking systems were investigated. These
interlocking systems were of substantially different design, and technology.
The first was Gwili Steam Railway’s (GSR) interlocking system; it is a me-
chanical interlocking of traditional design (levers, rods and bars). This in-
terlocking is the subject of Chapter 11. The second interlocking was of a
London Underground (LU) station; it is programmed using ladder logic and
is the subject of this section.

10.5.1 A London Underground Station

The project sponsor requested that the name and specifics of the under-
ground station is redacted from publication. For this reason, no detailed
information is given relating to this interlocking, also the Agda code re-
lating to this station is not appended.

Remark

What can be said is that the verification proceeded in a similar manner
to the GSR verification. This includes using the same data-structures, sig-
nalling principles and code-base. The only difference, apart from the size and
complexity of the systems was that GSR interlocking is defined by a locking
table (see Chapter 11), which had to be translated into ladder logic.

Scenario

The interlocking controlled a terminal station (cf. Figure 10.1) consisting of
two lines, and two platforms. Each of the lines is directed, and either brings
trains into the station or takes trains out of the station. There are also two
sets of points; these allow trains to change between the lines, that is to allow
trains to arrive on one line, and leave on the other line after stopping at an
available platform. There are also a number of signals that protect the sets
of points and platforms.

Although the topology appears simple (especially when compared to sta-
tions with many platforms), the interlocking system was not so simple. This
is because when the interlocking system was designed/installed there were
a number of planned improvements to the line. These improvements were
planned in three phases. Also, due to the cost of replacing the interlock-
ing for each phase, it was decided that the interlocking system should be
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x

Platform 2

Platform 1

Figure 10.1: An illustration of the topology controlled by the interlocking
system. The dotted lines on the right-hand side indicate lines outside of
the interlocking systems control. The dotted lines located right of centre
indicate a number of contiguous linear track segments. The arrows on the
right represent the intended direction of travel on these lines. The signal
marked with an ‘x’ has two routes associated with it; it also has a route
indicator, not depicted, to indicate to the train driver which route the proceed
aspect, when displayed, belongs to.

compatible with all three phases. In essence the ladder logic, consisted of
three programs, where the selection between these programs was by an input
variable. Correctness of this input is enforced by keeping the selection under
lock-and-key, and thus this input can only be changed by the maintenance
crew after completion of a phase.

In addition, there are three more modes that determined who had con-
trol. In this sense control means who/what can request or cancel a route.
The choice of the controller is central, emergency or maintenance. Central
indicates that the interlocking is being controlled by the central control room
(usually a computer) and is the normal mode of operation. The emergency
mode is triggered locally on the train station by a person activating the emer-
gency stop plunger. When the plunger is triggered the interlocking tries to
put itself, and the topology into a safe configuration4. The final mode is
used by the station supervisor, and activated by a key-switch; it allows the
station supervisor to override the interlocking, for example, in the case of
faulty hardware.

As an example of the complexities of the interlocking, it is now consid-
ered how a route is selected. The process is initiated by the control system
requesting a route, and then the interlocking determines whether it is safe
to select it with respect to the control table and topological state. This pro-
cess is described subsequently, but first the relevant variables are introduced.

4The trains are also informed that they must stop by other systems not considered
here.



10. Verification 235

Note that input variables are denoted by italic, and state variables by roman
font faces. The first three variables are general for the interlocking system:

cent : Central has control.

mtce: Maintainer has control.

emergency : Emergency plunger has been activated.

The remaining variables are per route:

request : The route has been requested by the central or maintenance con-
troller.

erequest : The route has been requested by the emergency sub-system.

cancel : The route has been requested to be cancelled by the central or
maintenance controller.

ecancel : The route has been requested to be cancelled by the emergency
sub-system.

requested: Internally the route has been marked as requested.

cancelled: Internally the route has been marked as requested to be can-
celled.

called: The route has been requested and its constraints from the control
table are fulfilled.

notinuse: Indicates whether the route has been internally allocated, does
not reflect whether the route has been cancelled.

selected: Indicates whether the route has been internally allocated, a train
may or may not be occupying the route.

available: Constraints in the control table for the route to be selected are
fulfilled.

The process of setting a route is described by the following annotated equa-
tions that relate to rungs of a ladder logic program.

requested ∶= (request ∧ (cent ∨mtce)) ∨ (erequest ∧ emergency)
cancelled ∶= (cancel ∧ (cent ∨mtce)) ∨ (ecancel ∧ emergency)
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Initially the inputs are inspected to determine whether the route has been
requested, or whether it has been requested to be cancelled (un-select). The
interlocking then computes ‘called’ which determines whether the request to
select the route should be taken seriously.

called ∶= requested ∧ available (∗)

Determining whether a route is in use, is by the following assignment. It only
determines whether the abstract concept of a route is in use, not whether
the route is occupied.

notinuse ∶= ¬ called ∧ (¬ selected ∨ notinuse)

It is now computed whether the route should be selected, this does not imply
a proceed aspect, but is a necessary condition. The proceed aspect also
requires that the track segments are unoccupied.

selected ∶= notinuse ∧ available ∧ (called ∨ (¬ cancelled ∧ selected))

Before the final rung that determines for the next cycle of the ladder whether
the route is available to be selected, the rest of the ladder is executed. The
remainder of the ladder will configure sets of points and set signal aspects.
Thus the value of ‘available’ will be up-to-date in the next cycle, and its
definition is not part of the initialisation where the inputs are inspected.
Although it should be noted that (∗) will also make fresh checks to ensure
that the detected configuration of relevant sets of points are valid.

available ∶= constraints from control table for route to be selected

Although the above example is correct, it is an abstraction. There are
more corner cases relating to which phase the interlocking is currently in;
also the initialisation of the variables is overly simplified. Nonetheless, it
is clear in general that at least 10 variables are required for the logic to
select a route.

Remark

Similar to the above process of selecting a route, positioning a set of points
is a complicated process. For instance, the input to a set of points is given
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by three variables indicating for a three-way switch which contact is closed.
This three-way switch is for maintenance mode where the set of points is
controlled to the normal or reverse position, the third position indicates that
the maintainer did not request either position. Also, there are two detection
inputs that determine if the set of points is detected in the normal or reverse
positions. There are a further 21 state variables (and associated rungs), and
9 input variables for each set of points. The logic for a set of points firstly
decides, after the routes have been selected, which position the set of points
should be in, this also considers the maintenance mode inputs. Then it
determines whether the set of points needs to be moved, if it does, then the
move request is issued. It will then continue executing cycles of the ladder
until the set of points is detected in the correct position, from which the
route availability is computed.

Up to now, all reference to ladder logic programs has carefully omitted
the issue of measuring time. For example, consider the situation when mov-
ing a set of points, it might be the case that the blades of the points become
jammed, perhaps by a rock getting in the wrong place. In such situations,
it is required that if the set of points is not detected in the correct position
within a given time (e.g. 7.5 seconds), then the power to the points-machine
is turned off. The model of ladder logic does not allow for such rules, but
the interlocking system is equipped with timing modules. These modules
support a number of timers; each timer is interfaced with the ladder logic by
two allocated variables. One of which is a state variable called trigger and
one is an input called elapsed . The intuition being that when a time duration
is required, the trigger variable is set, which indicates to the timer module
that it should start the associated timer. If trigger is unset before the time
duration has elapsed, then the timer is reset. Otherwise, when the time du-
ration has elapsed, and trigger is still set, the timer module sets elapsed . See
Figure 10.2 for the behaviour of these two variables plotted over time. There
are 22 possibilities of these variables, but one of these possibilities is not well-
formed, namely when elapsed ∧¬trigger . The verification performed did not
require special treatment of the timers, and even the ill-formed combinations
were not catered for. It is assumed that a fully validated verification, which
reasons about timed events, would require timers to be specially treated.
The interlocking system contained 49 timers.

Verification

The ladder logic was formalised as described in Chapter 9, and the topology
and control table were formalised as described in Chapter 8. Defining a
map between the interlocking state and the architectural state required a
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time

elapsed

trigger

t t′

Figure 10.2: Timer variable interactions plotted over time, where t denotes
the timer’s duration and t′ < t. The upward portions of the plots indicate
the variable being assigned true, and the downward portions indicate the
variable being assigned false.

significant amount of research. As already indicated, each set of points, signal
and route have many associated interlocking variables, each with a slightly
differing meaning. In some cases, a value of the architectural state depended
upon multiple variables of the interlocking. For example, the signal marked
with an ‘x’ in Figure 10.1 has two routes associated with it. Determining
which route its aspect corresponded to was achieved by inspecting the route
indicator output.

To prove that the interlocking system is safe, it is required to provide
a proof of the 4 signalling principles (from Chapter 8). In the most part,
proving that the signalling principles held for the LU station was successful.
Although some of the initial attempts were problematic, after examining the
satisfying assignment, structure of the ladder and semantics of the variables,
these problems were mitigated. This was in part due to incorrect maps from
the physical layout into variables, which were amended. One example of this
was when determining what position a set of points was in: Initial attempts
used variables that depend upon inputs which detected the physical position
of the points combined (and’ed) with the position they are being controlled
into. However, it was found that the signalling principle 4 (train holds lock)
could not be proved because the train detection inputs to the system were
unconstrained. That is, assume a route rt and a set of points pt in the route,
then the condition which could not be proved is as follows:

occupied rt ⇒ locked pt ∧ detected pt ⇒ (locked pt)′ ∧ (detected pt)′
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where detected pt denotes an input variable, and the primes are the val-
ues in the next state. This condition is not provable because the value of
(detected pt)′ is not determined by the interlocking system. Subsequently
the state map was amended to only inspect the variables representing the
position the set of points was being controlled to, this allowed the principle
to be proved. That is

occupied rt ⇒ locked pt ⇒ (locked pt)′

which essentially means that while rt is occupied, the interlocking does not
attempt to change the position of pt . It is noted that this is safe as a route can
only become occupied after the signal protecting the route is set to proceed,
which requires that the set of points is also detected to be in the correct
position, this is implied by the previous verification where the interlocking
system is proved to be a correct refinement of the control table.

The only signalling principle that did not universally hold was princi-
ple 4 (train holds lock). It could be violated if the interlocking system was
placed into maintenance mode and the set of points was released from the
interlocking’s control. Maintenance mode is enabled by an input to the in-
terlocking being set to true, and thus it is assumed that this input is never
set to true for the verification to succeed. Although this weakens the safety,
it is not a serious issue because by design, when in maintenance mode, the
interlocking system’s decisions can be overridden by an expert. The expert
would assume responsibility for their actions.

The interlocking system contained ≈ 330 rungs, and 250 input variables.
When expanded using our inductive verification technique, we obtained a
Boolean formula with ≈ 1500 variables (in the inductive step). These formulæ
could be solved very quickly by the SAT solver, but generating them took
a couple of minutes. This time is due to (1) constructing the transition
formula by building up a list of processed rungs (and shifting the variables
accordingly), and (2) shifting the variables of all the formulæ between the
cycles.

Figure 10.3 shows a breakdown of the time spent on different tasks while
proving a typical condition. The total time taken for the proof seems large,
especially when it is considered that the actual SAT solver spent less than
0.5 of a second running. This is due to inefficiencies in Agda. For instance,
due to lack of sharing inside Agda, the SAT solver is evaluated twice for each
problem set. The transition formula is generated a number of times, e.g. when
checking the bounds and generating the proof obligations. Also, the GHC
run-time memory management algorithm is not well suited to modifying large
data-structures because every data-structure is immutable, thus for every
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Task Time (Seconds)
Initial Type-Checking of Ladder 377.84

Generate Initial Condition 23.28
Generate Inductive Condition 48.05
Execute SAT Total (Initial) 31.13
Execute SAT Solver (Initial) 0.05

Execute SAT Total (Inductive) 64.33
Execute SAT Solver (Inductive) 0.08

Generate Transition Formula 24.03
Checking Bounds 21.39
Total for Proof 518.07

Figure 10.3: Breakdown for running a selection of tasks while verifying a
typical condition for the LU interlocking. Z3 [dMB08] was the SAT solver
used. All times were gathered by running Agda from Emacs, with :set +s,
then evaluating the individual functions. The SAT solver times were gathered
from the output of the solver. The total SAT time refers to the time taken
in Agda to execute the solver, this includes generating the formulæ.

update to a data-structure in memory, the original is duplicated. Therefore,
the maps and shifting of variable indices in large Boolean formulæ5 resulted
in undesirable behaviour from the underlying memory subsystem.

Type-checking of the ladder is time consuming, but is a one-off task as
the checked files are cached. Initial type-checking includes defining two sets
(data-types) of variables, one for the state variables and one for the input
variables. It also includes type-checking maps from these variables into nat-
ural numbers, the rungs (as a list) and an initial state (as a list), and then
type-checks a Ladder data structure constructed from these components.

10.5.2 Remarks

Applying the verification framework built-up over the course of this thesis
was not difficult. Much of the hard work was in crafting the framework with
a simple user interface. For instance, ladder logic programs are given by a
simply-typed definition, and topology models are easy to instantiate, and
the proofs are given by automated tools. It is important to understand what
the goal to be proved is. When proving the signalling principles the human
should guide the proof, and know which cases are expected to be trivially
provable and which others follow by applying the ATP tool.

5Agda terms are represented in Haskell by a list of lists.
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In total, it required approximately 2 weeks work, from start to finish, to
verify the LU interlocking. This entailed instantiating the various definitions,
providing proofs about them and applying the ATP tool. The work was
undertaken after verifying that GSR was safe, which was a smaller exercise.
The GSR verification was used to fine-tune the framework, and as such from
start to end took significantly longer.

It is noted that when defining an instance of the topology model, con-
siderable care should be given to the definitions so that when proving the
signalling principles, the case-distinctions (on the topology) purvey human
readable information. Contrary to this, the early attempts to define compo-
nents of topology models (and ladder logic variables) used the enumeration
sets Fin. This was to simplify the definitions and to obtain decidable equal-
ity for free. However, proving properties about these definitions, such as
a signalling principle would result in extremely large, hard to read case-
distinctions. The issue here is that one would have to count the number
of suc’s and manually validate the models are correct, and in the case of
an erroneous definition, it can be hard to identify. Similar problems with
ladder logic were encountered, where to identify a variable, one would have
to count the (possibly many hundred) applications of suc. There was also
an issue with efficiency as the type-checker would infer the hidden terms.
It is recommended to use a non-recursive data-type, where the constructors
have meaningful names. This vastly simplifies identifying problem cases and
validating the models.

More generally, there is an issue of understanding what has actually been
verified. Not only do the models need to be validated, but also that the inter-
locking is correctly represented in Agda and that the mappings between the
variables of the interlocking and the architectural state are correct. Should
one of these projections be incorrect (e.g. referencing variable 145 instead of
154), then performing the verification does not result in a proof of safety,
however, it would require an astute eye to catch mistakes such as this.

It was found that a number of definitions, such as the function nthState,
had to be made abstract6 to prevent unnecessary normalisation. Particularly
any references to the function nthState would normalise the ladder, resulting
in a serious efficiency problem. For example, there were occasions when
type-checking simple lemmata that depended upon (indexed by) a ladder
would take over 30 minutes due to overly eager normalisation. However,
after carefully abstracting definitions the time required to type-check these
problematic definitions was significantly reduced to a couple of minutes. One
such lemma that was problematic was applying a proof of the correctness of

6By the use of abstract blocks in Agda.
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the ladder to another proof of correctness of the ladder, that is for a concrete
ladder l and two formulæ ϕ and ψ, to prove the following lemma:

LadderCorrectl ϕ→ LadderCorrectl (ϕ⇒ ψ)→ LadderCorrectl ψ

This lemma is trivial to prove on paper as a human would not attempt to
normalise l. However, if proved for a concrete ladder in Agda, then l is
normalised; depending on the size of l, it could suffer efficiency problems. Of
course, this lemma can be proved in general, in Agda efficiently, but once it is
applied to a concrete ladder the original situation of excessive normalisation
is re-encountered. One solution to this problem was to define in Agda an
abstract version of the ladder as follows:

abstract
rungs′ = rungsl
initialstate′ = initialstatel

l′ ∶ Ladder
l′ = ladder statevarsl inpvarsl rungs′ initialstate′ inp-correctl

abstract
l-eq ∶ l′ ≡ l
l-eq = refl

Then we worked with the ladder l′ in-place of l as much as possible as the
rungs and initial state will not normalise. However, l′ is still usable in the
majority of situations as the number of state and input variables (and inp-
correct) are obtainable. Hence the type of the states, and types of inputs are
concretely derivable for l′ and are definitionally equal to those of l.

Moreover, the only time that the ladder needs to be fully normalised is
when it is compiled and executed, problem sets are generated for the external
tool, or checking that the ladder is well-formed. In these cases, it is possible
to normalise the ladder by forcing Agda to unfold the definitions using l-eq.

10.6 Extracted Control Systems

The verified ladder logic interlocking systems can be compiled and executed
as a standalone interactive program. Therefore, fully verified code is ob-
tained, and the whole process is a full example of the proofs-as-programs
paradigm. That is, proofs are programs, and proofs are written in the same
language as programs.

The extraction is performed by Agda, using the MAlonzo back-end. MAl-
onzo translates Agda code into Haskell code. The result of the extraction is
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a number of Haskell files, which are then compiled by GHC. Due to Agda
being dependently typed and Haskell being simply typed, a direct translation
requires that type coercions are inserted into the translated program. This
is safe as Agda has type-checked the code. However as a result of these coer-
cions, many optimisations that would normally be applied by GHC are not
carried out. A good discussion about the benefits and limitations of different
code generation back-ends for Agda can be found in [FG11, Tur10].

No external tools (e.g. SAT solvers) are called upon during execution of
the ladder, all verifications (including calling an external tool) are per-
formed in Agda during type-checking. It is the type-checked term that is
extracted into a program.

Remark

The extracted control systems are intended to be used for simulation
purposes; this is because the code generation and compilers have not been
certified. There is also a potential issue of running a live critical system
under a garbage collected environment, such as GHC, because there are no
assurances that a resource would not be exhausted. If such a situation did
occur, then the state that it crashes in would be safe (as the system has been
verified).

To mitigate the constraint that the extracted program is only for simula-
tion purposes, and as future work, it would be possible to define a small,
safe subset of a language such as C, in Agda. This subset would need to
include the logical operators for conjunction, disjunction and negation, it
would also need to define simple while loops, Boolean variables and as-
signments to these variables. It might also be required to ensure that the
subset includes standard IO functions. It would then be a simple matter
to translate the representation of a Ladder in Agda into a representation of
a C program, and prove the correctness of this translation. Furthermore,
converting this representation of a C program into an actual C program
would be canonical, i.e. a toString function. Provided this program is
compiled using a verified C compiler, the resulting executable would be a
fully safety verified ladder logic program that could be used in life critical
situations.

Remark
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The simulations are basic. They will start at the initial state, then request
an input from the user, transition into the next state, and repeat. When
implementing the simulation, there is a choice about which transition system
to execute.

Ladder. Simulating only the ladder logic, where the states and inputs are
given by lists of Booleans of the correct length. Although this type of
simulation is sufficient to test the interlocking, not enough information
is given to derive the architectural states. In effect, simulating an inter-
locking using this method does not consider the positions of trains; but
it does consider the states of signals, sets of points and track segments.
This type of simulation is ideal if there is already a test-bed setup (as
found in industrial development environments) so that the interlocking
system can be plugged-in.

Architectural. Building upon the previous ladder logic simulation, it is
possible to augment the transition system to, in addition, simulate
where the trains are (in the case of the railway domain). In this case,
the transition system that is executed consists of an augmented ladder.
The inputs are given by the inputs to the ladder and the train inputs;
train inputs are defined in Section 9.3.1. The states are given by the
states of the ladder paired with the train positions.

Provided that the ladder logic is well-formed, and hence decidable, pro-
ducing a transition function for the ladder logic is explained in Section 9.3.
For the architectural simulation, it is also required to have a transition func-
tion that depends upon the ladders transitions, that is the trains positions
depend upon the signal aspects projected from the ladder state. This archi-
tectural transition function should have been defined already when defining
the nth architectural state during verification. Therefore, the extracted pro-
grams are straightforward interfaces to the underlying data structures previ-
ously described throughout this thesis. There is one caveat: If the inputs to
the ladder logic must fulfil an invariant, then this invariant must be enforced
by the simulation.

For simple ladders, such as the Pelicon crossing or Gwili, the program’s
user interface is by means of a terminal application. The application will
pretty print the state and request the inputs one-by-one. See Appendix C
for an output of the simulation for the Pelicon crossing. For larger ladders,
this becomes cumbersome, and time consuming for a human to understand.
Therefore, it is possible to write a user interface in another language that
will graphically depict the state of the topology, and provide a usable method
of entering the inputs. This interface then executes the extracted ladder by
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treating it as a stream transformer, that is from an input stream to an output
stream.

Due to the infinite loop that ladder logic is evaluated within, special treat-
ment was required to write the interactive program such that it would pass
the Agda termination checker. This was achieved by using Anton Setzer’s
IO library [Set09]. The interactive programs are encoded into a co-algebraic
data-type, which is then translated into an IO program by the library. Inside
the library, the termination-checker is disabled in a safe way.
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Chapter11
Gwili Steam Railway

On 28th October 2011, a visit was made to Gwili Steam Railway (GSR) with
the ambition to use it as a case study for the railway verification framework
explained in this thesis. It should be noted that Gwili Steam Railway is
independent of the project sponsor, Invensis. It was a useful, and hands-on,
experience that helped to sharpen our interpretation of the railway domain.
It gave us the opportunity to understand from a practical perspective the
requirements of the domain, a level of understanding that is hard to obtain
from reading books alone. The verification proceeds along the lines of formal-
ising the topology, interlocking system, and control table; and then proving
that it fulfils the four required signalling principles to obtain a proof that
trains do not derail or collide.

For historic railways, such as Gwili Steam Railway, the same safety re-
quirements as modern railways are taken. This is because the roots of
modern railway signalling are found in historic railways, the only major
difference is the speed that the events occur.

Remark

Chapter Overview. In Section 11.1 the GSR scenario is introduced and
explained. Alongside the introduction, formal definitions of the topology,
control table and interlocking system are presented. As the interlocking
system is mechanical, it was not realised using ladder logic, which the ver-
ification framework is defined over. It was decided to translate the locking
table1 into ladder logic (Section 11.1.2), rather than redefine the semantics

1A document describing the mechanical interlocking between levers of a mechanical
interlocking system.
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Carmarthen Aberystwyth
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Figure 11.1: Gwili Railway Layout

of the framework.
In Section 11.2 the interlocking is verified to be a correct refinement of

the control table, and that it fulfils the required signalling principles from
Chapter 8. Finally in Section 11.2 the interlocking system is compiled and
executed to validate that the interlocking is correct. The full code listing can
be found in Appendix F.

11.1 Scenario

GSR is a small railway located in Carmarthenshire, South Wales, UK; it is
maintained and operated by a team of volunteer rail enthusiasts as a tourist
attraction. It was originally part of the Carmarthen to Aberystwyth line,
which was opened by the Carmarthen and Cardigan Railway Company in
1860. The line changed ownership many times before being decommissioned
in 1965, and finally dismantled in 1975. Soon after, (in 1977) the Gwili
Railway company was formed to preserve an 8 mile stretch of the line (Fig-
ure 11.1), since these humble beginnings their ambitions have grown, at no
time more so than after a 2009 merger with another local railway society
(Swansea). Currently (at time of writing) the GSR is laying new track and
will build a new station juxtapositioned with Carmarthen. It should be noted
that the models and verifications described here relate to the unmodified rail-
way.

The railway consists of three stations connected by a single track. The
station, Bronwydd Arms (Figure 11.2), is the main station, it is the only
part of the railway that is protected by an interlocking system. However,
it should be noted that there are a small number of ground frames situated
throughout the railway. The other two stations are within the same block
segment, and not controlled by the interlocking. The interlocking is con-
tained inside the signal box (Figure 11.3); the levers are located on the first
floor (Figure 11.4), and the interlocking is located on the ground floor (Fig-
ure 11.5). The interlocking consists of three locking trays, and each tray has
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Figure 11.2: Terminal view of Bronwydd Arms Station. From the level
crossing to behind the camera’s view is the beginning of the new line.

a number of tappets (steel blades) which are directly connected to the levers
(at most one tappet for each lever in each tray), and slide back and forth
as the lever is moved back and forth. Each tappet has a number of ports
(notches) carved into their edges at right-angles to the tray. As the tappets
move, they push dogs (a special nut and bolt) along the tray. It is when
these dogs are pushed and constrained into the port of a tappet, that the
tappet (hence lever) is locked. In Section 11.1.2 more information is given
about the functionality of these interlocking systems, and how to formalise
them. Details of mechanical interlocking systems, and a discussion of how to
test them can be found in Woodbridge’s notes [Woo12].

11.1.1 Layout

Viewed from inside the signal box there is the scheme plan in Figure 11.6 that
informs the signalman of the topology which is controlled by the interlocking,
and which lever controls, which piece of hardware. There are two sets of
points, 13 and 14, that switch trains between the “MAIN” and “LOOP”
lines. Passenger services are only allowed to use the “MAIN” line. This
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Figure 11.3: Bronwydd Arms Signal Box

Figure 11.4: Top side of lever frame.
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Figure 11.5: Under side of lever frame.

is enforced by the interlocking and signalling scheme—as passenger services
must only obey main signals and not the shunt signals. For instance, a
passenger service approaching from the left can only enter the station if
signal 4 is clear, and not C2 or 6. There are 11 signals that are controlled
by the interlocking, the majority of which are shunt signals. The scheme
plan is formalised by Figure 11.7. In the scheme plan (Figure 11.6) there
are more tracks than in Figure 11.7, this is because part of the railyard is
not controlled by the interlocking and instead controlled directly by ground
frames. Note that track segment 8 (in Figure 11.7) is not part of any route,
and not safety controlled by the interlocking.

In reference to Figure 11.7. The dots on the left indicate a single block
segment protected by signal 16 (spanning to and including the next stations)
that only one train is allowed to occupy at a time. The numbers relate to
the controlling lever, i.e. when lever 3 has not been pulled, signal 3 shows the
danger aspect, and when lever 3 is pulled, signal 3 shows a proceed aspect.
The precise differences between the three types of signals, main, shunt and
call-on (e.g. signals 3, 17 and C5) are not relevant for this verification, and
they are treated as main signals. With respect to safety, it is clear that
signals 4 and 19 should never both be set to proceed at the same time, this
is because the portions of track they protect are not disjoint, similarly for
signals: C5, 7, 18, 20.

A further discussion of the signals and sets of points is required before
giving formal definitions of the topology. The three types of signal in-use
are considered. The main signals are of a traditional semaphore design,
and the shunting signals are small (approximately 1m in height) that are
located on the ground. Both of these types of signal show only proceed or
danger aspects. See Figure 11.8 for an image of these signals. There is also
a third type of signal that is prefixed with the letter C, these are call-on
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Figure 11.6: Scheme plan from signal box. Relates levers to the hardware
they control.

signals and are smaller, subordinate versions of the semaphore signal. The
distinction given here is not universal, and it is possible to have shunt signals
implemented by a small semaphore signal. All these signals have electric
lights in them to aid with poor visibility. When a route is set, it is required
that the signalman knows that the light is fully functioning. This is known
as lamp proving, which in modern interlocking systems is by an input to the
system indicating whether the bulb has blown. For mechanical interlocking
systems, the lamp proving is achieved in two ways, first the signals that are
clearly visible from the signal box are proved by eye, and secondly for distant
signals a system of relays are used, such that, should the bulb blow, then an
audible alarm is raised in the signal box.

The two sets of points have facing-point locks, which are achieved by a
metal bar (the lock) being inserted into a cutout on the stretcher bar of a
set of points (Figure 11.9). This lock not only holds the set of points in
position, but will detect if the set of points is not in a valid position. That
is, if the set of points is not fully controlled in to a valid position, perhaps
because of wear-and-tear, then the cutout will not line up with the lock and
cannot be engaged, as a result, any signals requiring the points to be locked
will not be able to be cleared. At Gwili, the cutout had 2mm play (so the
set of points could be at most 2mm out of alignment). This is contrary to
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← towards Danycoed Halt

Figure 11.7: Bronwydd Arms topology. See the accompanying discussions
in the text for information about this diagram. For now, it is noted that
a slightly different notation is used for this image. This notation allows for
multiple signals to be composed onto the same signal post , e.g. C2, 6 and 4
are three distinct signals located at the same position; C2 is a call-on, 6 is a
shunt and 4 is a main signal.

modern systems where the lock (nowadays electronic clamps) and detection
are separate systems from the interlocking systems perspective.

Formalising Topology

On the scheme plan in Figure 11.6, there are no clear track segments. This
is because track segments are only required to occur explicitly in modern
interlocking systems that are equipped with track circuits for train detection,
see Appendix B for details. So the first step to formalising the topology, is to
divide the track up into discrete segments. This has been done (by myself)
in Figure 11.7, where there are 9 segments. As there are only 9 segments
they are represented using the set Fin 9, and are numbered horizontally,
starting at the top left, finishing bottom right. The connections between
these segments are given by the following function:

gwiliReachable ∶ Fin 9→ List (Fin 9)
gwiliReachable 0 = [1]
gwiliReachable 1 = [0,2]
gwiliReachable 2 = [1,3,6]
gwiliReachable ⋮ = ⋮
gwiliReachable 8 = [7]

The rightmost signal (cf. Figure 11.7) is ignored in the models (and ver-
ification) as it is fixed to the danger aspect, and not controlled by the inter-
locking. The set of signals is given as

Signal ∶= {2,3,4,5,6,7,16,17,18,19,20}



254 11.1. Scenario

Figure 11.8: Different types of signals in use, left is a semaphore signal (19)
and right is a shunting signal (17).

Figure 11.9: Facing-point lock is clearly visible in centre of image, the bar
parallel to the tracks slides back and forth to lock/unlock the set of points.
The bar orthogonal to the track is called the stretcher bar, and has two
cutouts (one for normal and one for reverse position) that the first bar will
slide into/out of.
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which is represented in Agda using a (non-recursive) data-type. It was chosen
to define these identifiers using a representation that preserves the names of
the signals, as opposed to using a generic enumeration set such as Fin 11.
Preserving the names will subsequently aid the user for future definitions,
proofs and validation.

The position of the signals is given by the following function, which deter-
mines the segments before and after it, and a proof that they are connected.

gwiliSignals ∶ Signal→ SignalLocationFin 9,(λa b . b isin gwiliReachable a)

gwiliSignals 2 = record {
facing = 1 ;
trailing = 2 ;
connected = inj2 (inj1 refl) }

gwiliSignals 3 = record {
facing = 0 ;
trailing = 1 ;
connected = inj1 refl }

gwiliSignals ⋮ = ⋮
gwiliSignals 20 = record {

facing = 5 ;
trailing = 4 ;
connected = inj1 refl }

The physical layout (see page 165) of Gwili is then defined as follows:

gwiliPL ∶ PhysicalLayout
gwiliPL = record {

Segment = Fin 9 ;
Signal = Signal ;
connections = gwiliReachable ;
signalLocation = gwiliSignals }

The control table entries (see page 169) are given by a function mapping
routes to the entries. As each signal has exactly one route associated with it,
routes are identified by the signals they start with. The control table is as
follows (note that the sets of points are referenced by their containing track
segments):
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Start Signal Segments Normal Points Reverse Points Facing
2 2 , 3 2 – 2
3 1 – – –
4 2 , 3 2 – 2
6 2 , 6 – 2 2
5 4 , 5 4 – –
7 7 , 4 , 5 – 4 , 7 7
16 0 – – –
17 2 , 1 – 2 –
18 4 , 7 , 6 – 4 , 7 4
19 2 , 1 2 – –
20 4 , 3 4 – 4

To aid with the understanding of the control table, Figure 11.7 is repeated
below:
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Station: Bronwydd Arms

Signal Box

← towards Danycoed Halt

This table is built out of control table entries, therefore it defines the
function:

gwiliEntries ∶ Signal→ ControlTableEntrygwiliPL

Connections between these routes are defined using the same method that
defines connections between track segments. That is

gwiliRouteConnections ∶ Signal→ List Signal
gwiliRouteConnections 2 = [5]
gwiliRouteConnections 3 = [2,4,6]
gwiliRouteConnections ⋮ = ⋮
gwiliRouteConnections 20 = [19]

To finalise formalising the control table, proofs that the routes are (1)
well-formed and (2) non-empty, are required. In the case of (2), the proof
follows trivially by the control table entries as all entries are non-empty under
the segments heading. In the case of (1), first recall from page 171 that the
well-formedness of the control table is informally defined as:

1.1) all pairs of routes that are connected to a common route share a track
segment, and
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1.2) all pairs of connected routes have their last and first track segments
connected, respectively.

1.3) all segments in a route are continuous

1.4) all sets of points identified (normal/reverse/facing) are contained in the
routes segments.

The proofs in all cases follow by the definition of GSR’s control table; they
can be found in Appendix F. In this case study, proving of these properties
was manually performed and required case-distinction on the routes/signals,
this was cumbersome, especially in the case of (1.1) as two of the three
routes must be analysed, which results in 112 combinations. However, this
manual proof would inhibit formalising control tables for large topologies.
Provided the sets of routes and track segments have a decidable equality, then
the properties (1.1) – (1.4) are decidable and could be automated by finite
conjunctions/disjunctions of the routes and track segments (i.e. encoding the
case-distinction into Boolean formula). There would also be a small number
of proofs required to translate the result of the decision procedure into the
formal definitions on page 171. This automation is left as future work.

For completeness the control table is formalised as follows:

gwiliControl ∶ ControlTablegwiliPL

gwiliControl = record {
Route = Signal ;
routeSignal = λx→ x ;
entries = gwiliEntries ;
connections = gwiliRouteConnections }

Note that the fields: NonEmptyRoutes, WellFormed, RoutesConnected, Con-
tinuous, InRoute1, InRoute2 and InRoute3; have been omitted as they are
not enlightening, and as discussed above the proofs follow trivially from the
control table.

The final step is to select the number of trains, then instantiate an ab-
stract layout. For the verification performed, two trains were chosen as it is
the smallest number that is interesting. The set of trains is represented using
Fin 2, which is trivial to define decidable propositional equality for. Thus, by
applying the function toLayout on page 173, to the physical layout, control
table and set of trains, an abstract layout called gwiliLayout is obtained.

The above definitions of the physical layout, control tables and abstract
layout are in module Gwili.Layout of Appendix F.
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In subsequent sections, the ladder logic and state of the abstract layout
are defined. Then the models are used to formulate the signalling principles
during the verification of the ladder logic.

11.1.2 Translation of Locking Tables into Ladder Logic

In this subsection, it is shown using railway domain terminology how me-
chanical interlocking systems work. Then it is shown how the interlocking
systems relate to locking tables, and finally the translation from these locking
tables into ladder logic programs is given.

Mechanical interlocking systems consist of a number of levers (see Fig-
ure 11.4) that are moved backwards and forwards. These levers connect
directly to blades in the interlocking system, so that when the lever moves,
it moves a shaped metal blade called a tappet inside the interlocking. The
shape of a tappet is specific to each lever; they can be intuitively thought of
as a key in a traditional lock. If the tappet is locked in place (typically by the
configuration of the other tappets), then the lever is also locked (i.e. cannot
be moved).

Locking tables are documents that detail constraints that the interlocking
system must fulfil. They are at a much lower-level than the constraints in the
control tables, and specify the relationships/constraints between the levers,
i.e. which levers lock/unlock other levers.

Nomenclature of lever frames, when a lever is pushed away from the sig-
nalman (as the majority are in Figure 11.4), it is said to in the normal
position. When pulled towards the signalman, it is said to be in the re-
verse position. Interestingly this is the origin of the terms normal and
reverse for sets of points.

Remark

A locking table defines a transition system. The states are given by
combinations (normal/reverse) of the levers, and the transitions between the
states are given by a singular allowed movement of a lever. The locking tables
define constraints/invariants on the states and transitions.

The following convention is used to represent the position of a lever in
the ladder logic: For a lever l, a corresponding Boolean value l in the state
is identified, such that ¬l represents that the lever is in the normal position,
and l represents that the lever is in the reverse position. There are also
occasions where the position of the lever in the next state is referenced, for
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this a priming of the variables is used, i.e. l′ represents the position of lever
l in the next state.

To help explain the translation, a small example of a set of points, a
facing-point lock and a signal is introduced in Figure 11.10. This example is
easy to extend to the GSR interlocking as it is a microcosm with the same
functionality. The intention is that the signal protects the set of points, and
it will only be able to clear once the set of points is locked in the normal
position. For information regarding the purpose of a facing-point lock, see
Section 8.3.1.

Figure 11.10: Locking table scenario.

In such a situation, there would be three controlling levers, p, l, and s, one
for the set of points, one for the lock and one for the signal, respectively. It is
required that when l has been pulled, p should not be able to be moved; also
when l has not been pulled or p has, then s should not be pulled. Formally
the following must always hold:

(l ∧ p)→ p′ (l ∧ ¬p)→ ¬p′ (¬l ∨ p)→ ¬s

Here, the first two constrain the transitions, and the last one constrains
the state space. Constraints such as these are formalised in the locking
table. Before explaining the locking table, we consider how a mechanical
interlocking could be realised for this example.

See Figure 11.11 for a depiction of the interlocking. The interlocking
consists of three tappets (coloured grey), one for each lever, similar to those
in Figure 11.5. There are three dogs (special nuts and bolts) that form the
interlocks, they are depicted by black circles. Two of the dogs (left and
rightmost) are connected by means of a metal bar (depicted by a line) and
move together. Note that all levers are shown in the normal position.

The interlocking from Figure 11.11 is fully functional. Enumerating its
possible transitions (by moving levers) from the initial state gives rise to the
transition system in Figure 11.12. (a) is the initial configuration where all
levers are normal, that is the points are unlocked in the normal position,
and the signal shows the danger aspect. From (a), it is not possible to clear
the signal because the rightmost dog cannot move out of the notch on s. It
is only possible to pull s after l has been pulled, that is from (a), to (d)
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¬p ¬l ¬s

Figure 11.11: Example mechanical interlocking. In this diagram, the tappets
move up and down, and the dogs move left and right. For instance tappet p
is free to be moved into the reverse position, whereas tappet s is constrained
by a dog and cannot be moved until l has been reversed.

then (e). Conversely from (e) it is not possible to reverse p without first
normalising l, which requires that s is also normalised. Thus, regardless of
the order the levers are used, it is never possible to clear the signal without
the set of points being locked in the normal position. The configurations (b)
and (c) consider when the points have been reversed.

Implicit in the transition system is the (provable) invariant on states:

(¬l ∨ p)→ ¬s

This invariant was not used directly (apart from requiring that the initial
state fulfils it), but instead is translated into a dynamic constraint that re-
stricts the transitions. That is the following invariants on the transitions are
obtained from the above invariant (and its contraposition).

¬l → ¬s′ s→ l′

p→ ¬s′ s→ ¬p′

With this basic understanding of how mechanical interlocking systems
operate, it is now considered what different types of interlocks are possible,
and how they relate to invariants. The locking tables considered in this work
specify three different types of locking between the levers. The locking tables
define for each lever, (1) which levers are locked in the normal position when
it is pulled, and (2) which levers are required to be pulled before it can be
pulled. The final lock, (3) defines, which levers will lock another lever into
both the normal or reverse positions. Locking (3) is required to prevent a
lever changing position, for instance these locks are used to implement facing-
point locks. For a given pair of levers a and b the three locks are formalised
as follows

Locks Normal: When a is pulled it will lock b in the normal position. Con-
versely a will only be free to be pulled once b is in the normal position.
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(a)

¬p ¬l ¬s

(d)

¬p l ¬s

(e)

¬p l s

(b)

p ¬l ¬s

(c)

p l ¬s

p

¬p

l¬l

l

¬l

s¬s

Figure 11.12: Example interlocking transition system.

For example, in Figure 11.11, s locks p normal. This corresponds to
the following invariant on the states:

a→ ¬b
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and the following invariant on transitions:

a→ ¬b′ ∧ ¬b→ a′

Released by: a is free to be reversed after b has been reversed. Conversely
b is locked in the reverse position when a is reversed. For example,
in Figure 11.11, s is released by l. This corresponds to the following
invariant on the states:

a→ b

and the following invariant on transitions:

a→ b′ ∧ ¬b→ ¬a′

Both-ways: When a is reversed, it will lock b in the normal or reverse
position. b cannot change position while a is reversed. For example, in
Figure 11.11, l locks p both-ways. This does not restrict the state space,
it does however correspond to the following invariant on transitions:

((a ∧ b)→ b′) ∧ ((a ∧ ¬b)→ ¬b′)

The majority of the interlocking logic is realised by ‘locks normal’ and ‘re-
leased by’ locks. It is possible to define long sequences of these interlocks
that prevent complicated undesirable configurations. A detailed discussion
about what is possible with these locks can be found in Appendix B. The
both-way locks are typically used for the facing-point locks, as it is required
to interlock the points in either the normal or reverse position.

The locking table for the example interlocking in Figure 11.11 consists of
three entries, one for each lever. See Figure 11.13.

Lever Locks Normal Released By Both-Ways
p – – –
l – – p
s p l –

Figure 11.13: Example Locking Table

The translation of a locking table t into a ladder logic program is done
by a direct encoding of the dynamic constraints. As t has n entries (one
for each lever), the state space of the ladder program is given by n Boolean
variables (s1, s2, . . . , sn). When si is false, it means that lever i is normal,
and when true, it means that lever i is reversed. The initial state of the
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The naming of these locks is noteworthy; they are named from the per-
spective of the signalman. In fact, each entry is etched onto a metal
plate and attached to its respective lever. So when the signalman wants
to pull a lever, they know which levers need to be pulled or normalised
first. The signalman is responsible for keeping the interlocking tidy by
returning pulled levers when no longer required. This is the reason that
in Figure 11.13 it appears that p does not have any locks specified, but
they are implied by the locks on l and s.

Remark

Ladder logic is a language used to formalise decidable transition functions,
for this reason the translation of locking tables into ladder logic does not
make use of the state invariants. It only makes use of the transition
invariants. Note that the state invariant is a provable theorem and it is
considered at the end of the section.

Remark

ladder is defined by all the levers being in the normal position. Although it
is possible to define an interlocking where this configuration is not possible,
in general a design principle of the lever frames is that all levers should be
returned to the normal position when not in use. Thus for the interlocking
systems explored, this is a reasonable assumption about the initial state.

The input to the ladder program defines which lever is requested to be
moved. By move, it is meant negate its position. To simplify the ladder
logic, it is assumed that only one lever can move at a time. This essentially
means that the rungs are unordered. This assumption is valid as, if two
levers are moved simultaneously, either their logic is disjoint, in which case
they could have been moved sequentially. Or if the logic is not disjoint,
such as attempting to move l and s in state (d) of the transition system in
Figure 11.12, at most one of the levers will move, or if all things are equal,
neither lever will move as the dog will get wedged between them2. This is due
to the shape of the tappets; the notches are at either end, and not midway.
The tappets will only start to move if the logic allows them to, and if they
start to move then there is nothing to stop them completing the move.

Now consider if the lever is half-way, i.e. neither normal or reverse. Any

2Similar to what happens when two people attempt to get through a normal sized door
at the same time.
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safety critical decisions that depend on that lever being in the normal or re-
verse position will require that it is interlocked into that position. Therefore,
if the lever is half-way, any lever corresponding to the safety critical decision
wont be able to be moved. Thus, if it is safe before the partial move of the
lever, then it is safe after the partial move. As an example consider setting
a signal. It will require that their opposing counterparts are interlocked to
the danger aspects before it can be moved. If this is not the case, then the
interlocking would violate signalling principle 1 and could be shown to by a
counterexample of sequential moves of the levers.

This results in n possible inputs, although a compact representation of
this information is possible, it becomes cumbersome to use as it must be
encoded into Boolean variables. For this reason, a loose representation is
used that has n2 possible inputs, given by n variables, (i1, i2, . . . , in). Each
input variable ij indicates whether the lever j should be moved. To prevent
multiple levers being moved simultaneously, an input invariant is given that
allows at most one of the (i1, i2, . . . , in) variables to be true.

All that remains is to define the rungs of the ladder program. This re-
quires introducing two functions that produce Boolean formulæ correspond-
ing to the constraints in the table for a given lever. These functions determine
for a given lever, whether it is free to move to the normal or reverse positions,
respectively. The first function determines whether lever l is free to move
into the normal position, and has the signature

freetomovenormal
t ∶ (l ∶ Lever)→ BooleanFormula

where t is the locking table. The formula produced by this function holds iff
the conjunction of

1. All levers that l releases are in the normal position.

∀l′ . l′ ‘released by’ l → ¬l′

2. All levers that lock l both-ways are in the normal position.

∀l′ . l′ ‘both-ways’ l → ¬l′

holds. The implementation of this function requires recursion over the table,
and in the case of (1), all entries that mention l in the ‘released by’ field
should be normal. In the case of (2), all entries that mention l in the both-
ways lock should be normal.

The second function determines whether l is free to be moved into the
reverse position. It is a little more complicated than the first function as it
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has more cases to consider (due to the semantics of the ‘locks normal’ and
‘released by’ locks being from the signalman). It has the signature

freetomovereverse
t ∶ (l ∶ Lever)→ BooleanFormula

where t is the locking table. The formula produced by this function holds iff
the conjunction of

1. All levers that lock l in the normal position are normal.

∀l′ . l′ ‘locks normal’ l → ¬l′

2. All levers that lock l both-ways are in the normal position.

∀l′ . l′ ‘both-ways’ l → ¬l′

3. All levers that l locks in the normal position are normal.

∀l′ . l ‘locks normal’ l′ → ¬l′

4. All levers that release l are in the reverse position.

∀l′ . l ‘released by’ l′ → l′

holds. Similarly, in the case of (1) and (2) the implementation of this function
requires recursion over the locking table. In the case of conjunct (3), all levers
mentioned by the locks field for the l entry in t are normal, and in the case
of (4) all levers mentioned by the released by field for the l entry in t are
reversed.

Due to the input invariant, the definitions of the rungs are simplified.
Most notably, the execution order of the rungs becomes irrelevant as each
rung does not depend upon previous rungs. Thus, it suffices to show for a
given lever l and locking table t how the corresponding rung is defined.

sl ∶= [il ∧ ((¬sl ∧ (freetomovereverse
t l))

∨ (sl ∧ ¬(freetomovenormal
t l)))]

∨ (¬il ∧ sl)

Intuitively, this rung performs case analysis on il, the variable indicating
whether lever l should be moved. If it is false, then sl is assigned sl, i.e. does
not change value. If it is true, then a further case analysis on variable sl
is performed. If sl is false, then provided the constraints for it to move
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A decidable transition system is constructable out of this ladder logic
program; it is a fairly simple process as Agda will infer the relevant proofs.

Remark

reverse are fulfilled, it is assigned true. On the other hand if sl is true,
then (symmetrically to the reverse case) provided the constraints for it to be
moved into the normal position are fulfilled, it is assigned false.

This concludes the translation of a locking table into a ladder logic pro-
gram. Let gwiliLadder be the result of the translation.

Due to the inductive verification used by the framework, an issue of reach-
ability is raised, namely in the inductive step when one of the antecedent
states is not physically possible due to the interlocks. For instance, in Fig-
ure 11.12 it is physically impossible under normal conditions for p ∧ s to
hold. There are cases when these ill-formed states caused verification to fail,
for this reason it is proved that the states are well-formed. This is done by
defining a formula characterising well-formed states. Each entry (l,n⃗,r⃗,b⃗) in
the locking table is mapped to the formula

sl →⋀Ð→¬sn ∧⋀Ð→sr
The well-formed states are given by a conjunction of this formula for each
lever. The resulting formula is then proved to always hold, and this proof is
used later when proving the signalling principles.

The above formalisation of locking tables, and their translation into lad-
der logic programs is in module Ladder.LockingTable of Appendix F.

For GSR the proof of well-formedness is done using a SAT solver. How-
ever, it should be possible to prove, in general, that any translated locking
table has well-formed states. The definitions used for the Agda proof are
problematic, and the GSR interlocking was the only occasion that the proof
is required, so it was simpler to prove it directly using a SAT solver. It is
left as future work to prove the correctness of the translation.

GSR interlocking. The GSR interlocking system consisted of 19 inter-
locked levers (2 spare levers), and each is attached to (at most) three tappets,
one on each tier. When formalising the GSR interlocking, a hand translation
from the engineering diagrams (similar to Figure 11.11) into a locking table
was performed. There was one diagram for each tier. This resulted in the
locking table in Figure 11.14. The table was then translated in Agda into a
ladder logic program as previously described. See module Gwili.Ladder in
Appendix F.
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Lever No Released By Locks Normal Both-Ways
1 (-) – – –
2 (S) 12 3, 4, 5, 7, 8, 13, 16, 19, 20 –
3 (S) 12 2, 4, 5, 7, 8, 13, 16, 19, 20 –
4 (S) 12 2, 5, 7, 8, 13, 14, 16, 19, 20 –
5 (S) – 2, 3, 4, 6, 11, 13, 14, 19, 20 –
6 (S) 12, 13 5, 7, 8, 16, 17, 18 –
7 (S) 14, 15 2, 3, 4, 6, 8, 11, 13, 17, 18 –
8 (-) – 10, 14, 18, 20, 21 –
9 (-) – – –
10 (-) – 8, 11 –
11 (-) – 5, 7, 8, 10, 21 –
12 (L) – – 13
13 (P) – 2, 3, 4, 6, 19, 20 –
14 (P) – 4, 5, 20 –
15 (L) – – 14
16 (S) – 2, 3, 4, 6, 13 –
17 (S) 13 6, 7, 14 –
18 (S) 14, 15 6, 7, 8, 13, 19 –
19 (S) – 2, 3, 4, 13, 14, 18 –
20 (S) 15 2, 3, 4, 8, 13, 14 –
21 (-) – 8, 11 –

Figure 11.14: Bronwydd Arms locking table. Semantics of the levers are
in the brackets, S is a signal, L is a facing-point lock and P are points,
see Figure 11.7 for more information. The levers with a dash (-) were not
connected to any hardware, but contribute to the interlocks and are reserved
for future used.

11.1.3 State

Constructing the architectural states from the ladder states is a fairly simple
process with the GSR interlocking. This is because all components of the
architectural state (except the train’s position) have a corresponding state
variable/controlling lever. Therefore, these functions are defined by project-
ing the correct variable out of the ladder state (list of Boolean), which in
the case of GSR relates to the lever number. For instance determining the
aspect of signal 17, requires examining the 17th state variable, when false the
signal is displaying the danger aspect, and when true the signal is displaying
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the proceed aspect. This gives rise to the projection

archSignalState ∶ StategwiliLadder → Signal→ Aspect
archSignalState s r = { false↦ Danger ; true↦ Proceed } s[r]

where it is known that s has a of length 21, and r ≤ 20.
In the case of segment locks, things are a little more interesting. The

architectural state allows each segment to be locked/unlocked, but the inter-
locking only has two facing-point locks controlled by levers 12 and 15. Lever
12 locks set of points 13, which is track segment 2, and lever 15 locks set of
points 14, which spans track segments 4 and 7. All segments not mentioned
are linear, and are assumed to be permanently locked in the normal position
(as they cannot move). Recall that locked refers to inhibition of physical
movement. This gives rise to the following function:

archLockState ∶ StategwiliLadder → Fin 9→ Locking
archLockState s 2 = { false↦ Unlocked ; true↦ Locked } s[12]
archLockState s 4 = { false↦ Unlocked ; true↦ Locked } s[15]
archLockState s 7 = { false↦ Unlocked ; true↦ Locked } s[15]
archLockState s = Locked

For all the technical details of constructing the state, see the module
Gwili.State in Appendix F.

Train Simulator. The last component of the architectural state is the
train position, i.e. a function relating trains to routes. This is achieved by
defining a train simulator as described in Section 9.3.1.

The train simulator is built around a function that will select an available
route for a train, which in effect will look-up for a given route, the connected
routes, then select one of these routes that has a proceed aspect. If there
is no available route, then the train will not proceed into a new route. For
each train, an input stream is assumed. This input stream indicates whether
the train wishes to move forward into a route, or to be stationary. First, the
inputs for the trains are defined as follows:

data TrainInput ∶ Set where
Stationary ∶ TrainInput
Move ∶ Route→ TrainInput

Assume a stream of inputs

inp ∶ N→ InputgwiliLadder
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for the interlocking, and stream of inputs

tinp ∶ TraingwiliLayout → N→ TrainInput

for the trains, then the following function elaborates on the details of simu-
lating the train position.

trainRoute ∶ N→ TraingwiliLayout → Route
trainRoute 0 tr = initialroute tr
trainRoute (suc t) tr =

if (tinp tr t ≡ Move rt)
∧ (rt isin (gwiliRouteConnections (trainRoute t tr)))
∧ (archSignalState(nthState inp t) rt ≡ Proceed)

then rt
else trainRoute t tr

11.2 Verification

Two types of verification were performed on Gwili’s interlocking. One ver-
ification checked the operational correctness of the interlocking, i.e. the in-
terlocking correctly refines the control table. The other verification checked
that the interlocking fulfilled the signalling principles, and in turn the safety
requirements.

11.2.1 Control Table

Verifying that the interlocking correctly refined the control table was ach-
ieved by mapping each entry of the control table to a formula representing
correctness of the entry. Then using a SAT solver it was inductively proved
that these formulæ always hold.

As previously noted the mechanical interlocking does not have track cir-
cuit inputs, so it cannot be formulated that a route with an occupied segment
does not have a proceed aspect. Instead the correctness is formulated as if
a signal/route displays a proceed aspect, then all set of points in that route
are in the correct position and the facing sets of points are also locked . To
formulate this condition, first, the following functions are defined that map
states of the hardware to propositional formulæ representing these states.

rtSet ∶ Signal→ BooleanFormula
rtSet n = var n
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The following three functions relate to properties that only sets of points
have, i.e. normal, reverse and locked. As there are only three segments
(2,4,7) that relate to sets of points, the following case-distinctions are valid.

segNormal ∶ Fin 9→ BooleanFormula
segNormal 2 = ¬(var 13)
segNormal 4 = ¬(var 14)
segNormal 7 = ¬(var 14)
segNormal = true

segReverse ∶ Fin 9→ BooleanFormula
segReverse ts = ¬ (segNormal ts)

segLocked ∶ Fin 9→ BooleanFormula
segLocked 2 = var 12
segLocked 4 = var 15
segLocked 7 = var 15
segLocked = true

Sets of points are only considered unsafe when traversed in the facing
(diverging) direction, and they are unlocked. It could be the case that
the set of points changes its physical position, then part of the train will
attempt to diverge from the rest of the train resulting in a very significant
risk of derailment. When traversed in the other direction (converging), it
is not essential with respect to safety that the set of points is locked, or
even in the correct position as the weight of the train will force the points
into the correct position. For more information see Section 8.3.

Remark

Thus a function mapping Gwili’s control table entries into a Boolean
formula is given as follows:

CorrectEntry ∶ ControlTableEntrygwiliLayout → BooleanFormula
CorrectEntry e =

rtSet s⇒
⎛
⎜
⎝

foldr (λ s x→ segNormal s ∧ x) true normalpointse
∧ foldr (λ s x→ segReverse s ∧ x) true reversepointse
∧ foldr (λ s x→ segLocked s ∧ x) true facinge

⎞
⎟
⎠

Let ψr = CorrectEntry r, and ψ = ψ2 ∧ ψ3 ∧ ⋅ ⋅ ⋅ ∧ ψ20. ψ expresses that
all entries in the control table are correctly refined by the interlocking. The
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proof of correctness is given by applying the function inductiveProof (see
page 223) to gwiliLadder and to ψ.

ControlTableCorrect ∶ LadderCorrect gwiliLadder ψ
ControlTableCorrect = inductiveProof gwiliLadder ψ

Type-checking the above function takes ≈ 28 seconds. This includes comput-
ing the ladder, ψ, the base and inductive formula, and executing the SAT
solver. As usual, the SAT solver (Z3 [dMB08]) could solve the problem in
a fraction (< 0.1) of a second. See module Gwili.ControlTableCorrect in
Appendix F for full details.

11.2.2 Safety

The second verification relates to proving that the interlocking is safe, with
respect to the requirements in Chapter 8. Recall from Theorem 8.4.1 and
Theorem 8.4.2 that to prove the interlocking system is safe, requires that the
interlocking fulfils the signalling principles 1, 2, 3 and 4 (cf. page 177).

First the signalling principles 2 and 4 are considered. Both of these prin-
ciples formalise the requirement of the interlocking not to perform actions
(clearing a signal or unlocking a set of points) to a route which is occupied.
As previously remarked, the interlocking system is not equipped with train
detection inputs, and the route a train is currently in, is simulated; therefore,
the interlocking is unable to enforce these principles. It is the responsibility
of the signalman to enforce these signalling principles by eye. The signal-
man should look out of the window in the signal box and decide whether
it is safe to set a signal to proceed (or unlock a set of points)—if there is
a train occupying the route that the signal protects, then the signalman
should not clear the signal. Although perhaps obvious, this issue highlights
a substantial safety related weakness with mechanical interlocking systems.
Mechanical interlocking systems provide a reliable means of preventing un-
safe combinations of signals and points, particularly when setting a route
to a proceed aspect. However, they are unable to enforce constraints that
relate to the train position, or more generally, to occupied routes. This is
because the guarding signal of an occupied route should be set to danger to
prevent subsequent trains entering the route, thus releasing the interlocks.
For this reason, the signalling principles 2 and 4 are assumed to hold, i.e. it
is assumed that the signalman operates correctly. See Appendix B for more
information about the limitations of these systems.

In the case of signalling principle 1, which formalises that opposing signals
should be exclusive. The proof proceeds in Agda by performing case-distinc-
tions on the routes to identify all distinct pairs of routes that share a common
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It should be noted that, for modern interlocking systems, the signal as-
pects and route selection mechanisms are distinct. This, when coupled
with track circuit inputs, allows for a greater degree of expressiveness with
respect to the constraints the interlocking can enforce. There, the issue
of assuming that the signalling principles 2 and 4 hold vanishes.

Remark

track segment. Then for these cases, the proof follows by applying a SAT
solver. For example without loss of generality, consider the pair of routes 4
and 19, that share a common track segment, namely segment 2. The proof
obligation becomes

∀t inp .
archSignalState(nthState inp t) 4 ≡ Danger ∨

archSignalState(nthState inp t) 19 ≡ Danger

after unfolding archSignalState, it becomes

∀t inp .
{false↦ Danger; true↦ Proceed} (nthState inp t)[4] ≡ Danger ∨

{false↦ Danger; true↦ Proceed} (nthState inp t)[19] ≡ Danger

Therefore, it suffices to show that

∀t inp . J ¬(var 4) ∨ ¬(var 19) K(nthState inp t) (∗)

holds. Note that (∗) is almost at a low enough level to follow directly by the
SAT solver. However, (∗) is of the form for all time . . . and the SAT solver
yields proof-objects of the form for all environments . . . , so in the following,
it is demonstrated in a bottom-up manner how to translate the SAT solver
proof-object into a proof of (∗). The application of the SAT solver yields the
following:

opp-4-19 ∶ LadderCorrect gwiliLadder (¬(var 4) ∨ ¬(var 19))
opp-4-19 = inductiveProof gwiliLadder (¬(var 4) ∨ ¬(var 19))

By the decidability of the ladder logic program, it is possible to translate the
general proof that (¬(var 4)∨¬(var 19)) always holds, into a proof that for
any sequence of input values it also holds. Thus an element of the following
type is obtained:

∀t inp . J ¬(var 4) ∨ ¬(var 19) K(nthState inp t++ inp t++nthState inp (t+1))
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The environment consists of two states and an input; this is because the
induction used by LadderCorrect is defined over transitions (pairs of states,
and an input) of the ladder. To prove (∗), the environment need to be trun-
cated. Note that the state consists of 21 variables, and all variables indicies
in the formula are less than 21. Therefore, the environment is truncated by
Lemma 9.3.14, and a proof of (∗) is obtained.

The proofs in the remaining 41 cases of the opposing routes signalling
principle are trivially adapted from this proof. It is noted that for efficiency
reasons all 42 cases are proved by the SAT solver at the same time (con-
junction of all 42 cases), then split afterwards; this removes the considerable
overhead that each application of inductiveProof entails, i.e. generating the
ladder, proof obligations and inferring well-formedness proofs of the ladder.

A number of these 42 cases required that the state space was well-formed
(cf. end of Section 11.1.2). This was achieved by showing that a proof
of these 42 cases followed from a proof that the states are well-formed.
Then, a proof of the well-formedness was applied to obtain a proof of all
42 cases. As described above, the proof is split.

Remark

For full details about the proof of signalling principle 1, see the mod-
ules Gwili.Ladder.OpposingRoutes and Gwili.OpposingSignals in Ap-
pendix F.

The proof of signalling principle 3, which formalises that when a route is
set to proceed all track segments in that route are locked, is similar. It pro-
ceeds by performing case-distinction on the route, and then checks for each
route that contains a facing set of points that if the signal/route displays a
proceed aspect, then that facing set of points is locked. In fact, this principle
could be reduced from the operational correctness proof of the last section;
however, it is directly performed again here so that the proof is tractable and
the safety/operational correctness proofs are independent. There are 6 cases
to consider, one for each of the following routes C2, 4, 6, 7, 18 and 20; the
first three routes traverse segment 2/points 13 in the facing direction and
require that FPL 12 is engaged, and the penultimate 2 routes traverse seg-
ment 4/points 14 in the facing direction and require that FPL 15 is engaged.
Finally, route 7 traverses segment 7/points 14 in the facing direction, and
also requires that FPL 15 is engaged. Without loss of generality consider the
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case of route 6, the proof obligation becomes

∀t inp .
archSignalState(nthState inp t) 6 ≡ Proceed
→ archLockState(nthState inp (t+1)) 2 ≡ Locked

After unfolding the definitions of archSignalState and archLockState, the
following obligation is obtained.

∀t inp .
{false↦ Danger; true↦ Proceed} (nthState inp t)[6] ≡ Proceed
→ {false↦ Unlocked; true↦ Locked} (nthState inp (t + 1))[12] ≡ Locked

Which follows from a proof of

∀t inp . J var 6⇒ var 55 K(nthState inp t++ inp t++nthState inp (t+1))

where var 55 refers to the state of FPL 12 in the successor state. That is
55 = 21 + 22 + 12, where the number of state variables is 21 and number of
input variables is 22. A proof of the above is obtained from

inductiveProof gwiliLadder (var 6⇒ var 55)

and the decidability of the ladder.
For full details about the proof of signalling principle 3, see modules

Gwili.Ladder.Facing and Gwili.FacingPointLock in Appendix F.
Thus, two of the signalling principles are proved to hold, and two of them

are assumed3 because in the context of mechanical interlocking systems they
refer to the signalman’s behaviour. To show that GSR is always safe requires
one final consideration: proving that the initial configuration fulfils the two
safety requirements. In this verification, it is only considered that there are
two trains, initially the trains are located in routes 3 and 16. Recall that the
initial state of the interlocking is defined by all levers being in the normal
position, most importantly the signals are all set to danger.

The initial proof obligation for Theorem 8.4.1 (S1 ) is defined with respect
to GSR for time 0 as follows

∀train segment . FacingInRoutegwiliLayout segment (trainRoute 0 train)
→ archSegmentLock(λ →false) segment ≡ Locked

where, depending on the train

trainRoute 0 train = 3 ∨ trainRoute 0 train = 16
3They are passed as parameters to the proof of safety so that it is clear they are

assumed.
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In both cases, the routes do not contain any sets of points so the proof follows
trivially.

The proof obligation that GSR is initially safe with respect to Theo-
rem 8.4.2 (S2 ) is formulated as follows:

∀train1 train2 segment . train1 ≢ train2 →
¬(SegInRoutegwiliLayout segment (trainRoute0 train1) ∧

SegInRoutegwiliLayout segment (trainRoute0 train2))

This trivially holds as routes 3 and 16 do not share any common track seg-
ments.

Thus, GSR is initially safe. This concludes the verification. It has been
shown (provided the signalman operates correctly) that it is not possible for
trains to collide on GSR, nor can they make facing moves over unlocked sets
of points. For the final proof, see module Gwili.Safe in Appendix F.

It is possible to increase the number of trains, provided that the initial
constraints are not violated. For example, it is possible to add a train to
route 17 or to C5 without any problems. In these cases, there are issues of
liveliness that must be considered.

Remarks

Although the verification of GSR appears fairly painless, it was still time
consuming as it was the first concrete railway system that the safety of which
was fully verified. In total, about 10 weeks of my time were dedicated to
the verification of GSR. A lot of effort was required to understand the
semantics of the mechanical interlocking from the engineering diagrams and
construct a locking table from them. While attempting to verifying GSR,
the definitions in Chapter 8 relating to the models and safety had to be
modified, This was because of a small number of shortcomings in the early
formalisations of the layout and railway safety that were incompatible with
the actual topology or interlocking. For instance, one such shortcoming was
that signalling principle 4 was initially formulated as follows:

∀t train segment . SegInRoutel segment (trainRoutet train)
→ lockedt segment ≡ Locked
→ lockedt+1 segment ≡ Locked

This was not correct as it requires that the set of points is locked after the
train has left the route. It should be that it requires the set of points is
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locked before the train enters the route. It was correctly reformulated to:

∀t train segment . SegInRoutel segment (trainRoutet+1 train)
→ lockedt segment ≡ Locked
→ lockedt+1 segment ≡ Locked

This example of an incorrect signalling principle highlights the impor-
tance of requiring that the models are validated by experts. The almost
unnoticeable difference (by eye) between these two definitions was the dif-
ference between the signalling principle being provable or unprovable. It
could be worse: unknowingly proving the wrong statement.

Remark

During the verification, it became apparent that shunt signal 7 did not
require the set of points 14 to be locked (by FPL 15) before being cleared;
however, it does require set of points 14 to be in the reverse position. This
meant that a proof of signalling principle 3 was not possible. To repair this,
the constraint that lever 7 is released by lever 15 was appended to the locking
table to allow the proof to succeed. Moreover, it is further emphasised that
this does not mean that GSR is considered unsafe; this is due to the fact
that passenger trains are not (legally) allowed to respond to a shunt signal
clearing, and thus passenger services are unable to travel onto the “LOOP”
line, see Figure 11.7, hence they can never make a facing move over an
unlocked set of points. It could be argued that non-passenger trains could
make such moves, but they would be classed as shunting moves, something
that is considered to be a manual operation.

This issue arose because the model of topology presented in Chapter 8
does not consider different types of signals. That is all signals are treated as
main signals. Had shunt signals been differentiated from main signals, allow-
ing for a different formalisation of the signalling principles, then the locking
table would fulfil signalling principle 3 without being modified. Similarly, set
of points 14 (segment 7) could have been omitted from the ‘facing’ field on
the control table for route 7.

The type-checking of the GSR scenario, including the verification required
8:10 minutes; this includes executing the SAT solver 16 times, which as
always completed in a fraction of a second.
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Future Work

There is one final, yet significant remark to be made. For the purposes of this
case study, only the locking table and the topology were formalised. This
meant that there were safety features outside the scope of the verification that
should be remarked on. One such feature was the use of track circuits over
the sets of points (represented by 12T/15T in Figure 11.6, also the indicator
dials at the base of the image). These track circuits used supplementary
electromechanical locks to prevent the associated FPL levers being moved
while the set of points is occupied. If these supplementary locks and track
circuits had been formalised, it is presumed that signalling principle 4 would
have also been provable. Nonetheless, signalling principle 2 would still have
had to be assumed.

Another safety related device not considered was the use of a token sys-
tem. Trains travelling into route 16 (out of sight from the signal box) were
given a token to prevent multiple trains being allowed to enter route 16.
Formalising this system would be necessary to prove signalling principle 2,
but not sufficient as it is still the case that some routes are checked to be
un/occupied by the signalman, e.g. route 3.

Perhaps a better solution is to formalise the signalman as a liveware
component of the system. This would require adding an input that represents
detection of the trains position, and relating it to constraints on setting the
signals. From this, a proof of the two remaining signalling principles would
be derivable. Formalising the signalman would further reduce the validation
requirements, it would also make precise the job of the signalman. I.e. the
signalman would be informed of precisely what is required of them.

11.3 Simulation

The final part of this case study was to compile and execute the GSR inter-
locking system. This was achieved in a similar method to the Pelicon crossing
simulation described in Section 10.6. Note that the simulation is executing
verified code, i.e. it is an example of the proofs-as-programs paradigm.

A recursive non-terminating terminal application was created that would
take input for each iteration the number of a lever (1..21), which has been
requested to be moved. The input is defined in such a way as it must fulfil
the input invariant of the ladder, that is it requires only one lever is moved
at a time. Then one iteration of the ladder program is executed, and the
programs state is printed to the terminal in a meaningful way. That is,
instead of printing true/false for each variable, sets of points are displayed
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as normal/reverse, facing-point locks are displayed as locked/unlocked and
signals are displayed as proceed/danger. See module Gwili.GwiliSimulator
in Appendix F for the implementation of the simulator.

Simulating the interlocking using this method provided an insight that
intuitively demonstrated the interlocking was correct and functional (i.e. val-
idation). The amount of work to simulate the interlocking is minimal as all
required definitions were already available (notably decidable transition sys-
tems), and compiling programs is fully supported by Agda.

Below is a transcript of the simulation. In the simulation, first lever 6 is
requested to move reverse, which is not possible because it requires that the
set of points 13 is locked in the reverse position. Once that constraint has
been fulfilled lever 6 is then requested to be moved to the reverse position
again, which is successful this time. Then FPL 15 is engaged, and signal 20
is requested to be cleared. This is not possible as it requires the set of points
13 to be in the normal position. Therefore, signal 6 is normalised, FPL 12
is unlocked and set of points 13 is normalised. Finally, signal 20 is cleared.
The simulation corresponds to the following input sequence:

6,13,12,6,15,20,6,12,13,20

The emboldened requests are disallowed by the interlocking. The following
is a transcript of the simulation:

Gwili Rail simulator

entering main loop...

initial state:

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Unlocked / Normal

fpl 15 / point 14:

Unlocked / Normal

enter leaver to move [1..21]

6

## Request failed ##

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Unlocked / Normal

fpl 15 / point 14:

Unlocked / Normal

enter leaver to move [1..21]
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13

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Unlocked / Reverse

fpl 15 / point 14:

Unlocked / Normal

enter leaver to move [1..21]

12

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Locked / Reverse

fpl 15 / point 14:

Unlocked / Normal

enter leaver to move [1..21]

6

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Clear | 20: Danger

7: Danger

fpl 12 / point 13:

Locked / Reverse

fpl 15 / point 14:

Unlocked / Normal

enter leaver to move [1..21]

15

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Clear | 20: Danger

7: Danger

fpl 12 / point 13:

Locked / Reverse

fpl 15 / point 14:

Locked / Normal

enter leaver to move [1..21]

20

## Request failed ##

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Clear | 20: Danger

7: Danger

fpl 12 / point 13:

Locked / Reverse

fpl 15 / point 14:

Locked / Normal

enter leaver to move [1..21]
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6

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Locked / Reverse

fpl 15 / point 14:

Locked / Normal

enter leaver to move [1..21]

12

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Unlocked / Reverse

fpl 15 / point 14:

Locked / Normal

enter leaver to move [1..21]

13

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Danger

7: Danger

fpl 12 / point 13:

Unlocked / Normal

fpl 15 / point 14:

Locked / Normal

enter leaver to move [1..21]

20

Signals:

2: Danger | 16: Danger

3: Danger | 17: Danger

4: Danger | 18: Danger

5: Danger | 19: Danger

6: Danger | 20: Clear

7: Danger

fpl 12 / point 13:

Unlocked / Normal

fpl 15 / point 14:

Locked / Normal

END SIMULATION



Chapter12
Railways – Summary

Throughout this part, verification in the railway domain has been explored.
This has entailed formalising the physical layouts and control tables at a
low enough level that they can be easily validated by domain experts. Then
deriving abstract models of the topology and the state of the components
in the topology (e.g. signals). Abstract notions of signalling principles and
safety requirements were then formalised for these abstract models. The for-
malisation of the safety requirements was then shown to follow by a selection
of 4 signalling principles.

Proving for a given interlocking system that it fulfils this safety require-
ment required that the interlocking system fulfilled the signalling principles.
This was achieved by modelling the interlocking systems, and formalising
correctness for these systems. The interlocking systems considered in this
thesis were implemented using ladder logic programs; hence ladder logic was
formalised. Proof that a ladder logic program fulfilled the signalling princi-
ples was performed by induction and SAT solving. The interface to the SAT
solver was by the (Oracle + Reflection) approach developed in Part I of this
thesis.

The framework that was built-up in this part has been used for two case
studies. The first was the Gwili Steam Railway interlocking system, and the
second was a London Underground station. Both of these verifications were
successful with respect to being feasible to perform from within Agda.

The issue of operational correctness was also explored; that is determin-
ing whether an interlocking system correctly refines a control table. This
was a fairly simple process, provided the semantics of the control table is for-
malised. However, a generic framework for the operational correctness was
not established due to its dependence on the underlying technology and sig-
nalling schemes. Instead, the two interlocking systems mentioned previously
were shown to correctly refine their control tables.

281
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12.1 Comparison

In Chapter 2, with respect to verifying high-level safety requirements of inter-
locking systems, four papers were discussed [Han98, HP00, Win02, SBRG12].
It is now considered how this thesis differs from these attempts.

These papers were selected as they discuss the following high-level safety
requirements:

• Trains do not collide, and

• Trains do not detail.

Each of these papers is now compared in detail.
The first paper [Han98], Hansen does not perform verification but in-

stead validates station topologies by simulation using the VDM. That is by
an executable specification of railway topology. Hansen formalises the rail-
way topology in a similar way to this thesis, i.e. track segments as a directed
graph, and the edges are annotated by 2-aspect signals. However, provi-
sions are made for the special track segments: sets of points and cross-overs.
Specifically sets of points have their normal and reverse positions explicitly
specified, and cross-overs are specified to simplify the models. The explicit
formalisation of sets of points means that a set of points cannot be placed as
a terminal segment on a line, because it must be connected to three other seg-
ments. The state space of the topology is given by the Cartesian product of
the state spaces of the underlying components. That is, signals display stop
or proceed, points are normal or reverse, and track segments know which
trains are occupying them. A number of well-formedness constraints are
given on the topology that ensures a train only occupies contiguous sections
of track, and that the points are in a compatible position when occupied by
a train. Furthermore, areas are defined. Areas are sets of contiguous track
segments that are delimited by signals, an area can be thought of as a bidi-
rectional route. These are computed to be maximal. Hansen provides the
safety requirement for trains not colliding, which is given as the following
VDM formula

∀train1 train2 . train1 ≠ train2 → area(train1) ∩ area(train2) = ∅

and proved it follow by the specification. The paper does not provide a for-
malisation of the other safety requirement; however, it claims that the work
was undertaken. A number of Danish station topologies were then formalised
and simulated. During the simulation, it was discovered by domain experts
that the notion of an area was incorrect. This is because manual shunting
moves required a dynamic area. This means the train driver could control



12. Railways – Summary 283

a set of points without first asking for the interlocking systems permission,
resulting in a new area. However, this is only allowed to be done while shunt-
ing trains, and hence more information was added to the specification that
identified whether the train was timetabled or shunting, and whether a set
of points was being controlled by the interlocking or the driver. The result
of the simulations was that a number of errors in the topologies of existing
stations were identified.

In this thesis, the models are at a higher-level of abstraction than Hansen’s
models. The motivation for not fixing the underlying choice of track segments
is to focus on the core problem without too many technical details. This is
apparent when looking at Hansen’s well-formdness conditions that specifi-
cally make use of the normal and reverse positions of a set of points. This
fixing of track segments requires that every new (even yet to be defined) type
of segment would manually require adding to the models. Whereas in our
approach it is possible to model a turntable without changing the specifica-
tion. It is also noted that Hansen’s work differs by not attempting to verify
any concrete interlocking system.

Haxthausen and Peleska’s paper [HP00] makes use of the RAISE specifi-
cation language. In the paper, they define an abstract model of a (German)
distributed railway control system, then make 5 refinements to this model
to obtain a specification that has an explicit state space. For which it is
possible to formalise a concrete control system, and show that it fulfils the
required properties. Notably the signalling scheme used in this paper does
not have any explicit signals; instead, there are a number of control systems
situated along the railway which are communicated with via radio link when
the train is within a few meters proximity. The topology model consists of
trains, track segments and sets of points. The state of each component is
given, notably the state of a set of points is a pair of two adjacent track
segments that are currently connected, and the state of a train is its position
and direction. The position of a train is either the track segments that it is
occupying, or an error position. The error position identifies when a train
has run off the end of a line or when it traverses a set of points that are in the
wrong position. The models are event based, and formalise two events: train
moving, and switching a set of points. These events are then axiomatised.
Most importantly are the axioms that detail how a train correctly moves,
i.e. between two connected segments, such that the states of the segments
are compatible. The high-level safety is formulated as the following RAISE
formulæ:

∀train1 train2 . train1 ≠ train2 → position(train1) ∩ position(train2) = ∅
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and

∀train . position(train) ≠ error

These requirements are proved (by hand) to follow by the specification. The
specification is then refined, and each refinement is verified. Furthermore, the
architecture of the control systems are formalised, to allow for the verification
of an actual control system.

Its clear that the models used by Haxthausen and Peleska are substan-
tially different that those used in this thesis. For example, they do not
formalise signals, to compensate the track segments are required to contain
more information about the direction of allowed travel, and trains have an
error position. Moreover, the refinement based approach is not used in this
thesis.

The paper [Win02] by Winter is based on the process calculus CSP. In
this paper Winter defines the most general, safe railway network. In the spirit
of process calculus, each component is modelled as a process, e.g. trains, sets
of points, signals and routes. Further processes are defined that formalise the
correct behaviour of trains, signals and sets of points. For example, correct
trains are modelled by a process that ensures that trains only move between
connected segments in the forward direction, among other constraints. No-
tably, Winter models the front and rear of the trains separately so it is easier
to determine which direction the train is moving.

The safety of the system is formulated by defining two processes, one
process for no collision and one for no derailment. The definitions are not
repeated here. The safety requirements are not proved to follow from the
specification, instead the safety requirements form part of the specification
of a rail network, i.e. it is assumed that the safety requirements are correctly
formulated. What is done is to outline the methodology of checking whether
a concrete control system refines the specification, using the model-checker
FDR. Winter suggests that the approach is well-suited to determining the
correctness of the design of an interlocking system.

The final paper [SBRG12] is by Sabatier. He performs the same type of
high-level verification as done in this thesis, however, no specific control sys-
tems are considered. In the paper, steps towards a full, formal proof of a New
York City subway line are presented. The high-level safety requirements that
were verified are that trains do not collide, derail or break the speed limit.
No formalisation of these requirements, or of the models was contained in
the paper. The underlying logic is Event-B, and the automation is provided
by the Atelier-B prover. However, no explicit reference is made to signalling
principles, but instead they are generalised as assumptions from the target
domain, and how to determine if they are good/bad assumptions. A large
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portion of the paper is dedicated to the importance of relating the domain
specifications into formal specifications, and most importantly whether as-
sumptions made are valid. It is suggested that an assumption should be easy
to validate, and determine whether it holds, or not. The paper also describes
the author’s experiences while proving the safety requirements. Specifically
during a proof it becomes clear when (and why) an assumption is needed, if
it is needed at all. This is what has been described in this thesis as verifying
domain knowledge.

Generally, compared to this thesis Sabatier’s work is similar in that the
issues of assumptions from the railway domain and abstract proofs are carried
out. However, the paper is only 4 pages, and reports about an on-going
project, so it is not clear what exactly was accomplished.

12.1.1 Remarks

These papers are all similar. They create an abstract model of the railway,
then directly verify (interactively or automatically) that this model is safe
with respect to trains colliding and derailing. Haxthausen and Peleska go
further by refining the specification to an implementation.

In contrast, this thesis introduces intermediate lemmata (signalling prin-
ciples) that are obtained from the railway domain. These intermediate lem-
mata are already heuristics used in industry by the designers and developers
of these systems. Then these intermediate lemmata are proved to be suffi-
cient to guarantee the safety. In doing so, there is a possibility of detecting
missing, redundant, or conflicting signalling principles, which would have a
benefit for the whole railway network, possibly the whole industry.

Then for a concrete, hand-crafted control system, safety is shown by
proving that it fulfils these intermediate lemmata. Hence the framework
explained in this thesis will also verify domain knowledge, as well as concrete
control systems. This has the added advantage that the approach builds
upon domain knowledge that has taken over 150 years to accumulate, which
should also be intuitive for engineers to validate.

12.2 Future Work

The abstract verification methodology built-up during this thesis is ideal
to explore safe weakenings of signalling principles. This would be of inter-
est to determining whether a selection of signalling principles optimised for
throughput is safe. However, explorations of this type were not undertaken
as part of this thesis and have been left as future work.
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It would be desirable to extend the framework to allow liveware compo-
nents to be formalised. In both the verifications performed, it was identified
that a complete proof could not be obtained due to the human component.
In the case of GSR, two of the signalling principles were assumed as the in-
terlocking system was not technologically advanced enough to fulfil them; it
could not take train detections inputs. This implies that it is assumed that
the signalman never violated these two signalling principles. In the case of
the underground station, it was assumed that the interlocking system was not
in maintenance mode for one of the signalling principles to be fulfilled. The
maintenance mode is activated by a human, and they only do so in response
to specific events, e.g. hardware failure. Formalising the liveware would fur-
ther reduce the amount of validation required. It would also increase safety
as it is clear what the requirements on liveware are, i.e. formalise the job
descriptions.

An idea that was not explored in-depth during this thesis was to perform
safety verification directly upon the control tables. This has been studied by
other researches [TRN02, RN03]. In principle, the direct verification would
simplify the process by only having to verify that the interlocking system
correctly refines the control table, and not that it fulfils the signalling princi-
ples. Some of the signalling principles discussed during this thesis follow by
the semantics of a control table, for instance, the opposing signals principle.

The formalisations built-up in this part, i.e. topologies, control tables,
signalling principles and safety requirements have not been validated by do-
main experts. This was done in-order to focus on the issue of identifying
the framework without getting overwhelmed by the technical details that
inevitably occur, from our experience, when the models are validated. For
example, only one type of signal is considered in the models, but, in prac-
tice, there are many different types. Furthermore, there are exceptions to the
rules such as in maintenance or emergency situations. It would be intriguing
to attempt to validate these models to obtain a more accurate model. One
important improvement that would be desirable would be to formalise the
notion of a partial route release. These partial route releases are required to
formalise when it is safe for a train to reverse direction, e.g. at a station or
at the end of a line.

The methodology of building a framework for verifying systems in a spe-
cific domain is of interest. As future work, the framework should be adapted
to other domains in-order to aid the development of verified critical sys-
tems. This issue has only been hinted at with the introduction of the Pelicon
crossing example, but it should be possible for more complicated situations,
such as the automotive domain or nuclear power-plants. In situations where
there is a significant amount of arithmetic reasoning it would be desirable
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to integrate Agda with an SMT solver instead of a SAT solver. However,
particular attention would need to be payed to the integration as SMT has
an undecidable fragment.

12.2.1 Institution Conjecture

During the work documented in this thesis, it was realised that train control
systems could be described by an institution. An institution, as it occurs
in [GB84], is defined as:

• Category Sign of Signatures

• Functor sen ∶ Sign→ Set mapping a signature onto a set of sentences.

• Functor Mod ∶ Signop → Cat mapping a signature onto a category of
models.

• For a signature Σ, satisfaction relation ⊧Σ ∶ Mod(Σ)→ sen(Σ)→ Set

However, this idea was never explored in depth and is left as future work.
It is conjectured that an institution can be defined, where the signatures
are physical layouts (plus a chosen logic signature), the sentences are control
tables (moreover a sentence is a formula built using the chosen logic), the
models are ladder logic programs, and the satisfaction relation is derived
from the correctness proof. That is,

Signatures are given by sets of signals, track segments, points, routes,
function symbols and relations. E.g. connected ⊆ track 2, isBefore ⊆ signal ×
track , isProceed ∶ time × route → Bool, Occupied ∶ time × track → Bool and an
equality: ≡.

Sentences are control tables built by formulæ over the signature. E.g. a
portion of a control table could be as follows:

∀t ∈ time . isProceed t rt1 → ¬Occupied t ts1

The category of models are given by ladder logic programs, and the sat-
isfaction relation means that the ladder logic program correctly implements
the control table.

Such a framework would allow theorems from one layout to be trans-
lated into another layout, and more generally translate theorems between
the railway domain and another logic (possibly first-order). See Figure 12.1.
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Control table Control table

⊧ ⊧

Signature

Sentence

Model

Figure 12.1: Railyard Institution. The maps show how the signatures, sen-
tences and models are translated between rail yards. The equivalence shows
how theorems are translated between rail yards using the satisfaction rela-
tion.
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AppendixA
Railway Terminology

In this appendix a selection of railway terminology relevant to this thesis is
explained, together with page numbers to where they are introduced.

ATO Acronym for Automatic Train Operation.

ATP Acronym for Automatic Train Protection.

automatic train operation A system that will automatically (without in-
put from the driver), drive the train. This is usually referred to as
ATO. 34

automatic train protection A system that is responsible for protecting
the train, typically by preventing the train from exceeding the maxi-
mum authorised speed (possibly 0). This is usually referred to as ATP.
34

berth segment The segment directly preceeding the main signal of a route,
it is where trains wait while the signal displays a danger aspect. 171

block Block signalling is when a railway line is devided up into a number of
blocks, such that only one train is allowed to enter each block. 187

call-on A Special type of shunting signal that allows for trains to be signalled
into occupied routes. Used when coupling two trains. 162

caution A signal aspect. Indicates that the line ahead (of the signal) is safe
to traverse at a reduced speed. This could be the case to warn the train
that the succeeding signal along the line is at danger. 164

clear Synonymous with proceed. 178
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danger A signal aspect. Indicates that the line ahead (of the signal) would
be dangerous to enter. E.g. it is occupied by another train or the sets
of points are not in the correct positions. 164

distant signal A signal that gives advanced warning of a main signal, this
is because trains require sufficient warning if they must reduce their
speed. 163

dog See tappet. 261

facing To describe the direction of travel from the perspective of the train
driver, two terms are used: facing and trailing. These terms are typi-
cally used to refer to signals and sets of points. A facing signal is the
direction when a train must obey it, and a facing move over a set of
points is when the train is on the main line and travelling onto one of
the (two) branch lines. Conversely a tailing signal is when the front of
the signal is not visible and a trailing move over a set of points is when
travelling from one of the branch lines on to the main line. 164

facing-point lock Locks a set of points into position when a train travels
over them in the facing direction. It is often abbreviated to FPL. 174

FPL Acronym for facing-point lock. 293

main signal Signal at the beginning of a route. 163

normal Refers to the default position of a set of points as determined by
the scheme plan. A set of points can be in one of two positions, the
other position is called reverse. Historically these terms originated from
mechanical interlocking systems, where they referenced the position of
a lever. That is, normal is when the lever is in the default position,
and reverse is when the lever was in the opposite position. 163

proceed A signal aspect. Indicates that the line ahead (of the signal) is safe
to traverse (at maximum speed). E.g. it is not occupied by another
train and the sets of points are in the correct positions. 164

railyard Part of a railway that consists of more than linear lines. Typically
a railyard is a station, junction or deport. 163

reverse Opposite of normal. 163
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rolling stock An individual vehicle on the railway, could either be a carriage
or engine. 186

route A sequence of connected track segments that are protected by a signal.
167

route indicator When a signal protects multiple routes, a route indicator
is also present that indicates which route the proceed aspect refers to.
227

scheme plan A graphical representation of the layout, of part of a railway.
251

set of points Special track segment that connects to three track segments.
One of these segments is designated a main line, and the other two are
designated branch lines, it allows travel between the main line and one
of the branch lines, the choice of which branch line depends upon the
position of the set of points. Also see normal and revers. 163

shunt Special type of signal that is used to manually signal trains around
a railyard. They must not be obeyed by passenger trains, therefore
safety requirements are not as strict. 162

stretcher bar Part of a set of points. A metal bar that keeps the point
blades the correct distance apart. It is usually directly connected to
the points machine and it is where the facing-point lock is located. 256

tappet A special metal blade that forms part of a mechanical interlocking.
They have notiches cut on the side that allow for dogs to fit in and
lock the tappet in place. The dogs are special nuts and bolts that the
tappets can move. 260

track circuit A system used to detect discrete train positions, typically
each track segment has one track circuit. 255

track segment Smallest unit of indistinguishable track. Often corresponds
to a track circuit. 163

trailing Opposite of facing. 173
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AppendixB
Mechanical Ladder

In Chapter 11 it was shown how to translate mechanical interlocking systems
(lever frames) defined by locking tables into ladder logic programs. In this
appendix it is considered how interlocking systems defined by locking tables
and ladder logic differ. This is achieved by showing how to simulate ladder
logic programs with a lever frame. As lever frames are constrained by allow-
ing only one variable to change at a time, there is a protocol to use these
resulting programs such that they are equivalent to ladder logic programs.

B.1 Prerequisites

The lever frames consist of a number of levers that are in either normal or
reverse positions. When in normal position the lever is said to be false, and
when in reverse position the lever is said to be true. Constraints between
the levers are formed by the tappets and dogs. A full explanation of the
operation of these interlocking systems is given in Section 11.1.2. In this
appendix it is only required to consider the constraints: locks normal and
released by . The constraint l ‘locks normal’ m, means that when lever l is in
the reverse position, then lever m is constrained to the normal position. The
constraint is formalised as follows:

l → ¬m

The other constraint: l ‘released by’ m. Means that when l is reversed, then
m is also reversed. The constraint is formalised as follows:

l →m

The state of an interlocking with n levers, is given by a vector of Boolean
values of length n. The inputs are given by the levers being moved. Note
that each lever is an input, as well as an output. By convention the initial
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state is given by all levers being in the normal position, this is possible due
to the implementation (see below) of the two mentioned constraints.

These interlocking systems are specified by locking tables. A locking table
simply lists the locks, see Figure 11.14 for an example table, however ignore
the both ways lock as it is not required here.

Ladder Logic. For the purposes of this appendix, ladder logic is a linear
system of Boolean valued equations that specify a transition function. The
states and inputs of a ladder logic program are given by vectors of Boolean
values. A ladder logic program can be though of as the following imperative
program:

Initialise (a0, . . . , an)
Repeat {

Read Inputs (b0, . . . , bm)
a0 ∶= φ0

⋮
an ∶= φn
Write Outputs

}
where ai are Boolean valued state variables, bi are Boolean valued input
variables, and φi are propositional logic formulæ that depend on ai and bi.
See Section 9.2 for a fully formal treatment of ladder logic.

It is clear that to encode ladder logic programs into lever frames, a method
of evaluating Boolean valued equations is required. In the following it will
be shown how to implement negation and conjunction using the ‘released by’
and ‘locks normal’ locks.

B.1.1 Negation

First it is demonstrated how the lock ‘locks normal’ is physically imple-
mented. The ‘locks normal’ constraint is implemented by two tappets and
one dog, see Figure B.1. See Chapter 11 for information about how these
tappets and dogs interact. There are three possible states: ¬m ∧ ¬l, m ∧ ¬l,
¬m∧ l. The final combination is not possible due to the dog interlocking the
two levers, this is illustrated in the induced transition system in Figure B.2.

It is not possible to move more than one lever at a time, therefore it is
not possible to enforce the constraint l ↔ ¬m without any side conditions
on the order that the levers are operated in, i.e. a protocol. For example in
Figure B.1, consider treating m as a Boolean input, l as a Boolean output,



B. Mechanical Ladder 297

¬m ¬l

Figure B.1: Locks Normal

(1)

¬m l

(2)

¬m ¬l

(3)

m ¬l
¬l

l

m

¬m

Figure B.2: Locks Normal Transition System

and the human operator pulling on the levers as a computation or evaluation.
In such a situation, the following process is obtained to compute the negation:

1. Move all levers (m and l) into the normal position, state (2) in Fig-
ure B.2.

2. Move the input lever (m) to the desired configuration, normal or re-
verse; either stay in state (2) or move to state (3).

3. Attempt to move the output lever l into the reverse position, if it moves,
then m is normal, otherwise it does not move because m is in the reverse
position.

Thus provided the levers are initialised and pulled in the correct order, the
constraint that l↔ ¬m holds, equivalently l ∶= ¬m.

Later the issue of ordering the levers from left to right is discussed in
depth.

Remark
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B.1.2 Conjunction

The ‘released by’ lock is used to implemented conjunction. The ‘released by’
lock is also implemented by two tappets and one dog, see Figure B.3. There
are three possible states: ¬m ∧ ¬l, m ∧ ¬l, m ∧ l. The final combination is
not possible due to the dog interlocking the two levers. See Figure B.4 for
an illustration of the induced transition system.

¬m ¬l

Figure B.3: Released By

¬m ¬l m ¬l m l

m

¬m

l

¬l

Figure B.4: Released By Transition System

A singular use of the ‘released by’ constraint is not particularly helpful
with respect to this encoding of propositional logic. But two applications of
this constraint allows for conjunction to be defined. That is, consider three
levers l, m and n, such that l↔m∧n is desired to hold. This is achieved by
a protocol on the order the levers are moved in, and defining l ‘released by’
m, and l ‘released by’ n, i.e. (l →m)∧ (l → n). This is implemented by three
tappets and two dogs, one for each constraint, see Figure B.5. The idea is
similar to before:

1. Move all levers (n, m and l) into the normal position.

2. Configure the input levers (n and m) into normal or reverse positions.
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3. Attempt to move l into the reverse position. Should l move, then n
and m have been placed into the reverse positions, otherwise at least
one of them is in the normal position.

¬n ¬m ¬l

Figure B.5: Mechanical Conjunction

In the above it has been shown how to encode negation and conjunction.
Note that Boolean formulæ are equivalent to formulæ formed from these two
connectives, see next section. However there are side conditions as to how
this embedding is done, these conditions were implicit in the orders that the
levers are pulled in.

Protocol. Computation of negation and conjunction was the 3-step
process: 1) initialise the levers by placing them in the normal position,
2) set the input levers into a desired position, 3) compute the result by
starting on the left (after the rightmost input) and working rightwards,
attempt to pull each lever in turn. This process generalises to arbitrary
compositions of negation and conjunction.

Implicit in the above protocol is the assumption that all the input levers
are assumed to be placed on the left , then proceeding on the right are com-
binations of levers that represent negation or conjunction. The inputs and
results of previous operations can become inputs to the next operation. Thus
the furthest right lever represents the result of the computation.

B.2 Encoding Ladder Logic

It is now shown how to encode ladder logic programs as lever frames. Con-
sider a simple ladder with one rung of the form:

x ∶= ϕ(i1, . . . , in)
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where ij are input variables that ϕ depends on. To encode this ladder, ϕ
must be translated into a formula built out of negation and conjunction. For
example consider disjunction, let n = 2 and

ϕ = ¬(¬i1 ∧ ¬i2)

This is still too complicated to be represented directly on a lever frame, so it
is broken down into its sub-formulæ. That is the following ladder is obtained:

x1 ∶= ¬i1
x2 ∶= ¬i2
x3 ∶= x1 ∧ x2

x4 ∶= ¬x3

which is simple enough to be directly represented on a lever frame. This
is because each operation is computed individually, results from computed
operations are fed into subsequent operations as inputs. This example will
be returned to, but for now see Figure B.6 for the corresponding interlocking
system.

B.2.1 Remarks

It has been shown how to encode propositional logic, and ladder logic into
these lever frames, provided they are operated according to the identified
protocol. This process would scale, it is noted again that as the results of
intermediate steps in the computation are available for later parts of the com-
putation, so there is no blow-up during the computation. Also, to simplify
the translation it could be required that each of the inputs and conjunctions
are immediately followed by their negation.

There is one large caveat here. The protocol requires that before each
evaluation of ϕ that all levers are normalised. This means that all the internal
state is forgotten. So for ladder logic programs, the output state must be
manually fed back as inputs. This essentially means that the lever frames
when combined with the protocol realise a decidable transition function, i.e.

transition ∶ VecBool n→ VecBool m→ VecBool n

One should note that there is little practical use for such an encoding,
particularly as before each new input can be entered the levers are all nor-
malised. So if it was used as an interlocking system, before every cycle,
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all signals would be set to danger, all sets of points placed into the normal
position and their facing-point locks unlocked. Interestingly, the underlying
problem of not being able to formalise the simple ladder a ∶= ¬b without the
protocol shows the limitation of lever frames, and why they are not able to
support track circuits without supplementary electromechanical locks.

There is also an issue of time. For the translated ladder logic programs
to be equivalent to ladder logic programs the human operator would need to
complete the evaluation of a transition in milliseconds.

B.3 Disjunction

To conclude this appendix, and make the ideas introduced above clear. The
continuation of the previous example of disjunction is fully worked out. There
are two inputs i1 and i2; and four state variables x1 . . . x4. By the protocol
the levers are arranged from left to right as follows:

i1, i2, x1, x2, x3, x4

The constraints required to implement disjunction are given in the following
locking table:

Lever Locks Normal Released By
i1 – –
i2 – –
x1 i1 –
x2 i2 –
x3 – x1, x2

x4 x3 –

Or equivalently formalised as follows:

x1 → ¬i1 x3 → x1 ∧ x2 x2 → ¬i2 x4 → ¬x3

Here it is clear that x4 → ¬(¬i1 ∧ ¬i2) follows. Provided that the protocol is
obeyed we also get ¬(¬i1 ∧ ¬i2)→ x4.

Consider the lever frame in Figure B.6, it is in the initial configuration.
In the following, two cases of inputs are considered, first, when i1 is set to
true and i2 is false, and secondly when i1 and i2 are both false. The first case,
after setting the inputs, x1 does not move as i1 has moved, x2 moves and
pushes the dogs to the left. Then x3 is constrained because x1 is not reversed,
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i1 i2 x1 x2 x3 x4

Figure B.6: Mechanical Disjunction

i1 i2 x1 x2 x3 x4

Figure B.7: Mechanical Disjunction. Shows the result of executing the dis-
junction where the input is i1 ∧ ¬i2.

therefore the output x4 moves into the reverse position, representing true.
See Figure B.7 for an illustration.

The case where the input is ¬i1 ∧ 12 is symmetric. A more interesting
case is when the input is ¬i1∧¬i2. As neither i1 or i2 were moved, then both
x1 and x2 move to the reverse position. As x1 and x2 have been moved, x3

also moves, therefore it locks the output x4 in to the normal position. See
Figure B.8 for an illustration.
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i1 i2 x1 x2 x3 x4

Figure B.8: Mechanical Disjunction. Shows the result of executing the dis-
junction where the input is ¬i1 ∧ ¬i2.
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AppendixC
Pelicon Simulator Output

In this appendix there is a transcript of an execution of the pelicon simu-
lator. The simulation outputs the state of the ladder and positions of the
cars/pedestrians on each cycle, and takes as input one Boolean indicating
if the crossing has been requested, and 4 numbers indicating the number of
users approaching each of the 4 areas. Refer to Sections 1.1.1 and 10.4 for
more information.

This simulation is slightly more complicated than the Gwili Steam Rail-
way simulation in that it also simulates the architectural state.

Remark

The following simulation starts off in a state where all variables are false,
then it requests a Boolean input that determines whether crossing has been
requested by a pedestrian, also 4 numbers are requested that indicate the
number of users approaching in each of the 4 perimeter areas: P1 P2 T1
T2. The ladder is executed once, and the position of the cars/pedestrians
are evaluated using the functions defined in Section 10.4, which were proved
to be correct. The process then repeats.

The simulation is given the following sequences of inputs:

Requested T1 T2 P1 P2
no 5 4 2 67
yes 0 4 5 9
no 0 0 0 0
no 0 0 0 0

305



306

Pelicon Crossing Simulator 0.01

entering main loop...

Crossing: False

Requested: False

Car Green: False

Pedestrian Green: False

Area People Cars

P1 0 0

P2 0 0

T1 0 0

T2 0 0

MUX 0 0

P1->MUX: 0 P2->MUX: 0

MUX->P1: 0 MUX->P2: 0

T1->MUX: 0 T2->MUX: 0

MUX->T1: 0 MUX->T2: 0

Request Crossing [yes/no]

no

Enter no. cars embarking T1

5

Enter no. cars embarking T2

4

Enter no. people embarking P1

2

Enter no. people embarking P2

67

Crossing: False

Requested: False

Car Green: True

Pedestrian Green: False

Area People Cars

P1 2 0

P2 67 0

T1 0 5

T2 0 4

MUX 0 0

P1->MUX: 0 P2->MUX: 0

MUX->P1: 0 MUX->P2: 0

T1->MUX: 0 T2->MUX: 0

MUX->T1: 0 MUX->T2: 0

Request Crossing [yes/no]

yes

Enter no. cars embarking T1

0

Enter no. cars embarking T2

4

Enter no. people embarking P1

5

Enter no. people embarking P2

9

Crossing: False

Requested: True

Car Green: False

Pedestrian Green: False

Area People Cars

P1 7 0

P2 76 0

T1 0 0

T2 0 4

MUX 0 9

P1->MUX: 0 P2->MUX: 0

MUX->P1: 0 MUX->P2: 0

T1->MUX: 5 T2->MUX: 4

MUX->T1: 0 MUX->T2: 0

Request Crossing [yes/no]

no

Enter no. cars embarking T1

0

Enter no. cars embarking T2

0

Enter no. people embarking P1

0

Enter no. people embarking P2
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0

Crossing: True

Requested: False

Car Green: False

Pedestrian Green: True

Area People Cars

P1 7 0

P2 76 0

T1 0 0

T2 0 4

MUX 0 0

P1->MUX: 0 P2->MUX: 0

MUX->P1: 0 MUX->P2: 0

T1->MUX: 0 T2->MUX: 0

MUX->T1: 4 MUX->T2: 5

Request Crossing [yes/no]

no

Enter no. cars embarking T1

0

Enter no. cars embarking T2

0

Enter no. people embarking P1

0

Enter no. people embarking P2

0

Crossing: False

Requested: False

Car Green: True

Pedestrian Green: False

Area People Cars

P1 0 0

P2 0 0

T1 0 0

T2 0 4

MUX 83 0

P1->MUX: 7 P2->MUX: 76

MUX->P1: 0 MUX->P2: 0

T1->MUX: 0 T2->MUX: 0

MUX->T1: 0 MUX->T2: 0

END SIMULATION
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AppendixD
Agda How-To: Built-ins

In this user guide it is described how to add new built-in data-types and
functions to Agda by hand, mainly by using examples. The built-in data-
types are required when implementing the specific branches of the integration
as described in Chapter 5. They are used to translate the formulæ between
Agda and Haskell. These specific branches also require built-in functions are
added that implement the decision procedure, and execute the external tool.

The generic integration (cf. Section 5.4) mitigates building-in data-types
as it requires an Agda function is provided to generate a string in the tools
input language from a formula. However, it still requires generic built-in
functions to be added: One pseudo built-in that specifies the external tool,
one pseudo built-in that specifies the Agda function that translates the input,
and it requires a built-in function is added that will execute the external tool.

This guide is concluded with selected listings from Agda’s source code
that show the modifications made during this project.

It is assumed that the reader is a confident Haskell programmer.

D.1 Building-In Data-Types

Suppose we want to add the following built-in data-type to Agda:

data Form ∶ Set where
Var ∶ N→ Form
Or ∶ Form→ Form→ Form
Not ∶ Form→ Form

The file Agda/TypeChecking/Monad/Builtin.hs defines all built-in tags,
and projections from the type-checking monad that look-up the Agda term
tagged by one of these tags. The definition of Form requires adding 4 tags,
one for the type and one for each constructor.
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So we need to add one entry for Form : Set,

bu i l t inMyForm = ”MYFORM”

and three entries for the three constructors

bu i l t inMyFormVar = ”MYFORMVAR”
bui l t inMyFormOr = ”MYFORMOR”
bui l t inMyFormNot = ”MYFORMNOT”

Then the corresponding projections for looking-up the tagged terms for
MYFORM inside the monad are as follows:

primMyForm = g e t B u i l t i n bu i l t inMyForm
primMyFormVar = g e t B u i l t i n bu i l t inMyFormVar
primMyFormOr = g e t B u i l t i n bui l t inMyFormOr
primMyFormNot = g e t B u i l t i n bu i l t inMyFormNot

Here getBuiltin does the work of looking-up a tagged term from a map stored
in the monad. Should no term be associated with the tag it results in a
type-checking error.

The next step is to add rules to the type checker so that it knows what the
types of the built-ins are. Open Agda/TypeChecking/Rules/Builtin.hs.
This file specifies rules or checks that are enforced by the type-checker when
binding a tag to a term. In this file there is a list coreBuiltins that defines
a map between the tags and how to bind these tags to an Agda term. This
map is used every time a built-in pragma is parsed. First add the following
entry

( bu i l t inMyForm |−> B u i l t i n D a t a t s e t [ bu i l t inMyFormVar ,
bui l t inMyFormOr ,
bu i l t inMyFormNot ] )

that will ensure that builtinMyForm is bound to a term that is a data-type of
type Set that has three constructors. It does not provide information about
the constructors, that is achieved by adding the following three entries to the
list

( bu i l t inMyFormVar |−> B u i l t i n D a t a C o n s ( t n a t −−> tmyform ) )
( bui l t inMyFormOr |−> B u i l t i n D a t a C o n s ( tmyform −−> tmyform

−−> tmyform ) )
( bui l t inMyFormNot |−> B u i l t i n D a t a C o n s ( tmyform −−> tmyform ) )

where tmyform = el primMyForm. These three entries associate a type to
the constructors. A mini domain specific language is used to represent the
types in a human readable way, notably the DSL provides two functions hPi
(hidden) and nPi (normal) that produce Π-types. The hidden Π-type is used
to represent hidden arguments, and the normal Π-type is used to represent
unhidden arguments. It should be noted that when binding builtinMyFormVar
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to a term, first the natural numbers must have been declared as built-ins as
well.

Once the above has been implemented the built-ins have been defined,
and the built-in pragmas

{−# BUILTIN MYFORM Form #−}
{−# BUILTIN MYFORMVar Var #−}
{−# BUILTIN MYFORMOr Or #−}
{−# BUILTIN MYFORMNot Not #−}

will work. These built-ins are only of use if one defines built-in functions
upon them.

D.2 Primitives

Before defining a built-in function over MYFORM, it is necessary to provide a
primitive function that will become the Haskell implementation of the built-
in function.

To create a new primitive function that uses MYFORM, the translations
from Agda’s internal syntax into Haskell definitions must be defined. An
overview of the internal syntax can be found in [Tur10]. Also the inverse
translation might be required depending whether the primitive function re-
turns a MYFORM structure.

The file Agda/TypeChecking/Primitive.hs provides the definitions for
the translations and primitive functions. To define the translations, first, a
corresponding Haskell definition is given as follows:

data MyForm = MyVar I n t e g e r
| MyAnd MyForm MyForm
| MyNot MyForm

Then it is added to the PrimTerm type-class. The class is defined as:

c l a s s PrimTerm a where primTerm : : a −> TCM Term

and is added by

instance PrimTerm MyForm where primTerm = primMyForm

which indicates that the data-type MyForm has a corresponding Agda imple-
mentation.

Note the use of the monad TCM, this is the type-checking monad that
forms the basis of the Agda program.
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To translate from the Haskell term into an Agda term, the following func-
tion can be defined. The first three arguments are Agda terms that represent
the constructors, these are the terms tagged by the built-in pragmas.

toterm : : Term −> Term −> Term −> MyForm −> Term
toterm v a r or not ( MyVar n ) =

a p p l y v a r [ Arg NotHidden ( L i t $ L i t I n t noRange n ) ]
toterm v a r or not (MyOr a b ) =

a p p l y
( a p p l y o r [ Arg NotHidden ( toterm v a r o r not a ) ] )
[ Arg NotHidden ( toterm v a r or not b ) ]

toterm v a r or not ( MyNot a ) =
a p p l y not [ Arg NotHidden ( toterm v a r or not a ) ]

Then add it to the ToTerm type-class as:

instance ToTerm MyForm where
toTerm = do

v a r <− primMyFormVar
or <− primMyFormOr
not <− primMyFormNot
return $ toterm v a r or not

where the type-class is defined as:

c l a s s ToTerm a where toTerm : : TCM ( a −> Term )

The inverse translation going from an Agda term into a Haskell term is
a little messier because of the Agda representation (list of lists) of a term.
The first three terms are the Agda representations of the constructors, and
the fourth is the actual term to be translated. The translation can fail for a
number of reasons, e.g. open terms, hence the result is wrapped by Maybe1.

f romterm : : Term −> Term −> Term −> Term −> Maybe MyForm
fromterm v a r or not t

| ( t === v a r ) = l e t v a r i d = x v a r v a r t i n
case v a r i d of

J u s t i d −> case i d of
L i t ( L i t I n t n ) −> J u s t $ MyFormVar n
−> Nothing

−> Nothing
| ( t === o r ) = l e t oparands = x o r o r t i n

case oparands of
J u s t ( f , g ) −> l e t f ’ = fromterm v a r or not f

g ’ = fromterm v a r or not g i n
case ( f ’ , g ’ ) of

( J u s t f ’ ’ , J u s t g ’ ’ ) −> J u s t $ MyOr f ’ ’ g ’ ’

1This is not correct, Agda uses a special data-type that expands on Maybe by allowing
for partial reductions to be returned in-situ of nothing. For simplicity this user guide only
considers the use of Maybe.
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−> Nothing
−> Nothing

| ( t === not ) = l e t operand = xnot not t i n
case operand of

J u s t f −> l e t f ’ = fromterm v a r or not f i n
case f ’ of

J u s t f ’ ’ −> J u s t $ MyNot f ’ ’
−> Nothing

| otherwise = Nothing
where

Def x [ ] === Def y [ ] = x == y
Con x === Con y = x == y
Var n [ ] === Var m [ ] = n == m

=== = F a l s e

where xvar, xor and xnot are definable by pattern matching on Agda’s internal
term syntax, as follows. However be warned that (at the time of writing) the
internal syntax is not fixed, and it changes between releases as new features
are added.

x v a r : : Term −> Term −> Maybe Term
x v a r ( Con x ) ( Con y [ ( Arg z ) ] ) | x == y = J u s t z
x v a r = Nothing

x o r : : Term −> Term −> Maybe ( Term , Term )
x o r ( Con x ) ( Con y [ ( Arg f ) , ( Arg g ) ] ) | x == y

= J u s t ( f , g )
x o r = Nothing

xnot : : Term −> Term −> Maybe ( Term , Term )
xnot ( Con x ) ( Con y [ ( Arg f ) ] ) | x == y = J u s t f
xnot = Nothing

Then is added to the FromTerm type-class.

instance FromTerm MyForm where
fromTerm = do

v a r <− primMyFormVar
or <− primMyFormOr
not <− primMyFormNot
fromReducedTerm $ f romterm v a r or not

Here the class FromTerm is defined as follows:

c l a s s FromTerm a where fromTerm : : TCM ( Term −> Maybe a )

That concludes the hard part, the data-type has been added to the three
type-classes that allow Agda to translate to/from the Haskell representation.
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D.3 Built-In Functions

To add a primitive function to Agda, it is firstly defined in Haskell. For the
purposes of this user guide the following, perhaps convoluted Haskell function
is to be declared as a primitive.

f l i p : : MyForm −> MyForm
f l i p ( Var n ) = Var n
f l i p ( Not x ) = Not ( f l i p x )
f l i p ( Or x y ) = Or ( f l i p y ) ( f l i p x )

It recursively flips the operands of the Or constructor. To be able to reference
flip from Agda it is added it to the map: primitiveFunctions of primitive
functions (located at the end of the file). The following line will achieve this

” primMyFormFlip ” |−> mkPrimFun1 f l i p

The string on the left provides a name for this function that will later be
used from Agda to reference it. On the right-hand side of the |–> is the
primitive implementation of the function. The function mkPrimFun1 con-
structs a primitive function out of a Haskell function, the number at the end
indicates the number of arguments that the function has. There are other
versions of this function that consider functions with up to 4 arguments.
The function mkPrimFun1 requires that the type of the function provided is
in the to/from term type-classes. This requirement means that it is possible
to automatically deduce the corresponding Agda type of flip. It also auto-
matically applies the to/from term functions to the arguments and result of
the function.

Now it is possible to provide the primitive definition in Agda as:

primitive

primMyFormFlip ∶ Form→ Form

From the perspective of Agda, primMyFormFlip is treated as a black-box,
i.e. an atomic computation that when succeeds produces the required result,
or when it fails, it does not normalise.

The final step to defining the built-in function is to also provide an im-
plementation in Agda that is used when the primitive function fails. This
has the effect that when the built-in function is normalised on a closed term,
the computation is atomic and completes in one step. When normalised on
an open term the Agda implementation is used to unfold the term to head
normal-form.

To preserve consistency in Agda when creating a built-in function, it is
necessary to axiomatise the function. The axioms prevent the incorrect Agda
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implementation being replaced by a Haskell function. The axiom checks are
defined in Agda/TypeChecking/Rules/Builtin.hs.

To build-in the flip function, first the function tag and corresponding
primitive term are required to be added by the method described at the
beginning of this user guide, see Section D.1. That is, add the following to
Agda/TypeChecking/Monad/Builtin.hs

b u i l t i n F l i p = ”MYFLIP”
p r i m F l i p = g e t B u i l t i n b u i l t i n F l i p

Then return to Agda/TypeChecking/Rules/Builtin.hs. Add the following

( b u i l t i n F l i p |−> B u i l t i n P r i m ” primMyFormFlip ” myCheck )

to the coreBuiltins list. The Agda type of the built-in is looked-up from the
referenced primitive function. The function myCheck is defined as follows:

myCheck : : Term −> TCM ( )
myCheck t = myform <− tmyform

var ’ <− primMyFormVar
or ’ <− primMyFormOr
not ’ <− primMyFormNot
l e t x @@ y = x ‘ app ly ‘ [ d e f a u l t A r g y ]

x == y = n o C o n s t r a i n t s $ equalTerm myform x y
f l i p ’ a = t @@ a
v a r n = var ’ @@ n
or a b = or ’ @@ a @@ b
not a = not ’ @@ a

xs <− mapM freshName [ ”a” , ”b” , ”n” ]
addCtxs xs ( d e f a u l t A r g myform ) $ do

f l i p ’ ( v a r n ) == v a r n
f l i p ’ ( not a ) == not ( f l i p ’ a )
f l i p ’ ( o r a b ) == or ( f l i p ’ b ) ( f l i p ’ a )

The interesting part of myCheck are the last 3 lines, there the function
flip is fully axiomatised. The double equals is Agda’s internal equality test.
It is possible to define significantly more complicated checks, the interested
reader is directed to the Agda source code for examples.

Providing all the steps were successfully completed it is now possible to
enter an equivalent definition of flip into an Agda module and then the built-
in pragma. I.e.

flip ∶ Form→ Form
flip (Var n) = Var n
flip (Not x) = Not (flip x)
flip (Or x y) = Or (flip y)(flip x)

{−# BUILTIN MYFLIP flip #−}
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The above will attempt to bind the Agda implementation of flip to the Haskell
implementation, provided the Agda version fulfils the constraints in myCheck,
and that Form and Nat are built-in types.

D.3.1 External Programs

To execute an external program, a small amount of hackery is required. The
primitive function provide must call the external program, but this requires
that the function is defined as an IO monad. For this reason the mkPrimFun*
functions are unusable. To remedy this, it is noted that the TCM monad is
also an IO monad, so it is possible to write a custom implementation directly.

To explain the custom implementation, consider the following function
that will create the implementation of a primitive function, which executes
an external command. The primitive function will take as input a MyForm
structure, and pass it to the external tool (after turning it into a string). The
result of the function is a Boolean value that reflects whether the command
terminated successfully. The function is similar to the functions that are
used for the specific branches of the integration to call an external tool.

mkExecute : : TCM P r i m i t i v e I m p l
mkExecute = do

toForm <− fromTerm
b o o l <− fmap ( E l $ mkType 0) pr imBool
t <− e l primMyForm −−> e l pr imBool
return $ PrimImpl t $ PrimFun IMPOSSIBLE 1 $ \ p t −>

case p t of
[ p t ] −> l i f tTCM $

r e dB i n d ( toForm p t ) (\ −> [ notReduced p t ] ) $
\ prob −> do

l i f t I O $ Sys . getEnv ”AGDA EXECUTE PERMISSION”
l e t

a t p p : : C r e a t e P r o c e s s
a t p p = C r e a t e P r o c e s s (RawCommand ”/ path / to / t o o l ” [ ] )

Nothing Nothing
C r e a t e P i p e I n h e r i t I n h e r i t
True

( inp , out , e r r , p i d ) <− l i f t I O $ c r e a t e P r o c e s s a t p p
l i f t I O $ hPutStrLn ( f r o m J u s t i n p ) ( show prob )
l i f t I O $ h C l o s e ( f r o m J u s t i n p )
e x i t c o d e <− l i f t I O $ w a i t F o r P r o c e s s p i d
case e x i t c o d e of

E x i t F a i l u r e 1 −> p r i m F a l s e >>= r e d R e t u r n
E x i t S u c c e s s −> pr imTrue >>= r e d R e t u r n
E x i t F a i l u r e n −> t y p e E r r o r $ G e n e r i c E r r o r $ ” E r r o r ”

−> IMPOSSIBLE
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The interesting part of the function start at the first liftIO function. The
first thing that happens is a check is made to ensure that an environment
variable is set, if not then an error is raised. Then a process is created, and
the passed in formula is turned into a string and written to the programs
standard input stream. It is then waited for this process to terminate, upon
so, the exit code of the program is analysed.

The generic version of the integration extends upon this definition by
allowing the path to the tool to be extracted from the Agda module, also
instead of translating the formula into a string in Haskell it is translated in
Agda. The code of the generic version is found in the next section.

D.4 Haskell Code Listings

This section lists a number code snippets, each snippet relates to part of
the work that was undertaken to integrate Agda to external tools. Both
the generic (cf. Section 5.4) and proof reconstruction (cf. Chapter 6) code is
listed. This is by no means a full code listing, as a full code listing would
obscure the modifications as some of the files are hundreds of lines. The
listings are similar to the code snippets previously shown for adding built-in
data types and functions. Please note that the full source code is available
in digital format.

The remainder of this section is split into the three source files previously
identified. Each subsection then lists the snippets. Of most interest are the
two functions defined in Section D.4.3, these are called mkATPDecProc and
mkExternal. The first function is used for the generic plug-in interface, and
the second function is used for the proof reconstruction interface.

D.4.1 Agda/TypeChecking/Monad/Builtin.hs

b u i l t i n M a y b e = ”MAYBE”
b u i l t i n J u s t = ”JUST”
b u i l t i n N o t h i n g = ”NOTHING”

b u i l t i n U n i t = ”UNIT”
b u i l t i n T r i v = ”TRIV”
b u i l t i n E m p t y = ”EMPTY”
b u i l t i n A t o m = ”ATOM”

bui l t inATPProb lem = ”ATPPROBLEM”
b u i l t i n A T P I n p u t = ”ATPINPUT”
bui l t inATPDecProc = ”ATPDECPROC”
b u i l t i n A T P S e m a n t i c s = ”ATPSEMANTICS”
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bui l t inATPSound = ”ATPSOUND”
bu i l t inATPComplete = ”ATPCOMPLETE”
b u i l t i n A T P T o o l = ”ATPTOOL”

primMaybe = g e t B u i l t i n b u i l t i n M a y b e
p r i m J u s t = g e t B u i l t i n b u i l t i n J u s t
pr imNoth ing = g e t B u i l t i n b u i l t i n N o t h i n g

p r i m U n i t = g e t B u i l t i n b u i l t i n U n i t
p r i m T r i v = g e t B u i l t i n b u i l t i n T r i v

primEmpty = g e t B u i l t i n b u i l t i n E m p t y
primAtom = g e t B u i l t i n b u i l t i n A t o m

primATPProblem = g e t B u i l t i n bu i l t inATPProb lem
primATPInput = g e t B u i l t i n b u i l t i n A T P I n p u t
primATPDecProc = g e t B u i l t i n bu i l t inATPDecProc
primATPSemantics = g e t B u i l t i n b u i l t i n A T P S e m a n t i c s
primATPSound = g e t B u i l t i n bu i l t inATPSound
primATPComplete = g e t B u i l t i n bu i l t inATPComplete
primATPTool = g e t B u i l t i n b u i l t i n A T P T o o l

D.4.2 Agda/TypeChecking/Rules/Builtin.hs

, ( b u i l t i n M a y b e |−> B u i l t i n D a t a ( t s e t −−> t s e t ) [
Ç b u i l t i n J u s t , b u i l t i n N o t h i n g ] )

, ( b u i l t i n J u s t |−> B u i l t i n D a t a C o n s ( hPi ”A” t s e t
Ç ( tv 0 −−> tmaybe v0 ) ) )

, ( b u i l t i n N o t h i n g |−> B u i l t i n D a t a C o n s ( hPi ”A” t s e t
Ç ( tmaybe v0 ) ) )

, ( b u i l t i n U n i t |−> B u i l t i n D a t a t s e t [ b u i l t i n T r i v
Ç ] )

, ( b u i l t i n T r i v |−> B u i l t i n D a t a C o n s t u n i t )
, ( b u i l t i n E m p t y |−> B u i l t i n D a t a t s e t [ ] )
, ( b u i l t i n A t o m |−> Bui l t inUnknown ( J u s t $ t b o o l

Ç−−> t s e t ) v e r i f y A t o m )
, ( bu i l t inATPProb lem |−> Bui l t inUnknown ( J u s t t s e t ) (

Çc o n s t $ return ( ) ) )
, ( b u i l t i n A T P I n p u t |−> Bui l t inUnknown ( J u s t $

Ç t p r o b l e m −−> t s t r i n g ) ( c o n s t $ return ( ) ) )
, ( bu i l t inATPDecProc |−> B u i l t i n P r i m ”primATPDecProc”

Ç( c o n s t $ primATPTool >> return ( ) ) )
, ( b u i l t i n A T P T o o l |−> Bui l t inUnknown ( J u s t $

Ç t s t r i n g ) ( c o n s t $ return ( ) ) )
, ( b u i l t i n A T P S e m a n t i c s |−> Bui l t inUnknown ( J u s t $

Ç t p r o b l e m −−> t s e t ) ( c o n s t $ return ( ) ) )
, ( bu i l t inATPSound |−> Bui l t inUnknown ( J u s t $ nPi ”q

Ç” t p r o b l e m $ ( tatom $ d e c p r o c v0 ) −−> t s e m a n t i c s v0 ) (
Çc o n s t $ return ( ) ) )
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, ( bu i l t inATPComplete |−> Bui l t inUnknown ( J u s t $ nPi ”q
Ç” t p r o b l e m $ t s e m a n t i c s v0 −−> tatom ( d e c p r o c v0 ) ) ( c o n s t
Ç$ return ( ) ) )

D.4.3 Agda/TypeChecking/Primitive.hs

instance PrimTerm a => PrimTerm ( Maybe a ) where
primTerm = do

x <− primMaybe
a ’ <− primTerm ( undefined : : a )
return $ x ‘ app ly ‘ [ d e f a u l t A r g a ’ ]

instance ( FromTerm a , ToTerm a ) => ToTerm ( Maybe a ) where
toTerm = do

j u s t <− fmap (\ x −> \ a −> x ‘ app ly ‘ [ d e f a u l t A r g a ] )
Çp r i m J u s t

n o t h i n g <− pr imNoth ing
( fromA : : a −> Term ) <− toTerm
return $ \ t −> case t of

( J u s t a ) −> j u s t ( fromA a )
Nothing −> n o t h i n g

instance ( ToTerm a , FromTerm a ) => FromTerm ( Maybe a ) where
fromTerm = do

j u s t <− i s C o n =<< p r i m J u s t
n o t h i n g <− i s C o n =<< pr imNoth ing
( toA : : FromTermFunction a ) <− fromTerm
return $ \ t −> do

b <− reduceB t
l e t t = i g n o r e B l o c k i n g b

ar g = Arg ( a r g H i d i n g t ) ( a r g R e l e v a n c e t )
case unArg t of

Con c [ a ]
| c == j u s t −> r e dB i n d ( toA a ) (\ a ’ −> notReduced $

Çar g $ Con c [ i g n o r e R e d u c e d a ’ ] ) $ \ a ’ −>
Ç r e d R e t u r n $ J u s t a ’

Con c [ ]
| c == n o t h i n g −> r e d R e t u r n $ Nothing
−> return $ NoReduct ion ( r e d u c e d b )

a g d a E x e c u t e P e r m i s s i o n = c a t c h E r r o r ( l i f t I O $ Sys . getEnv ”
ÇAGDA EXECUTE PERMISSION” ) (\ −> t y p e E r r o r $ G e n e r i c E r r o r ”
ÇEnvi ronment v a r i a b l e ’AGDA EXECUTE PERMISSION ’ has not been
Ç s e t , not e x e c u t i n g t o o l . ” )

lookupToo lPath : : S t r i n g −> TCM S t r i n g
lookupToo lPath t o o l = do

s <− c a t c h E r r o r ( l i f t I O $ Sys . getEnv ”AGDA EXTERNAL TOOLS” ) (\
Ç −> t y p e E r r o r $ G e n e r i c E r r o r ” Envi ronment v a r i a b l e ’
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ÇAGDA EXTERNAL TOOLS ’ has not been s e t , i t s h o u l d c o n t a i n a
Ç l i s t o f t o o l s and p a t h s or th e form t o o l 1=path1 ; . . . ; t o o l n
Ç=pathn ” )

case l o o k t o o l s of
”” −> t y p e E r r o r $ G e n e r i c E r r o r $ ” Could not f i n d th e t o o l : ”

Ç ++ t o o l ++ ” i n ’ ” ++ s ++ ” ’ , p l e a s e s e t ’
ÇAGDA EXTERNAL TOOLS ’ to i n c l u d e t he t o o l . ”

s −> return s
where

l o o k : : S t r i n g −> S t r i n g −> S t r i n g
l o o k t o o l [ ] = [ ]
l o o k t o o l s =

l e t ( a , s ’ ) = case L i s t . f i n d I n d e x (== ’ ; ’ ) s of
Nothing −> ( s , ”” )
( J u s t n ) −> s p l i t A t n s

( t ’ , p ’ ) = case L i s t . f i n d I n d e x (== ’= ’) a of
Nothing −> ( ”” , ”” )
( J u s t n ) −> s p l i t A t n a

i n i f t ’ == t o o l then ( drop 1 p ’ ) e l s e l o o k t o o l ( drop 1 s
Ç ’ )

mkATPDecProc : : TCM P r i m i t i v e I m p l
mkATPDecProc = do

( t o S t r : : FromTermFunction S t r ) <− fromTerm
atp <− fmap ( E l $ mkType 0) primATPProblem
i n p u t t <− primATPInput
b o o l <− fmap ( E l $ mkType 0) pr imBool
t o o l t <− primATPTool
l e t i n p u t p = i n p u t t ‘ app ly ‘ [ p ]
t <− e l primATPProblem −−> e l pr imBool
return $ PrimImpl t $ PrimFun IMPOSSIBLE 1 $ \ p t −>

case p t of
[ p t ] −> l i f tTCM $ r e dB i n d ( t o S t r $ d e f a u l t A r g $ i n p u t p t

Ç) (\ −> [ notReduced p t ] ) $ \ prob −> r e dB i n d ( t o S t r $
Ç d e f a u l t A r g t o o l t ) (\ −> [ notReduced p t ] ) $ \ t o o l ’
Ç−>

do
t o o l <− l ookupToo lPath $ unStr t o o l ’
primATPSound
primATPComplete
a g d a E x e c u t e P e r m i s s i o n
l e t

a t p c p : : C r e a t e P r o c e s s
a t p c p = C r e a t e P r o c e s s (RawCommand t o o l [ ] ) Nothing

ÇNothing C r e a t e P i p e I n h e r i t I n h e r i t True
r e p o r t S L n ” pr im . mkatpdecproc ” 2 ” E x e c u t i n g ATP Tool ”
r e p o r t S L n ” pr im . mkatpdecproc ” 99 $ ” Formula f o r t o o l :

Ç” ++ unStr prob
( inp , out , e r r , p i d ) <− l i f t I O $ c r e a t e P r o c e s s a t p c p
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ec <− l i f t I O $ g e t P r o c e s s E x i t C o d e p i d
Maybe . maybe ( return ( ) ) (\ −> t y p e E r r o r $

ÇG e n e r i c E r r o r $ ” Problem e x e c u t i n g e x t e r n a l t o o l ,
Ç p o s s i b l y th e t o o l ’ ” ++ unStr t o o l ’ ++ ” ’ i s
Çw r on g l y s e t . ” ) ec

l i f t I O $ hPutStrLn ( Maybe . f r o m J u s t i n p ) ( unSt r prob )
l i f t I O $ h C l o s e ( Maybe . f r o m J u s t i n p )
e x i t c o d e <− l i f t I O $ w a i t F o r P r o c e s s p i d
case e x i t c o d e of

E x i t F a i l u r e 1 −> p r i m F a l s e >>= r e d R e t u r n
E x i t S u c c e s s −> pr imTrue >>= r e d R e t u r n
E x i t F a i l u r e n −> t y p e E r r o r $ G e n e r i c E r r o r $ ”ATP

ÇE r r o r , e x i t code : ” ++ show n ++ ” , s e e g h c i
Ç b u f f e r ”

−> IMPOSSIBLE

mkExterna l : : TCM P r i m i t i v e I m p l
mkExterna l = do

( t o S t r : : FromTermFunction S t r ) <− fromTerm
t <− hPi ”A” t s e t $ e l p r i m S t r i n g −−> e l p r i m S t r i n g −−> e l (

ÇprimMaybe <@> varM 0)
return $ PrimImpl t $ PrimFun IMPOSSIBLE 3 $ \ p t −>

case p t of
[ t y t , t o o l t , s t r t ] −> r e dB i n d ( t o S t r $ t o o l t ) (\ s −> [

ÇnotReduced t y t , s , notReduced s t r t ] ) $ \ t o o l −>
Ç r e dB i n d ( t o S t r $ s t r t ) (\ s −> [ notReduced t y t ,
ÇnotReduced t o o l t , s ] ) $ \prob −>

do
t o o l <− l ookupToo lPath $ unStr t o o l
a g d a E x e c u t e P e r m i s s i o n
l e t

a t p c p : : C r e a t e P r o c e s s
a t p c p = C r e a t e P r o c e s s (RawCommand t o o l [ ] ) Nothing

Ç Nothing C r e a t e P i p e C r e a t e P i p e I n h e r i t True
( inp , out , e r r , p i d ) <− l i f t I O $ c r e a t e P r o c e s s a t p c p
ec <− l i f t I O $ g e t P r o c e s s E x i t C o d e p i d
Maybe . maybe ( return ( ) ) (\ −> t y p e E r r o r $

ÇG e n e r i c E r r o r $ ” Problem e x e c u t i n g e x t e r n a l t o o l : ”
Ç ++ t o o l ++ ” , p o s s i b l y e n v i r o n m e n t v a r i a b l e
ÇAGDA EXTERNAL TOOLS i s w r on g l y s e t . ” ) ec

r e s u l t <− l i f t I O $ do
hPutStrLn ( f r o m J u s t i n p ) ( unSt r prob )
h C l o s e ( f r o m J u s t i n p )
hGetL ine ( f r o m J u s t out )

r e p o r t S L n ” pr im . m k e x t e r n a l 2 ” 2 r e s u l t
c a t c h E r r o r

(do e <− l i f t I O $ p a r s e e x p r P a r s e r $ r e s u l t
J u s t s <− getPScope
e ’ <− c o n c r e t e T o A b s t r a c t s e
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( p r i m J u s t <@> checkExpr e ’ ( E l ( mkType 0) ( unArg
Ç t y t ) ) ) >>= r e d R e t u r n ) (\ −> pr imNoth ing
Ç>>= r e d R e t u r n )

−> IMPOSSIBLE

, ”primATPDecProc” |−> mkATPDecProc
, ” p r i m E x t e r n a l ” |−> mkExterna l



AppendixE
eProver Wrapper Program

This appendix shows the task undertaken by the eProver wrapper script,
translating from a list of TSTP inferences into a list of Agda compatible
inferences. As an example of the wrapper programs function, consider the
following TSTP input

fof(ax1,axiom,˜((’a’ => ’b’) <=> (˜ ’b’ => ˜ ’a’))).

that declares a first-order formula, with the name ‘ax1’ that is an axiom. The
formula is the theorem that is to be proved. Executing eProver on this input
(or more correctly eproof, an eProver script that outputs level 4 derivations),
results in the following list of derivations

fof(1, axiom,˜(((’a’=>’b’)<=>(˜(’b’)=>˜(’a’)))),file(’sample.tptp’, ax1)).
fof(2, plain,˜(((’a’=>’b’)<=>(˜(’b’)=>˜(’a’)))),inference(fof simplification,[status(thm)

Ç],[1,theory(equality)])).
fof(3, plain,(((’a’&˜(’b’))|(˜(’b’)&’a’))&((˜(’a’)|’b’)|(’b’|˜(’a’)))),inference(fof nnf,[status(

Çthm)],[2])).
fof(4, plain,((((˜(’b’)|’a’)&(’a’|’a’))&((˜(’b’)|˜(’b’))&(’a’|˜(’b’))))&((˜(’a’)|’b’)|(’b’|˜(’a’))))

Ç,inference(distribute,[status(thm)],[3])).
cnf(5,plain,(’b’|’b’|˜’a’|˜’a’),inference(split conjunct,[status(thm)],[4])).
cnf(7,plain,(˜’b’|˜’b’),inference(split conjunct,[status(thm)],[4])).
cnf(8,plain,(’a’|’a’),inference(split conjunct,[status(thm)],[4])).
cnf(12,plain,(’b’|$false),inference(rw,[status(thm)],[5,8,theory(equality)])).
cnf(13,plain,(’b’),inference(cn,[status(thm)],[12,theory(equality)])).
cnf(14,plain,($false),inference(sr,[status(thm)],[13,7,theory(equality)])).
cnf(15,plain,($false),14,[’proof’]).

Once processed by the wrapper script the following derivation (ProofList)
is obtained. In the following the yen symbol (¥) is used to represent a
variable, and Boolean connectives are given as &&, ||, and =>. See the
definition of a ProofList on page 128 for more information.

(node axiom (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1))
Ç=> (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ (
Ç ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1)) => (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))))
Ç []) ∷

323
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(node fof simplification (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜
Ç ( ¥ 1)) => (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(˜ (((( ¥ 0) => ( ¥ 1))
Ç=> ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1)) => (˜ ( ¥ 0))) => (( ¥ 0) => (
Ç ¥ 1)))))) (0 ∷[])) ∷

(node fof nnf (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1))
Ç=> (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(((( ¥ 0) && (˜ ( ¥ 1))) || ((˜ (
Ç ¥ 1)) && ( ¥ 0))) && (((˜ ( ¥ 0)) || ( ¥ 1)) || (( ¥ 1) || (˜ ( ¥ 0)))))) (1 ∷[])) ∷

(node distribute (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1)
Ç) => (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(((((˜ ( ¥ 1)) || ( ¥ 0)) && (( ¥
Ç 0) || ( ¥ 0))) && (((˜ ( ¥ 1)) || (˜ ( ¥ 1))) && (( ¥ 0) || (˜ ( ¥ 1))))) && (((˜ (
Ç ¥ 0)) || ( ¥ 1)) || (( ¥ 1) || (˜ ( ¥ 0)))))) (2 ∷[])) ∷

(node split conjunct (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ (
Ç ¥ 1)) => (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(((( ¥ 1) || ( ¥ 1)) || (˜ ( ¥
Ç 0))) || (˜ ( ¥ 0)))) (3 ∷[])) ∷

(node split conjunct (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ (
Ç ¥ 1)) => (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒((˜ ( ¥ 1)) || (˜ ( ¥ 1))))
Ç(3 ∷[])) ∷

(node split conjunct (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ (
Ç ¥ 1)) => (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(( ¥ 0) || ( ¥ 0))) (3 ∷[]))
Ç∷

(node rw (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1)) =>
Ç(˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒(( ¥ 1) || ¥false)) (4 ∷(6 ∷[]))) ∷

(node cn (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1)) =>
Ç(˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒( ¥ 1)) (7 ∷[])) ∷

(node sr (((˜ (((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1)) =>
Ç(˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) ∷[]) ⇒ ¥false) (8 ∷(5 ∷[]))) ∷

(node unsat ([] ⇒(((( ¥ 0) => ( ¥ 1)) => ((˜ ( ¥ 1)) => (˜ ( ¥ 0)))) && (((˜ ( ¥ 1))
Ç=> (˜ ( ¥ 0))) => (( ¥ 0) => ( ¥ 1))))) (9 ∷[])) ∷[]

E.1 Code Listing

The following is a listing of the Haskell code for the wrapper script.

module Main where

import Codec .TPTP. Import
import Codec .TPTP. Base
import C o n t r o l . Monad . I d e n t i t y
import qua l i f i e d Data . Map as Map
import Data . Maybe
import qua l i f i e d Data . L i s t as L i s t
import qua l i f i e d System . D i r e c t o r y as D i r
import System . IO
import System . P r o c e s s
import Data . G e n e r i c s
import System
import FOLFormula
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{−
Wraps up eProver , p a r s e s the output and produces an Agda term .

e s s e n t i a l l y the p r o c e s s i s :
[ TPTP Input ] −> [ Record ] −> [ PNode ] −> S t r i n g

−}

main : : IO ( )
main = do

f i l e <− i n p u t f i l e
l e t a t p c p : : C r e a t e P r o c e s s

a t p c p = C r e a t e P r o c e s s (RawCommand ( ” e p r o o f ” )
[ ”−− t s t p − fo rmat ” , f i l e ] )

Nothing Nothing
I n h e r i t C r e a t e P i p e I n h e r i t True

( inp , J u s t out , e r r , p i d ) <− c r e a t e P r o c e s s a t p c p
r a w l i n e s <− fmap p a r s e $ hGetContents out
i f ( Comment ”# SZS s t a t u s U n s a t i s f i a b l e ” ) ‘ elem ‘ r a w l i n e s then

p u t S t r L n $ showAgda $ c o n s t r u c t $ s t e p 1 r a w l i n e s
e l s e do

p u t S t r L n ” Problem s e t un−p r o v a b l e . ”
h C l o s e out
e x i t F a i l u r e

h C l o s e out

type Record = ( I n t , ( PL FormulaCode , ERuleCode ) )

data PNode = N { r u l e : : S t r i n g
, pnodeform : : ( Proves FOLFormula FOLFormula )
, seq : : [ I n t ]}

de r i v i ng ( Show )

s t e p 1 : : [ TPTP Input ] −> [ Record ]
s t e p 1 = (map i n p u t 2 r e c o r d ) . ( f i l t e r f i l t A F o r m u l a )

i n p u t 2 r e c o r d x = ( i n p u t 2 i d x , ( i n p u t 2 f o r m u l a x , i n p u t 2 r u l e x ) )

i n p u t f i l e : : IO S t r i n g
i n p u t f i l e = do

a r g s <− g e t A r g s
case L i s t . f i n d (\ s −> not $ L i s t . i s P r e f i x O f ”−−” s ) a r g s of

Nothing −> do
tmpd i r <− D i r . g e t T e m p o r a r y D i r e c t o r y
( t m p f i l e , htmp ) <− openTempFi le tmpd i r ” e p r o o f − i n p u t ”
hGetContents s t d i n >>= hPutStr htmp
h F l u s h htmp >> h C l o s e htmp >> return t m p f i l e

J u s t s −> return s

c o n s t r u c t : : [ Record ] −> [ PNode ]
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c o n s t r u c t l = l e t x = b u i l d v a r m a p ( g e t v a r s ’ l ) ( g e t s t r i n g s ’ l )
i n d i s c h a r g e $ b u i l d s [ ] l x (Map . empty ) [ ]

data PL FormulaCode =
Or PL FormulaCode PL FormulaCode | Var ( E i t h e r S t r i n g I n t ) |
And PL FormulaCode PL FormulaCode | Neg PL FormulaCode |
Imp PL FormulaCode PL FormulaCode | True | F a l s e
de r i v i ng ( Show , Eq )

gamma : : Proves f f ’ −> [ f ]
gamma ( Proves a b ) = a

p h i : : Proves f f ’ −> f ’
p h i ( Proves a b ) = b

data ERuleCode =
NNF I n t | S i m p l i f y I n t | S p l i t C o n j I n t | PM I n t I n t |
CN I n t | Axiom | UnSat I n t | D i s t r i b u t e I n t |
A p p l y I n t [ I n t ] | RW I n t I n t | V oi d I n t | SR I n t I n t

b i n o p 2 f o r m u l a : : BinOp −> PL FormulaCode −> PL FormulaCode −>
ÇPL FormulaCode

−− i n agda <−> i s not implemented
b i n o p 2 f o r m u l a (:<=>:) a b = And ( Imp a b ) ( Imp b a )
b i n o p 2 f o r m u l a (:=> :) a b = Imp a b
b i n o p 2 f o r m u l a (:<=:) a b = Imp b a
b i n o p 2 f o r m u l a ( : & : ) a b = And a b
b i n o p 2 f o r m u l a ( : | : ) a b = Or a b
b i n o p 2 f o r m u l a a b = undefined

readatom : : S t r i n g −> E i t h e r S t r i n g I n t
readatom s = case ( ( r e a d s : : ReadS I n t ) s ) of

[ ( n , [ ] ) ] −> R i g h t n
−> L e f t s

atom2formula : : AtomicWord −> PL FormulaCode
atom2formula ( AtomicWord atom ) | atom == ” $ t r u e ” = True

| atom == ” $ f a l s e ” = F a l s e
| True = Var $ readatom atom

f o r m u l a 0 2 f o r m u l a : : Formula0 (T I d e n t i t y ) ( F I d e n t i t y ) −>
ÇPL FormulaCode

f o r m u l a 0 2 f o r m u l a ( BinOp a op b ) = b i n o p 2 f o r m u l a op (
Ç f o r m u l a 2 f o r m u l a a ) ( f o r m u l a 2 f o r m u l a b )

f o r m u l a 0 2 f o r m u l a ( PredApp atom [ ] ) = atom2formula atom −− a l l
Ç v a r i a b l e s and con s t a n t s a r e he r e

f o r m u l a 0 2 f o r m u l a ( ( : ˜ : ) a ) = l e t a ’ = ( f o r m u l a 2 f o r m u l a a )
i n case a ’ of

True −> F a l s e
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F a l s e −> True
−> Neg a ’

f o r m u l a 0 2 f o r m u l a = undefined

f o r m u l a 2 f o r m u l a : : F I d e n t i t y −> PL FormulaCode
f o r m u l a 2 f o r m u l a = f o r m u l a 0 2 f o r m u l a . r u n I d e n t i t y . runF

i n p u t 2 f o r m u l a : : TPTP Input −> PL FormulaCode
i n p u t 2 f o r m u l a = f o r m u l a 2 f o r m u l a . f o r m u l a

tonum : : GTerm −> I n t
tonum (GTerm ( GNumber n ) ) = f l o o r n
tonum x = undefined

a p p l y d e f 2 r u l e : : [ GTerm ] −> [ I n t ]
a p p l y d e f 2 r u l e = l e t f = ( c o n s t True ) : : Double −> Bool

i n map f l o o r . l i s t i f y f

i n f e r e n c e 2 r u l e : : [ GTerm ] −> ERuleCode
i n f e r e n c e 2 r u l e [ GTerm (GWord ( AtomicWord a ) ) , , G L i s t b ]

| a == ” f o f n n f ” = NNF ( tonum ( head b ) )
| a == ” f o f s i m p l i f i c a t i o n ” = S i m p l i f y ( tonum ( head b ) )
| a == ” s p l i t e q u i v ” = S p l i t C o n j ( tonum ( head b ) )
| a == ” s p l i t c o n j u n c t ” = S p l i t C o n j ( tonum ( head b ) )
| a == ” cn ” = CN ( tonum ( head b ) )
| a == ” d i s t r i b u t e ” = D i s t r i b u t e ( tonum ( head b ) )
| a == ” a p p l y d e f ” = l e t i n d i c e s = a p p l y d e f 2 r u l e b

i n A p p l y ( head i n d i c e s ) $ t a i l i n d i c e s
| a == ”rw” = RW ( tonum ( head b ) ) ( tonum ( head ( t a i l b ) ) )
| a == ” e v a l a n s w e r l i t e r a l ” = V oi d ( tonum ( head b ) )
| a == ” s r ” = SR ( tonum ( head b ) ) ( tonum ( head ( t a i l b ) ) )
| a == ”pm” = PM ( tonum ( head b ) ) ( tonum ( head ( t a i l b ) ) )

i n f e r e n c e 2 r u l e = undefined

a n n o t a t i o n 2 r u l e : : A n n o t a t i o n s −> ERuleCode
a n n o t a t i o n 2 r u l e NoAnnotat ions = undefined
a n n o t a t i o n 2 r u l e ( A n n o t a t i o n s (GTerm (GApp ( AtomicWord n ) a r g s ) )

ÇN o U s e f u l I n f o )
| n == ” i n t r o d u c e d ” = Axiom
| n == ” i n f e r e n c e ” = i n f e r e n c e 2 r u l e a r g s
| n == ” f i l e ” = Axiom

a n n o t a t i o n 2 r u l e ( A n n o t a t i o n s (GTerm ( GNumber n ) ) ( U s e f u l I n f o [ (
ÇGTerm (GWord ( AtomicWord m) ) ) ] ) ) | m == ” p r o o f ” = UnSat (
Ç f l o o r n )

a n n o t a t i o n 2 r u l e ( A n n o t a t i o n s gt ) = undefined

i n p u t 2 r u l e : : TPTP Input −> ERuleCode
i n p u t 2 r u l e = a n n o t a t i o n 2 r u l e . a n n o t a t i o n s
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i n p u t 2 i d : : TPTP Input −> I n t
i n p u t 2 i d = (\ ( AtomicWord x ) −> r e a d x ) . name

f i l t A F o r m u l a : : TPTP Input −> Bool
f i l t A F o r m u l a ( AFormula ) = P r e l u d e . True
f i l t A F o r m u l a = P r e l u d e . F a l s e

f i l t C o m m e n t : : TPTP Input −> Bool
f i l t C o m m e n t ( Comment ) = P r e l u d e . True
f i l t C o m m e n t = P r e l u d e . F a l s e

instance ShowAgda I n t where showAgda = show

instance ShowAgda PNode where
showAgda (N s f i ) = ” ( node ” ++ s ++ ” ” ++ showAgda f

++ ” ” ++ showAgda i ++ ” ) ”

n e x t : : [ I n t ] −> I n t
n e x t xs = f xs 0

where f : : [ I n t ] −> I n t −> I n t
f x s n | n ‘ elem ‘ xs = f xs ( n + 1)

| otherwise = n

g e t v a r s : : PL FormulaCode −> [ I n t ]
g e t v a r s True = [ ]
g e t v a r s F a l s e = [ ]
g e t v a r s ( Or a b ) = g e t v a r s a ++ g e t v a r s b
g e t v a r s ( And a b ) = g e t v a r s a ++ g e t v a r s b
g e t v a r s ( Imp a b ) = g e t v a r s a ++ g e t v a r s b
g e t v a r s ( Var x ) = e i t h e r (\ −> [ ] ) ( : [ ] ) x
g e t v a r s ( Neg a ) = g e t v a r s a

g e t v a r s ’ : : [ Record ] −> [ I n t ]
g e t v a r s ’ = l e t f ( , ( f o r m u l a , ) ) = (++) ( g e t v a r s f o r m u l a )

i n f o l d r f [ ]

g e t s t r i n g s : : PL FormulaCode −> [ S t r i n g ]
g e t s t r i n g s True = [ ]
g e t s t r i n g s F a l s e = [ ]
g e t s t r i n g s ( Or a b ) = g e t s t r i n g s a ++ g e t s t r i n g s b
g e t s t r i n g s ( And a b ) = g e t s t r i n g s a ++ g e t s t r i n g s b
g e t s t r i n g s ( Imp a b ) = g e t s t r i n g s a ++ g e t s t r i n g s b
g e t s t r i n g s ( Var x ) = e i t h e r ( : [ ] ) (\ −> [ ] ) x
g e t s t r i n g s ( Neg a ) = g e t s t r i n g s a

g e t s t r i n g s ’ : : [ Record ] −> [ S t r i n g ]
g e t s t r i n g s ’ = l e t f ( , ( form , ) ) = (++) $ g e t s t r i n g s form

i n f o l d r f [ ]
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b u i l d v a r m a p : : [ I n t ] −> [ S t r i n g ] −> [ ( S t r i n g , I n t ) ]
b u i l d v a r m a p i d s [ ] = [ ]
b u i l d v a r m a p i d s ( s : s s ) | s ‘ elem ‘ s s = b u i l d v a r m a p i d s s s

| True =
l e t n = Main . n e x t i d s i n ( s , n ) : b u i l d v a r m a p ( n : i d s ) s s

bu i ldvarmap ’ : : [ I n t ] −> [ S t r i n g ] −> Map . Map S t r i n g I n t
bu i ldvarmap ’ i d s s s = Map . f r o m L i s t $ b u i l d v a r m a p i d s s s

to form : : [ ( S t r i n g , I n t ) ] −> PL FormulaCode −> FOLFormula
to form env True = FOLTrue
toform env F a l s e = FOLFalse
to form env ( Or a b ) = FOLOr ( to form env a ) ( to form env b )
to form env ( And a b ) = FOLAnd ( toform env a ) ( to form env b )
to form env ( Imp a b ) = FOLImp ( toform env a ) ( to form env b )
to form env ( Var x ) = FOLVar $ f r o m I n t e g r a l $ e i t h e r (\ s −>

Çmaybe (−1) i d $ l o ok u p s env ) i d x
to form env ( Neg a ) = FOLNeg $ to form env a

unnegate : : FOLFormula −> FOLFormula
unnegate ( FOLNeg a ) = a
unnegate ( FOLImp a FOLFalse ) = a
unnegate ( FOLImp a ( FOLImp FOLTrue FOLFalse ) ) = a
unnegate a = a

b u i l d : : [ PNode ] −> [ ( S t r i n g , I n t ) ] −> Map . Map I n t I n t −>
ÇPL FormulaCode −> ERuleCode −> [ PNode ]

b u i l d done env m f (NNF n ) =
l e t a = f r o m J u s t (Map . l o ok u p n m)
i n [N ” f o f n n f ” ( Proves (gamma $ pnodeform $ done ! ! a ) $

Ç to form env f ) [ a ] ]
b u i l d done env m f ( S i m p l i f y n ) =

l e t a = f r o m J u s t (Map . l o ok u p n m)
i n [N ” f o f s i m p l i f i c a t i o n ” ( Proves (gamma $ pnodeform $ done

Ç ! ! a ) $ to form env f ) [ a ] ]
b u i l d done env m f ( S p l i t C o n j n ) =

l e t a = f r o m J u s t (Map . l o ok u p n m)
i n [N ” s p l i t c o n j u n c t ” ( Proves (gamma $ pnodeform $ done ! ! a )

Ç $ to form env f ) [ a ] ]
b u i l d done env m f ( CN n ) =

l e t a = f r o m J u s t (Map . l o ok u p n m)
i n [N ” cn ” ( Proves (gamma $ pnodeform $ done ! ! a ) $ to form

Çenv f ) [ a ] ]
b u i l d done env m f Axiom = [N ” axiom ” ( Proves [ to form

Çenv f ] $ to form env f ) [ ] ]
b u i l d done env m f ( UnSat n ) =

l e t f 1 = p h i $ pnodeform $ head done
i n [N ” u n s a t ” ( Proves ( f i l t e r (\ a −> not $ f 1 == a ) (gamma $

Çpnodeform $ done ! ! f r o m J u s t (Map . l o ok u p n m) ) ) $ unnegate
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Ç f 1 ) [ f r o m J u s t (Map . l o o ku p n m) ] ]
b u i l d done env m f ( D i s t r i b u t e n ) =

l e t a = f r o m J u s t (Map . l o ok u p n m)
i n [N ” d i s t r i b u t e ” ( Proves (gamma $ pnodeform $ done ! ! a ) $

Ç to form env f ) [ a ] ]
b u i l d done env m f ( A p p l y n n ’ ) = b u i l d a p p l y done ( f r o m J u s t $

Ç Map . l o ok u p n m) (map (\ x −> f r o m J u s t $ Map . l oo k u p x m) n ’ )
b u i l d done env m f (RW n n ’ ) =

l e t a = f r o m J u s t $ Map . l o ok u p n m
b = f r o m J u s t $ Map . l o ok u p n ’ m

i n [N ”rw” ( Proves ( L i s t . nub ( ( gamma $ pnodeform $ done ! ! a )
Ç++ (gamma $ pnodeform $ done ! ! b ) ) ) $ to form env f ) [ a , b
Ç ] ]

b u i l d done env m f ( V o i d n ) = [ done ! ! f r o m J u s t (Map .
Ç l o o ku p n m) ]

b u i l d done env m f ( SR n n ’ ) =
l e t a = f r o m J u s t $ Map . l o ok u p n m

b = f r o m J u s t $ Map . l o ok u p n ’ m
i n [N ” s r ” ( Proves ( L i s t . nub ( ( gamma $ pnodeform $ done ! ! a )

Ç++ (gamma $ pnodeform $ done ! ! b ) ) ) $ to form env f ) [ a , b
Ç ] ]

b u i l d done env m f (PM n n ’ ) =
l e t a = f r o m J u s t $ Map . l o ok u p n m

b = f r o m J u s t $ Map . l o ok u p n ’ m
i n [N ”pm” ( Proves ( L i s t . nub ( ( gamma $ pnodeform $ done ! ! a )

Ç++ (gamma $ pnodeform $ done ! ! b ) ) ) $ to form env f ) [ a , b
Ç ] ]

b u i l d a p p l y : : [ PNode ] −> I n t −> [ I n t ] −> [ PNode ]
b u i l d a p p l y done f [ d e f ] | i s E q u i v $ p h i $ pnodeform $ done ! !

Çd e f =
l e t f ’ = pnodeform $ done ! ! f

eqv = pnodeform $ done ! ! d e f
i n [N ” a p p l y d e f ” ( Proves ( L i s t . nub ( ( gamma f ’ ) ++ (gamma eqv )

Ç) ) $ s u b s t ( p h i f ’ ) ( e q u i v L e f t $ p h i eqv ) ( e q u i v R i g h t $
Çp h i eqv ) ) [ f , d e f ] ]

b u i l d a p p l y done f ( d e f : d e f s ) | i s E q u i v $ p h i $ pnodeform $
Çdone ! ! d e f =

l e t f ’ = b u i l d a p p l y done f d e f s
eqv = pnodeform $ done ! ! d e f

i n f ’ ++ [N ” a p p l y d e f ” ( Proves ( L i s t . nub ( ( gamma $ pnodeform
Ç$ l a s t f ’ ) ++ (gamma eqv ) ) ) $ s u b s t ( p h i $ pnodeform $
Ç l a s t f ’ ) ( e q u i v L e f t $ p h i eqv ) ( e q u i v R i g h t $ p h i eqv ) ) [
Ç l e n g t h ( done ++ f ’ ) −1 , d e f ] ]

b u i l d s : : [ Record ] −> [ Record ] −> [ ( S t r i n g , I n t ) ] −> Map . Map I n t
Ç I n t −> [ PNode ] −> [ PNode ]

b u i l d s r 1 [ ] env m a = a
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b u i l d s r 1 (n@( i , ( f , r ) ) : r 2 ) env m a = b u i l d s ( r1 ++ [ n ] ) r 2
Çenv (Map . i n s e r t i ( l e n g t h r 1 ) m) ( a ++ b u i l d a env m f r )

−− r e p l a c e a l l o c cou rance s o f p s i 1 i n ph i by p s i 2
s u b s t : : FOLFormula −> FOLFormula −> FOLFormula −> FOLFormula
s u b s t p h i p s i 1 p s i 2 | p h i == p s i 1 = p s i 2
s u b s t (FOLOr a b ) p s i 1 p s i 2 =

FOLOr ( s u b s t a p s i 1 p s i 2 ) ( s u b s t b p s i 1 p s i 2 )
s u b s t (FOLAnd a b ) p s i 1 p s i 2 =

FOLAnd ( s u b s t a p s i 1 p s i 2 ) ( s u b s t b p s i 1 p s i 2 )
s u b s t ( FOLImp a b ) p s i 1 p s i 2 =

FOLImp ( s u b s t a p s i 1 p s i 2 ) ( s u b s t b p s i 1 p s i 2 )
s u b s t ( FOLNeg a ) p s i 1 p s i 2 = FOLNeg ( s u b s t a p s i 1 p s i 2 )
s u b s t x = x

i s E q u i v : : FOLFormula −> Bool
i s E q u i v (FOLAnd ( FOLImp ( FOLVar a ) b ) ( FOLImp c ( FOLVar d ) ) ) =

a == d && b == c
i s E q u i v = F a l s e

e q u i v L e f t : : FOLFormula −> FOLFormula
e q u i v L e f t (FOLAnd ( FOLImp a b ) ( FOLImp c d ) ) = a

e q u i v R i g h t : : FOLFormula −> FOLFormula
e q u i v R i g h t (FOLAnd ( FOLImp a b ) ( FOLImp c d ) ) = b

d i s c h a r g e : : [ PNode ] −> [ PNode ]
d i s c h a r g e t | (gamma $ pnodeform $ l a s t t ) == [ ] = t
d i s c h a r g e t | i s E q u i v $ head $ gamma $ pnodeform $ l a s t t =

d i s c h a r g e $ t ++ [N ” f r e s h ” ( Proves ( t a i l $ gamma $ pnodeform
Ç$ l a s t t ) $ p h i $ pnodeform $ l a s t t ) [ l e n g t h t − 1 ] ]
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AppendixF
Agda Code

This appendix is an Agda code listing for all parts of the thesis. It is split into
modules, sorted alphabetically. See the next page for the table of contents,
note the different page numbering.

The module hierarchy provides an intuitive guide to which part of the
thesis the module relates. Below is a short description of the hierarchy.

Boolean Propositional logic and Boolean formulæ. The näıve SAT solver
and built-in bindings. See Sections 4.1 and 5.4.

PL-Formula Modules related to integrating eProver with Agda, also
see Proof below.

CTL All variants of CTL model-checking discussed in this thesis. Symbolic
model-checking is located in RecordSystem, and LadderCTL is located
in Ladder. See Sections 4.2, 4.3 and 9.4.1.

Data.Fin Proof of pigeonhole principle and pairing finite numbers.

Gwili Gwili Steam Railway verification, Chapter 11.

Ladder Ladder logic definition, decidability and correctness. See Chapter 9

Pelicon Fully worked example of pelicon crossing.

Proof Rule systems and proof reconstruction. The eProver interface is lo-
cated here. See Chapter 6.

RDM Railway domain model, see Chapter 8.
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336
340
346
347
348
351
354
358
359
360
361
363
367
369
371
374
378
379
381
383
389
390
391
393
395
397
404
406
408
411
413
414
415
425
430
431
433
434
438
439

Table of Agda Modules

PropIso
Boolean.Formula
Boolean.TPTP
Boolean.CommonBinding
Boolean.SatSolver
Data.Fin.Arithmetic
CTL.TransitionSystem
CTL.Definition
Data.Fin.EqReasoning
CTL.ListGen
CTL.DecProc
CTL.Proof
Data.Fin.Pigeon
CTL.Sink
Data.Fin.Record
CTL.RecordSystem
Proof.Util
Proof.List
Proof.PropLogic
Proof.EProver
Boolean.PL-Formula.Substitute
Proof.EProver.NNF
Proof.EProver.PM
Boolean.PL-Formula.RemoveConstants
Boolean.PL-Formula.Distribute
Boolean.PL-Formula.Equivalence
Boolean.PL-Formula.DropEquivalence
RDM.RailYard
RDM.fixedtrains
Ladder.Core
TransitionSystem
TransitionSystem.Decidable
Ladder.Decidable
CTL.Ladder
CTL.Pelicon
Pelicon.PeliconModel
Pelicon.Ladder
Pelicon.State
Pelicon.Safe
Pelicon.Simulator
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440
442
449
451
453
455
456
457
458
461
466
467
468
469
470

Pelicon.SimulatorFull
Gwili.Layout
Ladder.LockingTable
Gwili.Ladder
Gwili.State
Gwili.ControlTableCorrect
Gwili.Abstract
Gwili.Abstract-level2
Gwili.Ladder.OpposingRoutes
Gwili.OpposingSignals
Gwili.Ladder.Facing
Gwili.FacingPointLock
Gwili.Interlocking
Gwili.Safe
Gwili.GwiliSimulator
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{-# OPTIONS --universe-polymorphism #-}

module PropIso where

open import Data.Bool renaming (_∧_ to _∧♭_; _∨_ to _∨♭_)
open import Data.Unit public using (⊤ ; tt)
open import Data.Empty public using (⊥ ; ⊥-elim)
open import Data.Sum
open import Data.Product

open import Relation.Nullary public using (¬_)

open import Function public using (id ; _∘_ ; _$_ ; const)

{- Propositional logic isomorphisim -}

lem-bool-neg-c : (b : Bool) → ¬ T b → T (not b)
lem-bool-neg-c true p  = p tt
lem-bool-neg-c false p = tt

lem-bool-neg-s : (b : Bool) → T (not b) → ¬ T b
lem-bool-neg-s true  ()
lem-bool-neg-s false p = λ x → x

lem-bool-∧-s : (b c : Bool) → T (b ∧♭ c) → T b × T c
lem-bool-∧-s true  _ x = tt , x
lem-bool-∧-s false _ ()

lem-bool-∧-c : (b c : Bool) → T b × T c → T (b ∧♭ c)
lem-bool-∧-c true  _ (_ , x') = x'
lem-bool-∧-c false _ (() , _)

lem-bool-∨-s : (b c : Bool) → T (b ∨♭ c) → T b ⊎ T c
lem-bool-∨-s true  _ _ = inj₁ tt
lem-bool-∨-s false _ x = inj₂ x

lem-bool-∨-c : (b c : Bool) → T b ⊎ T c → T (b ∨♭ c)
lem-bool-∨-c true  _  _         = tt
lem-bool-∨-c false b' (inj₁ ())
lem-bool-∨-c false b' (inj₂ y)  = y

{- Propositional logic introduction / elimination rules -}

∨-introl : (a b : Bool) → T a → T (a ∨♭ b)
∨-introl true  _ p = p
∨-introl false _ ()

∨-intror : (a b : Bool) → T b → T (a ∨♭ b)
∨-intror true  true  p = p
∨-intror false true  p = p
∨-intror _     false ()

∨-elim : ∀ {C : Set} → {a b : Bool} → (T a → C) → (T b → C) → T (a ∨♭ b) → C
∨-elim {_} {a} {b} f g p = [ f , g ]′ (lem-bool-∨-s a b p)

uncurry' : ∀ {A : Set} {B : A → Set} {C : Set} → ((x : A) → (y : B x) → C) → ((p : Σ A B) → C)
uncurry' = uncurry

∧-elim : {C : Set} → {a b : Bool} → (T a → T b → C) → T (a ∧♭ b) → C
∧-elim {C} {a} {b} f p = uncurry' f (lem-bool-∧-s a b p)

#uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c}
         → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p)
#uncurry f π = f (proj₁ π) (proj₂ π)

∧-swap : ∀ a b → T (a ∧♭ b) → T (b ∧♭ a)
∧-swap true  true  = id
∧-swap true  false = id
∧-swap false true  = id
∧-swap false false = id

∨-swap : ∀ a b → T (a ∨♭ b) → T (b ∨♭ a)
∨-swap true  true  = id
∨-swap true  false = id
∨-swap false true  = id
∨-swap false false = id

f∨g : {a b c d : Bool} → (T a → T c) → (T b → T d) → T (a ∨♭ b) → T (c ∨♭ d)
f∨g {a} {b} {c} {d} f g = ∨-elim (λ p → ∨-introl c d (f p)) (λ p → ∨-intror c d (g p))

∧-intro : (a b : Bool) → T a → T b → T (a ∧♭ b)
∧-intro true  true  c  d = tt
∧-intro true  false c  ()
∧-intro false b     () d

∧-eliml : {a b : Bool} → T (a ∧♭ b) → T a
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∧-eliml {true}  p = tt
∧-eliml {false} ()

∧-elimr : (a : Bool) → {b : Bool} → T (a ∧♭ b) → T b
∧-elimr a     {true}  p = tt
∧-elimr true  {false} ()
∧-elimr false {false} ()

f∧g : {a b c d : Bool} → (T a → T c) → (T b → T d) → T (a ∧♭ b) → T (c ∧♭ d)
f∧g {a} {b} {c} {d} f g p = ∧-intro c d (f (∧-eliml p)) (g (∧-elimr a p))

¬[p∧¬p] : (b : Bool) → ¬ (T b × T (not b))
¬[p∧¬p] true  = proj₂
¬[p∧¬p] false = proj₁

ex-mid : (a : Bool) → T a ⊎ ¬ T a
ex-mid true  = inj₁ tt
ex-mid false = inj₂ id

_⟶_ : Bool → Bool → Bool
true  ⟶ b = b
false ⟶ b = true

lem-⟶-s : (a b : Bool) → T (a ⟶ b) → T a → T b
lem-⟶-s true  b p pa = p
lem-⟶-s false b p pa = ⊥-elim pa

lem-⟶-c : (a b : Bool) → (T a → T b) → T (a ⟶ b)
lem-⟶-c true  b p = p tt
lem-⟶-c false b p = tt

lem-→-intro : (a b : Bool) → T (not a ∨♭ b) → T a → T b
lem-→-intro a b p ta = ∨-elim (\ x → ⊥-elim (¬[p∧¬p] a (ta , x))) id p

lem-→-elim : (a b : Bool) → (T a → T b) → T (not a ∨♭ b)
lem-→-elim true  b f = f tt
lem-→-elim false b f = tt

lem-→ : {A B : Set} → ¬ A ⊎ B → A → B
lem-→ = [ (λ x x' → ⊥-elim (x x')) , (λ z _ → z) ]′

lem-⊎ : {A : Set} {B : Set} {C : Set} → (A ⊎ B) ⊎ C → A ⊎ (B ⊎ C)
lem-⊎ (inj₁ (inj₁ x)) = inj₁ x
lem-⊎ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
lem-⊎ (inj₂ y)        = inj₂ (inj₂ y)

demorg1 : ∀ a b → T (not (a ∨♭ b)) → T ((not a) ∧♭ (not b))
demorg1 true  b p = p
demorg1 false b p = p

demorg2 : ∀ a b → T ((not a) ∧♭ (not b)) → T (not (a ∨♭ b))
demorg2 true  b ¬ab = ¬ab
demorg2 false b ¬ab = ¬ab

¬∃ : ∀ {A : Set} → (P : A → Set) → ¬ ∃ P → ∀ x → ¬ P x
¬∃ P ¬ep x px = ¬ep (, px)

open import Relation.Binary.PropositionalEquality

Tb : ∀ {b} → T b → b ≡ true
Tb {true}  tt = refl
Tb {false} ()

¬Tb : ∀ {b} → ¬ T b → b ≡ false
¬Tb {true}  x = ⊥-elim (x tt)
¬Tb {false} x = refl

--- these functions should be moved into a nat properties module
open import Data.Nat hiding (_<_)

_==_ : ℕ → ℕ → Bool
zero    == zero    = true
(suc n) == (suc m) = n == m
_       == _       = false

{-# BUILTIN NATEQUALS _==_ #-}

trans-== : ∀ k l m → T (k == l) → T (l == m) → T (k == m)
trans-== zero    l        zero     k=l l=m = tt
trans-== zero    zero     (suc n)  k=l l=m = l=m
trans-== zero    (suc n)  (suc n') k=l l=m = k=l
trans-== (suc n) zero     zero     k=l l=m = k=l
trans-== (suc n) (suc n') zero     k=l l=m = l=m
trans-== (suc n) zero     (suc n') k=l l=m = ⊥-elim l=m
trans-== (suc n) (suc n') (suc n0) k=l l=m = trans-== n n' n0 k=l l=m

sym-== : ∀ k l → T (k == l) → T (l == k)
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sym-== zero    zero    = id
sym-== zero    (suc l) = id
sym-== (suc k) zero    = id
sym-== (suc k) (suc l) = sym-== k l

lift-== : ∀ n m → T (n == m) → n ≡ m
lift-== zero    zero    p = refl
lift-== (suc n) (suc m) p = cong suc (lift-== n m p)
lift-== zero    (suc m) ()
lift-== (suc n) zero    ()

id-== : ∀ n → T (n == n)
id-== zero    = tt
id-== (suc n) = id-== n

+r-== : ∀ n m → ¬ T (n == (n + (suc m)))
+r-== zero    m = id
+r-== (suc n) m = +r-== n m

open import Data.Nat.Properties using (isCommutativeSemiring)
import Algebra.Structures as Alg
open Alg.IsCommutativeSemiring using (+-isCommutativeMonoid)
open Alg.IsCommutativeMonoid using (comm)

+-comm : ∀ n m → n + m ≡ m + n
+-comm n m = comm (+-isCommutativeMonoid isCommutativeSemiring) n m

+l-== : ∀ n m → ¬ T (n == ((suc m) + n))
+l-== zero    m = id
+l-== (suc n) m rewrite +-comm m (suc n)
                      | +-comm n m
  = +l-== n m

_<_ : ℕ → ℕ → Bool
n     < zero   = false
zero  < suc n' = true
suc n < suc n' = n < n'

{-# BUILTIN NATLESS _<_ #-}

<-ord : ∀ n → T (n < suc n)
<-ord zero    = tt
<-ord (suc n) = <-ord n

<-trans : ∀ k l m → T (k < suc l) → T (l < suc m) → T (k < suc m)
<-trans zero    l        m        k<l l<m = tt
<-trans (suc n) zero     zero     k<l l<m = ⊥-elim k<l
<-trans (suc n) (suc n') zero     k<l l<m = ⊥-elim l<m
<-trans (suc n) zero     (suc n') k<l l<m = ⊥-elim k<l
<-trans (suc n) (suc n') (suc n0) k<l l<m = <-trans n n' n0 k<l l<m

<-lsuc : ∀ n m → T (suc n < m) → T (n < m)
<-lsuc zero    zero     p = ⊥-elim p
<-lsuc zero    (suc n)  p = tt
<-lsuc (suc n) zero     p = ⊥-elim p
<-lsuc (suc n) (suc n') p = <-lsuc n n' p

<-rsuc : ∀ n m → T (n < m) → T (n < suc m)
<-rsuc zero    zero     p = ⊥-elim p
<-rsuc zero    (suc n)  p = tt
<-rsuc (suc n) zero     p = ⊥-elim p
<-rsuc (suc n) (suc n') p = <-rsuc n n' p

<-trans' : ∀ k l m → T (k < l) → T (l < m) → T (suc k < m)
<-trans' k       l       zero          p q = ⊥-elim q
<-trans' k       zero    (suc m)       p q = ⊥-elim p
<-trans' zero    (suc l) (suc zero)    p q = q
<-trans' zero    (suc l) (suc (suc m)) p q = tt
<-trans' (suc k) (suc l) (suc m)       p q = <-trans' k l m p q

<-¬ : ∀ n m → ¬ T (n < m) → T (m < suc n)
<-¬ zero    zero     p = tt
<-¬ zero    (suc n)  p = p tt
<-¬ (suc n) zero     p = tt
<-¬ (suc n) (suc n') p = <-¬ n n' p

<-¬' : ∀ n m → T (n < m) → ¬ T (m < suc n)
<-¬' n       zero    p = const p
<-¬' zero    (suc m) p = id
<-¬' (suc n) (suc m) p = <-¬' n m p

<→≠ : ∀ n m → T (n < m) → ¬ T (n == m)
<→≠ n       zero    p = const p
<→≠ zero    (suc m) p = λ ()
<→≠ (suc n) (suc m) p = <→≠ n m p

<→≢ : ∀ n m → T (n < m) → n ≢ m
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<→≢ n zero p = const p
<→≢ zero (suc m) p = λ ()
<→≢ (suc n) (suc m) p = <→≢ n m p ∘ (cong pred)

<-weaken : ∀ n m l → T (n < m) → T (n < (m + l))
<-weaken n       zero    l = ⊥-elim
<-weaken zero    (suc m) l = id
<-weaken (suc n) (suc m) l = <-weaken n m l

<-¬refl : ∀ n → ¬ T (n < n)
<-¬refl zero    ()
<-¬refl (suc n) p = <-¬refl n p

<¬-weaken : ∀ n m k → ¬ T (n < m) → ¬ T ((n + k) < m)
<¬-weaken n       zero    k ¬n<m n+k<m = n+k<m
<¬-weaken zero    (suc m) k ¬n<m n+k<m = ¬n<m tt
<¬-weaken (suc n) (suc m) k ¬n<m n+k<m = <¬-weaken n m k ¬n<m n+k<m

<-+-rsuc : ∀ n m l → T ((n + suc m) < suc l) → T ((n + m) < l)
<-+-rsuc zero    m l       p = p
<-+-rsuc (suc n) m zero    p = p
<-+-rsuc (suc n) m (suc l) p = <-+-rsuc n m l p

max : ℕ → ℕ → ℕ
max n m with n < m
...| true = m
...| false = n

elim-max : ∀ n m → (P : ℕ → Set) → (fn : ¬ T (n < m) → P n) → (fm : T (n < m) → P m) →  P (max n m)
elim-max n m P fn fm with n < m
...| true = fm tt
...| false = fn id

cong' : ∀ {k m l} {A : Set k} (B : A → Set l) {C : Set m}
      → (F : (a : A) → B a → C)
      → {a a' : A}
      → (eq : a ≡ a')
      → (b : B a)
      → F a b ≡ F a' (subst B eq b)
cong' B F refl b = refl

assembleℕ : (f g : ℕ → Set) → (f 0 → g 0) → ({n : ℕ} → f (suc n) → g (suc n)) → {m : ℕ} → f m → g m
assembleℕ f g bc ih {zero}  = bc
assembleℕ f g bc ih {suc m} = ih
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module Boolean.Formula where

open import Data.Nat hiding (_<_)
open import Data.Bool
open import Data.Unit
open import Data.Empty
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.List

open import Algebra

open import PropIso

open import Relation.Binary.PropositionalEquality

infixr 8 _&&_
infixr 7 _||_

data PL-Formula : Set where
  ¥true ¥false : PL-Formula
  _||_ _&&_ _=>_ : PL-Formula → PL-Formula → PL-Formula
  ¥ : ℕ → PL-Formula

~ : PL-Formula → PL-Formula
~ φ = φ => ¥false

_<=>_ : PL-Formula → PL-Formula → PL-Formula
φ <=> ψ = (φ => ψ) && (ψ => φ)

Env : Set
Env = ℕ → Bool

⟦_⊧_⟧pl : (ξ : Env) → PL-Formula → Set
⟦ ξ ⊧ ¥true ⟧pl = ⊤
⟦ ξ ⊧ ¥false ⟧pl = ⊥
⟦ ξ ⊧ φ || ψ ⟧pl = ⟦ ξ ⊧ φ ⟧pl ⊎ ⟦ ξ ⊧ ψ ⟧pl
⟦ ξ ⊧ φ && ψ ⟧pl = ⟦ ξ ⊧ φ ⟧pl × ⟦ ξ ⊧ ψ ⟧pl
⟦ ξ ⊧ φ => ψ ⟧pl = ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ ψ ⟧pl
⟦ ξ ⊧ ¥ v ⟧pl = T (ξ v)

Taut-pl : PL-Formula → Set
Taut-pl φ = ∀ ξ → ⟦ ξ ⊧ φ ⟧pl

elim-pl : {A : Set} → (t f : A) → (v : ℕ → A) → (or and iff : A → A → A) → PL-Formula → A
elim-pl t f v or and iff ¥true     = t
elim-pl t f v or and iff ¥false    = f
elim-pl t f v or and iff (y || y') = or (elim-pl t f v or and iff y) (elim-pl t f v or and iff y')
elim-pl t f v or and iff (y && y') = and (elim-pl t f v or and iff y) (elim-pl t f v or and iff y')
elim-pl t f v or and iff (y => y') = iff (elim-pl t f v or and iff y) (elim-pl t f v or and iff y')
elim-pl t f v or and iff (¥ y)     = v y

_≡pl_ : PL-Formula → PL-Formula → Bool
¥true     ≡pl ¥true     = true
¥true     ≡pl _         = false
¥false    ≡pl ¥false    = true
¥false    ≡pl _         = false
(y || y') ≡pl (z || z') = y ≡pl z ∧ y' ≡pl z'
(y || y') ≡pl _         = false
(y && y') ≡pl (z && z') = y ≡pl z ∧ y' ≡pl z'
(y && y') ≡pl _         = false
(y => y') ≡pl (z => z') = y ≡pl z ∧ y' ≡pl z'
(y => y') ≡pl _         = false
¥ y       ≡pl ¥ z       = y == z
¥ y       ≡pl _         = false

lift-≡pl : ∀ φ ψ → T (φ ≡pl ψ) → φ ≡ ψ
lift-≡pl ¥true     ¥true p       = refl
lift-≡pl ¥true     ¥false    ()
lift-≡pl ¥true     (y || y') ()
lift-≡pl ¥true     (y && y') ()
lift-≡pl ¥true     (y => y') ()
lift-≡pl ¥true     (¥ y)     ()
lift-≡pl ¥false    ¥true     ()
lift-≡pl ¥false    ¥false p      = refl
lift-≡pl ¥false    (y || y') ()
lift-≡pl ¥false    (y && y') ()
lift-≡pl ¥false    (y => y') ()
lift-≡pl ¥false    (¥ y)     ()
lift-≡pl (y || y') ¥true     ()
lift-≡pl (y || y') ¥false    ()
lift-≡pl (y || y') (y0 || y1) p rewrite lift-≡pl y y0 $ proj₁ $ lem-bool-∧-s (y ≡pl y0) _ p
                                      | lift-≡pl y' y1 $ proj₂ $ lem-bool-∧-s (y ≡pl y0) _ p = refl
lift-≡pl (y || y') (y0 && y1) ()
lift-≡pl (y || y') (y0 => y1) ()
lift-≡pl (y || y') (¥ y0)     ()
lift-≡pl (y && y') ¥true      ()
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lift-≡pl (y && y') ¥false     ()
lift-≡pl (y && y') (y0 || y1) ()
lift-≡pl (y && y') (y0 && y1) p rewrite lift-≡pl y y0 $ proj₁ $ lem-bool-∧-s (y ≡pl y0) _ p
                                      | lift-≡pl y' y1 $ proj₂ $ lem-bool-∧-s (y ≡pl y0) _ p = refl
lift-≡pl (y && y') (y0 => y1) ()
lift-≡pl (y && y') (¥ y0)     ()
lift-≡pl (y => y') ¥true      ()
lift-≡pl (y => y') ¥false     ()
lift-≡pl (y => y') (y0 || y1) ()
lift-≡pl (y => y') (y0 && y1) ()
lift-≡pl (y => y') (y0 => y1) p rewrite lift-≡pl y y0 $ proj₁ $ lem-bool-∧-s (y ≡pl y0) _ p
                                      | lift-≡pl y' y1 $ proj₂ $ lem-bool-∧-s (y ≡pl y0) _ p = refl
lift-≡pl (y => y') (¥ y0)     ()
lift-≡pl (¥ y)     ¥true      ()
lift-≡pl (¥ y)     ¥false     ()
lift-≡pl (¥ y)     (y' || y0) ()
lift-≡pl (¥ y)     (y' && y0) ()
lift-≡pl (¥ y)     (y' => y0) ()
lift-≡pl (¥ y)     (¥ y') p      = cong ¥ (lift-== y y' p)

id-≡pl : ∀ φ → T (φ ≡pl φ)
id-≡pl ¥true     = tt
id-≡pl ¥false    = tt
id-≡pl (y || y') = lem-bool-∧-c (y ≡pl y) _ ((id-≡pl y) , (id-≡pl y'))
id-≡pl (y && y') = lem-bool-∧-c (y ≡pl y) _ (id-≡pl y , id-≡pl y')
id-≡pl (y => y') = lem-bool-∧-c (y ≡pl y) _ (id-≡pl y , id-≡pl y')
id-≡pl (¥ y)     = id-== y

lower-≡pl : ∀ φ ψ → φ ≡ ψ → T (φ ≡pl ψ)
lower-≡pl φ ._ refl = id-≡pl φ

_isSubFormula_ : PL-Formula → PL-Formula → Bool
_isSubFormula_ φ ψ with φ ≡pl ψ
...| true = true
φ isSubFormula ¥true     | false = false
φ isSubFormula ¥false    | false = false
φ isSubFormula (y || y') | false = φ isSubFormula y ∨ φ isSubFormula y'
φ isSubFormula (y && y') | false = φ isSubFormula y ∨ φ isSubFormula y'
φ isSubFormula (y => y') | false = φ isSubFormula y ∨ φ isSubFormula y'
φ isSubFormula ¥ y       | false = false

id-isSubFormula : ∀ φ → T (φ isSubFormula φ)
id-isSubFormula φ rewrite Tb (id-≡pl φ) = tt

envupdate : Env → ℕ → Bool → Env
envupdate ξ n b n' with n == n'
...| true  = b
...| false = ξ n'

lem-envupdate : ∀ ξ n b → envupdate ξ n b n ≡ b
lem-envupdate ξ n b rewrite Tb (id-== n) = refl

eval-pl : Env → PL-Formula → Bool
eval-pl ξ ¥true     = true
eval-pl ξ ¥false    = false
eval-pl ξ (y || y') = eval-pl ξ y ∨ eval-pl ξ y'
eval-pl ξ (y && y') = eval-pl ξ y ∧ eval-pl ξ y'
eval-pl ξ (y => y') = not (eval-pl ξ y) ∨ eval-pl ξ y'
eval-pl ξ (¥ y)     = ξ y

mutual
  lem-eval : ∀ ξ φ → ⟦ ξ ⊧ φ ⟧pl → T (eval-pl ξ φ)
  lem-eval ξ ¥true     = id
  lem-eval ξ ¥false    = id
  lem-eval ξ (y || y') = [ ∨-introl (eval-pl ξ y) _ ∘ lem-eval ξ y ,
                           ∨-intror (eval-pl ξ y) _ ∘ lem-eval ξ y' ]′
  lem-eval ξ (y && y') = lem-bool-∧-c (eval-pl ξ y) _ ∘ Prod.map (lem-eval ξ y) (lem-eval ξ y')
  lem-eval ξ (y => y') = λ p → lem-→-elim (eval-pl ξ y) _ (lem-eval ξ y' ∘ p ∘ lem-eval' ξ y)
  lem-eval ξ (¥ y)     = id

  lem-eval' : ∀ ξ φ → T (eval-pl ξ φ) → ⟦ ξ ⊧ φ ⟧pl
  lem-eval' ξ ¥true     = id
  lem-eval' ξ ¥false    = id
  lem-eval' ξ (y || y') = ∨-elim (inj₁ ∘ lem-eval' ξ y) (inj₂ ∘ lem-eval' ξ y')
  lem-eval' ξ (y && y') = ∧-elim (curry $ Prod.map (lem-eval' ξ y) (lem-eval' ξ y'))
  lem-eval' ξ (y => y') = (λ p → lem-eval' ξ y' ∘ p ∘ lem-eval ξ y) ∘ lem-→-intro (eval-pl ξ y) _
  lem-eval' ξ (¥ y)     = id

exmid-or : {A : Set} → {B : Set} → (A ⊎ ¬ A) × (B ⊎ ¬ B) → (A ⊎ B) ⊎ ¬ (A ⊎ B)
exmid-or (inj₁ x , y)       = inj₁ (inj₁ x)
exmid-or (inj₂ y , inj₁ x)  = inj₁ (inj₂ x)
exmid-or (inj₂ y , inj₂ y') = inj₂ [ y , y' ]′

exmid-and : {A : Set} → {B : Set} → (A ⊎ ¬ A) × (B ⊎ ¬ B) → (A × B) ⊎ ¬ (A × B)
exmid-and (inj₁ x , inj₁ x') = inj₁ (x , x')
exmid-and (inj₁ x , inj₂ y)  = inj₂ (y ∘ proj₂)
exmid-and (inj₂ y , x)       = inj₂ (y ∘ proj₁)

Boolean.Formula Page 341



exmid-fun : {A B : Set} → (A ⊎ ¬ A) × (B ⊎ ¬ B) → (A → B) ⊎ ¬ (A → B)
exmid-fun (a , inj₁ x) = inj₁ (const x)
exmid-fun (inj₁ x , inj₂ y)  = inj₂ (λ x' → y (x' x))
exmid-fun (inj₂ y , inj₂ y') = inj₁ (⊥-elim ∘ y)

ex-mid-pl : (ξ : Env) → (φ : PL-Formula) → ⟦ ξ ⊧ φ || ~ φ ⟧pl
ex-mid-pl ξ ¥true    = inj₁ tt
ex-mid-pl ξ ¥false   = inj₂ id
ex-mid-pl ξ (φ || ψ) = exmid-or  (ex-mid-pl ξ φ , ex-mid-pl ξ ψ)
ex-mid-pl ξ (φ && ψ) = exmid-and (ex-mid-pl ξ φ , ex-mid-pl ξ ψ)
ex-mid-pl ξ (φ => ψ) = exmid-fun (ex-mid-pl ξ φ , ex-mid-pl ξ ψ)
ex-mid-pl ξ (¥ v)    = ex-mid (ξ v)

stbl-pl : (ξ : Env) → (φ : PL-Formula) → ⟦ ξ ⊧ ~ (~ φ) ⟧pl → ⟦ ξ ⊧ φ ⟧pl
stbl-pl ξ φ p = [ id , ⊥-elim ∘ p ]′ (ex-mid-pl ξ φ)

demorg : ∀ ξ φ ψ → ⟦ ξ ⊧ ~ (φ && ψ) ⟧pl → ⟦ ξ ⊧ ~ φ || ~ ψ ⟧pl
demorg ξ φ ψ p = stbl-pl ξ (~ φ || ~ ψ) (λ x → p $ stbl-pl ξ φ (x ∘ inj₁) , stbl-pl ξ ψ (x ∘ inj₂))

material-pl : ∀ ξ φ ψ → ⟦ ξ ⊧ φ => ψ ⟧pl → ⟦ ξ ⊧ ~ φ || ψ ⟧pl
material-pl ξ φ ψ f = [ inj₂ ∘ f , inj₁ ]′ (ex-mid-pl ξ φ)

material-¬pl : ∀ ξ φ ψ → ⟦ ξ ⊧ ~ (φ => ψ) ⟧pl → ⟦ ξ ⊧ φ && (~ ψ) ⟧pl
material-¬pl ξ φ ψ p = [ ⊥-elim ∘ p ∘ const ,
                         _,_ $ [ id , ⊥-elim ∘ p ∘ (λ ~φ → ⊥-elim ∘ ~φ) ]′ (ex-mid-pl ξ φ)
                       ]′ (ex-mid-pl ξ ψ)

mkenv : List Bool → Env
mkenv []       n       = false
mkenv (x ∷ xs) 0       = x
mkenv (x ∷ xs) (suc n) = mkenv xs n

lem-mkenv-++-eq : ∀ ξ ξ' ζ n → ξ ++ ζ ≡ ξ' → T (n < length ξ) → mkenv ξ n ≡ mkenv ξ' n
lem-mkenv-++-eq []      ξ'            ζ n       eq   n<ξ = ⊥-elim n<ξ
lem-mkenv-++-eq (x ∷ ξ) .(x ∷ ξ ++ ζ) ζ zero    refl n<ξ = refl
lem-mkenv-++-eq (x ∷ ξ) .(x ∷ ξ ++ ζ) ζ (suc n) refl n<ξ = lem-mkenv-++-eq ξ _ ζ n refl n<ξ

lem-mkenv-++ : ∀ ξ ζ n → T (n < length ξ) → T (mkenv ξ n) → T (mkenv (ξ ++ ζ) n)
lem-mkenv-++ []      ζ n       () q
lem-mkenv-++ (x ∷ ξ) ζ zero    p  q = q
lem-mkenv-++ (x ∷ ξ) ζ (suc n) p  q = lem-mkenv-++ ξ ζ n p q

lem-mkenv-++' : ∀ ξ ζ n → T (n < length ξ) → T (mkenv (ξ ++ ζ) n) → T (mkenv ξ n)
lem-mkenv-++' []      ζ n       () q
lem-mkenv-++' (x ∷ ξ) ζ zero    p  q = q
lem-mkenv-++' (x ∷ ξ) ζ (suc n) p  q = lem-mkenv-++' ξ ζ n p q

bound : ℕ → PL-Formula → Bool
bound n ¥true     = true
bound n ¥false    = true
bound n (y || y') = bound n y ∧ bound n y'
bound n (y && y') = bound n y ∧ bound n y'
bound n (y => y') = bound n y ∧ bound n y'
bound n (¥ y)     = y < n

injbound : ∀ φ n m → T (n < suc m) → T (bound n φ) → T (bound m φ)
injbound ¥true     n m n<m p = tt
injbound ¥false    n m n<m p = tt
injbound (y || y') n m n<m p = f∧g {a = bound n y} (injbound y n m n<m) (injbound y' n m n<m) p
injbound (y && y') n m n<m p = f∧g {a = bound n y} (injbound y n m n<m) (injbound y' n m n<m) p
injbound (y => y') n m n<m p = f∧g {a = bound n y} (injbound y n m n<m) (injbound y' n m n<m) p
injbound (¥ y)     n m n<m p = <-trans (suc y) n m p n<m

env-subst : ∀ ξ₁ ξ₂ φ → (∀ n → ξ₁ n ≡ ξ₂ n) → ⟦ ξ₁ ⊧ φ ⟧pl → ⟦ ξ₂ ⊧ φ ⟧pl
env-subst ξ₁ ξ₂ ¥true    ext = id
env-subst ξ₁ ξ₂ ¥false   ext = id
env-subst ξ₁ ξ₂ (φ || ψ) ext = Sum.map (env-subst ξ₁ ξ₂ φ ext) (env-subst ξ₁ ξ₂ ψ ext)
env-subst ξ₁ ξ₂ (φ && ψ) ext = Prod.map (env-subst ξ₁ ξ₂ φ ext) (env-subst ξ₁ ξ₂ ψ ext)
env-subst ξ₁ ξ₂ (φ => ψ) ext = λ x → env-subst ξ₁ ξ₂ ψ ext ∘ x ∘ env-subst ξ₂ ξ₁ φ (sym ∘ ext)
env-subst ξ₁ ξ₂ (¥ v)    ext rewrite ext v = id

env-eq-guard : ∀ ξ₁ ξ₂ φ → (∀ n → T (¥ n isSubFormula φ) → ξ₁ n ≡ ξ₂ n)
             → ⟦ ξ₁ ⊧ φ ⟧pl ≡ ⟦ ξ₂ ⊧ φ ⟧pl
env-eq-guard ξ₁ ξ₂ ¥true ext  = refl
env-eq-guard ξ₁ ξ₂ ¥false ext = refl
env-eq-guard ξ₁ ξ₂ (φ || ψ) ext
  = cong₂ _⊎_ (env-eq-guard ξ₁ ξ₂ φ (λ n x → ext n (∨-introl _ _ x)))
              (env-eq-guard ξ₁ ξ₂ ψ (λ n x → ext n (∨-intror (¥ n isSubFormula φ) _ x)))
env-eq-guard ξ₁ ξ₂ (φ && ψ) ext
  = cong₂ _×_ (env-eq-guard ξ₁ ξ₂ φ (λ n x → ext n (∨-introl _ _ x)))
              (env-eq-guard ξ₁ ξ₂ ψ (λ n x → ext n (∨-intror (¥ n isSubFormula φ) _ x)))
env-eq-guard ξ₁ ξ₂ (φ => ψ) ext
  = cong₂ (\ a b → a → b) (env-eq-guard ξ₁ ξ₂ φ (λ n x → ext n (∨-introl _ _ x)))
                          (env-eq-guard ξ₁ ξ₂ ψ (λ n x → ext n (∨-intror (¥ n isSubFormula φ) _ x)))
env-eq-guard ξ₁ ξ₂ (¥ v) ext rewrite ext v (id-isSubFormula (¥ v)) = refl

env-subst-guard : ∀ ξ₁ ξ₂ φ → (∀ n → T (¥ n isSubFormula φ) → ξ₁ n ≡ ξ₂ n)
                → ⟦ ξ₁ ⊧ φ ⟧pl → ⟦ ξ₂ ⊧ φ ⟧pl
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                → ⟦ ξ₁ ⊧ φ ⟧pl → ⟦ ξ₂ ⊧ φ ⟧pl
env-subst-guard ξ₁ ξ₂ ¥true ext = id
env-subst-guard ξ₁ ξ₂ ¥false ext = id
env-subst-guard ξ₁ ξ₂ (φ || ψ) ext
  = Sum.map (env-subst-guard ξ₁ ξ₂ φ (λ n x → ext n (∨-introl _ _ x)))
            (env-subst-guard ξ₁ ξ₂ ψ (λ n x → ext n (∨-intror (¥ n isSubFormula φ) _ x)))
env-subst-guard ξ₁ ξ₂ (φ && ψ) ext
  = Prod.map (env-subst-guard ξ₁ ξ₂ φ (λ n x → ext n (∨-introl _ _ x)))
             (env-subst-guard ξ₁ ξ₂ ψ (λ n x → ext n (∨-intror (¥ n isSubFormula φ) _ x)))
env-subst-guard ξ₁ ξ₂ (φ => ψ) ext
  = λ x → env-subst-guard ξ₁ ξ₂ ψ (λ n x' → ext n (∨-intror (¥ n isSubFormula φ) _ x')) ∘
             x ∘ env-subst-guard ξ₂ ξ₁ φ (λ n x' → sym (ext n (∨-introl _ _ x')))
env-subst-guard ξ₁ ξ₂ (¥ v) ext rewrite ext v (id-isSubFormula (¥ v)) = id

subform-¥-elim : ∀ k y → T (¥ (suc k) isSubFormula ¥ (suc y)) → T (¥ k isSubFormula ¥ y)
subform-¥-elim k y p with k == y
...| true = tt
...| false = p

lem-mkenv-++-pl-eq : ∀ φ ξ ζ → T (bound (length ξ) φ) → ∀ k → T (¥ k isSubFormula φ)
                   → mkenv ξ k ≡ mkenv (ξ ++ ζ) k
lem-mkenv-++-pl-eq ¥true ξ ζ b k kinφ = ⊥-elim kinφ
lem-mkenv-++-pl-eq ¥false ξ ζ b k kinφ = ⊥-elim kinφ
lem-mkenv-++-pl-eq (y || y') ξ ζ b k kinφ
  = ∨-elim (lem-mkenv-++-pl-eq y ξ ζ (∧-eliml b) k)
                   (lem-mkenv-++-pl-eq y' ξ ζ (∧-elimr (bound (length ξ) y) b) k) kinφ
lem-mkenv-++-pl-eq (y && y') ξ ζ b k kinφ
  = ∨-elim (lem-mkenv-++-pl-eq y ξ ζ (∧-eliml b) k)
                   (lem-mkenv-++-pl-eq y' ξ ζ (∧-elimr (bound (length ξ) y) b) k) kinφ
lem-mkenv-++-pl-eq (y => y') ξ ζ b k kinφ
  = ∨-elim (lem-mkenv-++-pl-eq y ξ ζ (∧-eliml b) k)
                   (lem-mkenv-++-pl-eq y' ξ ζ (∧-elimr (bound (length ξ) y) b) k) kinφ
lem-mkenv-++-pl-eq (¥ y) [] ζ b k kinφ = ⊥-elim b
lem-mkenv-++-pl-eq (¥ y) (x ∷ ξ) ζ b zero kinφ = refl
lem-mkenv-++-pl-eq (¥ zero) (x ∷ ξ) ζ b (suc k) kinφ = ⊥-elim kinφ
lem-mkenv-++-pl-eq (¥ (suc y)) (x ∷ ξ) ζ b (suc k) kinφ
  = lem-mkenv-++-pl-eq (¥ y) ξ ζ b k (subform-¥-elim k y kinφ)

lem-mkenv-++-pl-eq' : ∀ φ ξ ξ' ζ → ξ' ≡ ξ ++ ζ → T (bound (length ξ) φ) → ∀ k
                    → T (¥ k isSubFormula φ) → mkenv ξ k ≡ mkenv ξ' k
lem-mkenv-++-pl-eq' ¥true ξ ξ' ζ eq b k kinφ = ⊥-elim kinφ
lem-mkenv-++-pl-eq' ¥false ξ ξ' ζ eq b k kinφ = ⊥-elim kinφ
lem-mkenv-++-pl-eq' (y || y') ξ ξ' ζ ξ≡ξ' b k kinφ
  = ∨-elim (lem-mkenv-++-pl-eq' y ξ ξ' ζ ξ≡ξ' (∧-eliml b) k)
           (lem-mkenv-++-pl-eq' y' ξ ξ' ζ ξ≡ξ' (∧-elimr (bound (length ξ) y) b) k) kinφ
lem-mkenv-++-pl-eq' (y && y') ξ ξ' ζ ξ≡ξ' b k kinφ
  = ∨-elim (lem-mkenv-++-pl-eq' y ξ ξ' ζ ξ≡ξ' (∧-eliml b) k)
           (lem-mkenv-++-pl-eq' y' ξ ξ' ζ ξ≡ξ' (∧-elimr (bound (length ξ) y) b) k) kinφ
lem-mkenv-++-pl-eq' (y => y') ξ ξ' ζ ξ≡ξ' b k kinφ
  = ∨-elim (lem-mkenv-++-pl-eq' y ξ ξ' ζ ξ≡ξ' (∧-eliml b) k)
           (lem-mkenv-++-pl-eq' y' ξ ξ' ζ ξ≡ξ' (∧-elimr (bound (length ξ) y) b) k) kinφ
lem-mkenv-++-pl-eq' (¥ y) [] ξ' ζ ξ≡ξ' b k kinφ = ⊥-elim b
lem-mkenv-++-pl-eq' (¥ y) (x ∷ ξ) ._ ζ refl b zero kinφ = refl
lem-mkenv-++-pl-eq' (¥ zero) (x ∷ ξ) ξ' ζ ξ≡ξ' b (suc k) kinφ = ⊥-elim kinφ
lem-mkenv-++-pl-eq' (¥ (suc y)) (x ∷ ξ) ._ ζ refl b (suc k) kinφ
  = lem-mkenv-++-pl-eq' (¥ y) ξ _ ζ refl b k (subform-¥-elim k y kinφ)

lem-mkenv-++-pl : ∀ φ ξ ζ → T (bound (length ξ) φ) → ⟦ mkenv ξ ⊧ φ ⟧pl → ⟦ mkenv (ξ ++ ζ) ⊧ φ ⟧pl
lem-mkenv-++-pl φ ξ ζ b = env-subst-guard (mkenv ξ) (mkenv (ξ ++ ζ)) φ (lem-mkenv-++-pl-eq φ ξ ζ b)

lem-mkenv-++-pl' : ∀ φ ξ ζ → T (bound (length ξ) φ) → ⟦ mkenv (ξ ++ ζ) ⊧ φ ⟧pl → ⟦ mkenv ξ ⊧ φ ⟧pl
lem-mkenv-++-pl' φ ξ ζ b = env-subst-guard (mkenv (ξ ++ ζ)) (mkenv ξ) φ
                                           (λ k p → sym (lem-mkenv-++-pl-eq φ ξ ζ b k p))

lem-length : {a : Set} → (l m : List a) → length l + length m ≡ length (l ++ m)
lem-length [] m = refl
lem-length (x ∷ l) m = cong suc (lem-length l m)

lem-length² : {a : Set} → (l m n : List a) → length l + length m + length n ≡ length (l ++ m ++ n)
lem-length² [] m n = lem-length m n
lem-length² (x ∷ l) m n = cong suc (lem-length² l m n)

lem-mkenv-++-pl-eq² : ∀ φ ξ₁ ξ₂ ζ → T (bound (length ξ₁ + length ξ₂) φ)→ _
lem-mkenv-++-pl-eq² φ ξ₁ ξ₂ ζ rewrite lem-length ξ₁ ξ₂
  = lem-mkenv-++-pl-eq' φ (ξ₁ ++ ξ₂) (ξ₁ ++ ξ₂ ++ ζ) ζ (sym (Monoid.assoc (monoid Bool) ξ₁ ξ₂ ζ))

lem-mkenv-++-pl² : ∀ φ ξ₁ ξ₂ ζ → T (bound (length ξ₁ + length ξ₂) φ)
                → ⟦ mkenv (ξ₁ ++ ξ₂) ⊧ φ ⟧pl → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ζ) ⊧ φ ⟧pl
lem-mkenv-++-pl² φ ξ₁ ξ₂ ζ b
  = env-subst-guard (mkenv (ξ₁ ++ ξ₂)) (mkenv (ξ₁ ++ ξ₂ ++ ζ)) φ (lem-mkenv-++-pl-eq² φ ξ₁ ξ₂ ζ b)

lem-mkenv-++-pl²' : ∀ φ ξ₁ ξ₂ ζ → T (bound (length ξ₁ + length ξ₂) φ)
                → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ζ) ⊧ φ ⟧pl → ⟦ mkenv (ξ₁ ++ ξ₂) ⊧ φ ⟧pl
lem-mkenv-++-pl²' φ ξ₁ ξ₂ ζ b
  = env-subst-guard (mkenv (ξ₁ ++ ξ₂ ++ ζ)) (mkenv (ξ₁ ++ ξ₂)) φ
                    (\ k p → sym (lem-mkenv-++-pl-eq² φ ξ₁ ξ₂ ζ b k p))

lem-mkenv-++-pl-eq³ : ∀ φ ξ₁ ξ₂ ξ₃ ζ
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                    → T (bound (length ξ₁ + length ξ₂ + length ξ₃) φ)
                    → (n : ℕ) → _ → mkenv (ξ₁ ++ ξ₂ ++ ξ₃) n ≡ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ζ) n
lem-mkenv-++-pl-eq³ φ ξ₁ ξ₂ ξ₃ ζ b rewrite lem-length ξ₁ ξ₂
                                         | sym (Monoid.assoc (monoid Bool)  ξ₁ ξ₂ ξ₃)
                                         | sym (Monoid.assoc (monoid Bool)  ξ₁ ξ₂ (ξ₃ ++ ζ))
 = lem-mkenv-++-pl-eq² φ (ξ₁ ++ ξ₂) ξ₃ ζ b

lem-mkenv-++-pl³ : ∀ φ ξ₁ ξ₂ ξ₃ ζ → T (bound (length ξ₁ + length ξ₂ + length ξ₃) φ)
                 → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃) ⊧ φ ⟧pl → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ζ) ⊧ φ ⟧pl
lem-mkenv-++-pl³ φ ξ₁ ξ₂ ξ₃ ζ p
  = env-subst-guard (mkenv (ξ₁ ++ ξ₂ ++ ξ₃)) (mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ζ)) φ
                    (lem-mkenv-++-pl-eq³ φ ξ₁ ξ₂ ξ₃ ζ p)

lem-mkenv-++-pl³' : ∀ φ ξ₁ ξ₂ ξ₃ ζ → T (bound (length ξ₁ + length ξ₂ + length ξ₃) φ)
                  → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ζ) ⊧ φ ⟧pl → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃) ⊧ φ ⟧pl
lem-mkenv-++-pl³' φ ξ₁ ξ₂ ξ₃ ζ p
  = env-subst-guard (mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ζ)) (mkenv (ξ₁ ++ ξ₂ ++ ξ₃)) φ
                    (\ a b → sym (lem-mkenv-++-pl-eq³ φ ξ₁ ξ₂ ξ₃ ζ p a b))

lem-mkenv-++-pl-eq⁴ : ∀ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ
                    → T (bound (length ξ₁ + length ξ₂ + length ξ₃ + length ξ₄) φ)
                    → ∀ n → _
                    → mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄) n ≡ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄ ++ ζ) n
lem-mkenv-++-pl-eq⁴ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ b rewrite lem-length ξ₁ ξ₂
                                         | sym (Monoid.assoc (monoid Bool) ξ₁ ξ₂ (ξ₃ ++ ξ₄))
                                         | sym (Monoid.assoc (monoid Bool) ξ₁ ξ₂ (ξ₃ ++ ξ₄ ++ ζ))
 = lem-mkenv-++-pl-eq³ φ (ξ₁ ++ ξ₂) ξ₃ ξ₄ ζ b

lem-mkenv-++-pl⁴ : ∀ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ → T (bound (length ξ₁ + length ξ₂ + length ξ₃ + length ξ₄) φ)
                 → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄) ⊧ φ ⟧pl
                 → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄ ++ ζ) ⊧ φ ⟧pl
lem-mkenv-++-pl⁴ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ p
  = env-subst-guard (mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄)) (mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄ ++ ζ)) φ
                    (lem-mkenv-++-pl-eq⁴ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ p)

lem-mkenv-++-pl⁴' : ∀ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ
                  → T (bound (length ξ₁ + length ξ₂ + length ξ₃ + length ξ₄) φ)
                  → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄ ++ ζ) ⊧ φ ⟧pl
                  → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄) ⊧ φ ⟧pl
lem-mkenv-++-pl⁴' φ ξ₁ ξ₂ ξ₃ ξ₄ ζ p
  = env-subst-guard (mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄ ++ ζ)) (mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄)) φ
                    (\ a b → sym (lem-mkenv-++-pl-eq⁴ φ ξ₁ ξ₂ ξ₃ ξ₄ ζ p a b))

extendenv : ∀ ξ ξ' ζ → (P : ℕ → Set) → length ξ ≡ length ξ' → (∀ k → P k → mkenv ξ k ≡ mkenv ξ' k)
          → ∀ j → P j → mkenv (ξ ++ ζ) j ≡ mkenv (ξ' ++ ζ) j
extendenv [] [] ζ P lp ∀k j pj = refl
extendenv [] (x' ∷ ξ') ζ P () ∀k j pj
extendenv (x ∷ ξ) [] ζ P () ∀k j pj
extendenv (x ∷ ξ) (x' ∷ ξ') ζ P lp ∀k zero pj = ∀k 0 pj
extendenv (x ∷ ξ) (x' ∷ ξ') ζ P lp ∀k (suc n) pj = extendenv ξ ξ' ζ (P ∘ suc)
                                                             (cong pred lp) (∀k ∘ suc) n pj

shiftpl : PL-Formula → ℕ → PL-Formula
shiftpl φ n = elim-pl ¥true ¥false (¥ ∘ (_+_ n)) _||_ _&&_ _=>_ φ

mutual
  lem-shift1-pl : ∀ m b φ ξ → ⟦ mkenv ξ ⊧ shiftpl φ m ⟧pl → ⟦ mkenv (b ∷ ξ) ⊧ shiftpl φ (suc m) ⟧pl
  lem-shift1-pl m b ¥true ξ     = id
  lem-shift1-pl m b ¥false ξ    = id
  lem-shift1-pl m b (y || y') ξ = Sum.map  (lem-shift1-pl m b y ξ) (lem-shift1-pl m b y' ξ)
  lem-shift1-pl m b (y && y') ξ = Prod.map (lem-shift1-pl m b y ξ) (lem-shift1-pl m b y' ξ)
  lem-shift1-pl m b (y => y') ξ = \ x → (lem-shift1-pl m b y' ξ) ∘ x ∘ (lem-shift1-pl' m b y ξ)
  lem-shift1-pl m b (¥ y) ξ     = id

  lem-shift1-pl' : ∀ m b φ ξ → ⟦ mkenv (b ∷ ξ) ⊧ shiftpl φ (suc m) ⟧pl → ⟦ mkenv ξ ⊧ shiftpl φ m ⟧pl
  lem-shift1-pl' m b ¥true ξ     = id
  lem-shift1-pl' m b ¥false ξ    = id
  lem-shift1-pl' m b (y || y') ξ = Sum.map  (lem-shift1-pl' m b y ξ) (lem-shift1-pl' m b y' ξ)
  lem-shift1-pl' m b (y && y') ξ = Prod.map (lem-shift1-pl' m b y ξ) (lem-shift1-pl' m b y' ξ)
  lem-shift1-pl' m b (y => y') ξ = \ x → (lem-shift1-pl' m b y' ξ) ∘ x ∘ (lem-shift1-pl m b y ξ)
  lem-shift1-pl' m b (¥ y) ξ     = id

id-elim-pl : ∀ φ → elim-pl ¥true ¥false ¥ _||_ _&&_ _=>_ φ ≡ φ
id-elim-pl ¥true     = refl
id-elim-pl ¥false    = refl
id-elim-pl (y || y') = cong₂ _||_ (id-elim-pl y) (id-elim-pl y')
id-elim-pl (y && y') = cong₂ _&&_ (id-elim-pl y) (id-elim-pl y')
id-elim-pl (y => y') = cong₂ _=>_ (id-elim-pl y) (id-elim-pl y')
id-elim-pl (¥ y)     = refl

lem-shift-pl : (φ : PL-Formula) → ∀ ξ ζ → ⟦ mkenv ζ ⊧ φ ⟧pl
             → ⟦ mkenv (ξ ++ ζ) ⊧ shiftpl φ (length ξ) ⟧pl
lem-shift-pl φ [] ζ p rewrite id-elim-pl φ = p
lem-shift-pl φ (x ∷ ξ) ζ p = lem-shift1-pl (length ξ) x φ (ξ ++ ζ) (lem-shift-pl φ ξ ζ p)

lem-shift-pl' : (φ : PL-Formula) → ∀ ξ ζ → ⟦ mkenv (ξ ++ ζ) ⊧ shiftpl φ (length ξ) ⟧pl
              → ⟦ mkenv ζ ⊧ φ ⟧pl
lem-shift-pl' φ [] ζ p rewrite (id-elim-pl φ) = p
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lem-shift-pl' φ (x ∷ ξ) ζ p = lem-shift-pl' φ ξ ζ (lem-shift1-pl' (length ξ) x φ (ξ ++ ζ) p)

lem-shift-pl² : (φ : PL-Formula) → (ξ₁ ξ₂ ξ₃ : List Bool) → ⟦ mkenv ξ₃ ⊧ φ ⟧pl
              → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃) ⊧ shiftpl φ (length ξ₁ + length ξ₂) ⟧pl
lem-shift-pl² φ [] ξ₂ ξ₃ p = lem-shift-pl φ ξ₂ ξ₃ p
lem-shift-pl² φ (x ∷ ξ₁) ξ₂ ξ₃ p = lem-shift1-pl (length ξ₁ + length ξ₂) x φ (ξ₁ ++ ξ₂ ++ ξ₃)
                                                 (lem-shift-pl² φ ξ₁ ξ₂ ξ₃ p)

lem-shift-pl²' : (φ : PL-Formula) → (ξ₁ ξ₂ ξ₃ : List Bool)
               → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃) ⊧ shiftpl φ (length ξ₁ + length ξ₂) ⟧pl
               → ⟦ mkenv ξ₃ ⊧ φ ⟧pl
lem-shift-pl²' φ [] ξ₂ ξ₃ p = lem-shift-pl' φ ξ₂ ξ₃ p
lem-shift-pl²' φ (x ∷ ξ₁) ξ₂ ξ₃ p
  = lem-shift-pl²' φ ξ₁ ξ₂ ξ₃ (lem-shift1-pl' (length ξ₁ + length ξ₂) x φ (ξ₁ ++ ξ₂ ++ ξ₃) p)

lem-shift-pl³ : (φ : PL-Formula)
              → (ξ₁ ξ₂ ξ₃ ξ₄ : List Bool)
              → ⟦ mkenv ξ₄ ⊧ φ ⟧pl
              → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄) ⊧ shiftpl φ (length ξ₁ + length ξ₂ + length ξ₃) ⟧pl
lem-shift-pl³ φ [] ξ₂ ξ₃ ξ₄ p = lem-shift-pl² φ ξ₂ ξ₃ ξ₄ p
lem-shift-pl³ φ (x ∷ ξ₁) ξ₂ ξ₃ ξ₄ p = lem-shift1-pl (length ξ₁ + length ξ₂ + length ξ₃)
                                                    x φ (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄)
                                                    (lem-shift-pl³ φ ξ₁ ξ₂ ξ₃ ξ₄ p)

lem-shift-pl³' : (φ : PL-Formula) → (ξ₁ ξ₂ ξ₃ ξ₄ : List Bool)
               → ⟦ mkenv (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄) ⊧ shiftpl φ (length ξ₁ + length ξ₂ + length ξ₃)⟧pl
               → ⟦ mkenv ξ₄ ⊧ φ ⟧pl
lem-shift-pl³' φ [] ξ₂ ξ₃ ξ₄ p = lem-shift-pl²' φ ξ₂ ξ₃ ξ₄ p
lem-shift-pl³' φ (x ∷ ξ₁) ξ₂ ξ₃ ξ₄ p
  = lem-shift-pl³' φ ξ₁ ξ₂ ξ₃ ξ₄ (lem-shift1-pl' (length ξ₁ + length ξ₂ + length ξ₃)
                                                 x φ (ξ₁ ++ ξ₂ ++ ξ₃ ++ ξ₄) p)

lem-bound : ∀ φ n k → T (bound n φ) → T (¥ k isSubFormula φ) → T (k < n)
lem-bound ¥true     n k bn sub = ⊥-elim sub
lem-bound ¥false    n k bn sub = ⊥-elim sub
lem-bound (y || y') n k bn sub = ∨-elim (lem-bound y n k (∧-eliml bn))
                                        (lem-bound y' n k (∧-elimr (bound n y) bn)) sub
lem-bound (y && y') n k bn sub = ∨-elim (lem-bound y n k (∧-eliml bn))
                                        (lem-bound y' n k (∧-elimr (bound n y) bn)) sub
lem-bound (y => y') n k bn sub = ∨-elim (lem-bound y n k (∧-eliml bn))
                                        (lem-bound y' n k (∧-elimr (bound n y) bn)) sub
lem-bound (¥ y)     n k bn sub with ex-mid (k == y)
...| inj₁ x rewrite lift-== k y x = bn
...| inj₂ x rewrite ¬Tb x = ⊥-elim sub

-- another variant of subst
env-eq-bound : ∀ ξ₁ ξ₂ φ n → T (bound n φ) → (∀ m → T (m < n) → ξ₁ m ≡ ξ₂ m)
             → ⟦ ξ₁ ⊧ φ ⟧pl ≡ ⟦ ξ₂ ⊧ φ ⟧pl
env-eq-bound ξ₁ ξ₂ ¥true     n p q = refl
env-eq-bound ξ₁ ξ₂ ¥false    n p q = refl
env-eq-bound ξ₁ ξ₂ (φ || φ₁) n p q = cong₂ _⊎_ (env-eq-bound ξ₁ ξ₂ φ n (∧-eliml p) q)
                                               (env-eq-bound ξ₁ ξ₂ φ₁ n (∧-elimr (bound n φ) p) q)
env-eq-bound ξ₁ ξ₂ (φ && φ₁) n p q = cong₂ _×_ (env-eq-bound ξ₁ ξ₂ φ n (∧-eliml p) q)
                                               (env-eq-bound ξ₁ ξ₂ φ₁ n (∧-elimr (bound n φ) p) q)
env-eq-bound ξ₁ ξ₂ (φ => φ₁) n p q = cong₂ (λ a b → a → b)
                                           (env-eq-bound ξ₁ ξ₂ φ n (∧-eliml p) q)
                                           (env-eq-bound ξ₁ ξ₂ φ₁ n (∧-elimr (bound n φ) p) q)
env-eq-bound ξ₁ ξ₂ (¥ x)     n p q = cong T (q x p)

env-eq-bound-subst : ∀ ξ₁ ξ₂ φ n → T (bound n φ) → (∀ m → T (m < n) → ξ₁ m ≡ ξ₂ m)
                   → ⟦ ξ₁ ⊧ φ ⟧pl → ⟦ ξ₂ ⊧ φ ⟧pl
env-eq-bound-subst ξ₁ ξ₂ φ n p q r rewrite env-eq-bound ξ₁ ξ₂ φ n p q = r

injbool : Bool → PL-Formula
injbool true = ¥true
injbool false = ¥false

andpl : List PL-Formula → PL-Formula
andpl = foldr _&&_ ¥true
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module Boolean.TPTP where

open import Data.Bool
open import Data.Nat
open import Data.String

open import Boolean.Formula

private primitive primShowNat : ℕ → String

tptpformat : PL-Formula → String
tptpformat ¥true    = "$true"
tptpformat ¥false   = "$false"
tptpformat (¥ vid)  = "'" ++ (primShowNat vid)  ++ "'"
tptpformat (φ && ψ) = "(" ++ tptpformat φ ++ " & "  ++ tptpformat ψ ++ ")"
tptpformat (φ || ψ) = "(" ++ tptpformat φ ++ " | "  ++ tptpformat ψ ++ ")"
tptpformat (φ => ψ) = "(" ++ tptpformat φ ++ " => " ++ tptpformat ψ ++ ")"

tptp : PL-Formula → String
tptp φ = "fof(ax1,axiom," ++ tptpformat (~ φ) ++ ")."
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module Boolean.CommonBinding where

open import Boolean.Formula
open import Boolean.TPTP

open import Data.Bool

open import PropIso

{-# BUILTIN UNIT ⊤ #-}

{-# BUILTIN TRIV tt #-}

{-# BUILTIN EMPTY ⊥ #-}

{-# BUILTIN ATOM T #-}

{-# BUILTIN ATPPROBLEM PL-Formula #-}

{-# BUILTIN ATPINPUT tptp #-}
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module Boolean.SatSolver where

open import Data.Bool renaming (_∧_ to _∧♭_; _∨_ to _∨♭_; not to ¬♭_)
open import Data.Nat hiding (_<_ ; _≤_)
open import Data.Product as Prod
open import Data.Sum as Sum

open import PropIso renaming (_⟶_ to _⇒♭_)
open import Boolean.Formula

varbound : PL-Formula → ℕ
varbound ¥true     = 0
varbound ¥false    = 0
varbound (y || y') = max (varbound y) (varbound y')
varbound (y && y') = max (varbound y) (varbound y')
varbound (y => y') = max (varbound y) (varbound y')
varbound (¥ y)     = suc y

lem-varbound : ∀ φ → T (bound (varbound φ) φ)
lem-varbound ¥true  = tt
lem-varbound ¥false = tt
lem-varbound (y || y')
  = elim-max _ _ (λ k → T (bound k (y || y')))
      (λ p → ∧-intro _ _ (lem-varbound y) (injbound y' (varbound y') _ (<-¬ _ (varbound y') p)
                                                       (lem-varbound y')))
      (λ p → ∧-intro _ _ (injbound y (varbound y) _ (<-rsuc (varbound y) _ p) (lem-varbound y))
                         (lem-varbound y'))
lem-varbound (y && y')
  = elim-max _ _ (λ k → T (bound k (y && y')))
      (λ p → ∧-intro _ _ (lem-varbound y) (injbound y' (varbound y') _
                                                    (<-¬ _ (varbound y') p) (lem-varbound y')))
      (λ p → ∧-intro _ _ (injbound y (varbound y) _ (<-rsuc (varbound y) _ p) (lem-varbound y))
                         (lem-varbound y'))
lem-varbound (y => y')
  = elim-max _ _ (λ k → T (bound k (y => y')))
      (λ p → ∧-intro _ _ (lem-varbound y) (injbound y' (varbound y') _
                                                    (<-¬ _ (varbound y') p) (lem-varbound y')))
      (λ p → ∧-intro _ _ (injbound y (varbound y) _ (<-rsuc (varbound y) _ p) (lem-varbound y))
                         (lem-varbound y'))
lem-varbound (¥ y) = <-ord y

Boolean : ℕ → Set -- formulae bounded by n variables
Boolean n = Σ PL-Formula (T ∘ bound n)

⟦_⊧_⟧b : ∀ {n} → Env → Boolean n → Set
⟦ ξ ⊧ φ ⟧b = ⟦ ξ ⊧ proj₁ φ ⟧pl

BooleanFormula : Set
BooleanFormula = Σ ℕ Boolean

mkbooleanformula : PL-Formula → BooleanFormula
mkbooleanformula φ = varbound φ , φ , lem-varbound φ

Taut : BooleanFormula → Set
Taut φ = ∀ ξ → ⟦ ξ ⊧ proj₂ φ ⟧b

inst : ∀ {n} → Boolean n → Boolean (suc n)→ Boolean n
inst b (¥true   , proj₂) = ¥true , proj₂
inst b (¥false  , proj₂) = ¥false , proj₂
inst b (y || y' , proj₂)
  = uncurry' (λ x y0 → uncurry' (λ x' y1 → x || x' , ∧-intro (bound _ x) _ y0 y1)
                                (inst b (y' , ∧-elimr (bound (suc _) y) proj₂)))
             (inst b (y , ∧-eliml proj₂))
inst b (y && y' , proj₂)
  =  uncurry' (λ x y0 → uncurry' (λ x' y1 → x && x' , ∧-intro (bound _ x) _ y0 y1)
                                 (inst b (y' , ∧-elimr (bound (suc _) y) proj₂)))
              (inst b (y , ∧-eliml proj₂))
inst b (y => y' , proj₂)
  =  uncurry' (λ x y0 → uncurry' (λ x' y1 → x => x' , ∧-intro (bound _ x) _ y0 y1)
                                 (inst b (y' , ∧-elimr (bound (suc _) y) proj₂)))
              (inst b (y , ∧-eliml proj₂))
inst b (¥ zero     , proj₂) = b
inst b (¥ (suc n') , proj₂) = (¥ n') , proj₂

abstract
  taut : BooleanFormula → Bool
  taut (zero  , ¥true   , p) = true
  taut (zero  , ¥false  , p) = false
  taut (zero  , y || y' , p) = taut (0 , y , ∧-eliml p) ∨♭ taut (0 , y' , ∧-elimr (bound 0 y) p)
  taut (zero  , y && y' , p) = taut (0 , y , ∧-eliml p) ∧♭ taut (0 , y' , ∧-elimr (bound 0 y) p)
  taut (zero  , y => y' , p) = taut (0 , y , ∧-eliml p) ⇒♭ taut (0 , y' , ∧-elimr (bound 0 y) p)
  taut (zero  , ¥ y     , ())
  taut (suc n , φ       , p)
    = uncurry' (λ x y0 → uncurry' (λ x' y1 → taut (n , x , y0) ∧♭ taut (n , x' , y1))
                                  (inst (¥true , tt) (φ , p)))
               (inst (¥false , tt) (φ , p))
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const-pl : Bool → ∀ n → Boolean n
const-pl true n  = ¥true , tt
const-pl false n = ¥false , tt

mutual
  lem-inst : ∀ {n : ℕ} (φ : Boolean (suc n)) (ξ : Env) → ⟦ ξ ⊧ φ ⟧b
           → ⟦ ξ ∘ suc ⊧ inst (const-pl (ξ 0) n) φ ⟧b
  lem-inst (¥true   , b) ξ p = p
  lem-inst (¥false  , b) ξ p = p
  lem-inst (y || y' , b) ξ p = Sum.map  (lem-inst (y , ∧-eliml b) ξ)
                                        (lem-inst (y' , ∧-elimr (bound _ y) b) ξ) p
  lem-inst (y && y' , b) ξ p = Prod.map (lem-inst (y , ∧-eliml b) ξ)
                                        (lem-inst (y' , ∧-elimr (bound _ y) b) ξ) p
  lem-inst (y => y' , b) ξ p = lem-inst (y' , ∧-elimr (bound _ y) b) ξ ∘ p ∘
                                 lem-inst' (y , ∧-eliml b) ξ
  lem-inst (¥ zero  , b) ξ p with ξ 0
  ...| true = p
  ...| false = p
  lem-inst (¥ (suc n') , b) ξ p = p

  lem-inst' : ∀ {n : ℕ} (φ : Boolean (suc n)) (ξ : Env) → ⟦ ξ ∘ suc ⊧ inst (const-pl (ξ 0) n) φ ⟧b
            → ⟦ ξ ⊧ φ ⟧b
  lem-inst' (¥true   , b) ξ p = p
  lem-inst' (¥false  , b) ξ p = p
  lem-inst' (y || y' , b) ξ p = Sum.map  (lem-inst' (y , ∧-eliml b) ξ)
                                         (lem-inst' (y' , ∧-elimr (bound _ y) b) ξ) p
  lem-inst' (y && y' , b) ξ p = Prod.map (lem-inst' (y , ∧-eliml b) ξ)
                                         (lem-inst' (y' , ∧-elimr (bound _ y) b) ξ) p
  lem-inst' (y => y' , b) ξ p = lem-inst' (y' , ∧-elimr (bound _ y) b) ξ ∘ p ∘
                                  lem-inst (y , ∧-eliml b) ξ
  lem-inst' (¥ zero  , b) ξ p with ξ 0
  ...| true = p
  ...| false = p
  lem-inst' (¥ (suc n') , b) ξ p = p

lem-ξ-zero : (φ : Boolean 0) → (ξ ζ : Env) → ⟦ ξ ⊧ φ ⟧b → ⟦ ζ ⊧ φ ⟧b
lem-ξ-zero (¥true   , b) ξ ζ p = p
lem-ξ-zero (¥false  , b) ξ ζ p = p
lem-ξ-zero (y || y' , b) ξ ζ p = Sum.map  (lem-ξ-zero (y , ∧-eliml b) ξ ζ)
                                          (lem-ξ-zero (y' , ∧-elimr (bound _ y) b) ξ ζ) p
lem-ξ-zero (y && y' , b) ξ ζ p = Prod.map (lem-ξ-zero (y , ∧-eliml b) ξ ζ)
                                          (lem-ξ-zero (y' , ∧-elimr (bound _ y) b) ξ ζ) p
lem-ξ-zero (y => y' , b) ξ ζ p = lem-ξ-zero (y' , ∧-elimr (bound _ y) b) ξ ζ ∘ p ∘
                                   lem-ξ-zero (y , ∧-eliml b) ζ ξ
lem-ξ-zero (¥ y     , b) ξ ζ p = ⊥-elim b

private
  trivenv : Env
  trivenv _ = true

mutual
  abstract
    sound : (φ : BooleanFormula) → T (taut φ) → Taut φ
    sound (zero , ¥true , b) p ξ   = p
    sound (zero , ¥false , b) p ξ  = p
    sound (zero , y || y' , b) p ξ = ∨-elim (λ x → inj₁ (sound (0 , y , _) x ξ))
                                            (λ x → inj₂ (sound (0 , y' , _) x ξ)) p
    sound (zero , y && y' , b) p ξ = ∧-elim (λ x x' → (sound (0 , y , _) x ξ) ,
                                                      (sound (0 , y' , _) x' ξ)) p
    sound (zero , y => y' , b) p ξ = λ x → sound (0 , y' , _) (lem-⟶-s (taut (0 , y , _)) _ p
                                                 (comp (0 , y , _)
                                                   (λ ξ' → lem-ξ-zero (y , ∧-eliml b) ξ ξ' x))) ξ
    sound (zero , ¥ y , b) p ξ     = ⊥-elim b
    sound (suc n , φ , b) p ξ      = lem-inst' (φ , b) ξ (sound (n , inst (const-pl (ξ 0) n)(φ , b))
                                                           (aux p) (λ _ → ξ(suc _)))
      where
        aux : T (taut (n , inst (¥false , tt) (φ , b)) ∧♭ taut (n , inst (¥true , tt) (φ , b)))
            → T (taut (n , inst (const-pl (ξ 0) n) (φ , b)))
        aux p with ξ 0
        ...| true  = ∧-elimr (taut (n , _ , _)) p
        ...| false = ∧-eliml p

    comp : (φ : BooleanFormula) → Taut φ → T (taut φ)
    comp (zero , ¥true   , b) p = tt
    comp (zero , ¥false  , b) p = p trivenv
    comp (zero , y || y' , b) p
      = lem-bool-∨-c (taut (0 , y , _)) _
                     (Sum.map (λ x → comp (0 , y , _)
                                          (λ ξ → lem-ξ-zero (y , ∧-eliml b) trivenv ξ x))
                              (λ x → comp (0 , y' , _)
                                          (λ ξ → lem-ξ-zero (y' , ∧-elimr(bound 0 y)b) trivenv ξ x))
                              (p trivenv))
    comp (zero , y && y' , b) p = ∧-intro (taut (0 , y , _)) _
                                          (comp (0 , y , _) (λ ξ → proj₁ (p ξ)))
                                          (comp (0 , y' , _) (λ ξ → proj₂ (p ξ)))
    comp (zero , y => y' , b) p = lem-⟶-c (taut (0 , y , _)) _
                                          (λ x → comp (0 , y' , _)
                                                 (λ ξ → p ξ (sound (0 , y , _) x ξ)))
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    comp (zero , ¥ y , b) p     = ⊥-elim b
    comp (suc n , φ , b) p
      = ∧-intro (taut (n , inst (¥false , tt) (φ , b))) _
                (comp (n , inst (¥false , tt) (φ , b))
                      (λ ξ → lem-inst (φ , b) (extendξ ξ false) $ p $ extendξ ξ false))
                (comp (n , inst (¥true , tt) (φ , b))
                      (λ ξ → lem-inst (φ , b) (extendξ ξ true) $ p $ extendξ ξ true))
      where
       extendξ : Env → Bool → Env
       extendξ ξ b zero    = b
       extendξ ξ b (suc x) = ξ x

{- External Interface -}
open import Boolean.CommonBinding
open import Data.String

atptool : String
atptool = "z3"

{-# BUILTIN ATPTOOL atptool #-}

decproc : PL-Formula → Bool
decproc = taut ∘ mkbooleanformula

{-# BUILTIN ATPDECPROC decproc #-}

{-# BUILTIN ATPSEMANTICS Taut-pl #-}

sound' : (φ : PL-Formula) → T (decproc φ) → Taut-pl φ
sound' = sound ∘ mkbooleanformula

{-# BUILTIN ATPSOUND sound' #-}

comp' :  (φ : PL-Formula) → Taut-pl φ → T (decproc φ)
comp' = comp ∘ mkbooleanformula

{-# BUILTIN ATPCOMPLETE comp' #-}
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module Data.Fin.Arithmetic where

open import Data.Fin hiding (_<_;inject≤;_+_;inject+;inject₁)
open import Data.Nat hiding (_<_)
open import Data.Bool
open import Data.Product as Prod

open import Relation.Binary.PropositionalEquality

open import PropIso

finpred : ∀ {n} → Fin (suc (suc n)) → Fin (suc n)
finpred zero    = zero
finpred (suc i) = i

finpred' : ∀ {n} → Fin n → Fin n
finpred' {zero}        x             = x
finpred' {suc zero}    x             = zero
finpred' {suc (suc n)} zero          = zero -- for loop put finmax here
finpred' {suc (suc n)} (suc zero)    = zero
finpred' {suc (suc n)} (suc (suc i)) = suc (finpred' (suc i))

finsuc : ∀ {n} → Fin n → Fin n
finsuc {zero}        ()
finsuc {suc zero}    zero    = zero
finsuc {suc (suc n)} zero    = suc zero
finsuc {suc n}       (suc i) = suc (finsuc i)

finprop-aux : ∀ {n} → (Fin (suc n) → Bool) → Bool
finprop-aux {zero}  f = f zero
finprop-aux {suc n} f = f zero ∨ finprop-aux {n} (f ∘ suc)

finprop : ∀ {n} → (Fin n → Bool) → Bool
finprop {zero}  f = false
finprop {suc n} f = finprop-aux f

finpred-eq : {n : ℕ} → (i i' : Fin n) → _≡_ {A = Fin (suc n)} (suc i) (suc i') → i ≡ i'
finpred-eq _ ._ refl = refl

flt : {n m : ℕ} → (x : Fin n) → (y : Fin m) → Bool
flt x y = toℕ x < toℕ y

lem-flt : {n : ℕ} → (x : Fin n) → T (toℕ x < n)
lem-flt zero    = tt
lem-flt (suc i) = lem-flt i

inject≤ : {m n : ℕ} → T (m < (suc n)) → Fin m → Fin n
inject≤ {zero}  p       ()
inject≤ {suc m} {zero}  () i
inject≤ {suc m} {suc n} p  zero    = zero
inject≤ {suc m} {suc n} p  (suc i) = suc (inject≤ p i)

fin-remainder : {n : ℕ} → Fin (suc n) → ℕ
fin-remainder {n}     zero     = n
fin-remainder {zero}  (suc ())
fin-remainder {suc n} (suc i)  = fin-remainder i

lem-fin-remainder-lt : {n : ℕ} → (a : Fin n) → T (fin-remainder (suc a) < n)
lem-fin-remainder-lt (zero {n}) = <-ord n
lem-fin-remainder-lt (suc a)    = <-rsuc (fin-remainder (suc a)) _ (lem-fin-remainder-lt a)

lem-fin-remainder-plus-lt' : {n : ℕ} (x : Fin (suc n)) (y : ℕ)
                           → (y<lfmx : T (y < (suc (fin-remainder x))))
                           → T ((toℕ x + suc y) < suc (suc n))
lem-fin-remainder-plus-lt'         zero     y p = p
lem-fin-remainder-plus-lt' {zero}  (suc ()) y p
lem-fin-remainder-plus-lt' {suc n} (suc x)  y p = lem-fin-remainder-plus-lt' x y p

lem-fin-remainder-plus-lt : ∀ {n} x → T ((toℕ x + suc (fin-remainder x)) < suc (suc n))
lem-fin-remainder-plus-lt {n} x
  = lem-fin-remainder-plus-lt' x (fin-remainder x) (<-ord (fin-remainder x))

-- (a - b) - 1
fminus : {n : ℕ} → (a b : Fin (suc n)) → T (flt b a) → Fin (fin-remainder b {- n - b -})
fminus zero          b       ()
fminus (suc a)       zero    p  = a
fminus (suc zero)    (suc b) ()
fminus (suc (suc a)) (suc b) p  = fminus (suc a) b p

<-fin-remainder : {m n : ℕ} → (k : Fin m) → (k' : Fin (suc n)) → T (flt k k')
                   → T ((toℕ k + fin-remainder k') < n)
<-fin-remainder                 zero    zero     ()
<-fin-remainder                 zero    (suc k') k<k' = lem-fin-remainder-lt k'
<-fin-remainder {suc m} {zero}  (suc k) zero     ()
<-fin-remainder {suc m} {zero}  (suc k) (suc ()) k<k'
<-fin-remainder {suc m} {suc n} (suc k) zero     ()
<-fin-remainder {suc m} {suc n} (suc k) (suc k') k<k' = <-fin-remainder k k' k<k'
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maxfin : ∀{n} → (Fin n → ℕ) → ℕ
maxfin {zero}  f = 0
maxfin {suc n} f = max (f zero) (maxfin (λ x → f (suc x)))

_suc^_ : {n : ℕ} → Fin n → (m : ℕ) → Fin (m + n)
x suc^ zero  = x
x suc^ suc n = suc (x suc^ n)

fromℕ< : ∀ {n} m → T (m < n) → Fin n
fromℕ< {zero}  _       ()
fromℕ< {suc n} zero    p  = zero
fromℕ< {suc n} (suc m) p  = suc (fromℕ< m p)

toℕ< : ∀ {n} → Fin n → Σ ℕ (\ k → T (k < n))
toℕ< zero    = zero , tt
toℕ< (suc i) = Prod.map suc id (toℕ< i)

lem-tofromℕ : ∀ {n} m (x : T (m < n)) → toℕ< {n} (fromℕ< m x) ≡ (m , x)
lem-tofromℕ {zero}  _       ()
lem-tofromℕ {suc n} zero    tt = refl
lem-tofromℕ {suc n} (suc m) x
  = cong (Prod.map suc id) (subst (λ k → k ≡ (m , x)) refl (lem-tofromℕ {n} m x))

lem-fromtoℕ : {n : ℕ} → (m : Fin n) → fromℕ< {n} (proj₁ (toℕ< m)) (proj₂ (toℕ< m)) ≡ m
lem-fromtoℕ {zero}  ()
lem-fromtoℕ {suc n} zero    = refl
lem-fromtoℕ {suc n} (suc i) = cong suc (lem-fromtoℕ i)

lem-tofromtoℕ : {n m : ℕ} (x : Fin n) (y : T (toℕ x < m)) → toℕ x ≡ toℕ {m} (fromℕ< (toℕ x) y)
lem-tofromtoℕ {zero}  ()       y
lem-tofromtoℕ {suc n} {zero}   zero    ()
lem-tofromtoℕ {suc n} {suc m}  zero    y  = refl
lem-tofromtoℕ {suc n} {zero}   (suc x) ()
lem-tofromtoℕ {suc n} {suc n'} (suc x) y  = cong suc (lem-tofromtoℕ x y)

-- maybe remove this as its only an application of cong'
lem-fromtofromtoℕ : {n m : ℕ} → (i : Fin n) → (x : T (toℕ i < n)) → (z : T (toℕ i < m))
                  → fromℕ< {n} (toℕ i) x ≡ fromℕ< {n} (toℕ (fromℕ< {m} (toℕ i) z))
                           (subst (λ k → T (k < n)) (lem-tofromtoℕ i z) x)
lem-fromtofromtoℕ {n} i x z = cong' (λ k → T (k < n)) (fromℕ< {n}) (lem-tofromtoℕ i z) x

finminus : {n m : ℕ} → (x : Fin (n + m)) → ¬ T (toℕ x < n) → Fin m
finminus {zero}   x       ¬x<n = x
finminus {suc n'} zero    ¬x<n = ⊥-elim (¬x<n tt)
finminus {suc n}  (suc x) ¬x<n = finminus {n} x ¬x<n

lem-finminus-id : ∀ {n} m (x : Fin n) (z : ¬ T (toℕ (x suc^ m) < m)) → x ≡ finminus {m} (x suc^ m) z
lem-finminus-id zero    x z = refl
lem-finminus-id (suc m) x z = lem-finminus-id m x z

lem-finminus-id' : ∀ {n} m (x : Fin (m + n)) (z : ¬ T (toℕ x < m)) → x ≡ (finminus {m} x z) suc^ m
lem-finminus-id' zero    x       z = refl
lem-finminus-id' (suc m) zero    z = ⊥-elim (z tt)
lem-finminus-id' (suc m) (suc i) z = cong suc (lem-finminus-id' m i z)

inject+' : {n : ℕ} → (m o : ℕ) → o ≡ m + n → Fin n → Fin o
inject+' {n} zero .n refl x = x
inject+' (suc m) .(suc (m + suc n)) refl (zero {n}) = zero
inject+' {suc n} (suc m) .(suc (m + suc n)) refl (suc i)
  = suc (inject+' {n} (suc m) (m + suc n) (trans (+-comm m (suc n)) (cong suc (+-comm n m))) (i))

inject+ : {n : ℕ} → (m : ℕ) → Fin n → Fin (m + n)
inject+ {n} m = inject+' m (m + n) refl

inject₁ : ∀ {m} → Fin m → Fin (suc m)
inject₁ {m} = inject+' 1 (suc m) refl

toℕ-inj-eq : ∀ {n} (x : Fin n) i i' ieq j j' jeq
           → toℕ (inject+' i i' ieq x) ≡ toℕ (inject+' j j' jeq x)
toℕ-inj-eq {n} x zero .n refl zero .n refl = refl
toℕ-inj-eq (zero {n}) zero .(suc n) refl (suc j) .(suc (j + suc n)) refl = refl
toℕ-inj-eq (suc {n} x) zero .(suc n) refl (suc j) .(suc (j + suc n)) refl
  = cong suc (toℕ-inj-eq x 0 n refl (suc j) (j + suc n)
                         (trans (+-comm j (suc n)) (cong suc (+-comm n j))))
toℕ-inj-eq (zero {n}) (suc i) .(suc (i + suc n)) refl zero .(suc n) refl = refl
toℕ-inj-eq (zero {n}) (suc i) .(suc (i + suc n)) refl (suc j) .(suc (j + suc n)) refl = refl
toℕ-inj-eq (suc {n} x) (suc i) .(suc (i + suc n)) refl zero .(suc n) refl
  = cong suc (toℕ-inj-eq x (suc i) (i + suc n)
                         (trans (+-comm i (suc n)) (cong suc (+-comm n i))) 0 n refl)
toℕ-inj-eq (suc {n} x) (suc i) .(suc (i + suc n)) refl (suc j) .(suc (j + suc n)) refl
  = cong suc (toℕ-inj-eq x (suc i) (i + suc n)
                         (trans (+-comm i (suc n)) (cong suc (+-comm n i))) (suc j)
                         (j + suc n) (trans (+-comm j (suc n)) (cong suc (+-comm n j))))

lem-fin-suc^ : {n : ℕ} → (m : ℕ) → (x : Fin n) → ¬ T (toℕ (x suc^ m) < m)
lem-fin-suc^ zero    x = id
lem-fin-suc^ (suc m) x = lem-fin-suc^ m x
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lem-fromtoℕ-inj+' : ∀ n k o (eq : o ≡ k + n) (i : Fin o) (x : T (toℕ i < n))
                  → inject+' k o eq (fromℕ< {n} (toℕ i) x) ≡ i
lem-fromtoℕ-inj+' zero    k       ._ refl i       ()
lem-fromtoℕ-inj+' (suc n) zero    ._ refl zero    x  = refl
lem-fromtoℕ-inj+' (suc n) zero    ._ refl (suc i) x  = cong suc (lem-fromtoℕ-inj+' n 0 _ refl i x)
lem-fromtoℕ-inj+' (suc n) (suc k) ._ refl zero    x  = refl
lem-fromtoℕ-inj+' (suc n) (suc k) ._ refl (suc i) x
  = cong suc (lem-fromtoℕ-inj+' n (suc k) _ (trans (+-comm k (suc n)) (cong suc (+-comm n k))) i x)

lem-fromtoℕ-inj+ : ∀ n k (i : Fin (k + n))(x : T (toℕ i < n)) → inject+ k (fromℕ< {n} (toℕ i) x) ≡ i
lem-fromtoℕ-inj+ n k = lem-fromtoℕ-inj+' n k _ refl
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module CTL.TransitionSystem where

open import Data.Nat hiding (_<_)
open import Data.Fin hiding (inject≤;_<_) renaming (_+_ to _F+_)
open import Data.Fin.Arithmetic hiding (inject₁)
open import Data.Fin.Pigeon
open import Data.List
open import Data.Bool
open import Data.Product as Prod
open import Data.Sum as Sum

open import Relation.Binary.PropositionalEquality

open import Coinduction

open import PropIso

-- finite state machine
record FSM : Set where
  constructor
    fsm
  field
    state atom : ℕ
    action : Fin state → ℕ
    initial : List (Fin state)
    transition : (s : Fin state) → (a : Fin (action s)) → Fin state
    label : Fin state → Fin atom → Bool

  State : Set
  State = Fin state

  Action : State → Set
  Action s = Fin (action s)

open FSM

data Transition (ts : FSM) (a : State ts) : State ts → Set where
  arrow : (su : Action ts a) → (b : State ts) → b ≡ (transition ts a su) → Transition ts a b

data Run (ts : FSM) (s : State ts) : Set where
  next : (s' : Action ts s) → ∞ (Run ts (transition ts s s')) → Run ts s

run-decomp : ∀ ts {s} → Run ts s → Σ[ x ∶ Action ts s ] (Run ts (transition ts s x))
run-decomp ts {s} (next s' y) = s' , ♭ y

run-head : (ts : FSM) → {s : State ts} → Run ts s → Fin (action ts s)
run-head ts r = proj₁ (run-decomp ts r)

run-tail : ∀ ts {s} → (r : Run ts s) → Run ts (transition ts s (run-head ts r))
run-tail ts r = proj₂ (run-decomp ts r)

nth : (ts : FSM) → {s : State ts} → (n : ℕ) → Run ts s → State ts
nth ts {s} zero r = s
nth ts (suc n) r  = nth ts n (run-tail ts r)

run-drop : (ts : FSM) → {s : Fin (state ts)} → (n : ℕ) → (r : Run ts s) → Run ts (nth ts n r)
run-drop ts zero r    = r
run-drop ts (suc n) r = run-drop ts n (run-tail ts r)

data FinRun (ts : FSM) (s : State ts) : ℕ → Set where
  end : FinRun ts s 0
  next : {n : ℕ} → (s' : Action ts s) → FinRun ts (transition ts s s') n → FinRun ts s (suc n)

last : (ts : FSM) → {n : ℕ} → {s : State ts} → FinRun ts s n → State ts
last ts {zero} {s} end          = s
last ts {suc n} {s} (next s' y) = last ts y

fnth : ∀ ts {n} {s} → FinRun ts s n → Fin (suc n) → State ts
fnth ts {_} {s} r zero = s
fnth ts end (suc ())
fnth ts {(suc n)} {s} (next s' y) (suc x) = fnth ts y x

fnth-suc : ∀ ts {n} {s} → (r : FinRun ts s n)  → (x : Fin n) → Action ts (fnth ts r (inject₁ x))
fnth-suc ts {zero} _ ()
fnth-suc ts {suc n} {s} (next s' y) zero    = s'
fnth-suc ts {suc n} {s} (next s' y) (suc x) = fnth-suc ts y x

lem-fnth-suc : ∀ ts {n} {s} → (r : FinRun ts s n) → (x : Fin n)
             → fnth ts r (suc x) ≡ transition ts (fnth ts r (inject₁ x)) (fnth-suc ts r x)
lem-fnth-suc ts {zero} r ()
lem-fnth-suc ts {suc n} {s} (next s' y) zero    = refl
lem-fnth-suc ts {suc n} {s} (next s' y) (suc x) = lem-fnth-suc ts y x

frconc : ∀ ts {s n m} → (r : FinRun ts s n) → (r' : FinRun ts (last ts r) m) → FinRun ts s (n + m)
frconc ts end r'             = r'
frconc ts {s} (next s' y) r' = next s' (frconc ts y r')
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lem-frconc-last : ∀ ts {s n m} → (r : FinRun ts s n) → (r' : FinRun ts (last ts r) m)
                → last ts r' ≡ last ts (frconc ts r r')
lem-frconc-last ts end r' = refl
lem-frconc-last ts {s} (next s' y) r' = lem-frconc-last ts y r'

frtake : ∀ ts {n s} → (r : FinRun ts s n) → (x : Fin (suc n)) → FinRun ts s (toℕ x)
frtake ts end zero                               = end
frtake ts end (suc ())
frtake ts {.(suc n)} {s} (next {n} s' y) zero    = end
frtake ts {.(suc n)} {s} (next {n} s' y) (suc x) = next s' (frtake ts y x)

lem-frtake : ∀ ts {n s} → (r : FinRun ts s n) → (x : Fin (suc n))
           → fnth ts r x ≡ last ts (frtake ts r x)
lem-frtake ts end zero                               = refl
lem-frtake ts end (suc ())
lem-frtake ts {.(suc n)} {s} (next {n} s' y) zero    = refl
lem-frtake ts {.(suc n)} {s} (next {n} s' y) (suc x) = lem-frtake ts y x

lem-frtake-lift : ∀ ts {n s} → (r : FinRun ts s n) → (l : Fin (suc n)) → (x : Fin (suc (toℕ l)))
                → fnth ts r (inject≤ {suc _} (lem-flt l) x) ≡ fnth ts (frtake ts r l) x
lem-frtake-lift ts r zero zero                                    = refl
lem-frtake-lift ts r zero (suc ())
lem-frtake-lift ts r (suc l) zero                                 = refl
lem-frtake-lift ts end (suc ()) (suc x)
lem-frtake-lift ts {.(suc n)} {s} (next {n} s' y) (suc l) (suc x) = lem-frtake-lift ts y l x

frdrop : ∀ ts {n s} → (r : FinRun ts s n) → (x : Fin (suc n))
       → FinRun ts (fnth ts r x) (fin-remainder x)
frdrop ts r zero                                 = r
frdrop ts end (suc ())
frdrop ts {.(suc n)} {s} (next {n} s' y) (suc x) = frdrop ts y x

lem-frdrop-last : ∀ ts {n s} → (r : FinRun ts s n) → (x : Fin (suc n))
                → last ts r ≡ last ts (frdrop ts r x)
lem-frdrop-last ts r zero = refl
lem-frdrop-last ts end (suc ())
lem-frdrop-last ts {.(suc n)} {s} (next {n} s' y) (suc x) = lem-frdrop-last ts y x

lem-frdrop-lift : ∀ ts {n s} → (r : FinRun ts s n) → (k : Fin (suc n))
                → (x : Fin (suc (fin-remainder k)))
                → fnth ts r (inject≤ (lem-fin-remainder-plus-lt k) (k F+ x))
                  ≡ fnth ts (frdrop ts r k) x
lem-frdrop-lift ts r zero zero                                    = refl
lem-frdrop-lift ts end zero (suc ())
lem-frdrop-lift ts {.(suc n)} {s} (next {n} s' y) zero (suc zero) = refl
lem-frdrop-lift ts {.(suc n)} {s} (next {n} s' y) zero (suc (suc x))
  = lem-frdrop-lift ts y zero (suc x)
lem-frdrop-lift ts end (suc ()) x
lem-frdrop-lift ts {.(suc n)} {s} (next {n} s' y) (suc k) x       = lem-frdrop-lift ts y k x

-- ignores last element in run
lem-frdrop-lift-nolast : ∀ ts {n s} → (r : FinRun ts s n) → (k : Fin (suc n))
                       → (x : Fin (fin-remainder k))
                       → fnth ts r (inject₁ (inject≤ (<-+-rsuc (toℕ k) _ (suc n)
                                                       (lem-fin-remainder-plus-lt k)) (k F+ x)))
                         ≡ fnth ts (frdrop ts r k) (inject₁ x)
lem-frdrop-lift-nolast ts r zero zero = refl
lem-frdrop-lift-nolast ts {.(suc n)} {s} (next {n} s' y) zero (suc x)
  = lem-frdrop-lift-nolast ts y zero x
lem-frdrop-lift-nolast ts end (suc ()) x
lem-frdrop-lift-nolast ts {.(suc n)} {s} (next {n} s' y) (suc k) x
  = lem-frdrop-lift-nolast ts y k x

lem-frtake-frdrop : ∀ ts {n s} → (r : FinRun ts s n) → (k : Fin (suc n))→ (l : Fin n)
                  → (k<l : T (flt k (suc l)))
                  → fnth ts r (inject₁ l)
                    ≡ last ts (frtake ts (frdrop ts r k) (inject₁ (fminus (suc l) k k<l)))
lem-frtake-frdrop ts r zero zero k<l    = lem-frtake ts r (inject₁ zero)
lem-frtake-frdrop ts r zero (suc l) k<l = lem-frtake ts r (suc (inject₁ l))
lem-frtake-frdrop ts r (suc k) zero ()
lem-frtake-frdrop ts {.(suc n)} {s} (next {n} s' y) (suc k) (suc l) k<l
  = lem-frtake-frdrop ts y k l k<l

lem-frtake-frdrop-lift : ∀ ts {n s} → (r : FinRun ts s n) → (k : Fin (suc n))
                       → (l : Fin (suc (fin-remainder k))) → (x : Fin (suc (toℕ l)))
                       → fnth ts r (inject≤ (lem-fin-remainder-plus-lt' k (toℕ l)
                                              (lem-flt l)) (k F+ x))
                       ≡ fnth ts (frtake ts (frdrop ts r k) l) x
lem-frtake-frdrop-lift ts r zero l x                           = lem-frtake-lift ts r l x
lem-frtake-frdrop-lift ts end (suc ()) l x
lem-frtake-frdrop-lift ts {._} {s} (next {n} s' y) (suc k) l x = lem-frtake-frdrop-lift ts y k l x

data Lasso (ts : FSM) : State ts → Set where
  lasso : {s' : State ts}  -- initial state
        → (i j : ℕ)  -- prefix / loop length-1
        → (s : State ts)  -- loop state
        → (prefix : FinRun ts s i)
        → (con : Transition ts (last ts prefix) s')
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        → (loop : FinRun ts s' j)
        → (loopproof : Transition ts (last ts loop) s')
        → Lasso ts s

getPrefixLen : (ts : FSM)
             → {s : State ts}
             → (l : Lasso ts s)
             → ℕ
getPrefixLen ts {s} (lasso i j .s prefix con loop loopproof) = i

getLoopLen : (ts : FSM)
           → {s : State ts}
           → (l : Lasso ts s)
           → ℕ
getLoopLen ts {s} (lasso i j .s prefix con loop loopproof) = j

getPrefix : (ts : FSM)
          → {s : State ts}
          → (l : Lasso ts s)
          → FinRun ts s (getPrefixLen ts l)
getPrefix ts {s} (lasso i j .s prefix con loop loopproof) = prefix

getLoopStart : (ts : FSM)
             → {s : State ts}
             → (l : Lasso ts s)
             → State ts
getLoopStart ts {s} (lasso {s'} i j .s prefix con loop loopproof) = s'

getLoop : (ts : FSM)
        → {s : State ts}
        → (l : Lasso ts s)
        → FinRun ts (getLoopStart ts l) (getLoopLen ts l)
getLoop ts {s} (lasso i j .s prefix con loop loopproof) = loop

-- canonical translation from lasso into run
lasso2run : (ts : FSM) → {s : State ts} → Lasso ts s → Run ts s
lasso2run ts {s} (lasso zero j .s end (arrow suc' ._ refl) loop loopproof)
  = next suc' (♯ lasso2run ts (lasso j j (transition ts s suc') loop loopproof loop loopproof))
lasso2run ts {s} (lasso (suc i) j .s (next suc' y) con loop loopproof)
  = next suc' (♯ lasso2run ts (lasso i j (transition ts s suc') y con loop loopproof))

-- maps a point from the resulting infinite run back to the prefix/loop
lem-lasso2run : (ts : FSM) → {s : State ts} → (l : Lasso ts s) → (n : ℕ)
              → (Σ[ pre ∶ Fin (suc (getPrefixLen ts l)) ]
                    (fnth ts (getPrefix ts l) pre ≡ nth ts n (lasso2run ts l)))
                ⊎ (Σ[ loop ∶ Fin (suc (getLoopLen ts l)) ]
                      (fnth ts (getLoop ts l) loop ≡ nth ts n (lasso2run ts l)))
lem-lasso2run ts {s} (lasso i j .s prefix con loop loopproof) zero = inj₁ (zero , refl)
lem-lasso2run ts {s} (lasso .0 j .s end (arrow suc' ._ refl) loop loopproof) (suc n)
  = inj₂ ([ id , id ]′ (lem-lasso2run ts (lasso j j _ loop loopproof loop loopproof) n))
lem-lasso2run ts {s} (lasso .(suc n) j .s (next {n} s0 y) con loop loopproof) (suc n')
  = Sum.map (Prod.map suc id) id (lem-lasso2run ts (lasso n j _ y con loop loopproof) n')

{-
From this point on, functions/lemmas specific to CTL logic and should be relocated
-}

-- Globally

path2lasso-G : (ts : FSM) → {s : State ts} → FinRun ts s (state ts) → Lasso ts s
path2lasso-G ts r with pigeon (suc (state ts)) (state ts) (<-ord (state ts)) (fnth ts r)
path2lasso-G ts r | (k , zero) , () , eq
path2lasso-G ts {s} r | (zero , suc l) , k<l , eq = lasso (toℕ (inject₁ l))
                                                          (toℕ (inject₁ l))
                                                          s (frtake ts r (inject₁ l))
                                                          p (frtake ts r (inject₁ l)) p
  where
    p : Transition ts (last ts (frtake ts r (inject₁ l))) s
    p = subst (λ x → Transition ts (last ts (frtake ts r (inject₁ l))) x)
              (sym eq) (subst (λ x → Transition ts x (fnth ts r (suc l)))
                              (lem-frtake ts r (inject₁ l))
                              (arrow (fnth-suc ts r l) (fnth ts r (suc l)) (lem-fnth-suc ts r l)))
path2lasso-G ts {s} r | (suc k , suc l) , k<l , eq
  = lasso (toℕ (inject₁ k)) (toℕ (inject₁ (fminus (suc l) (suc k) k<l))) s (frtake ts r (inject₁ k))
          (subst (λ x → Transition ts x (fnth ts r (suc k))) (lem-frtake ts r (inject₁ k))
                 (arrow (fnth-suc ts r k) (fnth ts r (suc k)) (lem-fnth-suc ts r k)))
          (frtake ts (frdrop ts r (suc k)) (inject₁ (fminus (suc l) (suc k) k<l)))
          (subst (λ x → Transition ts x (fnth ts r (suc k))) (lem-frtake-frdrop ts r (suc k) l k<l)
                 (arrow (fnth-suc ts r l) (fnth ts r (suc k))
                        (subst (λ x → x ≡ transition ts (fnth ts r (inject₁ l)) (fnth-suc ts r l))
                               (sym eq) (lem-fnth-suc ts r l))))

lem-path2lasso-G : ∀ ts {s} → (r : FinRun ts s (state ts)) → (p : State ts → Bool)
                 → (q : (x : Fin (suc (state ts))) → T (p (fnth ts r x))) → (x : ℕ)
                 → T (p (nth ts x (lasso2run ts (path2lasso-G ts r))))
lem-path2lasso-G ts r p q x = [ (λ k → subst (T ∘ p) (proj₂ k) (proj₁ (f r p q) (proj₁ k))) ,
                                (λ k → subst (T ∘ p) (proj₂ k) (proj₂ (f r p q) (proj₁ k)))
                              ]′ (lem-lasso2run ts (path2lasso-G ts r) x)
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                              ]′ (lem-lasso2run ts (path2lasso-G ts r) x)
  where
    f : {s : State ts}
      → (r : FinRun ts s (state ts))
      → (p : State ts → Bool)
      → (q : (x : Fin (suc (state ts))) → T (p (fnth ts r x)))
      → (∀ x → T (p (fnth ts (getPrefix ts (path2lasso-G ts r)) x)))
        × (∀ x → T (p (fnth ts (getLoop ts (path2lasso-G ts r)) x)))
    f r p q with pigeon (suc (state ts)) (state ts) (<-ord (state ts)) (fnth ts r)
    f r' p' q' | (k , zero) , () , eq
    f r' p' q' | (zero , suc l) , k<l , eq = xx , xx
      where
        xx : (x' : Fin (suc (toℕ (inject₁ l)))) → T (p' (fnth ts (frtake ts r' (inject₁ l)) x'))
        xx x = subst (T ∘ p') (lem-frtake-lift ts r' (inject₁ l) x) (q' (inject≤ _ x))
    f r' p' q' | (suc k , suc l) , k<l , eq
      = (λ x' → subst (T ∘ p') (lem-frtake-lift ts r' (inject₁ k) x')
                      (q' (inject≤ {suc (toℕ (inject₁ k))} (lem-flt (inject₁ k)) x')))
        , λ x' → subst (T ∘ p') (lem-frtake-frdrop-lift ts r' (suc k)
                                                        (inject₁ (fminus (suc l) (suc k) k<l)) x')
                       (q' (inject≤ _ (suc (k F+ x'))))
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module CTL.Definition where

open import CTL.TransitionSystem

open import Data.Fin hiding (_<_)
open import Data.Sum
open import Data.Product
open import Data.Bool using (T)
open import Data.Nat hiding (_<_)

open import PropIso

{- CTL formula -}
data CTL (n : ℕ) : Set where
  false : CTL n
  _∨_ _∧_ E[_U_] : (φ : CTL n) → (ψ : CTL n) → CTL n
  P[_] : (ap : Fin n) → CTL n
  ~ EX EG : (φ : CTL n) → CTL n

data CTLProblem : Set where
  _,_⊧_ : (M : FSM) → (Fin (FSM.state M)) → CTL (FSM.atom M) → CTLProblem

⟦_⟧ : CTLProblem → Set
⟦ M , s ⊧ false ⟧      = ⊥
⟦ M , s ⊧ ~ φ ⟧        = ¬ ⟦ M , s ⊧ φ ⟧
⟦ M , s ⊧ (φ ∨ ψ) ⟧    = ⟦ M , s ⊧ φ ⟧ ⊎ ⟦ M , s ⊧ ψ ⟧
⟦ M , s ⊧ (φ ∧ ψ) ⟧    = ⟦ M , s ⊧ φ ⟧ × ⟦ M , s ⊧ ψ ⟧
⟦ M , s ⊧ P[ ap ] ⟧    = T (FSM.label M s ap)
⟦ M , s ⊧ EX φ ⟧       = Σ[ run ∶ Run M s ] ⟦ M , nth M 1 run ⊧ φ ⟧
⟦ M , s ⊧ EG φ ⟧       = Σ[ run ∶ Run M s ] (∀ (n : ℕ) → ⟦ M , nth M n run ⊧ φ ⟧)
⟦ M , s ⊧ E[ φ U ψ ] ⟧ = Σ[ run ∶ Run M s ] Σ[ k ∶ ℕ ]
                            ((∀ (j : ℕ) → T (j < k) → ⟦ M , nth M j run ⊧ φ ⟧)
                              × ⟦ M , nth M k run ⊧ ψ ⟧)

--{-# BUILTIN ATPPROBLEM CTLProblem #-}
--{-# BUILTIN ATPSEMANTICS ⟦_⟧ #-}
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{-# OPTIONS --universe-polymorphism #-}

module Data.Fin.EqReasoning where

open import Data.Fin
open import Data.Nat
open import Data.Bool
open import Data.Product as Prod
open import Data.Sum as Sum

open import Relation.Binary.PropositionalEquality

open import PropIso

fin-∨ : (n : ℕ) → Fin n → (Fin n → Bool) → Bool
fin-∨ zero () f
fin-∨ (suc zero)       zero     f = f zero ∨ false
fin-∨ (suc (suc n))    (zero)   f = f zero ∨ fin-∨ (suc n) zero (λ k → f (suc k))
fin-∨ (suc zero)       (suc ()) f
fin-∨ (suc (suc n))    (suc i)  f =  fin-∨ (suc n) i (λ k → f (suc k))

fin-∨-↔ : (n : ℕ) → (f : Fin n → Bool) → Bool
fin-∨-↔ zero f = false
fin-∨-↔ (suc n) f = fin-∨ (suc n) zero f

lem-fin-∨ : {n : ℕ} → (i : Fin n) → (f : Fin n → Bool) → T (f i) → T (fin-∨-↔ n f)
lem-fin-∨ {zero} () f p
lem-fin-∨ {suc zero} zero f p = ∨-introl (f zero) false p
lem-fin-∨ {suc (suc n)} zero f p = ∨-introl (f zero) (fin-∨ ((suc n)) zero (λ k → f (suc k))) p
lem-fin-∨ {suc zero} (suc ()) f p
lem-fin-∨ {suc (suc n)} (suc i) f p = ∨-intror (f zero) (fin-∨ ((suc n)) zero (λ k → f (suc k)))
                                               (lem-fin-∨ i (λ x → f (suc x)) p)

lem-fin-∨' : {n : ℕ} → (f : Fin n → Bool) → T (fin-∨-↔ n f) → Σ (Fin n) (λ i → T (f i))
lem-fin-∨' {zero} f ()
lem-fin-∨' {suc zero} f p = zero , [ id , ⊥-elim ]′ (lem-bool-∨-s (f zero) false p)
lem-fin-∨' {suc (suc n)} f p = [ (λ x → zero , x) ,
                                 (λ x → Prod.map suc id (lem-fin-∨' {suc n} (λ k → f (suc k)) x))
                               ]′ (lem-bool-∨-s (f zero) (fin-∨ ((suc n)) zero (λ k → f (suc k))) p)

toBool : Fin 2 → Bool
toBool zero = false
toBool (suc zero) = true
toBool (suc (suc ()))

fromBool : Bool → Fin 2
fromBool false = zero
fromBool true = suc zero

tobool-iso1 : ∀ b → toBool (fromBool b) ≡ b
tobool-iso1 true = refl
tobool-iso1 false = refl

tobool-iso2 : ∀ b → fromBool (toBool b) ≡ b
tobool-iso2 zero = refl
tobool-iso2 (suc zero) = refl
tobool-iso2 (suc (suc ()))

flip-toBool1 : ∀ b c → c ≡ toBool b → fromBool c ≡ b
flip-toBool1 zero .false refl = refl
flip-toBool1 (suc zero) .true refl = refl
flip-toBool1 (suc (suc ())) ._ refl

flip-toBool2 : ∀ b c → fromBool b ≡ c → b ≡ toBool c
flip-toBool2 true .(suc zero) refl = refl
flip-toBool2 false .zero refl = refl

_∧f_ : Fin 2 → Fin 2 → Fin 2
x ∧f y = fromBool (toBool x ∧ toBool y)

_∨f_ : Fin 2 → Fin 2 → Fin 2
x ∨f y = fromBool (toBool x ∨ toBool y)

¬f : Fin 2 → Fin 2
¬f = fromBool ∘ not ∘ toBool

elim-fin0 : ∀ {n} {A : Set n} → Fin 0 → A
elim-fin0 ()
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module CTL.ListGen where

open import Data.Nat
open import Data.Fin
open import Data.List hiding (_++_)
open import Data.String

[_⋯_] : ℕ → ℕ → List ℕ
[ n ⋯ zero ] = [ n ]
[ n ⋯ (suc m) ] = n ∷ [ suc n ⋯ m ]

private 
  primitive 
    primShowNat : ℕ → String

natlist : ℕ → String
natlist 0 = ""
natlist 1 = "0"
natlist (suc n) = natlist n ++ "," ++ primShowNat n

natlist-1 : ℕ → String
natlist-1 0 = "-1"
natlist-1 1 = "-1,0"
natlist-1 (suc n) = natlist-1 n ++ "," ++ primShowNat n

∀fin : ∀{n} → (Fin n → String) → String → String 
∀fin {zero} f d = ""
∀fin {suc zero} f d = f zero
∀fin {suc n} f d = f zero ++ d ++ ∀fin (λ x → f (suc x)) d
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module CTL.DecProc where

open import Data.Fin hiding (_<_)
open import Data.Fin.EqReasoning
open import Data.Fin.Arithmetic
open import Data.Nat hiding (_<_)
open import Data.Bool renaming (_∧_ to _∧♭_ ; _∨_ to _∨♭_)
open import Data.String
open import Data.Product as Prod
open import Data.Sum

open import PropIso

open import CTL.TransitionSystem
open import CTL.Definition
open import CTL.Sink
open import CTL.ListGen

{-
Decision procedure for CTL logic
-}
open FSM

-- checks that a property holds for a path of given length
check : (M : FSM) → ℕ → (p : State M → Bool) → State M → Bool
check M zero p s    = p s
check M (suc n) p s = p s ∧♭ fin-∨-↔ (action M s) (check M n p ∘ transition M s)

-- checks if some property holds in i'th state on infinite path
checkX : (M : FSM) → (i : ℕ) → (p : State M → Bool) → State M → Bool
checkX M zero p s    = p s ∧♭ check M (state M) (const true) s
checkX M (suc i) p s = fin-∨-↔ (action M s) (checkX M i p ∘ transition M s)

-- slightly different version, the number determines the "prefix" length
-- then the above check is called to determine if we are one an infinite
-- path.
checkU : (M : FSM) → ℕ → (p : State M → Bool) → (q : State M → Bool) → State M → Bool
checkU M zero p q s    = q s ∧♭ check M (state M) (const true) s
checkU M (suc n) p q s = (p s ∧♭ fin-∨-↔ (action M s) (checkU M n p q ∘ transition M s))
                        ∨♭ (q s ∧♭ check M (state M) (const true) s)

eval : CTLProblem → Bool
eval (M , s ⊧ false)      = false
eval (M , s ⊧ ~ φ)        = not (eval (M , s ⊧ φ))
eval (M , s ⊧ (φ ∨ ψ))    = (eval (M , s ⊧ φ)) ∨♭ (eval (M , s ⊧ ψ))
eval (M , s ⊧ (φ ∧ ψ))    = (eval (M , s ⊧ φ)) ∧♭ (eval (M , s ⊧ ψ))
eval (M , s ⊧ P[ ap ])    = label M s ap
eval (M , s ⊧ EX φ)       = checkX M 1 (\ s' → eval (M , s' ⊧ φ)) s
eval (M , s ⊧ EG φ)       = check M (state M) (λ s' → eval (M , s' ⊧ φ)) s
eval (M , s ⊧ E[ φ U ψ ]) = checkU M (state M) (λ t → eval (M , t ⊧ φ))
                                                  (λ t → eval (M , t ⊧ ψ)) s

private primitive primShowNat : ℕ → String

genSmv : CTLProblem → String
genSmv (M , s ⊧ φ) = header ++ input ++ label' ++ vars ++ init ++ trans ++ spec
  where
    header : String
    header = "MODULE main\n"

    input : String
    input = "IVAR\n-- from 0 to max action -1\n  input : {" ++
              natlist (maxfin (action M)) ++
            "};\n"

    label' : String
    label' = "DEFINE\n  labels := [" ++ ∀fin (λ s' → "{ -1" ++
              ∀fin {atom M} (λ a → if label M s' a then ("," ++ primShowNat (toℕ a)) else "")
                "" ++ "}") "," ++ "];\n"

    vars : String
    vars = "VAR\n  state : {" ++ natlist (state M) ++ "};\n"

    init : String
    init = "INIT\n  state = " ++ primShowNat (toℕ  s) ++ ";\n"

    trans : String
    trans = ("TRANS\n  next(state) =\n    case\n" ++ ∀fin (λ s' → ∀fin (λ a →
             "      state = " ++ primShowNat (toℕ s') ++ " & input = " ++ primShowNat (toℕ a) ++
                          " : " ++ primShowNat (toℕ (transition M s' a))) ";\n") ";\n") ++
             ";\n      TRUE : 0;\n    esac;\n"

    showctl : ∀{M} → CTL M → String
    showctl false      = "FALSE"
    showctl (~ φ)      = "!(" ++ showctl φ ++ ")"
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    showctl (φ ∨ ψ)    = "(" ++ showctl φ ++ ") | (" ++ showctl ψ ++ ")"
    showctl (φ ∧ ψ)    = "(" ++ showctl φ ++ ") & (" ++ showctl ψ ++ ")"
    showctl P[ ap ]    = primShowNat (toℕ ap) ++ " in labels[state]"
    showctl (EX φ)     = "EX (" ++ showctl φ ++ ")"
    showctl (EG φ)     = "EG (" ++ showctl φ ++ ")"
    showctl E[ φ U ψ ] = "E[" ++ showctl φ ++ " U " ++ showctl ψ ++ "]"

    spec : String
    spec = "SPEC\n  " ++ showctl φ ++ ";\n"

genSinkedSmv : CTLProblem → String
genSinkedSmv (M , s ⊧ φ) = genSmv (mksink M , suc s ⊧ liftCTL φ)

lem-checkU : (ts : FSM) → (d1 d2 : ℕ) → T (d1 < suc d2) → (p q : State ts → Bool) → (s : State ts)
           → T (checkU ts d1 p q s) → T (checkU ts d2 p q s)
lem-checkU ts zero zero d1<d2 p q s checkp    = checkp
lem-checkU ts zero (suc n) d1<d2 p q s checkp = ∨-intror (p s ∧♭ _) (q s ∧♭ _) checkp
lem-checkU ts (suc zero) zero () p q s checkp
lem-checkU ts (suc (suc n)) zero () p q s checkp
lem-checkU ts (suc d1) (suc d2) d1<d2 p q s checkp
  = f∨g (f∧g { a = p s } id
           (λ r → lem-fin-∨ (proj₁ (x r))
                            (λ x' → checkU ts d2 p q
                                           (transition ts s x'))
                            (lem-checkU ts d1 d2 d1<d2 p q _ (proj₂ (x r))))  )
      id
      checkp

  where
    x : T (fin-∨-↔ (action ts s)
                   (λ a → checkU ts d1 p q (transition ts s a)))
      → Σ (Fin (action ts s))
          (λ x' → T (checkU ts d1 p q (transition ts s x')))
    x z = lem-fin-∨' (λ x' → checkU ts d1 p q (transition ts s x')) z

lem-check-Σ : (ts : FSM) → (n : ℕ) → (p : State ts → Bool) → (s : State ts) → T (check ts n p s)
            → Σ[ r ∶ FinRun ts s n ] ((m : Fin (suc n)) → T (p (fnth ts r m)))
lem-check-Σ ts zero p s q = end , f
  where
    f : (m : Fin 1) → T (p (fnth ts {_} {s} end m))
    f zero = q
    f (suc ())
lem-check-Σ ts (suc n) p s q = Prod.map (next (proj₁ π)) x
                                   (lem-check-Σ ts n p (transition ts s (proj₁ π)) (proj₂ π))
  where
    π : Σ (Fin (action ts s))
          (λ i → T (check ts n p (transition ts s i)))
    π = (lem-fin-∨' (λ x → check ts n p (transition ts s x))
                    (∧-elimr (p s) q))

    x : ∀{a} → ((m : Fin (suc n))
      → T (p (fnth ts a m)))
      → (m : Fin (suc (suc n)))
      → T (p (fnth ts (next (proj₁ π) a) m))
    x y zero    = ∧-eliml q
    x y (suc i) = y i

tool : String
tool = "nusmv"

-- {-# BUILTIN ATPTOOL    tool         #-}
-- {-# BUILTIN ATPINPUT   genSinkedSmv #-}
-- {-# BUILTIN ATPDECPROC eval         #-}
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module CTL.Proof where

-- contains the correctness proof of the CTL decision proc.
open import CTL.TransitionSystem
open import CTL.Definition
open import CTL.DecProc

open import Data.Fin hiding (_<_;#_;inject≤) renaming (_+_ to _F+_)
open import Data.Nat hiding (_<_)
open import Data.Bool renaming (_∧_ to _∧♭_; _∨_ to _∨♭_)
open import Data.List
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Fin.EqReasoning
open import Data.Fin.Arithmetic hiding (inject₁)
open import Data.Fin.Pigeon

open import PropIso

open import Relation.Binary.PropositionalEquality

open import Coinduction

open import CompleteInduction

open import Function

open FSM

-- define what it means for a point on a run to witness φ U ψ
WitnessesU : (M : FSM) → {s : State M} → ℕ → CTL (FSM.atom M) → CTL (FSM.atom M) → Set
WitnessesU M {s} k φ ψ = Σ (FinRun M s k)
                           (λ frun → Run M (last M frun)
                                   × ((j : Fin k) → ⟦ M , fnth M frun (inject₁ j) ⊧ φ ⟧)
                                   × ⟦ M , last M frun ⊧ ψ ⟧)

toWitness : ∀ M s φ ψ → (p : ⟦ M , s ⊧ E[ φ U ψ ] ⟧) → WitnessesU M {s} (proj₁ (proj₂ p)) φ ψ
toWitness M s φ ψ (run , zero , jp , kp) = end , run , (λ ()) , kp
toWitness M s φ ψ (run , suc n , jp , kp)
  = Prod.map (λ frun → next (run-head M run) frun)
             (λ {a} p → (proj₁ p) , jphelper a (proj₁ (proj₂ p)) , proj₂ (proj₂ p))
             (toWitness M (transition M s (proj₁ (run-decomp M run))) φ ψ
                          (run-tail M run , n , (λ x → jp (suc x)) , kp))
  where
    jphelper : (frun : FinRun M _ n)
             → ((j : Fin n) → ⟦ M , fnth M frun (inject₁ j) ⊧ φ ⟧)
             → (j : Fin (suc n))
             → ⟦ M , fnth M (next (proj₁ (run-decomp M run)) frun) (inject₁ j) ⊧ φ ⟧
    jphelper frun f zero    = jp zero tt
    jphelper frun f (suc i) = f i

fromWitness : (M : FSM)
            → (s : State M)
            → (φ : CTL (FSM.atom M))
            → (ψ : CTL (FSM.atom M))
            → {k : ℕ}
            → WitnessesU M {s} k φ ψ
            → ⟦ M , s ⊧ E[ φ U ψ ] ⟧
fromWitness M s φ ψ (end , run , jp , kp) = run , 0 , (λ _ ()) , kp
fromWitness M s φ ψ (next s' y , run , jp , kp)
  = Prod.map (λ run' → next s' (# run'))
             (λ {a} p → suc (proj₁ p) , jphelper (# a) (proj₁ (proj₂ p)) , proj₂ (proj₂ p))
             (fromWitness M (transition M s s') φ ψ (y , run , (λ z → jp (suc z)) , kp))
  where
    -- need to wrap ♯ for source code identity
    # : ∀{t} → Run M t → ∞ (Run M t)
    # {_} r = ♯ r

    jphelper : (run : ∞ (Run M (transition M s s')))
             → {x : ℕ}
             → ((j : ℕ) → T (j < x) → ⟦ M , nth M j (♭ run) ⊧ φ ⟧)
             → (j : ℕ)
             → T (j < suc x)
             → ⟦ M , nth M j (next s' run) ⊧ φ ⟧
    jphelper run' jp' zero p    = jp zero
    jphelper run' jp' (suc n) p = jp' n p

cut-out-loopU : (M : FSM)
          → {s : State M}
          → (φ ψ : CTL (FSM.atom M))
          → (k : ℕ)
          → ¬ T (k < state M)
          → (p : WitnessesU M {s} k φ ψ)
          → (pigeon : Σ (Fin (suc k) × Fin (suc k))
                        (λ π → T (flt (proj₁ π) (proj₂ π))
                             × fnth M (proj₁ p) (proj₁ π) ≡ fnth M (proj₁ p) (proj₂ π)))
          → WitnessesU M {s} (toℕ (proj₁ (proj₁ pigeon)) + fin-remainder (proj₂ (proj₁ pigeon))) φ ψ

CTL.Proof Page 363



cut-out-loopU M φ ψ k ¬k<n (frun , run , jp , kp) ((k₁ , k₂) , 1<2 , eq)
  = frconc M (frtake M frun k₁)
             (subst (\ x → FinRun M x (fin-remainder k₂)) (trans (sym eq) (lem-frtake M frun k₁))
                    (frdrop M frun k₂))
  , subst (Run M) (trans (trans (lem-frdrop-last M frun k₂)
                                (cong' (λ x → FinRun M x (fin-remainder k₂))
                                       (λ s r → last M {_} {s} r)
                                       (trans (sym eq) (lem-frtake M frun k₁))
                                       (frdrop M frun k₂)))
                         (lem-frconc-last M (frtake M frun k₁) _)) run
  , jphelper frun k₁ k₂ 1<2 eq jp
  , subst (λ z → ⟦ M , z ⊧ ψ ⟧)
          (trans (trans (lem-frdrop-last M frun k₂)
                        (cong' (λ x → FinRun M x (fin-remainder k₂))
                               (λ x y → last M {_} {x} y)
                               (trans (sym eq) (lem-frtake M frun k₁))
                               (frdrop M frun k₂)))
                 (lem-frconc-last M (frtake M frun k₁) _)) kp
  where
    jphelper : {k : ℕ}
             → {s : State M}
             → (frun : FinRun M s k)
             → (k₁ k₂ : Fin (suc k))
             → T (flt k₁ k₂)
             → (eq : fnth M frun k₁ ≡ fnth M frun k₂)
             → ((j : Fin k) → ⟦ M , fnth M frun (inject₁ j) ⊧ φ ⟧)
             → (j : Fin (toℕ k₁ + fin-remainder k₂))
             → ⟦ M , fnth M (frconc M (frtake M frun k₁)
                                      (subst (\ x → FinRun M x (fin-remainder k₂))
                                             (trans (sym eq) (lem-frtake M frun k₁))
                                             (frdrop M frun k₂))) (inject₁ j) ⊧ φ ⟧
    jphelper {zero} frun' zero zero () eq' jp' j
    jphelper {zero} frun' zero (suc ()) k₁<k₂ eq' jp' j
    jphelper {zero} frun' (suc ()) k₂' k₁<k₂ eq' jp' j
    jphelper {suc k'} {s} (next s' y) zero k₂' k₁<k₂ eq' jp' j
      = subst (λ z → ⟦ M , z ⊧ φ ⟧)
              (trans (lem-frdrop-lift-nolast M (next s' y) k₂' j)
                     (cong' (λ x → FinRun M x (fin-remainder k₂'))
                            (λ x y' → fnth M {_} {x} y' (inject₁ j))
                            (trans (sym eq') refl)
                     (frdrop M (next s' y) k₂')))
              (jp' (inject≤ (<-+-rsuc (toℕ k₂') (fin-remainder k₂') (suc (suc k'))
                                            (lem-fin-remainder-plus-lt (suc k₂')))
                                      (k₂' F+ j)))
    jphelper {suc k'} {s} frun' (suc k₁') k₂' k₁<k₂ eq' jp' zero = jp' zero
    jphelper {suc k'} {s} (next s' y) (suc k₁') zero () eq' jp' (suc j')
    jphelper {suc k'} {s} (next s' y) (suc k₁') (suc k₂') k₁<k₂ eq' jp' (suc j')
      = jphelper y k₁' k₂' k₁<k₂ eq' (λ z → jp' (suc z)) j'

reduceWitness : ∀ M {s} φ ψ {k} → WitnessesU M {s} k φ ψ
              → Σ[ k' ∶ ℕ ] (T (k' < state M) × WitnessesU M {s} k' φ ψ)
reduceWitness M {s} φ ψ {k} wit = completeind ρ ih k wit
  where
    ρ : ℕ → Set
    ρ k' = WitnessesU M {s} k' φ ψ → Σ ℕ (λ k0 → T (k0 < state M) × WitnessesU M {s} k0 φ ψ)

    ih : (k' : ℕ) → ((l : ℕ) → T (l < k') → ρ l) → ρ k'
    ih k' step wit with ex-mid (k' < (state M))
    ih k' step wit' | inj₁ x = k' , x , wit'
    ih k' step wit' | inj₂ y = step _ (<-fin-remainder (proj₁ (proj₁ pid)) (proj₂ (proj₁ pid))
                                         (proj₁ (proj₂ pid)))
                                      new-wit
      where
        pid = pigeon (suc k') (state M) (<-¬ k' (state M) y) (fnth M (proj₁ wit'))
        new-wit : WitnessesU M _ φ ψ
        new-wit = cut-out-loopU M φ ψ k' y wit' pid

inf-c : (M : FSM) → ∀{s'} → (r : Run M s') → (n : ℕ) → T (check M n (λ _ → true) s')
inf-c M r zero    = tt
inf-c M r (suc n) = lem-fin-∨ (run-head M r) _ (inf-c M (run-tail M r) n)

mutual
  complete-aux : ∀ M s φ → ⟦ M , s ⊧ φ ⟧ → T (eval (M , s ⊧ φ))
  complete-aux M s false p   = p
  complete-aux M s (~ φ) p   = lem-bool-neg-c (eval (M , s ⊧ φ)) (λ q → p (soundness-aux M s φ q))
  complete-aux M s (φ ∧ ψ) p = lem-bool-∧-c _ _ (Prod.map (complete-aux M s φ)(complete-aux M s ψ)p)
  complete-aux M s (φ ∨ ψ) p = lem-bool-∨-c _ _ (Sum.map (complete-aux M s φ)(complete-aux M s ψ) p)
  complete-aux M s P[ ap ] p = p
  complete-aux M s (EX φ) p  = lem-fin-∨ (run-head M $ proj₁ p) _
                                     (∧-intro _ _ (complete-aux M _ φ (proj₂ p))
                                                 (inf-c M (run-tail M (proj₁ p)) (state M)))
  complete-aux M s (EG φ) p  = eg (proj₁ p) (proj₂ p) (state M)
    where
      eg : ∀{s'}
         → (r : Run M s')
         → (p : (n : ℕ) → ⟦ M , nth M n r ⊧ φ ⟧)
         → (n : ℕ)
         → T (check M n (λ t → eval (M , t ⊧ φ)) s')
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      eg r p' zero = complete-aux M _ φ (p' 0)
      eg r p' (suc n) = ∧-intro _ _ (complete-aux M _ φ (p' 0))
                                    (lem-fin-∨ (run-head M r)
                                               (λ a → check M n (λ s' → eval (M , s' ⊧ φ))
                                                            (transition M _ a))
                                               (eg (run-tail M r) (λ x → p' (suc x)) n))

  complete-aux M s E[ φ U ψ ] p = eu (reduceWitness M {s} φ ψ (toWitness M s φ ψ p))
    where
      eu' : ∀{s'}
         → (wit : Σ ℕ (λ k' → T (k' < state M) × WitnessesU M {s'} k' φ ψ))
         → T (checkU M (proj₁ wit) (λ t → eval (M , t ⊧ φ )) (λ t → eval (M , t ⊧ ψ )) s')
      eu' (zero , k<n , end , run , φp , ψp)
        = ∧-intro _ _ (complete-aux M _ ψ ψp) (inf-c M run (state M))
      eu' {s'} (suc k , k<n , next s0 y , run , φp , ψp)
        = ∨-introl ((eval (M , s' ⊧ φ)) ∧♭ _) _
                   (∧-intro _ _ (complete-aux M s' φ (φp zero))
                                (lem-fin-∨ s0 _
          (eu' (k , <-lsuc k (state M) k<n , y , run , (λ x → φp (suc x)) , ψp)) ))

      eu : ∀{s'}
         → (wit : Σ ℕ (λ k' → T (k' < state M) × WitnessesU M {s'} k' φ ψ))
         → T (checkU M (state M) (λ t → eval (M , t ⊧ φ)) (λ t → eval (M , t ⊧ ψ)) s')
      eu wit = lem-checkU M (proj₁ wit) (state M)
                 (<-rsuc (proj₁ wit) (state M) (proj₁ (proj₂ wit))) _ _ _ (eu' wit)

  soundness-aux : ∀ M s φ → T (eval (M , s ⊧ φ)) → ⟦ M , s ⊧ φ ⟧
  soundness-aux M s false p   = p
  soundness-aux M s (~ φ) p   = λ q → lem-bool-neg-s (eval (M , s ⊧ φ)) p (complete-aux M s φ q)
  soundness-aux M s (φ ∨ ψ) p = Sum.map (soundness-aux M s φ) (soundness-aux M s ψ)
                                        (lem-bool-∨-s (eval (M , s ⊧ φ)) _ p)
  soundness-aux M s (φ ∧ ψ) p = Prod.map (soundness-aux M s φ) (soundness-aux M s ψ)
                                         (lem-bool-∧-s (eval (M , s ⊧ φ)) _ p)
  soundness-aux M s P[ ap ] p = p
  soundness-aux M s (EX φ) p
    = ((λ π1 → Prod.map (λ x → next (proj₁ π1)
                                    (♯ lasso2run M (path2lasso-G M (proj₁
                                         (lem-check-Σ M (state M) (const true) _ x)))))
                        (soundness-aux M _ φ)
                        (swap (lem-bool-∧-s (eval (M , _ ⊧ φ)) _ (proj₂ π1)))) ∘′
      lem-fin-∨' (λ a → eval (M , transition M s a ⊧ φ) ∧♭
                             check M (state M) (λ _ → true) (transition M s a))) p
  soundness-aux M s (EG φ) p
    = Prod.map (λ r → lasso2run M (path2lasso-G M r))
        (λ {a} q n → soundness-aux M _ φ (lem-path2lasso-G M a (λ t → eval (M , t ⊧ φ)) q n))
        (lem-check-Σ M (state M) _ s p)
  soundness-aux M s E[ φ U ψ ] p = fromWitness M s φ ψ
    (frun s (state M) p , run s (state M) p , φp s (state M) p , ψp s (state M) p)
    where
      k : (s : State M)
        → (n : ℕ)
        → T (checkU M n (λ t → eval (M , t ⊧ φ)) (λ t → eval (M , t ⊧ ψ)) s)
        → ℕ
      k s' zero p'    = 0
      k s' (suc n) p' =
        let π : _ → _
            π x = lem-fin-∨' (λ a → checkU M n (λ t → eval (M , t ⊧ φ))
                                           (λ t → eval (M , t ⊧ ψ))
                                           (transition M s' a))
                             (∧-elimr (eval (M , s' ⊧ φ)) x)
        in ∨-elim (λ x → suc (k (transition M s' (proj₁ (π x))) n (proj₂ (π x)))) (const 0) p'

      frun : (s : State M)
           → (n : ℕ)
           → (p : T (checkU M n (λ t → eval (M , t ⊧ φ)) (λ t → eval (M , t ⊧ ψ)) s))
           → FinRun M s (k s n p)
      frun s' zero p' = end
      frun s' (suc n') p' with lem-bool-∨-s ((eval (M , s' ⊧ φ)) ∧♭ _) _ p'
      frun s' (suc n') p' | inj₁ x = next _ (frun _ n' _)
      frun s' (suc n') p' | inj₂ y = end

      run : (s : State M)
          → (n : ℕ)
          → (p : T (checkU M n (λ t → eval (M , t ⊧ φ)) (λ t → eval (M , t ⊧ ψ)) s))
          → Run M (last M (frun s n p))
      run s' zero p' = lasso2run M (path2lasso-G M (proj₁ (lem-check-Σ M (state M) (const true)
                                                             s' (∧-elimr (eval (M , s' ⊧ ψ)) p'))))
      run s' (suc n') p' with lem-bool-∨-s ((eval (M , s' ⊧ φ)) ∧♭ _) _ p'
      run s' (suc n') p' | inj₁ x = run _ n' _
      run s' (suc n)  p' | inj₂ y = lasso2run M (path2lasso-G M (proj₁ (lem-check-Σ M (state M)
                                                  (const true) s' (∧-elimr (eval (M , s' ⊧ ψ)) y))))

      φp : (s : State M)
         → (n : ℕ)
         → (p : T (checkU M n (λ t → eval (M , t ⊧ φ)) (λ t → eval (M , t ⊧ ψ)) s))
         → (j : Fin (k s n p))
         → ⟦ M , fnth M (frun s n p) (inject₁ j) ⊧ φ ⟧
      φp s' zero p' ()
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      φp s' zero p' ()
      φp s' (suc n') p' j with lem-bool-∨-s ((eval (M , s' ⊧ φ)) ∧♭ _) _ p'
      φp s' (suc n') p' zero | inj₁ x = soundness-aux M s' φ (∧-eliml x)
      φp s' (suc n') p' (suc j) | inj₁ x = φp _ n' _ j
      φp s' (suc n') p' () | inj₂ y

      ψp : (s : State M)
         → (n : ℕ)
         → (p : T (checkU M n (λ t → eval (M , t ⊧ φ)) (λ t → eval (M , t ⊧ ψ)) s))
         → ⟦ M , last M (frun s n p) ⊧ ψ ⟧
      ψp s' zero p' = soundness-aux M s' ψ (∧-eliml p')
      ψp s' (suc n') p' with lem-bool-∨-s ((eval (M , s' ⊧ φ)) ∧♭ _) _ p'
      ψp s' (suc n') p' | inj₁ x = ψp _ n' _
      ψp s' (suc n') p' | inj₂ y = soundness-aux M s' ψ (∧-eliml y)

soundness : ∀ γ → T (eval γ) → ⟦ γ ⟧
soundness (M , s ⊧ φ) = soundness-aux M s φ

complete : ∀ γ → ⟦ γ ⟧ → T (eval γ)
complete (M , s ⊧ φ) = complete-aux M s φ

--{-# BUILTIN ATPSOUND soundness #-}
--{-# BUILTIN ATPCOMPLETE complete #-}
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module Data.Fin.Pigeon where

open import PropIso renaming (_<_ to nlt)

open import Data.Fin.Arithmetic
open import Data.Fin hiding (inject₁)
open import Data.Nat
open import Data.Bool
open import Data.Product
open import Data.Sum as Sum

open import Relation.Binary.PropositionalEquality

private
  ψ₁ : {n : ℕ} → (p : Fin n → Bool) → Set
  ψ₁ {n} p = Σ[ k ∶ Fin n × Fin n ] T (flt (proj₁ k) (proj₂ k)) × T (p (proj₁ k)) × T (p (proj₂ k))

  ψ₂ : {n : ℕ} → (p : Fin n → Bool) → Set
  ψ₂ {n} p = Σ[ k ∶ Fin n ] (T (p k) × ((j : Fin n) → j ≢ k → ¬ (T (p j))))

  ψ₃ : {n : ℕ} → (p : Fin n → Bool) → Set
  ψ₃ {n} p = (k : Fin n) → ¬ T (p k)

  ψ : {n : ℕ} → (p : Fin n → Bool) → Set
  ψ p = ψ₁ p ⊎ ψ₂ p ⊎ ψ₃ p

Pigeon : {n m : ℕ} → (f : Fin n → Fin m) → Set
Pigeon {n} f = Σ[ k ∶ Fin n × Fin n ] (T (flt (proj₁ k) (proj₂ k)) × f (proj₁ k) ≡ f (proj₂ k))

tri-choice-step-c2 : {n : ℕ} → (p : Fin (suc n) → Bool) → ψ₂ (p ∘ suc) → T (p zero) ⊎ ¬ (T (p zero))
                   → ψ₁ p ⊎ ψ₂ p
tri-choice-step-c2 p (x , (y , z)) (inj₁ x') = inj₁ ((zero , suc x) , tt , x' , y)
tri-choice-step-c2 {n} p (x , (y , z)) (inj₂ y') = inj₂ (suc x , y , lem)
  where
    lem : (j : Fin (suc n)) → (j ≢ suc x) → ¬ T (p j)
    lem zero    p' = y'
    lem (suc i) p' = z i (λ k → p' (cong suc k))

tri-choice-step-c3 : ∀ {n} (p : Fin (suc n) → Bool) → ((k : Fin n) → ¬ T (p (suc k)))
                   → T (p zero) ⊎ ¬ (T (p zero)) → ψ₂ p ⊎ ψ₃ p
tri-choice-step-c3 {n} p anz (inj₁ x) = inj₁ (zero , x , lem)
  where
    lem : (j : Fin (suc n)) → (j ≢ zero) → ¬ (T ( (p j)))
    lem zero    p' = ⊥-elim (p' refl)
    lem (suc i) p' = anz i
tri-choice-step-c3 {n} p anz (inj₂ y) = inj₂ lem
  where
    lem : (k : Fin (suc n)) → ¬ (T ( (p k)))
    lem zero    = y
    lem (suc i) = anz i

tri-choice-step : {n : ℕ} → (p : Fin (suc n) → Bool) → ψ (p ∘ suc) → ψ p
tri-choice-step p (inj₁ ((x , y) , q)) = inj₁ ((suc x , suc y) , q)
tri-choice-step p (inj₂ (inj₁ x)) = Sum.map id inj₁ $ tri-choice-step-c2 p x (ex-mid (p zero))
tri-choice-step p (inj₂ (inj₂ y)) = inj₂ $ tri-choice-step-c3 p y (ex-mid (p zero))

tri-choice : {n : ℕ} → (p : Fin n → Bool) → ψ p
tri-choice {zero} p = inj₂ (inj₂ (λ ()))
tri-choice {suc n} p = tri-choice-step p (tri-choice {n} (p ∘ suc))

isZero : {n : ℕ} → Fin n → Bool
isZero zero = true
isZero (suc i) = false

lem-iszero : {n : ℕ} → {x : Fin (suc n)} → T (isZero x) → x ≡ zero
lem-iszero {_} {zero} p = refl
lem-iszero {_} {suc i} ()

fin1-eq : {a b : Fin 1} → a ≡ b
fin1-eq {zero} {zero} = refl
fin1-eq {suc ()}
fin1-eq {_} {suc ()}

pred' : {n : ℕ} → Fin (suc (suc n)) → Fin (suc n)
pred' zero = zero
pred' (suc i) = i

lem-pred' : ∀ {n} {a b : Fin (suc (suc n))} (anz : ¬ T ( (isZero a))) (bnz : ¬ T ( (isZero b)))
          → pred' a ≡ pred' b → a ≡ b
lem-pred' {n} {zero} {b} anz bnz p = ⊥-elim $ anz tt
lem-pred' {n} {suc i} {zero} anz bnz p = ⊥-elim $ bnz tt
lem-pred' {n} {suc i} {suc i'} anz bnz p = cong suc p

-- inject suc
is : ∀ {n} (k : Fin (suc n)) x → T (flt (inject₁ x) k) ⊎ ¬ (T (flt (inject₁ x) k)) → Fin (suc n)
is k x (inj₁ x<k) = inject₁ x
is k x (inj₂ x>=k) = suc x

Data.Fin.Pigeon Page 367



lem-is-mono : ∀ {n} (k : Fin (suc n)) (a b : Fin n)
            → (p : T (flt (inject₁ a) k) ⊎ ¬ T (flt (inject₁ a) k))
            → (q : T (flt (inject₁ b) k) ⊎ ¬ T (flt (inject₁ b) k))
            → T (flt a b) → T (flt (is k a p) (is k b q))
lem-is-mono k a b (inj₁ a<k) (inj₁ b<k) a<b rewrite toℕ-inj-eq a 1 _ refl 0 _ refl
                                                  | toℕ-inj-eq b 1 _ refl 0 _ refl = a<b
lem-is-mono k a b (inj₁ a<k) (inj₂ b>=k) a<b rewrite toℕ-inj-eq a 1 _ refl 0 _ refl
  = <-rsuc _ (toℕ b) a<b
lem-is-mono {n} k a b (inj₂ a≮k) (inj₁ b<k) a<b rewrite toℕ-inj-eq a 1 _ refl 0 _ refl
                                                      | toℕ-inj-eq b 1 _ refl 0 _ refl
  = ⊥-elim $ <-¬' (toℕ b) (toℕ a)
                  (<-trans' _ (toℕ k) (suc _) b<k (<-¬ (toℕ a) (toℕ k) a≮k))
                  (<-rsuc (toℕ a) _ a<b)
lem-is-mono k a b (inj₂ a>=k) (inj₂ b>=k) a<b = a<b

lem-is-not-k : ∀ {n} {j} {k : Fin (suc n)} (p : T (flt (inject₁ j) k) ⊎ ¬ (T (flt (inject₁ j) k)))
             → (is k j p) ≢ k
lem-is-not-k {n} {j} (inj₁ x) refl = <-¬refl (toℕ (inject₁ j)) x
lem-is-not-k {n} {j} {._} (inj₂ y) refl rewrite toℕ-inj-eq j 1 _ refl 0 _ refl = y (<-ord (toℕ j))

lem-is-not-zero : {n m : ℕ} (f : Fin (suc n) → Fin (suc m)) (c2 : ψ₂ (isZero ∘ f)) (j : Fin n)
                → ¬ T (isZero (f (is (proj₁ c2) j (ex-mid (flt (inject₁ j) (proj₁ c2))))))
lem-is-not-zero f (k , kz , jnz) j = jnz (is k j (ex-mid ((flt (inject₁ j) k))))
                                         (lem-is-not-k {_} {j} (ex-mid (flt (inject₁ j) k)))

lem-reduce-f : {n m : ℕ} (f : Fin (suc (suc n)) → Fin (suc (suc m))) (point : Fin (suc (suc n)))
             → Fin (suc n) →  Fin (suc m)
lem-reduce-f f p k = pred' (f (is p k (ex-mid (nlt (toℕ (inject₁ k)) (toℕ p)))))

lem-pidgen-c2 : (n m : ℕ)
              → T (nlt (suc (suc m)) (suc (suc n)))
              → (f : Fin (suc (suc n)) → Fin (suc (suc m)))
              → (c2 : ψ₂ (isZero ∘ f))
              → Pigeon (lem-reduce-f f (proj₁ c2))
              → Pigeon f
lem-pidgen-c2 n m nlt f (k' , k'z , jnz) ((k , l) , k<l , eq)
  = (is k' k (ex-mid (flt (inject₁ k) k'))
    , is k' l (ex-mid (flt (inject₁ l) k')))
    , lem-is-mono k' k l (ex-mid (flt (inject₁ k) k'))
        (ex-mid (flt (inject₁ l) k')) k<l
    , lem-pred' (lem-is-not-zero f (k' , k'z , jnz) k)
                (lem-is-not-zero f (k' , k'z , jnz) l) eq

lem-pidgen-c3 : (n m : ℕ)
              → T (nlt (suc (suc m)) (suc (suc n)))
              → (f : Fin (suc (suc n)) → Fin (suc (suc m)))
              → (c3 : ψ₃ (isZero ∘ f))
              → Pigeon (pred' ∘ f ∘ inject₁)
              → Pigeon f
lem-pidgen-c3 n m nlt f c3 ((k , l) , k<l , eq) rewrite toℕ-inj-eq k 0 _ refl 1 _ refl
                                                      | toℕ-inj-eq l 0 _ refl 1 _ refl
  = (inject₁ k , inject₁ l) , k<l , lem-pred' (c3 (inject₁ k)) (c3 (inject₁ l)) eq

mutual
  pidgen' : (n m : ℕ) → T (nlt m n) → (f : Fin (suc n) → Fin (suc m)) → Pigeon f
  pidgen' zero zero () f
  pidgen' (suc n) zero p f = (zero , (suc zero)) , tt , fin1-eq
  pidgen' zero (suc n') () f
  pidgen' (suc n) (suc m) nlt f  = lem-pidgen n m nlt  f (tri-choice (isZero ∘ f))

  lem-pidgen : ∀ n m → T (nlt m n) → (f : Fin (suc (suc n)) → Fin (suc (suc m))) → ψ (isZero ∘ f)
             → Pigeon f
  lem-pidgen n m nlt f (inj₁ ((k , l) , k<l , kz , lz))
    = (k , l)
      , k<l
      , subst (λ j → f k ≡ j) (sym (lem-iszero lz))
              (subst (λ j → j ≡ zero) (sym (lem-iszero kz)) refl)

  lem-pidgen n m nlt f (inj₂ (inj₁ c2)) = lem-pidgen-c2 n m nlt f c2
                                    (pidgen' n m nlt (lem-reduce-f f (proj₁ c2)))
  lem-pidgen n m nlt f (inj₂ (inj₂ c3)) = lem-pidgen-c3 n m nlt f c3
                                    (pidgen' n m nlt (λ z → pred' (f (inject₁ z))))

pigeon : (n m : ℕ) → T (nlt m n) → (f : Fin n → Fin m) → Pigeon f
pigeon zero m () f
pigeon (suc n) (suc m) p f = pidgen' n m p f
pigeon (suc n) zero p f with f zero ; ...| ()
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module CTL.Sink where

open import Data.Fin hiding (_<_;#_)
open import Data.Nat hiding (_<_)
open import Data.List
open import Data.Bool hiding (_∧_;_∨_)
open import Data.Product as Prod
open import Data.Sum as Sum

open import Relation.Binary.PropositionalEquality

open import CTL.TransitionSystem
open import CTL.Definition

open import Coinduction

open import PropIso

{-
  adds a sink to the transition system, so that the relation
  is assured to be total. also the ctl formula are transformed
  accordingly.
-}

mksink : FSM → FSM
mksink ts
  = fsm (suc (FSM.state ts)) (suc (FSM.atom ts)) act (init (FSM.initial ts)) trans' lbl
  where
    act : Fin (suc (FSM.state ts)) → ℕ
    act zero    = 1
    act (suc i) = suc (FSM.action ts i)

    init : ∀{n} → List (Fin n) → List (Fin (suc n))
    init []       = []
    init (a ∷ as) = suc a ∷ init as

    trans' : (s : Fin (suc (FSM.state ts))) (a : Fin (act s)) → Fin (suc (FSM.state ts))
    trans' zero a          = zero
    trans' (suc s) zero    = zero
    trans' (suc s) (suc a) = suc (FSM.transition ts s a)

    lbl : Fin (suc (FSM.state ts)) → Fin (suc (FSM.atom ts)) → Bool
    lbl zero zero       = true
    lbl zero (suc a)    = false
    lbl (suc s) zero    = false
    lbl (suc s) (suc a) = FSM.label ts s a

private
  ¬sink : ∀ {a} → CTL (suc a)
  ¬sink = ~ P[ zero ]

liftCTL : ∀ {n} → CTL n → CTL (suc n)
liftCTL false      = false
liftCTL (~ φ)      = ~ (liftCTL φ)
liftCTL (φ ∨ ψ)    = liftCTL φ ∨ liftCTL ψ
liftCTL (φ ∧ ψ)    = liftCTL φ ∧ liftCTL ψ
liftCTL P[ ap ]    = P[ suc ap ]
liftCTL (EX φ)     = (EX (liftCTL φ ∧ EG ¬sink))
liftCTL (EG φ)     = EG (liftCTL φ ∧ ¬sink)
liftCTL E[ φ U ψ ] = E[ liftCTL φ ∧ ¬sink U liftCTL ψ ∧ EG ¬sink ]

runlift : ∀{M s} → Run M s → Run (mksink M) (suc s)
runlift {M} r = next (suc (run-head M r)) (♯ (runlift (run-tail M r)))

rundown : ∀{M s} → (p : ⟦ mksink M , suc s ⊧ EG ¬sink ⟧) → Run M s
rundown (next zero x , proj₂)     = ⊥-elim $ proj₂ 1 tt
rundown (next (suc s') x , proj₂) = next s' (♯ rundown ((♭ x) , (proj₂ ∘ suc)))

private
  neverinsink : ∀ {M s'} → (a : Run M s') → (n : ℕ)
    → ¬ T (FSM.label (mksink M) (nth (mksink M) n (runlift a)) zero)
  neverinsink a zero p'        = p'
  neverinsink {M} a (suc n) p' = neverinsink (run-tail M a) n p'

  neverinsink' : ∀ {M s'} → (k : ℕ) → (a : Run M s') → (n : ℕ)
       → ¬ T (FSM.label (mksink M) (nth (mksink M) n (run-drop (mksink M) k (runlift a))) zero)
  neverinsink' zero a zero p        = p
  neverinsink' {M} zero a (suc n) p = neverinsink' zero (run-tail M a) n p
  neverinsink' {M} (suc k) a n p    = neverinsink' k (run-tail M a) n p

lem-nth-eq : ∀ M s (r : Run M s) n → suc (nth M n r) ≡ nth (mksink M) n (runlift r)
lem-nth-eq M s r zero    = refl
lem-nth-eq M s r (suc n) = lem-nth-eq M _ (run-tail M r) n

lem-nth-eq' : (M : FSM)
            → (s : _)
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            → (r : Run (mksink M) (suc s))
            → (p : ∀ n → ⟦ mksink M , nth (mksink M) n r ⊧ ¬sink ⟧)
            → (n : ℕ) → nth (mksink M) n r ≡ suc (nth M n (rundown (r , p)))
lem-nth-eq' M s (next zero x) p n           = ⊥-elim $ p 1 tt
lem-nth-eq' M s (next (suc s') x) p zero    = refl
lem-nth-eq' M s (next (suc s') x) p (suc n) = lem-nth-eq' M _ (♭ x) (p ∘ suc) n

sinked-run : ∀ M s → Run M s → ⟦ mksink M , suc s ⊧ EG ¬sink ⟧
sinked-run M s r = runlift r , (neverinsink r)

sinked-run-eg : ∀ M φ ψ
              → (∀ s → ⟦ M , s ⊧ φ ⟧ → ⟦ mksink M , suc s ⊧ ψ ⟧)
              → ∀ s → ⟦ M , s ⊧ EG φ ⟧ → ⟦ mksink M , suc s ⊧ EG (ψ ∧ ¬sink) ⟧
sinked-run-eg M φ ψ p s q
  = Prod.map runlift (λ {a} eg n → subst (λ k → ⟦ mksink M , k ⊧ ψ ⟧)
                                         (lem-nth-eq M _ a n)
                                         (p (nth M n a) (eg n))
                                   , neverinsink a n) q

sinked-run-eg' : ∀ M φ ψ
               → (∀ s → ⟦ mksink M , suc s ⊧ ψ ⟧ → ⟦ M , s ⊧ φ ⟧)
               → ∀ s → ⟦ mksink M , suc s ⊧ EG (ψ ∧ ¬sink) ⟧ → ⟦ M , s ⊧ EG φ ⟧
sinked-run-eg' M φ ψ p s q = (rundown (proj₁ q , (λ n → proj₂ (proj₂ q n))))
                           , λ n → p (nth M n (rundown (proj₁ q , (λ n₁ → proj₂ (proj₂ q n₁)))))
                                     (subst (λ k → ⟦ mksink M , k ⊧ ψ ⟧)
                                           (lem-nth-eq' M _ (proj₁ q) (λ n₁ → proj₂ (proj₂ q n₁)) n)
                                           (proj₁ (proj₂ q n)))

sinked-run-eu : ∀ M φ φ' ψ ψ'
              → (∀ s → ⟦ M , s ⊧ φ ⟧ → ⟦ mksink M , suc s ⊧ φ' ⟧)
              → (∀ s → ⟦ M , s ⊧ ψ ⟧ → ⟦ mksink M , suc s ⊧ ψ' ⟧)
              → ∀ s → ⟦ M , s ⊧ E[ φ U ψ ] ⟧
              → ⟦ mksink M , suc s ⊧ E[ φ' ∧ ¬sink U (ψ' ∧ EG ¬sink) ] ⟧
sinked-run-eu M φ φ' ψ ψ' p q s r
  = Prod.map runlift (λ {a} → Prod.map id (λ {k} → Prod.map
     (λ jp j j<k → subst (λ k → ⟦ mksink M , k ⊧ φ' ⟧) (lem-nth-eq M _ a j) (p _ (jp j j<k))
                    , (neverinsink a j))
     (λ kp → subst (λ k₁ → ⟦ mksink M , k₁ ⊧ ψ' ⟧) (lem-nth-eq M _ a k) (q _ kp)
              , run-drop _ k (runlift a) , neverinsink' k a))) r

Z : {A : ℕ → Set} → (n : ℕ) → A 0 → ((m : ℕ) → T (m < n)  → A (suc m)) → A n
Z zero a0 an    = a0
Z (suc n) a0 an = an n (<-ord n)

mutual
  lemma : (M : FSM)
        → (s : FSM.State M)
        → (φ : CTL (FSM.atom M))
        → ⟦ M , s ⊧ φ ⟧
        → ⟦ mksink M , (suc s) ⊧ liftCTL φ ⟧
  lemma M s false p      = p
  lemma M s (~ φ) p      = λ x → p (lemma' M s φ x)
  lemma M s (φ ∨ ψ) p    = Sum.map (lemma _ _ φ) (lemma _ _ ψ) p
  lemma M s (φ ∧ ψ) p    = Prod.map (lemma _ _ φ) (lemma _ _ ψ) p
  lemma M s P[ ap ] p    = p
  lemma M s (EX φ) p     = Prod.map runlift (λ {a} q → lemma M _ φ q , runlift (run-tail M a)
                                                                     , neverinsink (run-tail M a)) p
  lemma M s (EG φ) p     = sinked-run-eg M φ (liftCTL φ) (λ s₁ → lemma M s₁ φ) s p
  lemma M s E[ φ U ψ ] p = sinked-run-eu M φ (liftCTL φ) ψ (liftCTL ψ)
                                         (λ s₁ → lemma M s₁ φ) (λ s₁ → lemma M s₁ ψ) s p

  lemma' : (M : FSM)
         → (s : FSM.State M)
         → (φ : CTL (FSM.atom M)) → ⟦ mksink M , (suc s) ⊧ liftCTL φ ⟧
         → ⟦ M , s ⊧ φ ⟧
  lemma' M s false p   = p
  lemma' M s (~ φ) p   = λ x → p (lemma M s φ x)
  lemma' M s (φ ∨ ψ) p = Sum.map (lemma' M s φ) (lemma' M s ψ) p
  lemma' M s (φ ∧ ψ) p = Prod.map (lemma' M s φ) (lemma' M s ψ) p
  lemma' M s P[ ap ] p = p
  lemma' M s (EX φ) (next zero y , φp , g¬sink) = ⊥-elim (proj₂ g¬sink 0 tt)
  lemma' M s (EX φ) (next (suc a) y , φp , g¬sink) = next a (♯ rundown g¬sink) , lemma' M _ φ φp
  lemma' M s (EG φ) p = sinked-run-eg' M φ (liftCTL φ) (λ s₁ → lemma' M s₁ φ) s p

  lemma' M s E[ φ U ψ ] (urun , zero , jp , kp)
    = (rundown (proj₂ kp)) , zero , (λ j ()) , lemma' M _ ψ (proj₁ kp)
  lemma' M s E[ φ U ψ ] (next zero y , suc zero , jp , kp)    = ⊥-elim (proj₂ (proj₂ kp) 0 tt)
  lemma' M s E[ φ U ψ ] (next zero y , suc (suc n) , jp , kp) = ⊥-elim (proj₂ (jp 1 tt) tt)
  lemma' M s E[ φ U ψ ] (next (suc a) y , suc k , jp , kp)
    = Prod.map (λ r → next a (# r)) (λ {νrun} → Prod.map suc (λ {k'} → Prod.map
               (λ jp' j j<k → Z {λ j' → ⟦ M , nth M j' (next a (# νrun)) ⊧ φ ⟧} j
                 (lemma' M _ φ (proj₁ (jp 0 tt))) (λ m m<j → jp' m (<-trans' m j (suc k') m<j j<k)))
                 id)) (lemma' M _ (E[ φ U ψ ]) ((♭ y) , k , (λ j j<k → jp (suc j) j<k) , kp))
    where
      -- needed for source code identity
      # : {A : Set} → A → ∞ A
      # = ♯_
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module Data.Fin.Record where

open import Data.Fin hiding (inject+;_<_;_+_;inject₁)
open import Data.Fin.Arithmetic
open import Data.Fin.EqReasoning
open import Data.Nat hiding (_<_)
open import Data.List
import Data.List.Util as L
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Bool

open import PropIso

open import Relation.Binary.PropositionalEquality

Record : List ℕ → Set
Record [] = ⊤
Record (n ∷ xs) = Fin n × Record xs

fin-prod : {n m : ℕ} → Fin (suc n) × Fin (suc m) → Fin (suc n * suc m)
fin-prod                 (zero   , zero)        = zero
fin-prod                 (zero   , suc zero)    = suc zero
fin-prod {zero }         (zero   , suc (suc l)) = suc (fin-prod {zero} (zero , suc l))
fin-prod {suc n} {suc m} (zero   , suc (suc l)) = inject+ (suc (suc m))
                                                        (fin-prod {n} {suc m} (zero , suc (suc l)))
fin-prod {zero }         (suc () , l)
fin-prod {suc n} {m}     (suc k  , l)           = fin-prod (k , l) suc^ suc m

fin-proj : {n m : ℕ} → Fin (suc n * suc m) → Fin (suc n) × Fin (suc m)
fin-proj {zero}  {zero}  x       = zero , zero
fin-proj {zero}  {suc m} zero    = zero , zero
fin-proj {zero}  {suc m} (suc x) = Prod.map id suc (fin-proj {zero} {m} x)
fin-proj {suc n} {m}     x       = [ (λ x' → zero , fromℕ< (toℕ x) x') ,
                                     (λ x' → Prod.map suc id (fin-proj {n} (finminus {suc m} x x')))
                                   ]′ (ex-mid (toℕ x < suc m))

lem-fin-prod-<' : (n m o : ℕ) → (l : Fin (suc m))
                → T (toℕ (inject+ o (fin-prod (zero {n} , l))) < suc m)
lem-fin-prod-<' zero m zero zero = tt
lem-fin-prod-<' zero .(suc n) zero (suc (zero {n})) = tt
lem-fin-prod-<' zero .(suc n) zero (suc (suc {n} l)) = lem-fin-prod-<' 0 n 0 (suc l)
lem-fin-prod-<' (suc n) m zero zero = tt
lem-fin-prod-<' (suc n) .(suc n') zero (suc (zero {n'})) = tt
lem-fin-prod-<' (suc n) .(suc m) zero (suc (suc {m} l)) = lem-fin-prod-<' n (suc m) (suc (suc m))
                                                                          (suc (suc l))
lem-fin-prod-<' n m (suc o) l
  rewrite sym $ toℕ-inj-eq (fin-prod (zero {n} , l)) o _ refl (suc o) _ refl
  = lem-fin-prod-<' n m o l

lem-fin-prod-0' : (n m o : ℕ) → (l : Fin (suc m))
                → (z : T (toℕ (inject+ o (fin-prod (zero {n} , l))) < suc m))
                → fromℕ< (toℕ (inject+ o (fin-prod (zero {n} , l)))) z ≡ l
lem-fin-prod-0' zero m zero zero z = refl
lem-fin-prod-0' zero .(suc n) zero (suc (zero {n})) z = refl
lem-fin-prod-0' zero .(suc m) zero (suc (suc {m} l)) z = cong suc (lem-fin-prod-0' 0 m 0 (suc l) z)
lem-fin-prod-0' (suc n) m zero zero z = refl
lem-fin-prod-0' (suc n) .(suc n') zero (suc (zero {n'})) z = refl
lem-fin-prod-0' (suc n) .(suc m) zero (suc (suc {m} l)) z
  = lem-fin-prod-0' n (suc m) (suc (suc m)) (suc (suc l)) z
lem-fin-prod-0' n m (suc o) l z
  rewrite sym $ toℕ-inj-eq (fin-prod (zero {n} , l)) o _ refl (suc o) _ refl
  = lem-fin-prod-0' n m o l z

fin-prod-iso1 : (n m : ℕ) → (r : Fin (suc n) × Fin (suc m)) → fin-proj (fin-prod r) ≡ r
fin-prod-iso1 zero zero (zero , zero) = refl
fin-prod-iso1 zero zero (zero , suc ())
fin-prod-iso1 zero zero (suc () , l)
fin-prod-iso1 zero (suc m) (zero , zero) = refl
fin-prod-iso1 zero (suc m) (zero , suc zero)
  = cong (Prod.map id suc) (fin-prod-iso1 zero m (zero , zero))
fin-prod-iso1 zero (suc m) (zero , suc (suc l))
  = cong (Prod.map id suc) (fin-prod-iso1 zero m (zero , suc l))
fin-prod-iso1 zero (suc m) (suc () , l)
fin-prod-iso1 (suc n) m (zero , zero) = refl
fin-prod-iso1 (suc n) .(suc n') (zero , suc (zero {n'})) = refl
fin-prod-iso1 (suc n) .(suc m) (zero , suc (suc {m} l))
  with ex-mid (toℕ (inject+ (suc (suc m)) (fin-prod {n} (zero , suc (suc l))) ) < suc (suc m))
fin-prod-iso1 (suc n) .(suc m) (zero , suc (suc {m} l)) | inj₁ x
  = cong (λ p → zero , p) (lem-fin-prod-0' n (suc m) (suc (suc m)) (suc (suc l)) x)
fin-prod-iso1 (suc n) .(suc m) (zero , suc (suc {m} l)) | inj₂ y
  = ⊥-elim (y $ lem-fin-prod-<' n (suc m) (suc (suc m)) (suc (suc l)))
fin-prod-iso1 (suc n) zero (suc k , l) = cong (Prod.map suc id) (fin-prod-iso1 n 0 (k , l))
fin-prod-iso1 (suc n) (suc m) (suc k , l) with (ex-mid (toℕ (fin-prod (k , l) suc^ m) < m))
fin-prod-iso1 (suc n) (suc m) (suc {.(suc n)} k , l) | inj₁ x
  = ⊥-elim ((lem-fin-suc^ m (fin-prod (k , l))) x)
fin-prod-iso1 (suc n) (suc m) (suc {.(suc n)} k , l) | inj₂ y
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  = cong (Prod.map suc id) (subst (λ x → fin-proj x ≡ (k , l))
                                  (lem-finminus-id m (fin-prod (k , l)) y)
                                  (fin-prod-iso1 n (suc m) (k , l)))

-- minor suc
lem-fin-prod-n0 : ∀ n (π : Fin 1 × Fin (suc n)) → suc (fin-prod π) ≡ fin-prod ((Prod.map id suc) π)
lem-fin-prod-n0 n (zero , zero) = refl
lem-fin-prod-n0 n (zero , suc i) = refl
lem-fin-prod-n0 n (suc () , y)

lem-fin-prod-n0' : (n m : ℕ) → (i : Fin (suc n * suc m)) → (x : T (toℕ i < suc m))
                 → fin-prod {n} {m} (zero , (fromℕ< (toℕ i) x)) ≡ i
lem-fin-prod-n0' n m zero x = refl
lem-fin-prod-n0' n zero (suc i) ()
lem-fin-prod-n0' n (suc n') (suc zero) x = refl
lem-fin-prod-n0' zero (suc m) (suc (suc i)) x = cong suc (lem-fin-prod-n0' 0 m (suc i) x)
lem-fin-prod-n0' (suc n) (suc m) (suc (suc i)) x = trans ih' (lem-fromtoℕ-inj+ _ (suc (suc m)) _ _)
  where
    ih = lem-fin-prod-n0' n (suc m) (fromℕ< (toℕ (suc (suc i)))
                                            (<-weaken (toℕ i) m (n * suc (suc m)) x))
                          (subst (λ k → T (k < m)) (lem-tofromtoℕ i (<-weaken (toℕ i) m
                                                                  (n * suc (suc m)) x)) x)

    ih' : fin-prod {suc n} {suc m} (zero , fromℕ< (toℕ (suc (suc i))) x)
          ≡ inject+ (suc (suc m)) (suc (suc (fromℕ< (toℕ i)
                         (<-weaken (toℕ i) m (n * suc (suc m)) x))))
    ih' = cong (inject+ (suc (suc m)))
           (trans (cong (λ k → fin-prod {n} {suc m} (zero , suc (suc k)))
                        (cong' (λ k → T (k < m)) (fromℕ< {m})
                               (lem-tofromtoℕ i (<-weaken (toℕ i) m (n * suc (suc m)) x)) x)) ih)

fin-prod-iso2 : (n m : ℕ) → (r : Fin (suc n * suc m)) → fin-prod {n} {m} (fin-proj r) ≡ r
fin-prod-iso2 zero zero zero = refl
fin-prod-iso2 zero zero (suc ())
fin-prod-iso2 (suc n) zero zero = refl
fin-prod-iso2 (suc n) zero (suc i) = cong suc (fin-prod-iso2 n 0 i)
fin-prod-iso2 zero (suc m) zero = refl
fin-prod-iso2 zero (suc m) (suc i)
  = trans (sym (lem-fin-prod-n0 m (fin-proj i))) (cong suc (fin-prod-iso2 0 m i))
fin-prod-iso2 (suc n) (suc m) zero = refl
fin-prod-iso2 (suc n) (suc m) (suc i) with ex-mid (toℕ i < suc m)
fin-prod-iso2 (suc n) (suc m) (suc i) | inj₁ x = lem-fin-prod-n0' (suc n) (suc m) (suc i) x
fin-prod-iso2 (suc n) (suc m) (suc i) | inj₂ y
  = cong suc (trans (cong (λ k → k suc^ suc m) (fin-prod-iso2 n (suc m) (finminus {suc m} i y)))
                    (sym (lem-finminus-id' (suc m) i y)))

fin-pair : {n m : ℕ} → Fin n × Fin m → Fin (n * m)
fin-pair {zero} π = proj₁ π
fin-pair {suc n} {zero} π = elim-fin0 (proj₂ π)
fin-pair {suc n} {suc n'} π = fin-prod π

fin-unpair : {n m : ℕ} → Fin (n * m) → Fin n × Fin m
fin-unpair {zero} ()
fin-unpair {suc n} {zero} x = Prod.map suc id (fin-unpair x)
fin-unpair {suc n} {suc n'} x = fin-proj x

fin-pair-iso1 : (n m : ℕ) → (r : Fin n × Fin m) → fin-unpair (fin-pair r) ≡ r
fin-pair-iso1 zero m (() , y)
fin-pair-iso1 (suc n) zero (x , ())
fin-pair-iso1 (suc n) (suc m) r = fin-prod-iso1 n m r

fin-pair-iso2 : (n m : ℕ) → (r : Fin (n * m)) → fin-pair {n} (fin-unpair r) ≡ r
fin-pair-iso2 zero m ()
fin-pair-iso2 (suc n) zero r = f (suc n) r
  where
    f : ∀{A} → ∀ n → Fin (n * 0) → A
    f zero ()
    f (suc n) r = f n r
fin-pair-iso2 (suc n) (suc m) r = fin-prod-iso2 n m r

encode : (l : List ℕ) → Record l → Fin (L.Π l)
encode [] _ = zero
encode (a ∷ as) r = fin-pair (proj₁ r , (encode as (proj₂ r)))

decode : (l : List ℕ) → Fin (L.Π l) → Record l
decode [] _ = tt
decode (a ∷ as) x = Prod.map id (decode as) (fin-unpair x)

record-lookup : (l : List ℕ) → (r : Record l) → Σ ℕ (\ i → Fin ([ id , const 0 ]′ (L.lookup l i)))
              → Bool
record-lookup [] r (i , x) = false
record-lookup (a ∷ l) (x , y) (zero , x₁) = toℕ x == toℕ x₁
record-lookup (a ∷ l) (x , y) (suc i , x₁) = record-lookup l y (i , x₁)

embed : (l : List ℕ) → Σ ℕ (\ i → Fin ([ id , const 0 ]′ (L.lookup l i))) → Fin (L.Σ l)
embed [] (x , y) = y
embed (.(suc n) ∷ l) (zero , zero {n}) = zero
embed (.(suc n) ∷ l) (zero , suc {n} y) = suc (embed (n ∷ l) (zero , y))
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embed (zero ∷ l) (suc x , y) = embed l (x , y)
embed (suc a ∷ l) (suc x , y) = suc (embed (a ∷ l) (suc x , y))

extract : (l : List ℕ) → Fin (L.Σ l) → Σ ℕ (\ i → Fin ([ id , const 0 ]′ (L.lookup l i)))
extract [] ()
extract (zero ∷ l) x = Prod.map suc id (extract l x)
extract (suc a ∷ l) zero = 0 , zero
extract (suc a ∷ l) (suc x)
  = Prod.map id (λ {n} → assembleℕ (λ k → Fin ([ id , const 0 ]′ (L.lookup (a ∷ l) k)))
                          (λ k → Fin ([ id , const 0 ]′ (L.lookup (suc a ∷ l) k))) suc id {n})
             (extract (a ∷ l) x)

embed-iso1 : (l : List ℕ) → (π : Σ ℕ (\ i → Fin ([ id , const 0 ]′ (L.lookup l i))))
          → extract l (embed l π) ≡ π
embed-iso1 [] (x , ())
embed-iso1 (zero ∷ l) (zero , ())
embed-iso1 (suc a ∷ l) (zero , zero) = refl
embed-iso1 (suc a ∷ l) (zero , suc i)
  = cong (Prod.map id (λ {n} → assembleℕ (λ k' → Fin ([ id , const 0 ]′ (L.lookup (a ∷ l) k')))
                                         (λ k' → Fin ([ id , const 0 ]′ (L.lookup (suc a ∷ l) k')))
                                         suc id {n}))
         (embed-iso1 (a ∷ l) (zero , i))
embed-iso1 (zero ∷ l) (suc n , i) = cong (Prod.map suc id) (embed-iso1 l (n , i))
embed-iso1 (suc a ∷ l) (suc n , i)
  = cong (Prod.map id (λ {m} → assembleℕ (λ k' → Fin ([ id , const 0 ]′ (L.lookup (a ∷ l) k')))
                                         (λ k' → Fin ([ id , const 0 ]′ (L.lookup (suc a ∷ l) k')))
                                         suc id {m}))
         (embed-iso1 (a ∷ l) (suc n , i))

embed-iso2 : (l : List ℕ) → (x : Fin (L.Σ l)) → embed l (extract l x) ≡ x
embed-iso2 [] ()
embed-iso2 (zero ∷ l) x = subst (λ k → embed l k ≡ x) refl (embed-iso2 l x)
embed-iso2 (suc a ∷ l) zero = refl
embed-iso2 (suc a ∷ l) (suc i) = subst (λ k → k ≡ suc i) (eq (extract (a ∷ l) i)) ih'
  where
    ih = embed-iso2 (a ∷ l) i

    ih' = cong Fin.suc ih

    eq : (π : Σ ℕ (λ i' → Fin ([ id , const 0 ]′ (L.lookup (a ∷ l) i'))))
       → suc (embed (a ∷ l) π) ≡
           embed (suc a ∷ l) (Prod.map id (λ {n} → assembleℕ
            (λ k → Fin ([ id , const 0 ]′ (L.lookup (a ∷ l) k)))
            (λ k → Fin ([ id , const 0 ]′ (L.lookup (suc a ∷ l) k))) suc
            id {n}) π)
    eq (zero , y) = refl
    eq (suc n , y) = refl

fin-record-iso1 : (l : List ℕ) → (r : Record l) → decode l (encode l r) ≡ r
fin-record-iso1 [] tt = refl
fin-record-iso1 (a ∷ l) (x , y) = subst (λ k → Prod.map id (decode l) k ≡ (x , y))
                                        (sym (fin-pair-iso1 _ _ (x , encode l y)))
                                        (cong (λ k → x , k) (fin-record-iso1 l y))

fin-record-iso2 : (l : List ℕ) → (r : Fin (L.Π l)) → encode l (decode l r) ≡ r
fin-record-iso2 [] zero = refl
fin-record-iso2 [] (suc ())
fin-record-iso2 (a ∷ l) r = subst (λ k → (fin-pair {a} (x , encode l (decode l y))) ≡ k)
                                  (fin-pair-iso2 a (L.Π l) r)
                                  (cong (\ k → fin-pair (x , k)) (fin-record-iso2 (l) y))
  where
    x = proj₁ (fin-unpair {a} r)
    y = proj₂ (fin-unpair {a} r)
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module CTL.RecordSystem where

-- symbolic ctl
open import CTL.TransitionSystem
open import CTL.Definition
open import CTL.DecProc

open import Data.List as List
open import Data.Nat hiding (_<_)
import Data.List.Util as L
open import Data.Sum as Sum
open import Data.Product as Prod
open import Data.Bool using (T;Bool)
open import Data.Fin.Record
open import Data.Fin.Arithmetic
open import Data.Fin hiding (_<_)

open import PropIso

open import Relation.Binary.PropositionalEquality

open import Coinduction

-- finite state machine defined over finite records
record FSMʳ : Set where
  constructor
    frm
  field
    state      : List ℕ
    action     : Record state → List ℕ
    initial    : List (Record state)
    transition : (s : Record state) → (a : Record (action s)) → Record state

  State : Set
  State = Record state

  Action : State → Set
  Action s = Record (action s)

open FSMʳ

toState : (M : FSMʳ) → State M → Fin (L.Π (state M))
toState M = encode (state M)

fromState : (M : FSMʳ) → Fin (L.Π (state M)) → State M
fromState M = decode (state M)

toAction : (M : FSMʳ) → (s : State M) → Action M s → Fin (L.Π (action M s))
toAction M s = encode (action M s)

fromAction : (M : FSMʳ) → (s : State M)
                        → Fin (L.Π (action M s))
                        → Action M s
fromAction M s = decode (action M s)

toFSM : FSMʳ → FSM
toFSM M
  = fsm (L.Π (state M))
        (L.Σ (state M))
        (λ x → L.Π (action M (fromState M x)))
        (List.map (toState M) (initial M))
        (λ s a → toState M (transition M (fromState M s)
                           (fromAction M (fromState M s) a)))
        (λ s ap → record-lookup (state M) (fromState M s)
                                (extract (state M) ap))

symlookup : ∀ l ap → ℕ
symlookup l ap = [ id , const 0 ]′ (L.lookup l ap)

{- CTL formula -}
data CTLʳ (l : List ℕ) : Set where
  false : CTLʳ l
  _∨_ _∧_ E[_U_] : (φ : CTLʳ l) → (ψ : CTLʳ l) → CTLʳ l
  P[_==_] : (ap : ℕ) → (v : Fin (symlookup l ap)) → CTLʳ l
  ~ EX EG : (φ : CTLʳ l) → CTLʳ l

data CTLProblemʳ : Set where
  _,_⊧ʳ_ : (M : FSMʳ) → State M → CTLʳ (state M) → CTLProblemʳ

toCTL : {l : List ℕ} → CTLʳ l → CTL (L.Σ l)
toCTL false          = false
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toCTL (~ φ)          = ~ (toCTL φ)
toCTL (φ ∨ ψ)        = toCTL φ ∨ toCTL ψ
toCTL (φ ∧ ψ)        = toCTL φ ∧ toCTL ψ
toCTL {l} (P[ ap == v ]) = P[ embed l (ap , v) ]
toCTL (EX φ)         = EX (toCTL φ)
toCTL (EG φ)         = EG (toCTL φ)
toCTL E[ φ U ψ ]     = E[ toCTL φ U toCTL ψ ]

toCTLProblem : CTLProblemʳ → CTLProblem
toCTLProblem (M , s ⊧ʳ φ) = toFSM M , toState M s ⊧ toCTL φ

data Runʳ (M : FSMʳ) : State M → Set where
  next : (s : State M) → (s' : Action M s) → ∞ (Runʳ M (transition M s s')) → Runʳ M s

run-decompʳ : ∀ M {s} → Runʳ M s → Σ[ x ∶ Action M s ] (Runʳ M (transition M s x))
run-decompʳ ts {s} (next .s s' y) = s' , ♭ y

run-headʳ : (M : FSMʳ) → {s : State M} → Runʳ M s → Action M s
run-headʳ M r = proj₁ (run-decompʳ M r)

run-tailʳ : ∀ M {s} → (r : Runʳ M s) → Runʳ M (transition M s (run-headʳ M r))
run-tailʳ M r = proj₂ (run-decompʳ M r)

fromRun' : ∀ M {s t} → (fromState M (toState M t) ≡ s) → Run (toFSM M) (toState M t) → Runʳ M s
fromRun' M {._} {t} refl r
  = next (fromState M (toState M t))
         (fromAction M (fromState M (toState M t)) (run-head (toFSM M) r))
         (♯ fromRun' M (fin-record-iso1 (state M) _) (run-tail (toFSM M) r))

fromRun : (M : FSMʳ) → {s : State M} → Run (toFSM M) (toState M s) → Runʳ M s
fromRun M {s} r = fromRun' M (fin-record-iso1 (state M) s) r

toRun' : ∀ M {s t} → (fromState M(toState M t) ≡ s) → Runʳ M s → Run (toFSM M) (toState M t)
toRun' M {._} {t} refl r = next (toAction M (fromState M (toState M t)) (run-headʳ M r))
                                (♯ toRun' M {_} {_} q (run-tailʳ M r))
  where
    p = fin-record-iso1 (state M) (transition M (fromState M (toState M t)) (run-headʳ M r))

    q = subst (λ k → fromState M (toState M (transition M (fromState M (toState M t)) k))
                       ≡ transition M (fromState M (toState M t)) (run-headʳ M r))
              (sym (fin-record-iso1 (action M (fromState M (toState M t))) (run-headʳ M r))) p

toRun : (M : FSMʳ) → {s : State M} → Runʳ M s → Run (toFSM M) (toState M s)
toRun M {s} r = toRun' M (fin-record-iso1 (state M) s) r

lem-eq-id : (l : List ℕ) → (s t : Record l) → (decode l (encode l s)) ≡ t → s ≡ t
lem-eq-id l t ._ refl = sym (fin-record-iso1 l t)

nthʳ : (M : FSMʳ) → {s : State M} → (n : ℕ) → Runʳ M s → State M
nthʳ M {s} zero r = s
nthʳ M (suc n) r = nthʳ M n (run-tailʳ M r)

lem-nth'ʳ : (M : FSMʳ)
         → {s t : State M}
         → (r : Runʳ M s)
         → (n : ℕ)
         → (eq : fromState M (toState M t) ≡ s)
         → nthʳ M n r ≡ fromState M (nth (toFSM M) n (toRun' M {s} {t} eq r))
lem-nth'ʳ M r zero refl = refl
lem-nth'ʳ M {._} {t} (next ._ s' y) (suc n) refl = lem-nth'ʳ M (♭ y) n _

lem-nthʳ : (M : FSMʳ)
         → {s : State M}
         → (r : Runʳ M s)
         → (n : ℕ)
         → nthʳ M n r ≡ fromState M (nth (toFSM M) n (toRun M r))
lem-nthʳ M {s} r n = lem-nth'ʳ M {s} {s} r n (fin-record-iso1 (state M) s)

lem-nth' : (M : FSMʳ)
         → {s t : State M}
         → (r : Runʳ M t)
         → (n : ℕ)
         → (eq : fromState M (toState M s) ≡ t)
         → toState M (nthʳ M n r) ≡ nth (toFSM M) n (toRun' M {t} {s} eq r)
lem-nth' M r zero refl = cong (toState M) (fin-record-iso1 (state M) _)
lem-nth' M {s} (next ._ s' y) (suc n) refl = lem-nth' M (♭ y) n _

lem-nth : (M : FSMʳ)
         → {s : State M}
         → (r : Runʳ M s)
         → (n : ℕ)
         → toState M (nthʳ M n r) ≡ nth (toFSM M) n (toRun M r)
lem-nth M r n = lem-nth' M r n (fin-record-iso1 (state M) _)
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lem-nth'ʳ' : (M : FSMʳ)
          → {s t : State M}
          → (r : Run (toFSM M) (toState M t))
          → (n : ℕ)
          → (eq : fromState M (toState M t) ≡ s)
          → nthʳ M n (fromRun' M eq r) ≡ fromState M (nth (toFSM M) n r)
lem-nth'ʳ' M r zero refl = refl
lem-nth'ʳ' M r (suc n) refl = lem-nth'ʳ' M (run-tail (toFSM M) r) n _

lem-nthʳ' : (M : FSMʳ)
          → {s : State M}
          → (r : Run (toFSM M) (toState M s))
          → (n : ℕ)
          → nthʳ M n (fromRun M r) ≡ fromState M (nth (toFSM M) n r)
lem-nthʳ' M r n = lem-nth'ʳ' M r n _

lem-nth'' : (M : FSMʳ)
          → {s t : State M}
          → (r : Run (toFSM M) (toState M t))
          → (n : ℕ)
          → (eq : fromState M (toState M t) ≡ s)
          → toState M (nthʳ M n (fromRun' M eq r)) ≡ nth (toFSM M) n r
lem-nth'' M r zero refl = cong (λ k → toState M k) (fin-record-iso1 (state M) _)
lem-nth'' M r (suc n) refl = lem-nth'' M (run-tail (toFSM M) r) n (fin-record-iso1 (state M) _)

lem-nth''' : ∀ M {s} → (r : Run (toFSM M) (toState M s)) → (n : ℕ)
           → toState M (nthʳ M n (fromRun M r)) ≡ nth (toFSM M) n r
lem-nth''' M r n = lem-nth'' M r n (fin-record-iso1 (state M) _)

⟦_⟧ʳ : CTLProblemʳ → Set
⟦ M , s ⊧ʳ false ⟧ʳ          = ⊥
⟦ M , s ⊧ʳ ~ φ ⟧ʳ            = ¬ ⟦ M , s ⊧ʳ φ ⟧ʳ
⟦ M , s ⊧ʳ (φ ∨ ψ) ⟧ʳ        = (⟦ M , s ⊧ʳ φ ⟧ʳ) ⊎ (⟦ M , s ⊧ʳ ψ ⟧ʳ)
⟦ M , s ⊧ʳ (φ ∧ ψ) ⟧ʳ        = (⟦ M , s ⊧ʳ φ ⟧ʳ) × (⟦ M , s ⊧ʳ ψ ⟧ʳ)
⟦ M , s ⊧ʳ (P[ ap == v ]) ⟧ʳ = T (record-lookup (state M) s (ap , v))
⟦ M , s ⊧ʳ EX φ ⟧ʳ           = Σ[ run ∶ Runʳ M s ] ⟦ M , nthʳ M 1 run ⊧ʳ φ ⟧ʳ
⟦ M , s ⊧ʳ EG φ ⟧ʳ           = Σ[ run ∶ Runʳ M s ] (∀ (n : ℕ) → ⟦ M , nthʳ M n run ⊧ʳ φ ⟧ʳ)
⟦ M , s ⊧ʳ E[ φ U ψ ] ⟧ʳ     = Σ[ run ∶ Runʳ M s ] Σ[ k ∶ ℕ ]
                                       ((∀ (j : ℕ) → T(j < k) → ⟦ M , nthʳ M j run ⊧ʳ φ ⟧ʳ)
                                                         × ⟦ M , nthʳ M k run ⊧ʳ ψ ⟧ʳ)

mutual
  correct1ʳ : (P : CTLProblemʳ) → ⟦ P ⟧ʳ → ⟦ toCTLProblem P ⟧
  correct1ʳ (M , s ⊧ʳ false) p   = p
  correct1ʳ (M , s ⊧ʳ ~ φ) p     = λ x → p (correct2ʳ (M , s ⊧ʳ φ) x)
  correct1ʳ (M , s ⊧ʳ (φ ∨ ψ)) p = Sum.map (correct1ʳ (M , s ⊧ʳ φ)) (correct1ʳ (M , s ⊧ʳ ψ)) p
  correct1ʳ (M , s ⊧ʳ (φ ∧ ψ)) p = Prod.map (correct1ʳ (M , s ⊧ʳ φ)) (correct1ʳ (M , s ⊧ʳ ψ)) p
  correct1ʳ (M , s ⊧ʳ P[ ap == v ]) p rewrite fin-record-iso1 (state M) s
                                            | embed-iso1 (state M) (ap , v) = p
  correct1ʳ (M , s ⊧ʳ EX φ) p
    = Prod.map (toRun M) (λ {r} x → subst (λ k → ⟦ toFSM M , toState M k ⊧ toCTL φ ⟧)
                                          (trans (lem-nthʳ M r 1)
                                                 (fin-record-iso1 (state M) _))
                                          (correct1ʳ (M , _ ⊧ʳ φ) x)) p
  correct1ʳ (M , s ⊧ʳ EG φ) p
    = Prod.map (toRun M) (λ {r} egp n → subst (λ k → ⟦ toFSM M , k ⊧ toCTL φ ⟧)
                                              (trans (cong (toState M) (lem-nthʳ M r n))
                                                           (fin-record-iso2 (state M) _))
                                              (correct1ʳ (M , nthʳ M n r ⊧ʳ φ) (egp n))) p
  correct1ʳ (M , s ⊧ʳ E[ φ U ψ ]) p
    = Prod.map (toRun M) (λ {r} → Prod.map id (λ {n} → Prod.map (λ eu j jp →
               subst (λ k → ⟦ toFSM M , k ⊧ toCTL φ ⟧) (lem-nth M r j)
                     (correct1ʳ (M , (nthʳ M j r) ⊧ʳ φ) (eu j jp)))
               (λ kp → subst (λ k → ⟦ toFSM M , k ⊧ toCTL ψ ⟧)
                             (lem-nth M r n)
                             (correct1ʳ (M , (nthʳ M n r) ⊧ʳ ψ) kp)))) p

  correct2ʳ : (P : CTLProblemʳ) → ⟦ toCTLProblem P ⟧ → ⟦ P ⟧ʳ
  correct2ʳ (M , s ⊧ʳ false) ()
  correct2ʳ (M , s ⊧ʳ ~ φ) p     = λ x → p (correct1ʳ (M , s ⊧ʳ φ) x)
  correct2ʳ (M , s ⊧ʳ (φ ∨ ψ)) p = Sum.map (correct2ʳ (M , s ⊧ʳ φ)) (correct2ʳ (M , s ⊧ʳ ψ)) p
  correct2ʳ (M , s ⊧ʳ (φ ∧ ψ)) p = Prod.map (correct2ʳ (M , s ⊧ʳ φ)) (correct2ʳ (M , s ⊧ʳ ψ)) p
  correct2ʳ (M , s ⊧ʳ P[ ap == v ]) p rewrite fin-record-iso1 (state M) s
                                            | embed-iso1 (state M) (ap , v) = p
  correct2ʳ (M , s ⊧ʳ EX φ) p
    = Prod.map (fromRun M) (λ {r} exp → subst (λ k → ⟦ M , k ⊧ʳ φ ⟧ʳ)
                                              (trans (sym (fin-record-iso1 (state M) _))
                                                     (sym (lem-nthʳ' M r 1)))
                                              (correct2ʳ (M , _ ⊧ʳ φ) exp)) p
  correct2ʳ (M , s ⊧ʳ EG φ) p
    = Prod.map (fromRun M) (λ {r} egp n → subst (λ k → ⟦ M , k ⊧ʳ φ ⟧ʳ)
                                                (sym (lem-nthʳ' M r n))
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                                                (correct2ʳ (M , _ ⊧ʳ φ)
                                                   (subst (λ k → ⟦ toFSM M , k ⊧ toCTL φ ⟧)
                                                          (sym (fin-record-iso2 (state M) _))
                                                          (egp n)))) p
  correct2ʳ (M , s ⊧ʳ E[ φ U ψ ]) p = Prod.map (fromRun M)
                                               (λ {r} → Prod.map id (\ {n} → Prod.map
            (λ eup j jp → correct2ʳ (M , _ ⊧ʳ φ)
                                    (subst (λ k → ⟦ toFSM M , k ⊧ toCTL φ ⟧)
                                           (sym (lem-nth''' M r j)) (eup j jp)))
            (λ kp → correct2ʳ (M , _ ⊧ʳ ψ)
                              (subst (λ k → ⟦ toFSM M , k ⊧ toCTL ψ ⟧)
                                     (sym (lem-nth''' M r n)) kp)))) p

evalʳ : CTLProblemʳ → Bool
evalʳ P = eval (toCTLProblem P)

open import CTL.Proof

soundnessʳ : (P : CTLProblemʳ) → (T (evalʳ P)) → ⟦ P ⟧ʳ
soundnessʳ P p = correct2ʳ P (soundness (toCTLProblem P) p)

completenessʳ : (P : CTLProblemʳ) → ⟦ P ⟧ʳ → (T (evalʳ P))
completenessʳ P p = complete (toCTLProblem P) (correct1ʳ P p)
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module Proof.Util where

open import Data.List hiding ([_])
open import Data.Bool
open import Data.Sum as Sum
open import Data.Product as Prod

open import PropIso

open import Relation.Binary.PropositionalEquality hiding ([_])

open import Boolean.Formula

_∈_ : PL-Formula → List PL-Formula → Bool
φ ∈ [] = false
φ ∈ (ψ ∷ Γ) = φ ≡pl ψ ∨ φ ∈ Γ

_∪_ : List PL-Formula → List PL-Formula → List PL-Formula
_∪_ = _++_

_⊆_  : List PL-Formula → List PL-Formula → Bool
[] ⊆ Γ' = true
(γ ∷ Γ) ⊆ Γ' = γ ∈ Γ' ∧ Γ ⊆ Γ'

_∣_ : List PL-Formula → PL-Formula → List PL-Formula
[] ∣ _ = []
(φ ∷ φs) ∣ ψ with φ ≡pl ψ
...| true  = φs ∣ ψ
...| false = φ ∷ (φs ∣ ψ)

_⊇≈_ : List PL-Formula → List PL-Formula → Set
Γ₁ ⊇≈ Γ₂ = ∀ γ → T (γ ∈ Γ₂) → T (γ ∈ Γ₁)

lift-⊆ : ∀ Γ₁ Γ₂ → T (Γ₁ ⊆ Γ₂) → (Γ₂ ⊇≈ Γ₁)
lift-⊆ [] Γ₂ p        = λ _ ()
lift-⊆ (γ₁ ∷ Γ₁) Γ₂ p = λ γ → ∨-elim (λ γ=γ₁ → subst (λ x → T (x ∈ Γ₂))
                                                     (sym (lift-≡pl γ γ₁ γ=γ₁)) (∧-eliml p))
                                     (lift-⊆ Γ₁ Γ₂ (∧-elimr (γ₁ ∈ Γ₂) p) γ)

lem-seq-restrict-foldr : ∀ ξ Γ φ → ⟦ ξ ⊧ andpl Γ ⟧pl → ⟦ ξ ⊧ andpl (Γ ∣ φ) ⟧pl
lem-seq-restrict-foldr ξ []      φ p = tt
lem-seq-restrict-foldr ξ (γ ∷ Γ) φ p with γ ≡pl φ
...| true = lem-seq-restrict-foldr ξ Γ φ (proj₂ p)
...| false = Prod.map id (lem-seq-restrict-foldr ξ Γ φ) p

lem-seq-restrict-foldr' : ∀ ξ Γ φ → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ andpl (Γ ∣ φ) ⟧pl → ⟦ ξ ⊧ andpl Γ ⟧pl
lem-seq-restrict-foldr' ξ []      φ p q = tt
lem-seq-restrict-foldr' ξ (γ ∷ Γ) φ p q with ex-mid (γ ≡pl φ)
...| inj₁ x rewrite Tb x = subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl γ φ x)) p
                                               , (lem-seq-restrict-foldr' ξ Γ φ p q)
...| inj₂ x rewrite ¬Tb x = Prod.map id (lem-seq-restrict-foldr' ξ Γ φ p) q

lem-seq : ∀ Γ₁ Γ₂ φ → Γ₁ ⊇≈ (φ ∷ Γ₂) → Γ₁ ⊇≈ Γ₂
lem-seq Γ₁ Γ₂ φ f = λ γ x → f γ (∨-intror (γ ≡pl φ) (γ ∈ Γ₂) x)

lem-seq-atom : ∀ ξ Γ φ → ⟦ ξ ⊧ andpl Γ ⟧pl → T (φ ∈ Γ) → ⟦ ξ ⊧ φ ⟧pl
lem-seq-atom ξ [] φ conj   = λ ()
lem-seq-atom ξ (γ ∷ Γ) φ c = ∨-elim (λ φ=γ → subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl φ γ φ=γ)) (proj₁ c))
                                    (lem-seq-atom ξ Γ φ (proj₂ c))

lem-seq-subst-foldr : ∀ ξ Γ₁ Γ₂ → Γ₁ ⊇≈ Γ₂ → ⟦ ξ ⊧ andpl Γ₁ ⟧pl → ⟦ ξ ⊧ andpl Γ₂ ⟧pl
lem-seq-subst-foldr ξ Γ₁ [] y p        = tt
lem-seq-subst-foldr ξ Γ₁ (γ₂ ∷ Γ₂) y p = lem-seq-atom ξ Γ₁ γ₂ p
                                                      (y γ₂ (∨-introl (γ₂ ≡pl γ₂) _ (id-≡pl γ₂)))
                                          , lem-seq-subst-foldr ξ Γ₁ Γ₂ (lem-seq Γ₁ Γ₂ γ₂ y) p

seq-split : ∀ ξ Γ₁ Γ₂ → ⟦ ξ ⊧ andpl (Γ₁ ++ Γ₂) ⟧pl → ⟦ ξ ⊧ andpl Γ₁ ⟧pl × ⟦ ξ ⊧ andpl Γ₂ ⟧pl
seq-split ξ []        Γ₂ p++ = tt , p++
seq-split ξ (γ₁ ∷ Γ₁) Γ₂ p++ = Prod.map (λ x → (proj₁ p++) , x) id (seq-split ξ Γ₁ Γ₂ (proj₂ p++))

record [_⇒_] (A B : Set) : Set where
  constructor _⇒_
  field πΓ : List A
        πφ : B

open [_⇒_] public

mkconj : PL-Formula → List PL-Formula → PL-Formula
mkconj γ []       = γ
mkconj γ (x ∷ xs) = γ && mkconj x xs

⟦_⊧_⟧⇒ : Env → [ PL-Formula ⇒ PL-Formula ] → Set
⟦ ξ ⊧ [] ⇒ φ ⟧⇒       = ⟦ ξ ⊧ φ ⟧pl
⟦ ξ ⊧ (x ∷ xs) ⇒ φ ⟧⇒ = ⟦ ξ ⊧ mkconj x xs ⟧pl → ⟦ ξ ⊧ φ ⟧pl
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module Proof.List where

open import Data.Nat hiding (_<_)
open import Data.Vec as Vec using (Vec;lookup;_∷_;[];zip;map)
open import Data.Fin hiding (_<_)
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.List as List
open import Data.Bool

open import Relation.Binary.PropositionalEquality hiding ([_])

open import Algebra

open import PropIso

data Vec* {A : Set} (F : A → Set) : {n : ℕ} → Vec A n → Set where
  []  : Vec* F []
  _∷_ : {n : ℕ} {a : A} {v : Vec A n} (x : F a) (xs : Vec* F v) → Vec* F (a ∷ v)

infixr 5 _∷_

data List* {A : Set} (F : A → Set) : List A → Set where
  [] : List* F []
  _∷_ : {a : A} {l : List A} (x : F a) (xs : List* F l) → List* F (a ∷ l)

_++*_ : {A : Set} → {F : A → Set} → {l1 l2 : List A} → List* F l1 → List* F l2 → List* F (l1 ++ l2)
[] ++* m = m
(x ∷ l₁) ++* m = x ∷ l₁ ++* m

_vlt_ : ∀ {n} → Vec ℕ n → ℕ → Bool
[] vlt _ = true
(n ∷ ns) vlt m = n < m ∧ ns vlt m

lookup′ : {A : Set} → (l : List A) → (n : ℕ) → T (n < length l) → A
lookup′ [] n ()
lookup′ (x ∷ l) zero p = x
lookup′ (x ∷ l) (suc n) p = lookup′ l n p

lookup* : ∀ {A l F} → List* {A} F l → (n : ℕ) → (p : T (n < length l)) → F (lookup′ l n p)
lookup* [] n ()
lookup* (x ∷ l) zero p = x
lookup* (x ∷ l) (suc n) p = lookup* l n p

lastnode : {A : Set} → (l : List A) → T (not (null l)) → A
lastnode [] ()
lastnode (n ∷ []) p = n
lastnode (n ∷ x ∷ ns) p = lastnode (x ∷ ns) tt

lastnode* : ∀ {A l F} → List* {A} F l → (q : T (not (null l))) → F (lastnode l q)
lastnode* [] ()
lastnode* (n ∷ []) p = n
lastnode* (n ∷ x ∷ ns) p = lastnode* (x ∷ ns) tt

record RuleSystem (Δ Φ Ξ : Set) (⟦_⊧_⟧ : Ξ → Φ → Set) : Set₁ where
  field
    arity : Δ → ℕ
    correct : (k : Δ) → Vec Φ (arity k) → Φ → Bool
    sound : (k : Δ) → (seq : Vec Φ (arity k))
                    → (conc : Φ)
                    → T (correct k seq conc)
                    → Vec* (λ φ → ∀ ξ → ⟦ ξ ⊧ φ ⟧) seq
                    → ∀ ξ → ⟦ ξ ⊧ conc ⟧

  record ProofNode : Set where
    constructor
      node
    field
      rule : Δ
      conc : Φ
      seq : Vec ℕ (arity rule)

  open ProofNode

  ProofList : Set
  ProofList = List ProofNode

  hypothesis : (l : ProofList) → ∀ {n} → (v : Vec ℕ n) → T (v vlt (length l)) → Vec ProofNode n
  hypothesis l [] p = []
  hypothesis l (x ∷ v) p = lookup′ l x (∧-eliml p) ∷ (hypothesis l v (∧-elimr (x < length l) p))

  correct-rule : ProofList → ProofNode → Bool
  correct-rule l n with ex-mid (seq n vlt length l)
  ...| inj₁ x = correct (rule n) (Vec.map conc (hypothesis l (seq n) x)) (conc n)
  ...| inj₂ x = false
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  correct-list' : ProofList → ProofList → Bool
  correct-list' done [] = true
  correct-list' done (n ∷ todo) = correct-rule done n ∧ correct-list' (done ++ [ n ]) todo

  ProvedList : (l : ProofList) → Set
  ProvedList = List* (\ n → ∀ ξ → ⟦ ξ ⊧ conc n ⟧)
  hypothesis' : (l : ProofList) → ∀ {n} → (seq : Vec ℕ n)
              → ProvedList l
              → (x : T (seq vlt (length l)))
              → Vec* (λ φ → ∀ ξ → ⟦ ξ ⊧ φ ⟧) (Vec.map conc (hypothesis l seq x))
  hypothesis' l [] p q = []
  hypothesis' l (x ∷ s) p q = (lookup* p x (∧-eliml q))
                                ∷ (hypothesis' l s p (∧-elimr (x < length l) q))

  sound-rule : ∀ l n → (p : T (correct-rule l n)) → (q : ProvedList l) → ∀ ξ → ⟦ ξ ⊧ conc n ⟧
  sound-rule l n p q with ex-mid (seq n vlt foldr (λ _ → suc) 0 l)
  sound-rule l n p q | inj₁ x = sound (rule n) (Vec.map conc (hypothesis l (seq n) x))
                                      (conc n) p (hypothesis' l (seq n) q x)
  sound-rule l n p q | inj₂ y = ⊥-elim p

  sound-list' : (l1 : ProofList)
              → (l2 : ProofList)
              → (p : T (correct-list' l1 l2))
              → (q : ProvedList l1)
              → ProvedList (l1 ++ l2)
  sound-list' l1 [] p q = q ++* []
  sound-list' l1 (n ∷ l2) p q rewrite sym (Monoid.assoc (monoid ProofNode) l1 [ n ] l2)
    = sound-list' (l1 ++ [ n ]) l2 (∧-elimr (correct-rule l1 n) p)
                  (q ++* (sound-rule l1 n (∧-eliml p) q ∷ []))

  correct-list : (l : ProofList) → Bool
  correct-list l = correct-list' [] l

  sound-list : (l : ProofList)
             → (x : T (not (null l)))
             → (p : T (correct-list l))
             → ∀ ξ → ⟦ ξ ⊧ conc (lastnode l x) ⟧
  sound-list l x p = lastnode* (sound-list' [] l p []) x

open RuleSystem public

open import Data.Maybe

{-# BUILTIN MAYBE Maybe #-}
{-# BUILTIN JUST just #-}
{-# BUILTIN NOTHING nothing #-}
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module Proof.PropLogic where

open import Data.List hiding ([_])
open import Data.Nat
open import Data.Bool
open import Data.Sum as Sum
open import Data.Product as Prod
open import Data.Vec using (Vec;_∷_;[])

open import PropIso

open import Relation.Binary.PropositionalEquality hiding ([_])

open import Function

open import Proof.List
open import Proof.Util

open import Boolean.Formula

data PropositionalRule : Set where
  ∧₊ →₋ efq raa ax : PropositionalRule
  ∧ˡ₋ ∧ʳ₋ ∨ˡ₊ ∨ʳ₊ →₊ : {φ : PL-Formula} → PropositionalRule
  ∨₋ : {φ ψ : PL-Formula} → PropositionalRule

proparity : PropositionalRule → ℕ
proparity ∧₊  = 2 -- and intro
proparity ∧ˡ₋ = 1 -- and elim l
proparity ∧ʳ₋ = 1 -- and elim r
proparity →₊  = 1 -- imp intro
proparity →₋  = 2 -- imp elim
proparity ∨ˡ₊ = 1 -- or intro l
proparity ∨ʳ₊ = 1 -- or intro r
proparity ∨₋  = 3 -- or elim
proparity efq = 1 -- efq
proparity raa = 1 -- raa
proparity ax  = 0 -- axiom

propcorrect : (k : PropositionalRule) → Vec [ PL-Formula ⇒ PL-Formula ] (proparity k)
            → [ PL-Formula ⇒ PL-Formula ] → Bool
propcorrect ∧₊ (Γ₁ ⇒ φ₁ ∷ Γ₂ ⇒ φ₂ ∷ []) (Γ₃ ⇒ φ₃) = (φ₃ ≡pl (φ₁ && φ₂)) ∧ ((Γ₁ ∪ Γ₂) ⊆ Γ₃)
propcorrect (∧ˡ₋ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)   = (φ₁ ≡pl (φ₂ && φ₃)) ∧ (Γ₁ ⊆ Γ₂)
propcorrect (∧ʳ₋ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)   = (φ₁ ≡pl (φ₃ && φ₂)) ∧ (Γ₁ ⊆ Γ₂)
propcorrect (→₊ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)    = (φ₂ ≡pl (φ₃ => φ₁)) ∧ ((Γ₁ ∣ φ₃) ⊆ Γ₂)
propcorrect →₋ (Γ₁ ⇒ φ₁ ∷ Γ₂ ⇒ φ₂ ∷ []) (Γ₃ ⇒ φ₃) = (φ₁ ≡pl (φ₂ => φ₃)) ∧ ((Γ₁ ∪ Γ₂) ⊆ Γ₃)
propcorrect (∨ˡ₊ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)   = (φ₂ ≡pl (φ₁ || φ₃)) ∧ (Γ₁ ⊆ Γ₂)
propcorrect (∨ʳ₊ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)   = (φ₂ ≡pl (φ₃ || φ₁)) ∧ (Γ₁ ⊆ Γ₂)
propcorrect (∨₋ {φ₅} {φ₆}) (Γ₁ ⇒ φ₁ ∷ Γ₂ ⇒ φ₂ ∷ Γ₃ ⇒ φ₃ ∷ []) (Γ₄ ⇒ φ₄)
  = (φ₂ ≡pl φ₃) ∧ (φ₂ ≡pl φ₄) ∧ (φ₁ ≡pl (φ₅ || φ₆)) ∧ ((Γ₁ ∪ ((Γ₂ ∣ φ₅) ∪ (Γ₃ ∣ φ₆))) ⊆ Γ₄)
propcorrect efq (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)          = (φ₁ ≡pl ¥false) ∧ (Γ₁ ⊆ Γ₂)
propcorrect raa (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂)          = (φ₁ ≡pl ¥false) ∧ ((Γ₁ ∣ ~ φ₂) ⊆ Γ₂)
propcorrect ax [] (Γ ⇒ φ) = φ ∈ Γ

propsound : (k : PropositionalRule) → (seq : Vec [ PL-Formula ⇒ PL-Formula ] (proparity k))
          → (conc : [ PL-Formula ⇒ PL-Formula ]) → T (propcorrect k seq conc)
          → Vec* (λ x → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ x) => πφ x ⟧pl) seq
          → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ conc) => πφ conc ⟧pl
propsound ∧₊ (Γ₁ ⇒ φ₁ ∷ Γ₂ ⇒ φ₂ ∷ []) (Γ₃ ⇒ φ₃) p (q1 ∷ q2 ∷ []) ξ hyp
  rewrite lift-≡pl φ₃ _ (∧-eliml p)
  = Prod.map (q1 ξ) (q2 ξ) (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ++ Γ₂)
                        (lift-⊆ (Γ₁ ++ Γ₂) Γ₃ (∧-elimr (φ₃ ≡pl (φ₁ && φ₂)) p)) hyp))
propsound (∧ˡ₋ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₁ _ (∧-eliml p)
  = proj₁ (q ξ (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ (∧-elimr (φ₁ ≡pl (φ₂ && φ₃)) p)) hyp))
propsound (∧ʳ₋ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₁ _ (∧-eliml p)
  = proj₂ (q ξ (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ (∧-elimr (φ₁ ≡pl (φ₃ && φ₂)) p)) hyp))
propsound (→₊ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₂ _ (∧-eliml p)
  = λ x → q ξ (lem-seq-restrict-foldr' ξ Γ₁ φ₃ x (lem-seq-subst-foldr ξ Γ₂ (Γ₁ ∣ φ₃)
                                       (lift-⊆ (Γ₁ ∣ φ₃) Γ₂ (∧-elimr (φ₂ ≡pl (φ₃ => φ₁)) p)) hyp))
propsound →₋ (Γ₁ ⇒ φ₁ ∷ Γ₂ ⇒ φ₂ ∷ []) (Γ₃ ⇒ φ₃) p (q1 ∷ q2 ∷ []) ξ hyp
  rewrite lift-≡pl φ₁ _ (∧-eliml p)
  = let π = seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ++ Γ₂)
                                (lift-⊆ (Γ₁ ++ Γ₂) Γ₃ (∧-elimr (φ₁ ≡pl (φ₂ => φ₃)) p)) hyp)
    in q1 ξ (proj₁ π) (q2 ξ (proj₂ π))
propsound (∨ˡ₊ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₂ _ (∧-eliml p)
  = inj₁ (q ξ (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ ((∧-elimr (φ₂ ≡pl (φ₁ || φ₃))) p)) hyp))
propsound (∨ʳ₊ {φ₃}) (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₂ _ (∧-eliml p)
  = inj₂ (q ξ (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ ((∧-elimr (φ₂ ≡pl (φ₃ || φ₁))) p)) hyp))
propsound (∨₋ {φ₅} {φ₆}) (Γ₁ ⇒ φ₁ ∷ Γ₂ ⇒ φ₂ ∷ Γ₃ ⇒ φ₃ ∷ []) (Γ₄ ⇒ φ₄) p (q1 ∷ q2 ∷ q3 ∷ []) ξ hyp
  rewrite sym (lift-≡pl φ₂ _ (∧-eliml p))
        | sym (lift-≡pl φ₂ φ₄ ((∧-eliml ∘ ∧-elimr (φ₂ ≡pl φ₃)) p))
        | lift-≡pl φ₁ (φ₅ || φ₆) ((∧-eliml ∘ ∧-elimr (φ₂ ≡pl φ₄) ∘ ∧-elimr (φ₂ ≡pl φ₃)) p)
  = let Γ₄' = lem-seq-subst-foldr ξ Γ₄ (Γ₁ ++ Γ₂ ∣ φ₅ ++ Γ₃ ∣ φ₆) (lift-⊆ (Γ₁ ++ Γ₂ ∣ φ₅ ++ Γ₃ ∣ φ₆)
               Γ₄ ((∧-elimr (φ₁ ≡pl (φ₅ || φ₆)) ∘ ∧-elimr (φ₂ ≡pl φ₄) ∘ ∧-elimr (φ₂ ≡pl φ₃)) p)) hyp
    in [ (λ x → q2 ξ (lem-seq-restrict-foldr' ξ Γ₂ φ₅ x
             (proj₁ (seq-split ξ (Γ₂ ∣ φ₅) _ (proj₂ (seq-split ξ Γ₁ _ Γ₄'))))))
       , (λ x → q3 ξ (lem-seq-restrict-foldr' ξ Γ₃ φ₆ x
             (proj₂ (seq-split ξ (Γ₂ ∣ φ₅) _ (proj₂ (seq-split ξ Γ₁ _ Γ₄'))))))
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       ]′ (q1 ξ (proj₁ (seq-split ξ Γ₁ _ Γ₄')))
propsound efq (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₁ _ (∧-eliml p)
  = ⊥-elim (q ξ (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ (∧-elimr (φ₁ ≡pl ¥false) p)) hyp))
propsound raa (Γ₁ ⇒ φ₁ ∷ []) (Γ₂ ⇒ φ₂) p (q ∷ []) ξ hyp rewrite lift-≡pl φ₁ _ (∧-eliml p)
  = stbl-pl ξ φ₂ (λ x → q ξ (lem-seq-restrict-foldr' ξ Γ₁ (~ φ₂) x (lem-seq-subst-foldr ξ Γ₂
            (Γ₁ ∣ ~ φ₂) (lift-⊆ (Γ₁ ∣ (φ₂ => ¥false)) Γ₂ (∧-elimr (φ₁ ≡pl ¥false) p)) hyp)))
propsound ax [] ([] ⇒ φ) () q ξ hyp
propsound ax [] ((γ ∷ Γ) ⇒ φ) p q ξ hyp = ∨-elim (λ x → subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl φ _ x))
  (proj₁ hyp)) (λ k → propsound ax [] (Γ ⇒ φ) k [] ξ (proj₂ hyp)) p

proplogic : RuleSystem PropositionalRule [ PL-Formula ⇒ PL-Formula ] Env
                                         (λ ξ x → ⟦ ξ ⊧ andpl (πΓ x) => πφ x ⟧pl)
proplogic = record { arity = proparity; correct = propcorrect; sound = propsound }

private
  module test where
  open RuleSystem

   = ¥ 0

  derivation : ProofList proplogic
  derivation = node ax ((  ∷ ~ (  || ~ ) ∷ []) ⇒ ~ (  || ~ )) []
             ∷ node ax ((  ∷ ~ (  || ~ ) ∷ []) ⇒ ) []
             ∷ node (∨ˡ₊ {~ }) ((  ∷ ~ (  || ~ ) ∷ []) ⇒ (  || ~ )) (1 ∷ [])
             ∷ node →₋ ((  ∷ ~ (  || ~ ) ∷ []) ⇒ ¥false) (0 ∷ 2 ∷ [])
{-4-}        ∷ node (→₊ { }) ((~ (  || ~ ) ∷ []) ⇒ ~ ) (3 ∷ [])
             ∷ node ax ((~  ∷ ~ (  || ~ ) ∷ []) ⇒ ~ (  || ~ )) []
             ∷ node ax ((~  ∷ ~ (  || ~ ) ∷ []) ⇒ ~ ) []
             ∷ node (∨ʳ₊ { }) ((~  ∷ ~ (  || ~ ) ∷ []) ⇒ (  || ~ )) (6 ∷ [])
{-8-}        ∷ node →₋ ((~  ∷ ~ (  || ~ ) ∷ []) ⇒ ¥false) (5 ∷ 7 ∷ [])
             ∷ node raa ((~ (  || ~ ) ∷ []) ⇒ ) (8 ∷ [])
             ∷ node →₋ ((~ (  || ~ ) ∷ []) ⇒ ¥false) (4 ∷ 9 ∷ [])
             ∷ node raa ([] ⇒ (  || ~ )) (10 ∷ [])
             ∷ []

  p¬p : ∀ ξ → ⟦ ξ ⊧  || ~  ⟧pl
  p¬p ξ = sound-list proplogic derivation tt tt ξ tt
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module Proof.EProver where

open import Data.Nat
open import Data.Bool
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Unit
open import Data.Empty
open import Data.List hiding ([_])
open import Data.Vec using (Vec;[];_∷_)
open import Data.Maybe

open import Relation.Binary.PropositionalEquality hiding ([_])

open import Boolean.Formula
open import Boolean.PL-Formula.Equivalence
open import Boolean.PL-Formula.Substitute
open import Boolean.PL-Formula.DropEquivalence
open import Boolean.PL-Formula.Distribute
open import Boolean.PL-Formula.RemoveConstants

open import Proof.EProver.PM
open import Proof.EProver.NNF
open import Proof.List
open import Proof.Util

open import PropIso

private
  Formula : Set
  Formula = [ PL-Formula ⇒ PL-Formula ]

{- TO DO: combine refute1 with refute2 -}
mutual
  refute1 : ∀ ξ φ ψ → ⟦ ξ ⊧ ψ ⟧pl → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ φ [ (~ ψ) / ¥false ] ⟧pl
  refute1 ξ φ ψ [ψ] [φ] with ex-mid ((~ ψ) ≡pl φ)
  ...| inj₁ x rewrite Tb x | sym (lift-≡pl (~ ψ) φ x) = [φ] [ψ]
  refute1 ξ ¥true ψ     [ψ] [φ] | inj₂ x = tt
  refute1 ξ ¥false ψ    [ψ] [φ] | inj₂ x = [φ]
  refute1 ξ (y || y') ψ [ψ] [φ] | inj₂ x = Sum.map  (refute1 ξ y ψ [ψ]) (refute1 ξ y' ψ [ψ]) [φ]
  refute1 ξ (y && y') ψ [ψ] [φ] | inj₂ x = Prod.map (refute1 ξ y ψ [ψ]) (refute1 ξ y' ψ [ψ]) [φ]
  refute1 ξ (y => y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = (refute1 ξ y' ψ [ψ]) ∘ [φ] ∘ (refute1' ξ y ψ [ψ])
  refute1 ξ (¥ y) ψ     [ψ] [φ] | inj₂ x = [φ]

  refute1' : ∀ ξ φ ψ → ⟦ ξ ⊧ ψ ⟧pl → ⟦ ξ ⊧ φ [ (~ ψ) / ¥false ] ⟧pl → ⟦ ξ ⊧ φ ⟧pl
  refute1' ξ φ ψ [ψ] [φ] with ex-mid ((~ ψ) ≡pl φ)
  ...| inj₁ x rewrite Tb x | sym (lift-≡pl (~ ψ) φ x) = const [φ]
  refute1' ξ ¥true ψ     [ψ] [φ] | inj₂ x = tt
  refute1' ξ ¥false ψ    [ψ] [φ] | inj₂ x = [φ]
  refute1' ξ (y || y') ψ [ψ] [φ] | inj₂ x = Sum.map  (refute1' ξ y ψ [ψ]) (refute1' ξ y' ψ [ψ]) [φ]
  refute1' ξ (y && y') ψ [ψ] [φ] | inj₂ x = Prod.map (refute1' ξ y ψ [ψ]) (refute1' ξ y' ψ [ψ]) [φ]
  refute1' ξ (y => y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = (refute1' ξ y' ψ [ψ]) ∘ [φ] ∘ (refute1 ξ y ψ [ψ])
  refute1' ξ (¥ y) ψ     [ψ] [φ] | inj₂ x = [φ]

mutual
  refute2 : ∀ ξ φ ψ → ⟦ ξ ⊧ ~ ψ ⟧pl → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ φ [ ψ / ¥false ] ⟧pl
  refute2 ξ φ ψ [ψ] [φ] with ex-mid (ψ ≡pl φ)
  ...| inj₁ x rewrite Tb x | sym (lift-≡pl ψ φ x) = [ψ] [φ]
  refute2 ξ ¥true ψ     [ψ] [φ] | inj₂ x rewrite ¬Tb x = tt
  refute2 ξ ¥false ψ    [ψ] [φ] | inj₂ x rewrite ¬Tb x = [φ]
  refute2 ξ (y || y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = Sum.map (refute2 ξ y ψ [ψ]) (refute2 ξ y' ψ [ψ]) [φ]
  refute2 ξ (y && y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = Prod.map (refute2 ξ y ψ [ψ]) (refute2 ξ y' ψ [ψ]) [φ]
  refute2 ξ (y => y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = (refute2 ξ y' ψ [ψ]) ∘ [φ] ∘ (refute2' ξ y ψ [ψ])
  refute2 ξ (¥ y) ψ     [ψ] [φ] | inj₂ x rewrite ¬Tb x = [φ]

  refute2' : ∀ ξ φ ψ → ⟦ ξ ⊧ ~ ψ ⟧pl → ⟦ ξ ⊧ φ [ ψ / ¥false ] ⟧pl → ⟦ ξ ⊧ φ ⟧pl
  refute2' ξ φ ψ [ψ] [φ] with ex-mid (ψ ≡pl φ)
  refute2' ξ φ ψ         [ψ] [φ] | inj₁ x rewrite Tb x | sym (lift-≡pl ψ φ x) = ⊥-elim [φ]
  refute2' ξ ¥true ψ     [ψ] [φ] | inj₂ x rewrite ¬Tb x = tt
  refute2' ξ ¥false ψ    [ψ] [φ] | inj₂ x rewrite ¬Tb x = [φ]
  refute2' ξ (y || y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = Sum.map (refute2' ξ y ψ [ψ]) (refute2' ξ y' ψ [ψ]) [φ]
  refute2' ξ (y && y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = Prod.map (refute2' ξ y ψ [ψ]) (refute2' ξ y' ψ [ψ]) [φ]
  refute2' ξ (y => y') ψ [ψ] [φ] | inj₂ x rewrite ¬Tb x
    = refute2' ξ y' ψ [ψ] ∘ [φ] ∘ refute2 ξ y ψ [ψ]
  refute2' ξ (¥ y) ψ     [ψ] [φ] | inj₂ x rewrite ¬Tb x = [φ]

apply-Γ : ∀ ξ Γ → ⟦ ξ ⊧ Γ ⟧⇒ → ⟦ ξ ⊧ andpl (πΓ Γ) => πφ Γ ⟧pl
apply-Γ ξ ([] ⇒ φ)            pθ pΓ = pθ
apply-Γ ξ ((x ∷ []) ⇒ φ)      pθ pΓ = pθ (proj₁ pΓ)
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apply-Γ ξ ((x ∷ x' ∷ xs) ⇒ φ) pθ pΓ = apply-Γ ξ ((x' ∷ xs) ⇒ φ)
                                              (curry pθ (proj₁ pΓ)) (proj₂ pΓ)

apply-Γ' : ∀ ξ Γ → ⟦ ξ ⊧ andpl (πΓ Γ) => πφ Γ ⟧pl → ⟦ ξ ⊧ Γ ⟧⇒
apply-Γ' ξ ([] ⇒ φ)           p = p tt
apply-Γ' ξ ((γ ∷ []) ⇒ φ)     p = λ x → (curry p) x tt
apply-Γ' ξ ((γ ∷ γ' ∷ Γ) ⇒ φ) p = λ x → apply-Γ' ξ ((γ' ∷ Γ) ⇒ φ)
                                                 (curry p (proj₁ x)) (proj₂ x)

_isSubConjunct_ : PL-Formula → PL-Formula → Bool
_isSubConjunct_ φ ψ with φ ==pl ψ
...| true = true
φ isSubConjunct ¥true     | false = false
φ isSubConjunct ¥false    | false = false
φ isSubConjunct (y || y') | false = false
φ isSubConjunct (y && y') | false = φ isSubConjunct y ∨ φ isSubConjunct y'
φ isSubConjunct (y => y') | false = false
φ isSubConjunct ¥ y       | false = false

lemSubConjunct : ∀ ξ φ ψ → T (φ isSubConjunct ψ) → ⟦ ξ ⊧ ψ ⟧pl → ⟦ ξ ⊧ φ ⟧pl
lemSubConjunct ξ φ ψ p [ψ] with ex-mid (φ ==pl ψ)
...| inj₁ x = lift-==pl← φ ψ x ξ [ψ]
lemSubConjunct ξ φ ¥true     p [ψ] | inj₂ x rewrite ¬Tb x = ⊥-elim p
lemSubConjunct ξ φ ¥false    p [ψ] | inj₂ x rewrite ¬Tb x = ⊥-elim p
lemSubConjunct ξ φ (y || y') p [ψ] | inj₂ x rewrite ¬Tb x = ⊥-elim p
lemSubConjunct ξ φ (y && y') p [ψ] | inj₂ x rewrite ¬Tb x =
                                              [ (λ x → (lemSubConjunct ξ φ y) x (proj₁ [ψ])) ,
                                                (λ x → (lemSubConjunct ξ φ y') x (proj₂ [ψ])) ]′
                                                (lem-bool-∨-s (φ isSubConjunct y) _ p)
lemSubConjunct ξ φ (y => y') p [ψ] | inj₂ x rewrite ¬Tb x = ⊥-elim p
lemSubConjunct ξ φ (¥ y)     p [ψ] | inj₂ x rewrite ¬Tb x = ⊥-elim p

data ERule : Set where
  fof_nnf fof_simplification split_conjunct cn axiom unsat distribute : ERule
  apply_def rw sr pm fresh : ERule

e-arity : ERule → ℕ
e-arity fof_nnf            = 1 -- negated normal form (fol)
e-arity fof_simplification = 1 -- constsant removal (fol)
e-arity axiom              = 0 -- assumption
e-arity apply_def          = 2 -- rewrite a formula with an equivalence, one way
e-arity split_conjunct     = 1 -- split a n-ary conjunction
e-arity rw                 = 2 -- re-write, refute leaving constant
e-arity sr                 = 2 -- simply reflect, refute removing constant where possible
e-arity pm                 = 2 -- paramodulate, refute two clauses
e-arity cn                 = 1 -- clause normalise, remove constants
e-arity unsat              = 1 -- reducto ad adsurdum
e-arity distribute         = 1 -- place a formula in cnf by niave distribution
e-arity fresh              = 1 -- virtual rule, discharges equivalences from introduced definitions

correct-apply : Formula → Formula → Formula → Bool
correct-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((φ₂a => φ₂b) && (φ₂b' => φ₂a'))) (Γ₃ ⇒ φ₃)
  = φ₂a ≡pl φ₂a' ∧ φ₂b ≡pl φ₂b' ∧ φ₃ ≡pl (φ₁ [ φ₂b / φ₂a ]) ∧ (Γ₁ ++ Γ₂) ⊆ Γ₃
correct-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃) = false

correct-fresh : Formula → Formula → Bool
correct-fresh ((((¥ n => ψ) && (ψ' => ¥ n')) ∷ Γ₁) ⇒ φ₁) (Γ₂ ⇒ φ₂)
  = φ₁ ≡pl φ₂ ∧ n == n' ∧ ψ ≡pl ψ' ∧ not (¥ n isSubFormula φ₂)
    ∧ not (¥ n isSubFormula andpl Γ₂)
    ∧ not (¥ n isSubFormula ψ) ∧ Γ₁ ⊆ Γ₂
correct-fresh (_ ⇒ φ₁) (Γ₂ ⇒ φ₂) = false

correct-rw :  Formula → Formula → Formula → Bool
correct-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (φ₂ => ¥false)) (Γ₃ ⇒ φ₃) = φ₃ ==pl (φ₁ [ φ₂ / ¥false ])
                                                         ∧ (Γ₁ ++ Γ₂) ⊆ Γ₃
correct-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃) = φ₃ ==pl (φ₁ [ ~ φ₂ / ¥false ])
                                             ∧ (Γ₁ ++ Γ₂) ⊆ Γ₃

correct-sr : Formula → Formula → Formula → Bool
correct-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (φ₂ => ¥false)) (Γ₃ ⇒ φ₃)
  = φ₃ ==pl const-removal (φ₁ [ φ₂ / ¥false ]) ∧ (Γ₁ ++ Γ₂) ⊆ Γ₃
correct-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃) = φ₃ ==pl const-removal (φ₁ [ ~ φ₂ / ¥false ])
                                             ∧ (Γ₁ ++ Γ₂) ⊆ Γ₃

correct-pm : Formula → Formula → Formula → Bool
correct-pm (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃)
  = conflict-negleft φ₁ φ₂ ∧ φ₃ ==pl const-removal (pm' φ₁ φ₂) ∧ (Γ₁ ++ Γ₂) ⊆ Γ₃

e-correct : (k : ERule) → Vec Formula (e-arity k) → Formula → Bool
e-correct fof_nnf            (Γ₁ ⇒ φ ∷ xs) (Γ₂ ⇒ ψ)  = ψ ==pl const-removal (mknnf φ) ∧ Γ₁ ⊆ Γ₂
e-correct fof_simplification (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) = φ₂ ==pl const-removal φ₁ ∧ Γ₁ ⊆ Γ₂
e-correct distribute         (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) = φ₂ ==pl mkdist φ₁ ∧ Γ₁ ⊆ Γ₂
e-correct axiom              seq           (Γ₁ ⇒ φ₁) = φ₁ ∈ Γ₁
e-correct apply_def          (a ∷ b ∷ _)   c         = correct-apply a b c
e-correct split_conjunct     (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) = φ₂ isSubConjunct φ₁ ∧ Γ₁ ⊆ Γ₂
e-correct rw                 (a ∷ b ∷ _)   c         = correct-rw a b c
e-correct sr                 (a ∷ b ∷ _)   c         = correct-sr a b c
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e-correct pm                 (a ∷ b ∷ _)   c         = correct-pm a b c
e-correct cn                 (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) = φ₂ ==pl const-removal φ₁ ∧ Γ₁ ⊆ Γ₂
e-correct unsat              (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) = φ₁ ≡pl ¥false ∧ (Γ₁ ∣ (~ φ₂)) ⊆ Γ₂
e-correct fresh              (a ∷ _)       b         = correct-fresh a b

sound-apply : (a b c : Formula) → (∀ ξ → ⟦ ξ ⊧ a ⟧⇒) → (∀ ξ → ⟦ ξ ⊧ b ⟧⇒) → T (correct-apply a b c)
            → ∀ ξ → ⟦ ξ ⊧ c ⟧⇒
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((φ₂a => φ₂b) && (φ₂b' => φ₂a'))) (Γ₃ ⇒ φ₃) pa pb p ξ
  rewrite (lift-≡pl φ₃ _ (∧-eliml (∧-elimr (φ₂b ≡pl φ₂b') (∧-elimr (φ₂a ≡pl φ₂a') p))))
  = apply-Γ' ξ (Γ₃ ⇒ (φ₁ [ φ₂b / φ₂a ]) )
             (λ [Γ₃] → lem-subst ξ φ₂b φ₂a φ₁ (Prod.map id
                         (λ x' x0 → subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl φ₂a _ (∧-eliml p)))
                                          (x' (subst (⟦_⊧_⟧pl ξ) (lift-≡pl φ₂b _
                                                     (∧-eliml (∧-elimr (φ₂a ≡pl φ₂a') p))) x0)))
                         (apply-Γ ξ (Γ₂ ⇒ ((φ₂a => φ₂b) && (φ₂b' => φ₂a'))) (pb ξ)
                                  (proj₂ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
                                         (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ ((∧-elimr
                                         (φ₃ ≡pl (φ₁ [ φ₂b / φ₂a ])) (∧-elimr (φ₂b ≡pl φ₂b')
                                         (∧-elimr (φ₂a ≡pl φ₂a') p))))) [Γ₃])))))
                       (apply-Γ ξ (Γ₁ ⇒ φ₁) (pa ξ) (proj₁ (seq-split ξ Γ₁ Γ₂
                               (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂) (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃
                                (∧-elimr (φ₃ ≡pl (φ₁ [ φ₂b / φ₂a ])) (∧-elimr
                                (φ₂b ≡pl φ₂b') (∧-elimr (φ₂a ≡pl φ₂a') p)))) [Γ₃])))))
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥true)                     (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥false)                    (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y || y'))                 (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (¥true && y'))             (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (¥false && y'))            (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y || y') && y0))         (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y && y') && y0))         (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y => y') && ¥true))      (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y => y') && ¥false))     (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y => y') && (y0 || y1))) (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y => y') && (y0 && y1))) (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ((y => y') && ¥ y0))       (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (¥ y && y'))               (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => y'))                 (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p
sound-apply (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥ y)                       (Γ₃ ⇒ φ₃) pa pb p ξ = ⊥-elim p

sound-fresh : (a b : Formula) → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ a) => πφ a ⟧pl) → T (correct-fresh a b)
            → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ b) => πφ b ⟧pl
sound-fresh ([] ⇒ φ₁) (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((¥true ∷ Γ₁) ⇒ φ₁)                             (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((¥false ∷ Γ₁) ⇒ φ₁)                            (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((y || y' ∷ Γ₁) ⇒ φ₁)                           (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((¥true && y' ∷ Γ₁) ⇒ φ₁)                       (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((¥false && y' ∷ Γ₁) ⇒ φ₁)                      (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((y || y') && y0 ∷ Γ₁) ⇒ φ₁)                   (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((y && y') && y0 ∷ Γ₁) ⇒ φ₁)                   (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥true => y') && y0 ∷ Γ₁) ⇒ φ₁)               (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥false => y') && y0 ∷ Γ₁) ⇒ φ₁)              (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((((y || y') => y0) && y1 ∷ Γ₁) ⇒ φ₁)           (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((((y && y') => y0) && y1 ∷ Γ₁) ⇒ φ₁)           (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((((y => y') => y0) && y1 ∷ Γ₁) ⇒ φ₁)           (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && ¥true ∷ Γ₁) ⇒ φ₁)              (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && ¥false ∷ Γ₁) ⇒ φ₁)             (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 || y1) ∷ Γ₁) ⇒ φ₁)         (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 && y1) ∷ Γ₁) ⇒ φ₁)         (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 => ¥true) ∷ Γ₁) ⇒ φ₁)      (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 => ¥false) ∷ Γ₁) ⇒ φ₁)     (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 => (y1 || y2)) ∷ Γ₁) ⇒ φ₁) (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 => (y1 && y2)) ∷ Γ₁) ⇒ φ₁) (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ y => y') && (y0 => (y1 => y2)) ∷ Γ₁) ⇒ φ₁) (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh (((¥ n => ψ) && (ψ' => ¥ n') ∷ Γ₁) ⇒ φ₁) (Γ₂ ⇒ φ₂) pa p ξ [Γ₂]
  rewrite lift-≡pl φ₁ _ (∧-eliml p)
  = r' φ₂ ψ (andpl Γ₂) n
       (∧-eliml (∧-elimr (ψ ≡pl ψ') (∧-elimr (n == n') (∧-elimr (φ₁ ≡pl φ₂) p))))
       (∧-eliml (∧-elimr  (not (¥ n isSubFormula andpl Γ₂))
                          (∧-elimr (not (¥ n isSubFormula φ₂))
                                   (∧-elimr (ψ ≡pl ψ')
                                            (∧-elimr (n == n') (∧-elimr (φ₁ ≡pl φ₂) p))))))
       (∧-eliml (∧-elimr (not (¥ n isSubFormula φ₂))
                         (∧-elimr (ψ ≡pl ψ') (∧-elimr (n == n') (∧-elimr (φ₁ ≡pl φ₂) p)))))
       (λ ξ' x → pa ξ' (Prod.map (Prod.map id (λ x0 x1 → subst (T ∘ ξ')
                    (lift-== n n' ((∧-eliml (∧-elimr (φ₁ ≡pl φ₂) p))))
                    (x0 (subst (⟦_⊧_⟧pl ξ') (sym (lift-≡pl ψ _ ((∧-eliml (∧-elimr (n == n')
                        (∧-elimr (φ₁ ≡pl φ₂) p)))))) x1))))
                                 (lem-seq-subst-foldr ξ' Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂
                        (∧-elimr (not (¥ n isSubFormula ψ)) (∧-elimr (not (¥ n
                        isSubFormula andpl Γ₂)) (∧-elimr (not (¥ n isSubFormula φ₂))
                        (∧-elimr (ψ ≡pl ψ') (∧-elimr (n == n') (∧-elimr (φ₁ ≡pl φ₂) p)))))))) x))
       ξ [Γ₂]
sound-fresh (((¥ y => y') && ¥ y0 ∷ Γ₁) ⇒ φ₁)               (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((¥ y && y' ∷ Γ₁) ⇒ φ₁)                         (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((y => y' ∷ Γ₁) ⇒ φ₁)                           (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
sound-fresh ((¥ y ∷ Γ₁) ⇒ φ₁)                               (Γ₂ ⇒ φ₂) pa p ξ [Γ₂] = ⊥-elim p
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sound-rw' : (a b c : Formula)
          → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ a) => πφ a ⟧pl) → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ b) => πφ b ⟧pl)
          → T (πφ c ==pl ((πφ a) [ ~ (πφ b) / ¥false ]) ∧ ((πΓ a) ++ (πΓ b)) ⊆ (πΓ c))
          → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ c) => πφ c ⟧pl
sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃) pa pb p ξ [Γ₃]
  = lift-==pl← φ₃ ( φ₁ [ (~ φ₂) / ¥false ] ) (∧-eliml p) ξ
               (refute1 ξ φ₁ φ₂
                 (pb ξ (proj₂ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
                     (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl (φ₁ [ ~ φ₂ / ¥false ])) p))
                     [Γ₃]))))
                 (pa ξ (proj₁ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
                     (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl (φ₁ [ ~ φ₂ / ¥false ])) p))
                     [Γ₃])))))

sound-rw : (a b c : Formula)
         → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ a) => πφ a ⟧pl) → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ b) => πφ b ⟧pl)
         → T (correct-rw a b c )
         → ∀ ξ → ⟦ ξ ⊧ foldr _&&_ ¥true (πΓ c) => πφ c ⟧pl
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥true)             (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥false)            (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y || y'))         (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y && y'))         (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => ¥true))      (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => (y' || y0))) (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => (y' && y0))) (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => (y' => y0))) (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => ¥ y'))       (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥ y)               (Γ₃ ⇒ φ₃) = sound-rw' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)

sound-rw (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (φ₂ => ¥false)) (Γ₃ ⇒ φ₃) = λ pa pb p ξ [Γ₃] →
  lift-==pl← φ₃ ( φ₁ [ φ₂ / ¥false ] ) (∧-eliml p) ξ
               (refute2 ξ φ₁ φ₂
                 (pb ξ (proj₂ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
                     (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl (φ₁ [ φ₂ / ¥false ])) p)) [Γ₃]))))
                 (pa ξ (proj₁ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
                     (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl (φ₁ [ φ₂ / ¥false ])) p)) [Γ₃])))))

sound-sr' : (a b c : Formula)
         → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ a) => πφ a ⟧pl) → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ b) => πφ b ⟧pl)
         → T (πφ c ==pl const-removal ((πφ a) [ ~ (πφ b) / ¥false ])
                 ∧ (((πΓ a) ++ (πΓ b)) ⊆ (πΓ c)))
         → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ c) => πφ c ⟧pl
sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃) pa pb p ξ [Γ₃]
  = lift-==pl← φ₃ (const-removal (φ₁ [ (~ φ₂) / ¥false ]))
     (∧-eliml p) ξ (lem-no-const ξ  (φ₁ [ (~ φ₂) / ¥false ]) (refute1 ξ φ₁ φ₂
       (pb ξ (proj₂ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
         (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl const-removal (φ₁ [ ~ φ₂ / ¥false ]))p))
         [Γ₃]))))
       (pa ξ (proj₁ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
         (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl const-removal (φ₁ [ ~ φ₂ / ¥false ]))p))
         [Γ₃])))) ))

sound-sr : (a b c : Formula)
         → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ a) => πφ a ⟧pl) → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ b) => πφ b ⟧pl)
         → T (correct-sr a b c) → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ c) => πφ c ⟧pl
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥true)          (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥false)         (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y || y'))      (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y && y'))      (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => ¥true))   (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (φ₂ => ¥false)) (Γ₃ ⇒ φ₃) = λ  pa pb p ξ [Γ₃] →
  lift-==pl← φ₃ (const-removal (φ₁ [ φ₂ / ¥false ]))
    (∧-eliml p) ξ
    (lem-no-const ξ (φ₁ [ φ₂ / ¥false ])
      (refute2 ξ φ₁ φ₂ (pb ξ (proj₂ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
        (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl const-removal (φ₁ [ φ₂ / ¥false ])) p))
        [Γ₃]))))
      (pa ξ (proj₁ (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂)
          (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl const-removal (φ₁ [ φ₂ / ¥false ])) p))
          [Γ₃])))) ))
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => (y' || y0))) (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => (y' && y0))) (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => (y' => y0))) (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ (y => ¥ y'))       (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)
sound-sr (Γ₁ ⇒ φ₁) (Γ₂ ⇒ ¥ y)               (Γ₃ ⇒ φ₃) = sound-sr' (Γ₁ ⇒ φ₁) (Γ₂ ⇒ _) (Γ₃ ⇒ φ₃)

sound-pm : (a b c : Formula)
         → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ a) => πφ a ⟧pl) → (∀ ξ → ⟦ ξ ⊧ andpl (πΓ b) => πφ b ⟧pl)
         → T (correct-pm a b c )
         → ∀ ξ → ⟦ ξ ⊧ andpl (πΓ c) => πφ c ⟧pl
sound-pm (Γ₁ ⇒ φ₁) (Γ₂ ⇒ φ₂) (Γ₃ ⇒ φ₃) pa pb p ξ [Γ₃]
  = lift-==pl← φ₃ (const-removal (pm' φ₁ φ₂)) (∧-eliml (∧-elimr (conflict-negleft φ₁ φ₂) p))
    ξ (lem-no-const ξ (pm' φ₁ φ₂) (lem-pm φ₁ φ₂ (∧-eliml p) ξ (pa ξ (proj₁ (seq-split ξ Γ₁ Γ₂
      (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂) (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr (φ₃ ==pl
      const-removal (pm' φ₁ φ₂)) (∧-elimr (conflict-negleft φ₁ φ₂) p))) [Γ₃])))) (pb ξ (proj₂
      (seq-split ξ Γ₁ Γ₂ (lem-seq-subst-foldr ξ Γ₃ (Γ₁ ∪ Γ₂) (lift-⊆ (Γ₁ ∪ Γ₂) Γ₃ (∧-elimr
      (φ₃ ==pl const-removal (pm' φ₁ φ₂)) (∧-elimr (conflict-negleft φ₁ φ₂) p)))
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      [Γ₃])))) ))

esound : (k : ERule)
       → (seq : Vec Formula (e-arity k))
       → (conc : Formula)
       → T (e-correct k seq conc)
       → Vec* (λ x → ∀ ξ → ⟦ ξ ⊧ x ⟧⇒) seq
       → ∀ ξ → ⟦ ξ ⊧ conc ⟧⇒
esound fof_nnf (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) correct (v ∷ _) ξ
  = apply-Γ' ξ (Γ₂ ⇒ φ₂)
             (λ x → lift-==pl← φ₂ (const-removal (mknnf φ₁)) (∧-eliml correct) ξ
               (lem-no-const ξ (mknnf φ₁) (lem-nnf← φ₁ ξ
                 (apply-Γ ξ (Γ₁ ⇒ φ₁) (v ξ)
                   (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ (∧-elimr
                     (φ₂ ==pl const-removal (mknnf φ₁)) correct)) x)))))
esound fof_simplification (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) correct (v ∷ _) ξ
  = apply-Γ' ξ (Γ₂ ⇒ φ₂)
             (λ x → lift-==pl← φ₂ (const-removal φ₁) (∧-eliml correct) ξ
               (lem-no-const ξ φ₁ (apply-Γ ξ (Γ₁ ⇒ φ₁) (v ξ)
                 (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂ (∧-elimr
                   (φ₂ ==pl const-removal φ₁) correct)) x))))
esound distribute (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) correct (v ∷ _) ξ
  = apply-Γ' ξ (Γ₂ ⇒ φ₂)
             (λ x → lift-==pl← φ₂ (mkdist φ₁) (∧-eliml correct) ξ (lem-mkdist ξ φ₁
               (apply-Γ ξ (Γ₁ ⇒ φ₁) (v ξ) (lem-seq-subst-foldr ξ Γ₂ Γ₁
                 (lift-⊆ Γ₁ Γ₂ (∧-elimr (φ₂ ==pl mkdist φ₁) correct)) x))))
esound split_conjunct (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) correct (v ∷ _) ξ
  = apply-Γ' ξ (Γ₂ ⇒ φ₂) (λ x → lemSubConjunct ξ φ₂ φ₁ (∧-eliml correct)
     (apply-Γ ξ (Γ₁ ⇒ φ₁) (v ξ) (lem-seq-subst-foldr ξ Γ₂ Γ₁ (lift-⊆ Γ₁ Γ₂
       (∧-elimr (φ₂ isSubConjunct φ₁) correct)) x)))
esound cn (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) correct (v ∷ _) ξ
  = apply-Γ' ξ (Γ₂ ⇒ φ₂) (λ x → lift-==pl← φ₂ (const-removal φ₁) (∧-eliml correct) ξ
      (lem-no-const ξ φ₁ (apply-Γ ξ (Γ₁ ⇒ φ₁) (v ξ) (lem-seq-subst-foldr ξ Γ₂ Γ₁
        (lift-⊆ Γ₁ Γ₂ (∧-elimr (φ₂ ==pl const-removal φ₁) correct)) x))))
esound axiom seq ([] ⇒ φ) () v ξ
esound axiom seq ((γ ∷ Γ) ⇒ φ) correct v ξ
  = apply-Γ' ξ ((γ ∷ Γ) ⇒ φ) (∨-elim (λ x → subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl φ _ x)) ∘ proj₁)
             (λ x x' → apply-Γ ξ (Γ ⇒ φ) (esound axiom seq (Γ ⇒ φ) x v ξ) (proj₂ x')) correct)
esound apply_def (a ∷ b ∷ _) c correct (v₁ ∷ v₂ ∷ _) ξ = sound-apply a b c v₁ v₂ correct ξ
esound rw (a ∷ b ∷ _) c correct (v₁ ∷ v₂ ∷ _) ξ
  = apply-Γ' ξ c (sound-rw a b c (λ ξ' → apply-Γ ξ' a (v₁ ξ'))
                                 (λ ξ' → apply-Γ ξ' b (v₂ ξ')) correct ξ)
esound sr (a ∷ b ∷ _) c correct (v₁ ∷ v₂ ∷ _) ξ
  = apply-Γ' ξ c (sound-sr a b c (λ ξ' → apply-Γ ξ' a (v₁ ξ'))
                                 (λ ξ' → apply-Γ ξ' b (v₂ ξ')) correct ξ)
esound pm (a ∷ b ∷ _) c correct (v₁ ∷ v₂ ∷ _) ξ
  = apply-Γ' ξ c (sound-pm a b c (λ ξ' → apply-Γ ξ' a (v₁ ξ'))
                                 (λ ξ' → apply-Γ ξ' b (v₂ ξ')) correct ξ)
esound unsat (Γ₁ ⇒ φ₁ ∷ _) (Γ₂ ⇒ φ₂) correct (v ∷ _) ξ
  = apply-Γ' ξ (Γ₂ ⇒ φ₂) λ x → stbl-pl ξ φ₂
      (λ x' → subst id (cong (⟦_⊧_⟧pl ξ) (lift-≡pl φ₁ _ (∧-eliml correct)))
                      (apply-Γ ξ (Γ₁ ⇒ φ₁) (v ξ)
                       (lem-seq-restrict-foldr' ξ Γ₁ (~ φ₂) x'
                        (lem-seq-subst-foldr ξ Γ₂ (Γ₁ ∣ ~ φ₂)
                         (lift-⊆ (Γ₁ ∣ ~ φ₂) Γ₂ (∧-elimr (φ₁ ≡pl ¥false) correct)) x))))
esound fresh (a ∷ _) b correct (v ∷ _) ξ
  = apply-Γ' ξ b (sound-fresh a b (λ ξ' → apply-Γ ξ' a (v ξ')) correct ξ)

E : RuleSystem ERule Formula Env ⟦_⊧_⟧⇒
E = record { arity = e-arity; correct = e-correct; sound = esound }

correct-list'♭ : (l : ProofList E) → T (not (null l)) → Bool
correct-list'♭ l x = correct-list E l ∧ (null $ πΓ $ ProofNode.conc E $ lastnode l x)

semantics-elist' : (l : ProofList E) → (x : T (not (null l))) → Set
semantics-elist' l x = ∀ ξ → ⟦ ξ ⊧ ProofNode.conc E (lastnode l x) ⟧⇒

aux-reconst : (l : ProofList E) → (x : T (not (null l)))
            → (p : T (correct-list'♭ l x)) → semantics-elist' l x
aux-reconst l x p = sound-list E l x (∧-eliml p)

lemKK : ∀ ξ θ → ⟦ ξ ⊧ θ ⟧⇒ → T (null (πΓ θ)) → ⟦ ξ ⊧ πφ θ ⟧pl
lemKK ξ ([] ⇒ φ) p q = p
lemKK ξ ((x ∷ xs) ⇒ φ) p q = ⊥-elim q

correct-elist-φ♭ : (l : Maybe (ProofList E)) → (φ : PL-Formula) → Bool
correct-elist-φ♭ (just l) φ with ex-mid (not (null l))
...| inj₁ x = correct-list'♭ l x ∧ (φ ≡pl πφ (ProofNode.conc E $ lastnode l x))
...| inj₂ x = false
correct-elist-φ♭ nothing φ = false

aux-reconstruct : ∀ φ l x → T (correct-list'♭ l x ∧ (φ ≡pl πφ (ProofNode.conc E $ lastnode l x)))
                → Taut-pl φ
aux-reconstruct φ l x pτ ξ
  rewrite lift-≡pl φ _ (∧-elimr (correct-list'♭ l x) pτ)
  = lemKK ξ (ProofNode.conc E $ lastnode l x) (aux-reconst l x (∧-eliml pτ) ξ)
          (∧-elimr (correct-list E l) (∧-eliml pτ))
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reconstruct : ∀ φ l → T (correct-elist-φ♭ l φ) → Taut-pl φ
reconstruct φ nothing ()
reconstruct φ (just l) p with ex-mid (not (null l))
...| inj₁ x = aux-reconstruct φ l x p
...| inj₂ x = ⊥-elim p

open import Boolean.TPTP
open import Data.String

private primitive primExternal : {A : Set} → String → String → Maybe A

createList : PL-Formula → Maybe (ProofList E)
createList φ = primExternal {ProofList E} "eprover-list" (tptp φ)

correctness : ∀ φ → Set
correctness φ = T (correct-elist-φ♭ (createList φ) φ)

soundness : ∀ φ → correctness φ → Taut-pl φ
soundness φ p = reconstruct φ (createList φ) p
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module Boolean.PL-Formula.Substitute where

open import Boolean.Formula

open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Unit
open import Data.Bool

open import PropIso

substitute : PL-Formula → PL-Formula → PL-Formula → PL-Formula
substitute φ ψ ρ with φ ≡pl ρ
...| true = ψ
substitute φ ψ ¥true | false = ¥true
substitute φ ψ ¥false | false = ¥false
substitute φ ψ (y || y') | false = substitute φ ψ y || substitute φ ψ y'
substitute φ ψ (y && y') | false = substitute φ ψ y && substitute φ ψ y'
substitute φ ψ (y => y') | false = substitute φ ψ y => substitute φ ψ y'
substitute φ ψ (¥ y) | false = ¥ y

-- substitute φ for ψ in ρ
syntax substitute φ ψ ρ = ρ [ φ / ψ ]

mutual
  lem-subst : ∀ ξ φ ψ ρ → ⟦ ξ ⊧ ψ <=> φ ⟧pl → ⟦ ξ ⊧ ρ ⟧pl → ⟦ ξ ⊧ ρ [ φ / ψ ] ⟧pl
  lem-subst ξ φ ψ ρ [φ↔ψ] [ρ] with ex-mid (φ ≡pl ρ)
  ...| inj₁ x  rewrite Tb x | lift-≡pl φ _ x = (proj₂ [φ↔ψ]) [ρ]
  lem-subst ξ φ ψ ¥true     [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = tt
  lem-subst ξ φ ψ ¥false    [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = [ρ]
  lem-subst ξ φ ψ (y || y') [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = Sum.map (lem-subst ξ φ ψ y [φ↔ψ])
                                                                       (lem-subst ξ φ ψ y' [φ↔ψ]) [ρ]
  lem-subst ξ φ ψ (y && y') [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = Prod.map (lem-subst ξ φ ψ y [φ↔ψ])
                                                                        (lem-subst ξ φ ψ y' [φ↔ψ]) [ρ]
  lem-subst ξ φ ψ (y => y') [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = lem-subst ξ φ ψ y' [φ↔ψ] ∘ [ρ] ∘ 
                                                                 lem-subst' ξ φ ψ y [φ↔ψ]
  lem-subst ξ φ ψ (¥ y)     [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = [ρ]

  lem-subst' : ∀ ξ φ ψ ρ → ⟦ ξ ⊧ ψ <=> φ ⟧pl → ⟦ ξ ⊧ ρ [ φ / ψ ] ⟧pl → ⟦ ξ ⊧ ρ ⟧pl
  lem-subst' ξ φ ψ ρ [φ↔ψ] [ρ] with ex-mid (φ ≡pl ρ)
  ...| inj₁ x  rewrite Tb x | lift-≡pl φ _ x = (proj₁ [φ↔ψ]) [ρ]
  lem-subst' ξ φ ψ ¥true     [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = tt
  lem-subst' ξ φ ψ ¥false    [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = [ρ]
  lem-subst' ξ φ ψ (y || y') [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = Sum.map (lem-subst' ξ φ ψ y [φ↔ψ])
                                                                        (lem-subst' ξ φ ψ y' [φ↔ψ]) [ρ]
  lem-subst' ξ φ ψ (y && y') [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = Prod.map (lem-subst' ξ φ ψ y [φ↔ψ])
                                                                         (lem-subst' ξ φ ψ y' [φ↔ψ]) [ρ]
  lem-subst' ξ φ ψ (y => y') [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = lem-subst' ξ φ ψ y' [φ↔ψ] ∘ [ρ] ∘ 
                                                                  lem-subst ξ φ ψ y [φ↔ψ]
  lem-subst' ξ φ ψ (¥ y)     [φ↔ψ] [ρ] | inj₂ x rewrite ¬Tb x = [ρ]
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module Proof.EProver.NNF where

open import Boolean.Formula

open import Data.Bool
open import Data.Nat
open import Data.Sum as Sum
open import Data.Product as Prod
open import PropIso

mutual
  mknnf : PL-Formula → PL-Formula
  mknnf ¥true     = ¥true
  mknnf ¥false    = ¥false
  mknnf (y || y') = mknnf y || mknnf y'
  mknnf (y && y') = mknnf y && mknnf y'
  mknnf (y => y') = ¬mknnf y || mknnf y'
  mknnf (¥ y)     = ¥ y

  ¬mknnf : PL-Formula → PL-Formula
  ¬mknnf ¥true     = ¥false
  ¬mknnf ¥false    = ¥true
  ¬mknnf (y || y') = ¬mknnf y && ¬mknnf y'
  ¬mknnf (y && y') = ¬mknnf y || ¬mknnf y'
  ¬mknnf (y => y') = mknnf y && ¬mknnf y'
  ¬mknnf (¥ y)     = ~ (¥ y)

mutual
  lem-nnf→ : (φ : PL-Formula) → (ξ : ℕ → Bool) → ⟦ ξ ⊧ mknnf φ ⟧pl → ⟦ ξ ⊧ φ ⟧pl
  lem-nnf→ ¥true    ξ p = tt
  lem-nnf→ ¥false   ξ p = p
  lem-nnf→ (φ || ψ) ξ p = Sum.map (lem-nnf→ φ ξ) (lem-nnf→ ψ ξ) p
  lem-nnf→ (φ && ψ) ξ p = Prod.map (lem-nnf→ φ ξ) (lem-nnf→ ψ ξ) p
  lem-nnf→ (φ => ψ) ξ p = λ x → lem-nnf→ ψ ξ (lem-→ (Sum.map (lem-nnf'→ φ ξ) id p) x)
  lem-nnf→ (¥ v)    ξ p = p

  lem-nnf← : (φ : PL-Formula) → (ξ : ℕ → Bool) → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ mknnf φ ⟧pl
  lem-nnf← ¥true    ξ p = p
  lem-nnf← ¥false   ξ p = p
  lem-nnf← (φ || ψ) ξ p = Sum.map (lem-nnf← φ ξ) (lem-nnf← ψ ξ) p
  lem-nnf← (φ && ψ) ξ p = Prod.map (lem-nnf← φ ξ) (lem-nnf← ψ ξ) p
  lem-nnf← (φ => ψ) ξ p = Sum.map (lem-nnf'← φ ξ) (lem-nnf← ψ ξ) (material-pl ξ φ ψ p)
  lem-nnf← (¥ v)    ξ p = p

  lem-nnf'→ : (φ : PL-Formula) → (ξ : ℕ → Bool) → ⟦ ξ ⊧ ¬mknnf φ ⟧pl → ⟦ ξ ⊧ ~ φ ⟧pl
  lem-nnf'→ ¥true    ξ p q = p
  lem-nnf'→ ¥false   ξ p q = q
  lem-nnf'→ (φ || ψ) ξ p q = [ lem-nnf'→ φ ξ (proj₁ p) , lem-nnf'→ ψ ξ (proj₂ p) ]′ q
  lem-nnf'→ (φ && ψ) ξ p q
    = [ (λ x → lem-nnf'→ φ ξ x (proj₁ q)) , (λ x → lem-nnf'→ ψ ξ x (proj₂ q)) ]′ p
  lem-nnf'→ (φ => ψ) ξ p q = lem-nnf'→ ψ ξ (proj₂ p) (q (lem-nnf→ φ ξ (proj₁ p)))
  lem-nnf'→ (¥ v)    ξ p q = p q

  lem-nnf'← : (φ : PL-Formula) → (ξ : ℕ → Bool) → ⟦ ξ ⊧ ~ φ ⟧pl → ⟦ ξ ⊧ ¬mknnf φ ⟧pl
  lem-nnf'← ¥true    ξ p = p tt
  lem-nnf'← ¥false   ξ p = tt
  lem-nnf'← (φ || ψ) ξ p = (lem-nnf'← φ ξ (λ x → p (inj₁ x))) , lem-nnf'← ψ ξ (λ x → p (inj₂ x))
  lem-nnf'← (φ && ψ) ξ p = Sum.map (lem-nnf'← φ ξ) (lem-nnf'← ψ ξ) (demorg ξ φ ψ p)
  lem-nnf'← (φ => ψ) ξ p = Prod.map (lem-nnf← φ ξ) (lem-nnf'← ψ ξ) (material-¬pl ξ φ ψ p)
  lem-nnf'← (¥ v)    ξ p = p
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module Proof.EProver.PM where

open import Boolean.Formula

open import Data.Bool
open import Data.Product as Prod
open import Data.Sum as Sum

open import Relation.Binary.PropositionalEquality

open import PropIso

_isSubDisjunct_ : PL-Formula → PL-Formula → Bool
_isSubDisjunct_ φ ψ with φ ≡pl ψ
...| true = true
φ isSubDisjunct ¥true     | false = false
φ isSubDisjunct ¥false    | false = false
φ isSubDisjunct (y && y') | false = false
φ isSubDisjunct (y || y') | false = φ isSubDisjunct y ∨ φ isSubDisjunct y'
φ isSubDisjunct (y => y') | false = false
φ isSubDisjunct ¥ y       | false = false

subst-disjunct : (φ₁ φ₂ ψ : PL-Formula) → PL-Formula
subst-disjunct φ₁ φ₂ ψ with φ₁ ≡pl ψ
subst-disjunct φ₁ φ₂ ψ | true = φ₂
subst-disjunct φ₁ φ₂ (ψ₁ || ψ₂) | false = (subst-disjunct φ₁ φ₂ ψ₁) || (subst-disjunct φ₁ φ₂ ψ₂)
subst-disjunct φ₁ φ₂ ψ | false = ψ

conflict-negleft : PL-Formula → PL-Formula → Bool
conflict-negleft φ ¥true = ~ (¥true) isSubDisjunct φ
conflict-negleft φ ¥false = ~ (¥false) isSubDisjunct φ
conflict-negleft φ (ψ || ψ₁) = conflict-negleft φ ψ ∨ conflict-negleft φ ψ₁
conflict-negleft φ (ψ && ψ₁) = ~ (ψ && ψ₁) isSubDisjunct φ
conflict-negleft φ (ψ => ψ₁) = ~ (ψ => ψ₁) isSubDisjunct φ
conflict-negleft φ (¥ x) = ~ (¥ x) isSubDisjunct φ

-- assume conflict-negleft φ₁ φ₂ for pm'
pm' : (φ₁ φ₂ : PL-Formula)
    → PL-Formula
pm' φ₁ (φ₂ || φ₃) with conflict-negleft φ₁ φ₂
...| true  = (pm' φ₁ φ₂) || φ₃
...| false = (pm' φ₁ φ₃) || φ₂ -- this is implied by assumption
pm' φ₁ φ₂ = subst-disjunct (~ φ₂) ¥false φ₁

lem-subst-d : ∀ φ₁ φ₂ ψ ξ
            → ¬ T (φ₁ isSubDisjunct ψ)
            → ⟦ ξ ⊧ ψ ⟧pl
            → ⟦ ξ ⊧ subst-disjunct φ₁ φ₂ ψ ⟧pl
lem-subst-d φ₁ φ₂ ψ ξ p [ψ] with φ₁ ≡pl ψ
lem-subst-d φ₁ φ₂ ψ ξ p [ψ] | true = ⊥-elim (p tt)
lem-subst-d φ₁ φ₂ ¥true ξ p [ψ] | false = [ψ]
lem-subst-d φ₁ φ₂ ¥false ξ p [ψ] | false = [ψ]
lem-subst-d φ₁ φ₂ (ψ || ψ₁) ξ p [ψ] | false
  = Sum.map (lem-subst-d φ₁ φ₂ ψ ξ (λ x → p (∨-introl _ _ x)))
            (lem-subst-d φ₁ φ₂ ψ₁ ξ (λ x → p (∨-intror (φ₁ isSubDisjunct ψ) _ x))) [ψ]
lem-subst-d φ₁ φ₂ (ψ && ψ₁) ξ p [ψ] | false = [ψ]
lem-subst-d φ₁ φ₂ (ψ => ψ₁) ξ p [ψ] | false = [ψ]
lem-subst-d φ₁ φ₂ (¥ x) ξ p [ψ] | false = [ψ]

lem-pm : ∀ φ₁ φ₂
          → T (conflict-negleft φ₁ φ₂)
          → ∀ ξ
          → ⟦ ξ ⊧ φ₁ ⟧pl
          → ⟦ ξ ⊧ φ₂ ⟧pl
          → ⟦ ξ ⊧ pm' φ₁ φ₂ ⟧pl
lem-pm φ₁ ¥true p ξ [φ₁] [φ₂] with ex-mid ( (¥true => ¥false) ≡pl φ₁)
lem-pm φ₁ ¥true p ξ [φ₁] [φ₂] | inj₁ x rewrite Tb x
  = subst (λ k → ⟦ ξ ⊧ k ⟧pl) (sym (lift-≡pl (¥true => ¥false) φ₁ x)) [φ₁] [φ₂]
lem-pm ¥true ¥true () ξ [φ₁] [φ₂] | inj₂ y
lem-pm ¥false ¥true () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ || φ₂) ¥true p ξ [φ₁] [φ₂] | inj₂ y
  = [ (λ x → inj₁ ([ (λ xx → lem-pm φ₁ ¥true xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d (¥true => ¥false) ¥false φ₁ ξ xx x)
                  ]′ (ex-mid ((¥true => ¥false) isSubDisjunct φ₁)))) ,
      (λ x → inj₂ ([ (λ xx → lem-pm φ₂ ¥true xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d (¥true => ¥false) ¥false φ₂ ξ xx x)
                   ]′ (ex-mid ((¥true => ¥false) isSubDisjunct φ₂))))
    ]′ [φ₁]
lem-pm (φ₁ && φ₂) ¥true () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ => φ₂) ¥true p ξ [φ₁] [φ₂] | inj₂ y rewrite ¬Tb y = ⊥-elim p
lem-pm (¥ x) ¥true () ξ [φ₁] [φ₂] | inj₂ y

lem-pm φ₁ ¥false p ξ [φ₁] [φ₂] with ex-mid ( (¥false => ¥false) ≡pl φ₁)
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lem-pm φ₁ ¥false p ξ [φ₁] [φ₂] | inj₁ x rewrite Tb x
  = subst (λ k → ⟦ ξ ⊧ k ⟧pl) (sym (lift-≡pl (¥false => ¥false) φ₁ x)) [φ₁] [φ₂]
lem-pm ¥true ¥false () ξ [φ₁] [φ₂] | inj₂ y
lem-pm ¥false ¥false () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ || φ₂) ¥false p ξ (inj₁ x) [φ₂] | inj₂ y
  with ex-mid ((¥false => ¥false) isSubDisjunct φ₁)
lem-pm (φ₁ || φ₂) ¥false p ξ (inj₁ x₁) [φ₂] | inj₂ y | inj₁ x
  = inj₁ (lem-pm φ₁ ¥false x ξ x₁ [φ₂])
lem-pm (φ₁ || φ₂) ¥false p ξ (inj₁ x) [φ₂] | inj₂ y₁ | inj₂ y
  = inj₁ (lem-subst-d (¥false => ¥false) ¥false φ₁ ξ y x)
lem-pm (φ₁ || φ₂) ¥false p ξ (inj₂ y₁) [φ₂] | inj₂ y
  with ex-mid ((¥false => ¥false) isSubDisjunct φ₂)
lem-pm (φ₁ || φ₂) ¥false p ξ (inj₂ y₁) [φ₂] | inj₂ y | inj₁ x
  = inj₂ (lem-pm φ₂ ¥false x ξ y₁ [φ₂])
lem-pm (φ₁ || φ₂) ¥false p ξ (inj₂ y₂) [φ₂] | inj₂ y₁ | inj₂ y
  = inj₂ (lem-subst-d (¥false => ¥false) ¥false φ₂ ξ y y₂)
lem-pm (φ₁ && φ₂) ¥false () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ => φ₂) ¥false p ξ [φ₁] [φ₂] | inj₂ y rewrite ¬Tb y = ⊥-elim p
lem-pm (¥ x) ¥false () ξ [φ₁] [φ₂] | inj₂ y

lem-pm φ₁ (φ₂ || φ₃) p ξ [φ₁] (inj₁ x) with ex-mid (conflict-negleft φ₁ φ₂)
lem-pm φ₁ (φ₂ || φ₃) p ξ [φ₁] (inj₁ x₁) | inj₁ x rewrite Tb x = inj₁ (lem-pm φ₁ φ₂ x ξ [φ₁] x₁)
lem-pm φ₁ (φ₂ || φ₃) p ξ [φ₁] (inj₁ x) | inj₂ y rewrite ¬Tb y = inj₂ x
lem-pm φ₁ (φ₂ || φ₃) p ξ [φ₁] (inj₂ y) with ex-mid (conflict-negleft φ₁ φ₂)
lem-pm φ₁ (φ₂ || φ₃) p ξ [φ₁] (inj₂ y) | inj₁ x rewrite Tb x = inj₂ y
lem-pm φ₁ (φ₂ || φ₃) p ξ [φ₁] (inj₂ y₁) | inj₂ y rewrite ¬Tb y = inj₁ (lem-pm φ₁ φ₃ p ξ [φ₁] y₁)

lem-pm φ₁ (φ₃ && φ₄) p ξ [φ₁] [φ₂] with ex-mid ( ((φ₃ && φ₄) => ¥false) ≡pl φ₁)
lem-pm φ₁ (φ₃ && φ₄) p ξ [φ₁] [φ₂] | inj₁ x rewrite Tb x
  = subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl ((φ₃ && φ₄) => ¥false) φ₁ x)) [φ₁] [φ₂]
lem-pm ¥true (φ₃ && φ₄) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm ¥false (φ₃ && φ₄) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ || φ₂) (φ₃ && φ₄) p ξ [φ₁] [φ₂] | inj₂ y
  = [ (λ x → inj₁ ([ (λ xx → lem-pm φ₁ (φ₃ && φ₄) xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d ((φ₃ && φ₄) => ¥false) ¥false φ₁ ξ xx x)
                   ]′ (ex-mid (((φ₃ && φ₄) => ¥false) isSubDisjunct φ₁)))) ,
      (λ x → inj₂ ([ (λ xx → lem-pm φ₂ (φ₃ && φ₄) xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d ((φ₃ && φ₄) => ¥false) ¥false φ₂ ξ xx x)
                   ]′ (ex-mid (((φ₃ && φ₄) => ¥false) isSubDisjunct φ₂))))
    ]′ ([φ₁])
lem-pm (φ₁ && φ₂) (φ₃ && φ₄) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ => φ₂) (φ₃ && φ₄) p ξ [φ₁] [φ₂] | inj₂ y rewrite ¬Tb y = ⊥-elim p
lem-pm (¥ x) (φ₃ && φ₄) () ξ [φ₁] [φ₂] | inj₂ y

lem-pm φ₁ (φ₃ => φ₄) p ξ [φ₁] [φ₂] with ex-mid ( ((φ₃ => φ₄) => ¥false) ≡pl φ₁)
lem-pm φ₁ (φ₃ => φ₄) p ξ [φ₁] [φ₂] | inj₁ x rewrite Tb x
  = subst (λ k → ⟦ ξ ⊧ k ⟧pl) (sym (lift-≡pl ((φ₃ => φ₄) => ¥false) φ₁ x)) [φ₁] [φ₂]
lem-pm ¥true (φ₃ => φ₄) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm ¥false (φ₃ => φ₄) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ || φ₂) (φ₃ => φ₄) p ξ [φ₁] [φ₂] | inj₂ y
  = [ (λ x → inj₁ ([ (λ xx → lem-pm φ₁ (φ₃ => φ₄) xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d ((φ₃ => φ₄) => ¥false) ¥false φ₁ ξ xx x)
                   ]′ (ex-mid (((φ₃ => φ₄) => ¥false) isSubDisjunct φ₁)))) ,
      (λ x → inj₂ ([ (λ xx → lem-pm φ₂ (φ₃ => φ₄) xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d ((φ₃ => φ₄) => ¥false) ¥false φ₂ ξ xx x)
                   ]′ (ex-mid (((φ₃ => φ₄) => ¥false) isSubDisjunct φ₂)))) ]′ [φ₁]
lem-pm (φ₁ && φ₂) (φ₃ => φ₄) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ => φ₂) (φ₃ => φ₄) p ξ [φ₁] [φ₂] | inj₂ y rewrite ¬Tb y = ⊥-elim p
lem-pm (¥ x) (φ₃ => φ₄) () ξ [φ₁] [φ₂] | inj₂ y

lem-pm φ₁ (¥ n) p ξ [φ₁] [φ₂] with ex-mid ( ((¥ n) => ¥false) ≡pl φ₁)
lem-pm φ₁ (¥ n) p ξ [φ₁] [φ₂] | inj₁ x rewrite Tb x
  = subst (⟦_⊧_⟧pl ξ) (sym (lift-≡pl ((¥ n) => ¥false) φ₁ x)) [φ₁] [φ₂]
lem-pm ¥true (¥ n) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm ¥false (¥ n) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ || φ₂) (¥ n) p ξ [φ₁] [φ₂] | inj₂ y
  = [ (λ x → inj₁ ([ (λ xx → lem-pm φ₁ (¥ n) xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d ((¥ n) => ¥false) ¥false φ₁ ξ xx x)
                  ]′ (ex-mid (((¥ n) => ¥false) isSubDisjunct φ₁)))) ,
      (λ x → inj₂ ([ (λ xx → lem-pm φ₂ (¥ n) xx ξ x [φ₂]) ,
                     (λ xx → lem-subst-d ((¥ n) => ¥false) ¥false φ₂ ξ xx x)
    ]′ (ex-mid (((¥ n) => ¥false) isSubDisjunct φ₂)))) ]′ ([φ₁])
lem-pm (φ₁ && φ₂) (¥ n) () ξ [φ₁] [φ₂] | inj₂ y
lem-pm (φ₁ => φ₂) (¥ n) p ξ [φ₁] [φ₂] | inj₂ y rewrite ¬Tb y = ⊥-elim p
lem-pm (¥ x) (¥ n) () ξ [φ₁] [φ₂] | inj₂ y
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module Boolean.PL-Formula.RemoveConstants where

open import Data.Sum as Sum
open import Data.Product as Prod

open import Boolean.Formula

open import PropIso

map-or : PL-Formula → PL-Formula → PL-Formula
map-or ¥true  b      = ¥true
map-or ¥false b      = b
map-or a      ¥true  = ¥true
map-or a      ¥false = a
map-or a      b      = a || b

map-and : PL-Formula → PL-Formula → PL-Formula
map-and ¥true  b      = b
map-and ¥false b      = ¥false
map-and a      ¥true  = a
map-and a      ¥false = ¥false
map-and a      b      = a && b

map-iff : PL-Formula → PL-Formula → PL-Formula
map-iff ¥true  b      = b
map-iff ¥false b      = ¥true
map-iff a      ¥true  = ¥true
map-iff a      ¥false = ~ a
map-iff a      b      = a => b

const-removal : PL-Formula → PL-Formula
const-removal = elim-pl ¥true ¥false ¥ map-or map-and map-iff

lem-map-or : ∀ ξ φ ψ → ⟦ ξ ⊧ φ || ψ ⟧pl → ⟦ ξ ⊧ map-or φ ψ ⟧pl
lem-map-or ξ ¥true = λ _ _ → tt
lem-map-or ξ ¥false = λ _ → [ (λ ()) , id ]′
lem-map-or ξ (φ || ψ) = λ {¥true → const tt; ¥false → [ id , (λ ()) ]′; (ψ' || ψ'') → id;
                             (ψ' && ψ'') → id ; (ψ' => ψ'') → id ; (¥ x) → id }
lem-map-or ξ (φ && ψ) = λ {¥true → const tt; ¥false → [ id , (λ ()) ]′; (ψ' || ψ'') → id;
                             (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-or ξ (φ => ψ) = λ {¥true → const tt; ¥false → [ id , (λ ()) ]′; (ψ' || ψ'') → id;
                             (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-or ξ (¥ x) = λ {¥true → const tt; ¥false → [ id , (λ ()) ]′; (ψ' || ψ'') → id;
                          (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}

lem-map-or' : ∀ ξ φ ψ → ⟦ ξ ⊧ map-or φ ψ ⟧pl → ⟦ ξ ⊧ φ || ψ ⟧pl
lem-map-or' ξ ¥true = λ _ → inj₁
lem-map-or' ξ ¥false = λ _ → inj₂
lem-map-or' ξ (φ || φ₁) = λ {¥true → inj₂; ¥false → inj₁; (ψ' || ψ'') → id; (ψ' && ψ'') → id;
                               (ψ' => ψ'') → id; (¥ x) → id}
lem-map-or' ξ (φ && φ₁) = λ {¥true → inj₂; ¥false → inj₁; (ψ' || ψ'') → id; (ψ' && ψ'') → id;
                               (ψ' => ψ'') → id; (¥ x) → id}
lem-map-or' ξ (φ => φ₁) = λ {¥true → inj₂; ¥false → inj₁; (ψ' || ψ'') → id; (ψ' && ψ'') → id;
                               (ψ' => ψ'') → id; (¥ x) → id}
lem-map-or' ξ (¥ x) = λ {¥true → inj₂; ¥false → inj₁; (ψ' || ψ'') → id; (ψ' && ψ'') → id;
                           (ψ' => ψ'') → id; (¥ x) → id}

lem-map-and : ∀ ξ φ ψ → ⟦ ξ ⊧ φ && ψ ⟧pl → ⟦ ξ ⊧ map-and φ ψ ⟧pl
lem-map-and ξ ¥true = λ _ → proj₂
lem-map-and ξ ¥false = λ _ → proj₁
lem-map-and ξ (φ || φ₁) = λ {¥true → proj₁; ¥false → proj₂; (ψ' || ψ'') → id;
                               (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-and ξ (φ && φ₁) = λ {¥true → proj₁; ¥false → proj₂; (ψ' || ψ'') → id;
                               (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-and ξ (φ => φ₁) = λ {¥true → proj₁; ¥false → proj₂; (ψ' || ψ'') → id;
                               (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-and ξ (¥ x) = λ {¥true → proj₁; ¥false → proj₂; (ψ' || ψ'') → id;
                           (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}

lem-map-and' : ∀ ξ φ ψ → ⟦ ξ ⊧ map-and φ ψ ⟧pl → ⟦ ξ ⊧ φ && ψ ⟧pl
lem-map-and' ξ ¥true = λ _ x → _ , x
lem-map-and' ξ ¥false = λ _ → λ ()
lem-map-and' ξ (φ || φ₁) = λ {¥true → λ x → x , _; ¥false → λ (); (ψ' || ψ'') → id;
                                (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-and' ξ (φ && φ₁) = λ {¥true → λ x → x , _; ¥false → λ (); (ψ' || ψ'') → id;
                                (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-and' ξ (φ => φ₁) = λ {¥true → λ x → x , _; ¥false → λ (); (ψ' || ψ'') → id;
                                (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-and' ξ (¥ x) = λ {¥true → λ x₁ → x₁ , _; ¥false → λ (); (ψ' || ψ'') → id;
                            (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}

lem-map-iff : ∀ ξ φ ψ → ⟦ ξ ⊧ φ => ψ ⟧pl → ⟦ ξ ⊧ map-iff φ ψ ⟧pl
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lem-map-iff ξ ¥true = λ _ x → x tt
lem-map-iff ξ ¥false = λ _ _ → tt
lem-map-iff ξ (φ || φ₁) = λ {¥true → λ _ → tt; ¥false → id; (ψ' || ψ'') → id;
                               (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-iff ξ (φ && φ₁) = λ {¥true → λ _ → tt; ¥false → id; (ψ' || ψ'') → id;
                               (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-iff ξ (φ => φ₁) = λ {¥true → λ _ → tt; ¥false → id; (ψ' || ψ'') → id;
                               (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-iff ξ (¥ x) = λ {¥true → λ _ → tt; ¥false → id; (ψ' || ψ'') → id;
                           (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}

lem-map-iff' : ∀ ξ φ ψ → ⟦ ξ ⊧ map-iff φ ψ ⟧pl → ⟦ ξ ⊧ φ => ψ ⟧pl
lem-map-iff' ξ ¥true = λ _ x _ → x
lem-map-iff' ξ ¥false = λ _ _ → λ ()
lem-map-iff' ξ (φ || φ₁) = λ {¥true → λ x _ → x; ¥false → id; (ψ' || ψ'') → id;
                                (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-iff' ξ (φ && φ₁) = λ {¥true → λ x _ → x; ¥false → id; (ψ' || ψ'') → id;
                                (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-iff' ξ (φ => φ₁) = λ {¥true → λ x _ → x; ¥false → id; (ψ' || ψ'') → id;
                                (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}
lem-map-iff' ξ (¥ x) = λ {¥true → λ x₁ _ → x₁; ¥false → id; (ψ' || ψ'') → id;
                            (ψ' && ψ'') → id; (ψ' => ψ'') → id; (¥ x) → id}

mutual
  lem-no-const : ∀ ξ φ → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ const-removal φ ⟧pl
  lem-no-const ξ ¥true p = p
  lem-no-const ξ ¥false p = p
  lem-no-const ξ (φ || ψ) p = lem-map-or ξ (const-removal φ) _ (Sum.map (lem-no-const ξ φ)
                                                                        (lem-no-const ξ ψ) p)
  lem-no-const ξ (φ && ψ) p = lem-map-and ξ (const-removal φ) _ (Prod.map (lem-no-const ξ φ)
                                                                          (lem-no-const ξ ψ) p)
  lem-no-const ξ (φ => ψ) p = lem-map-iff ξ (const-removal φ) _ (lem-no-const ξ ψ ∘ p ∘
                                                                         lem-no-const' ξ φ)
  lem-no-const ξ (¥ v) p = p

  lem-no-const' : ∀ ξ φ → ⟦ ξ ⊧ const-removal φ ⟧pl → ⟦ ξ ⊧ φ ⟧pl
  lem-no-const' ξ ¥true p = p
  lem-no-const' ξ ¥false p = p
  lem-no-const' ξ (φ || ψ) p = Sum.map (lem-no-const' ξ φ) (lem-no-const' ξ ψ)
                                       (lem-map-or' ξ (const-removal φ) _ p)
  lem-no-const' ξ (φ && ψ) p = Prod.map (lem-no-const' ξ φ) (lem-no-const' ξ ψ)
                                        (lem-map-and' ξ (const-removal φ) _ p)
  lem-no-const' ξ (φ => ψ) p = lem-no-const' ξ ψ ∘ lem-map-iff' ξ (const-removal φ) _ p ∘
                                    lem-no-const ξ φ
  lem-no-const' ξ (¥ v) p = p
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module Boolean.PL-Formula.Distribute where

open import Boolean.Formula

open import Data.Product as Prod
open import Data.Sum as Sum

open import Function

-- dist-clause-∨ : CLAUSE → CNF → CNF
dist-clause-∨ : PL-Formula → PL-Formula → PL-Formula
dist-clause-∨ cl (φ && ψ) = dist-clause-∨ cl φ && dist-clause-∨ cl ψ
dist-clause-∨ cl φ = cl || φ

-- dist-∨ : CNF → CNF → CNF
dist-∨ : PL-Formula → PL-Formula → PL-Formula
dist-∨ (φ && φ') ψ = dist-∨ φ ψ && dist-∨ φ' ψ
dist-∨ cl ψ = dist-clause-∨ cl ψ

mkdist : PL-Formula → PL-Formula
mkdist (φ || ψ) = dist-∨ (mkdist φ) (mkdist ψ)
mkdist (φ && ψ) = mkdist φ && mkdist ψ
mkdist φ = φ

lem-dist-clause-∨ : ∀ ξ cl φ → ⟦ ξ ⊧ cl || φ ⟧pl → ⟦ ξ ⊧ dist-clause-∨ cl φ ⟧pl
lem-dist-clause-∨ ξ cl ¥true p = p
lem-dist-clause-∨ ξ cl ¥false p = p
lem-dist-clause-∨ ξ cl (y || y') p = p
lem-dist-clause-∨ ξ cl (y && y') p
  = [ (λ x → (lem-dist-clause-∨ ξ cl y (inj₁ x)) , (lem-dist-clause-∨ ξ cl y' (inj₁ x)))
    , (λ x → lem-dist-clause-∨ ξ cl y (inj₂ (proj₁ x))
             , lem-dist-clause-∨ ξ cl y' (inj₂ (proj₂ x))) ]′ p
lem-dist-clause-∨ ξ cl (y => y') p = p
lem-dist-clause-∨ ξ cl (¥ y) p = p

lem-dist-clause-∨' : ∀ ξ cl φ → ⟦ ξ ⊧ dist-clause-∨ cl φ ⟧pl → ⟦ ξ ⊧ cl || φ ⟧pl
lem-dist-clause-∨' ξ cl ¥true p = p
lem-dist-clause-∨' ξ cl ¥false p = p
lem-dist-clause-∨' ξ cl (y || y') p = p
lem-dist-clause-∨' ξ cl (y && y') p
  = uncurry (λ [y] [y'] → [ inj₁ , (λ [y]' → [ inj₁ , (λ [y']' → inj₂ ([y]' , [y']'))
                                             ]′ (lem-dist-clause-∨' ξ cl y' [y']))
                          ]′ (lem-dist-clause-∨' ξ cl y [y])) p
lem-dist-clause-∨' ξ cl (y => y') p = p
lem-dist-clause-∨' ξ cl (¥ y) p = p

lem-dist-∨ : ∀ ξ φ ψ → ⟦ ξ ⊧ φ || ψ ⟧pl → ⟦ ξ ⊧ dist-∨ φ ψ ⟧pl
lem-dist-∨ ξ ¥true = lem-dist-clause-∨ ξ ¥true
lem-dist-∨ ξ ¥false = lem-dist-clause-∨ ξ ¥false
lem-dist-∨ ξ (y || y') = lem-dist-clause-∨ ξ (y || y')
lem-dist-∨ ξ (y && y') =
  λ ψ → [ Prod.map (lem-dist-∨ ξ y ψ ∘ inj₁) (lem-dist-∨ ξ y' ψ ∘ inj₁) ,
          (λ x → (lem-dist-∨ ξ y ψ (inj₂ x)) , (lem-dist-∨ ξ y' ψ (inj₂ x))) ]′
lem-dist-∨ ξ (y => y') = lem-dist-clause-∨ ξ (y => y')
lem-dist-∨ ξ (¥ y) = lem-dist-clause-∨ ξ (¥ y)

lem-dist-∨' : ∀ ξ φ ψ → ⟦ ξ ⊧ dist-∨ φ ψ ⟧pl → ⟦ ξ ⊧ φ || ψ ⟧pl
lem-dist-∨' ξ ¥true = lem-dist-clause-∨' ξ ¥true
lem-dist-∨' ξ ¥false = lem-dist-clause-∨' ξ ¥false
lem-dist-∨' ξ (y || y') = lem-dist-clause-∨' ξ (y || y')
lem-dist-∨' ξ (y && y')
  = λ ψ → uncurry (λ [y]' [y']' → [ (\ [y] → [ (λ [y'] → inj₁ ([y] , [y'])) , inj₂
                                             ]′ (lem-dist-∨' ξ y' ψ [y']')) , inj₂
                                  ]′ (lem-dist-∨' ξ y ψ [y]'))
lem-dist-∨' ξ (y => y') = lem-dist-clause-∨' ξ (y => y')
lem-dist-∨' ξ (¥ y) = lem-dist-clause-∨' ξ (¥ y)

lem-mkdist : ∀ ξ φ → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ mkdist φ ⟧pl
lem-mkdist ξ ¥true p = p
lem-mkdist ξ ¥false p = p
lem-mkdist ξ (y || y') p = lem-dist-∨ ξ (mkdist y) (mkdist y')
                                        (Sum.map (lem-mkdist ξ y) (lem-mkdist ξ y') p)
lem-mkdist ξ (y && y') p = Prod.map (lem-mkdist ξ y) (lem-mkdist ξ y') p
lem-mkdist ξ (y => y') p = p
lem-mkdist ξ (¥ y) p = p
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lem-mkdist' : ∀ ξ φ → ⟦ ξ ⊧ mkdist φ ⟧pl → ⟦ ξ ⊧ φ ⟧pl
lem-mkdist' ξ ¥true p = p
lem-mkdist' ξ ¥false p = p
lem-mkdist' ξ (y || y') p = Sum.map (lem-mkdist' ξ y) (lem-mkdist' ξ y')
                                    (lem-dist-∨' ξ (mkdist y) (mkdist y') p)
lem-mkdist' ξ (y && y') p = Prod.map (lem-mkdist' ξ y) (lem-mkdist' ξ y') p
lem-mkdist' ξ (y => y') p = p
lem-mkdist' ξ (¥ y) p = p
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module Boolean.PL-Formula.Equivalence where

open import Data.Nat
open import Data.Bool
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.List hiding ([_];_++_)

open import Relation.Binary.PropositionalEquality hiding ([_])

open import PropIso hiding (_$_) renaming (_==_ to _=='_)

open import Boolean.Formula

private
  mutual
    data PL-List* : Set where
      [_] : PL-Formula* → PL-List*
      _∷_ : PL-Formula* → PL-List* → PL-List*

    data PL-Formula* : Set where
      $true $false : PL-Formula*
      or* and* : PL-List* → PL-Formula*
      imp* : PL-Formula* → PL-Formula* → PL-Formula*
      $ : ℕ → PL-Formula*

  _++_ : PL-List* → PL-List* → PL-List*
  [ x ] ++ Δ = x ∷ Δ
  (x ∷ Γ) ++ Δ = x ∷ (Γ ++ Δ)

  ⟦_⊧_⟧pl* : (ξ : Env) → PL-Formula* → Set
  ⟦ ξ ⊧ $true ⟧pl* = ⊤
  ⟦ ξ ⊧ $false ⟧pl* = ⊥
  ⟦ ξ ⊧ and* [ x ] ⟧pl* = ⟦ ξ ⊧ x ⟧pl*
  ⟦ ξ ⊧ and* (φ ∷ φs) ⟧pl* = ⟦ ξ ⊧ φ ⟧pl* × ⟦ ξ ⊧ and* φs ⟧pl*
  ⟦ ξ ⊧ or* [ x ] ⟧pl* = ⟦ ξ ⊧ x ⟧pl*
  ⟦ ξ ⊧ or* (φ ∷ φs) ⟧pl* = ⟦ ξ ⊧ φ ⟧pl* ⊎ ⟦ ξ ⊧ or* φs ⟧pl*
  ⟦ ξ ⊧ imp* φ ψ ⟧pl* = ⟦ ξ ⊧ φ ⟧pl* → ⟦ ξ ⊧ ψ ⟧pl*
  ⟦ ξ ⊧ $ v ⟧pl* = T (ξ v)

  flatten-or' : PL-Formula* → PL-Formula* → PL-List*
  flatten-or' (or* φs) (or* ψs) = φs ++ ψs
  flatten-or' (or* φs) ψ = φs ++ [ ψ ]
  flatten-or' φ (or* ψs) = φ ∷ ψs
  flatten-or' φ ψ = φ ∷ [ ψ ]

  flatten-or : PL-Formula* → PL-Formula* → PL-Formula*
  flatten-or a b = or* (flatten-or' a b)

  flatten-and' : PL-Formula* → PL-Formula* → PL-List*
  flatten-and' (and* φs) (and* ψs) = φs ++ ψs
  flatten-and' (and* φs) ψ = φs ++ [ ψ ]
  flatten-and' φ (and* ψs) = φ ∷ ψs
  flatten-and' φ ψ = φ ∷ [ ψ ]

  flatten-and : PL-Formula* → PL-Formula* → PL-Formula*
  flatten-and a b = and* (flatten-and' a b)

flatten : PL-Formula → PL-Formula*
flatten = elim-pl $true $false $ flatten-or flatten-and imp*

private
  mutual
    _==_ : PL-Formula* → PL-Formula* → Bool
    $true     == $true     = true
    $false    == $false    = true
    or* x     == or* y     = x ==[] y
    and* x    == and* y    = x ==[] y
    imp* φ φ₁ == imp* ψ ψ₁ = φ == ψ ∧ φ₁ == ψ₁
    $ x       == $ y       = x ==' y
    x         == y         = false

    _==[]_ : PL-List* → PL-List* → Bool
    [ x ] ==[] [ y ]       = x == y
    (x ∷ xs) ==[] (y ∷ ys) = x == y ∧ xs ==[] ys
    _ ==[] _               = false

  _∈**_ : PL-Formula* → PL-List* → Bool
  φ ∈** [ x ] = φ == x
  φ ∈** (ψ ∷ ψs) = φ == ψ ∨ φ ∈** ψs

  mutual
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    sym-==' : (φ ψ : PL-Formula*) → T (φ == ψ) → T (ψ == φ)
    sym-==' $true       $true       eq = eq
    sym-==' $true       $false      eq = eq
    sym-==' $true       (or* x)     eq = eq
    sym-==' $true       (and* x)    eq = eq
    sym-==' $true       (imp* ψ ψ₁) eq = eq
    sym-==' $true       ($ x)       eq = eq
    sym-==' $false      $true       eq = eq
    sym-==' $false      $false      eq = eq
    sym-==' $false      (or* x)     eq = eq
    sym-==' $false      (and* x)    eq = eq
    sym-==' $false      (imp* ψ ψ₁) eq = eq
    sym-==' $false      ($ x)       eq = eq
    sym-==' (or* x)     $true       eq = eq
    sym-==' (or* x)     $false      eq = eq
    sym-==' (or* x)     (or* x₁)    eq = sym-==[] x x₁ eq
    sym-==' (or* x)     (and* x₁)   eq = eq
    sym-==' (or* x)     (imp* ψ ψ₁) eq = eq
    sym-==' (or* x)     ($ x₁)      eq = eq
    sym-==' (and* x)    $true       eq = eq
    sym-==' (and* x)    $false      eq = eq
    sym-==' (and* x)    (or* x₁)    eq = eq
    sym-==' (and* x)    (and* x₁)   eq = sym-==[] x x₁ eq
    sym-==' (and* x)    (imp* ψ ψ₁) eq = eq
    sym-==' (and* x)    ($ x₁)      eq = eq
    sym-==' (imp* φ φ₁) $true       eq = eq
    sym-==' (imp* φ φ₁) $false      eq = eq
    sym-==' (imp* φ φ₁) (or* x)     eq = eq
    sym-==' (imp* φ φ₁) (and* x)    eq = eq
    sym-==' (imp* φ φ₁) (imp* ψ ψ₁) eq = f∧g (sym-==' φ ψ) (sym-==' φ₁ ψ₁) eq
    sym-==' (imp* φ φ₁) ($ x)       eq = eq
    sym-==' ($ x)       $true       eq = eq
    sym-==' ($ x)       $false      eq = eq
    sym-==' ($ x)       (or* x₁)    eq = eq
    sym-==' ($ x)       (and* x₁)   eq = eq
    sym-==' ($ x)       (imp* ψ ψ₁) eq = eq
    sym-==' ($ x)       ($ x₁)      eq = sym-== x x₁ eq

    sym-==[] : (Γ Δ : PL-List*) → T (Γ ==[] Δ) → T (Δ ==[] Γ)
    sym-==[] [ x ]   [ y ]    p = sym-==' x y p
    sym-==[] [ x ]   (x' ∷ Δ) p = p
    sym-==[] (x ∷ Γ) [ y ]    p = p
    sym-==[] (γ ∷ Γ) (δ ∷ Δ)  p = f∧g (sym-==' γ δ) (sym-==[] Γ Δ) p

  mutual
     eq : PL-Formula* → PL-Formula* → Bool
     eq (and* y)    (or* x)     = alleq* x (and* y) ∨ alleq* y (or* x)
     eq (or* x)     (and* y)    = alleq* y (or* x) ∨ alleq* x (and* y)
     eq (or* x)     (or* y)     = (y ⊆pl* x ∧ x ⊆pl* y) ∨ alleq* x (or* y) ∨ alleq* y (or* x)
     eq (or* x)     ψ           = alleq* x ψ
     eq (and* x)    (and* y)    = (y ⊆pl* x ∧ x ⊆pl* y) ∨ alleq* x (and* y) ∨ alleq* y (and* x)
     eq (and* x)    ψ           = alleq* x ψ
     eq φ           (or* x)     = alleq* x φ
     eq φ           (and* x)    = alleq* x φ
     eq (imp* φ φ₁) (imp* ψ ψ₁) = eq φ ψ ∧ eq φ₁ ψ₁
     eq φ           ψ           = φ == ψ

     alleq* : PL-List* → PL-Formula* → Bool
     alleq* [ x ]   φ = eq x φ
     alleq* (x ∷ l) φ = eq x φ ∧ alleq* l φ

     _⊆pl*_ : PL-List* → PL-List* → Bool
     [ x ]    ⊆pl* y  = x ∈* y
     (x ∷ xs) ⊆pl* ys = x ∈* ys ∧ xs ⊆pl* ys

     _∈*_ : PL-Formula* → PL-List* → Bool
     φ ∈* [ x ]    = eq φ x
     φ ∈* (ψ ∷ ψs) = eq φ ψ ∨ φ ∈* ψs

  sym-eq : (φ ψ : PL-Formula*) → T (eq φ ψ) → T (eq ψ φ)
  sym-eq $true $true eq = eq
  sym-eq $true $false eq = eq
  sym-eq $true (or* x) eq = eq
  sym-eq $true (and* x) eq = eq
  sym-eq $true (imp* ψ ψ₁) eq = eq
  sym-eq $true ($ x) eq = eq
  sym-eq $false $true eq = eq
  sym-eq $false $false eq = eq
  sym-eq $false (or* x) eq = eq
  sym-eq $false (and* x) eq = eq
  sym-eq $false (imp* ψ ψ₁) eq = eq
  sym-eq $false ($ x) eq = eq
  sym-eq (or* x) $true eq = eq
  sym-eq (or* x) $false eq = eq
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  sym-eq (or* x) (or* x₁) eq = f∨g (∧-swap _ (x ⊆pl* x₁))
                                   (∨-swap (alleq* x (or* x₁)) _) eq
  sym-eq (or* x) (and* x₁) eq = ∨-swap (alleq* x₁ (or* x)) _ eq
  sym-eq (or* x) (imp* ψ ψ₁) eq = eq
  sym-eq (or* x) ($ x₁) eq = eq
  sym-eq (and* x) $true eq = eq
  sym-eq (and* x) $false eq = eq
  sym-eq (and* x) (or* x₁) eq = ∨-swap (alleq* x₁ (and* x)) _ eq
  sym-eq (and* x) (and* x₁) eq = f∨g (∧-swap _ (x ⊆pl* x₁))
                                     (∨-swap (alleq* x (and* x₁)) _) eq
  sym-eq (and* x) (imp* ψ ψ₁) eq = eq
  sym-eq (and* x) ($ x₁) eq = eq
  sym-eq (imp* φ φ₁) $true eq = eq
  sym-eq (imp* φ φ₁) $false eq = eq
  sym-eq (imp* φ φ₁) (or* x) eq = eq
  sym-eq (imp* φ φ₁) (and* x) eq = eq
  sym-eq (imp* φ φ₁) (imp* ψ ψ₁) eq' = f∧g (sym-eq φ ψ) (sym-eq φ₁ ψ₁) eq'
  sym-eq (imp* φ φ₁) ($ x) eq = eq
  sym-eq ($ x) $true eq = eq
  sym-eq ($ x) $false eq = eq
  sym-eq ($ x) (or* x₁) eq = eq
  sym-eq ($ x) (and* x₁) eq = eq
  sym-eq ($ x) (imp* ψ ψ₁) eq = eq
  sym-eq ($ x) ($ x₁) eq = sym-== x x₁ eq

  ord-⊆pl* : ∀ φ Γ Δ → T (Γ ⊆pl* Δ) → T (Γ ⊆pl* (φ ∷ Δ))
  ord-⊆pl* φ [ γ ] Δ p = ∨-intror (eq γ φ) (γ ∈* Δ) p
  ord-⊆pl* φ (γ ∷ Γ) Δ p = f∧g (∨-intror (eq γ φ) (γ ∈* Δ)) (ord-⊆pl* φ Γ Δ) p

  mutual
    id-⊆pl* : ∀ Γ → T (Γ ⊆pl* Γ)
    id-⊆pl* [ γ ] = id-eq γ
    id-⊆pl* (γ ∷ Γ) = ∧-intro _ _ (∨-introl _ _ (id-eq γ)) (ord-⊆pl* γ Γ Γ (id-⊆pl* Γ))

    id-eq : ∀ φ → T (eq φ φ)
    id-eq $true = tt
    id-eq $false = tt
    id-eq (or* y) = ∨-introl _ _ (∧-intro _ _ (id-⊆pl* y) (id-⊆pl* y))
    id-eq (and* y) = ∨-introl _ _ (∧-intro _ _ (id-⊆pl* y) (id-⊆pl* y))
    id-eq (imp* y y') = ∧-intro (eq y y) _ (id-eq y) (id-eq y')
    id-eq ($ y) = id-== y

    subst-eq : ∀ ξ φ ψ → T (eq φ ψ) → ⟦ ξ ⊧ φ ⟧pl* → ⟦ ξ ⊧ ψ ⟧pl*
    subst-eq ξ $true $true eqp p = p
    subst-eq ξ $true $false eqp p = ⊥-elim eqp
    subst-eq ξ $true (or* x) eqp p = subst-alleq-or ξ x $true tt eqp
    subst-eq ξ $true (and* x) eqp p = subst-alleq-and ξ x $true tt eqp
    subst-eq ξ $true (imp* ψ ψ₁) eqp p = ⊥-elim eqp
    subst-eq ξ $true ($ x) eqp p = ⊥-elim eqp
    subst-eq ξ $false ψ eqp p = ⊥-elim p
    subst-eq ξ (or* x) $true eqp p = subst-alleq-or' ξ x $true p eqp
    subst-eq ξ (or* x) $false eqp p = subst-alleq-or' ξ x $false p eqp
    subst-eq ξ (or* x) (or* x₁) eqp p =
      ∨-elim (λ k → subst-eq-or ξ x x₁ p (∧-elimr (x₁ ⊆pl* x) k))
                                (∨-elim (subst-alleq-or' ξ x (or* x₁) p)
                                        (subst-alleq-or ξ x₁ (or* x) p)) eqp
    subst-eq ξ (or* x) (and* x₁) eqp p = ∨-elim (subst-alleq-and ξ x₁ (or* x) p)
                                                (subst-alleq-or' ξ x (and* x₁) p) eqp
    subst-eq ξ (or* x) (imp* ψ ψ₁) eqp p = subst-alleq-or' ξ x (imp* ψ ψ₁) p eqp
    subst-eq ξ (or* x) ($ x₁) eqp p = subst-alleq-or' ξ x ($ x₁) p eqp
    subst-eq ξ (and* x) $true eqp p = subst-alleq-and' ξ x $true p eqp
    subst-eq ξ (and* x) $false eqp p = subst-alleq-and' ξ x $false p eqp
    subst-eq ξ (and* x) (or* x₁) eqp p = ∨-elim (subst-alleq-or ξ x₁ (and* x) p)
                                                (subst-alleq-and' ξ x (or* x₁) p) eqp
    subst-eq ξ (and* x) (and* x₁) eqp p =
      ∨-elim (λ k → subst-eq-and ξ x x₁ p (∧-eliml k))
                                 (∨-elim (subst-alleq-and' ξ x (and* x₁) p)
                                         (subst-alleq-and ξ x₁ (and* x) p)) eqp
    subst-eq ξ (and* x) (imp* ψ ψ₁) eqp p = subst-alleq-and' ξ x (imp* ψ ψ₁) p eqp
    subst-eq ξ (and* x) ($ x₁) eqp p = subst-alleq-and' ξ x ($ x₁) p eqp
    subst-eq ξ (imp* φ φ₁) $true eqp p = ⊥-elim eqp
    subst-eq ξ (imp* φ φ₁) $false eqp p = ⊥-elim eqp
    subst-eq ξ (imp* φ φ₁) (or* x) eqp p = subst-alleq-or ξ x (imp* φ φ₁) p eqp
    subst-eq ξ (imp* φ φ₁) (and* x) eqp p = subst-alleq-and ξ x (imp* φ φ₁) p eqp
    subst-eq ξ (imp* φ φ₁) (imp* ψ ψ₁) eqp p =
      subst-eq ξ φ₁ ψ₁ (∧-elimr (eq φ ψ) eqp) ∘ p ∘ subst-eq ξ ψ φ (sym-eq φ ψ (∧-eliml eqp))
    subst-eq ξ (imp* φ φ₁) ($ x) eqp p = ⊥-elim eqp
    subst-eq ξ ($ x) $true eqp p = ⊥-elim eqp
    subst-eq ξ ($ x) $false eqp p = ⊥-elim eqp
    subst-eq ξ ($ x) (or* x₁) eqp p = subst-alleq-or ξ x₁ ($ x) p eqp
    subst-eq ξ ($ x) (and* x₁) eqp p = subst-alleq-and ξ x₁ ($ x) p eqp
    subst-eq ξ ($ x) (imp* ψ ψ₁) eqp p = ⊥-elim eqp
    subst-eq ξ ($ x) ($ x₁) eqp p rewrite lift-== x x₁ eqp = p
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    subst-alleq-and : ∀ ξ Γ φ → ⟦ ξ ⊧ φ ⟧pl* → T (alleq* Γ φ) → ⟦ ξ ⊧ and* Γ ⟧pl*
    subst-alleq-and ξ [ x ] φ [φ] aeq = subst-eq ξ φ x (sym-eq x φ aeq) [φ]
    subst-alleq-and ξ (x ∷ Γ) φ [φ] aeq = ∧-elim (λ a b → (subst-eq ξ φ x (sym-eq x φ a) [φ])
                                                          , (subst-alleq-and ξ Γ φ [φ] b)) aeq

    subst-alleq-or : ∀ ξ Γ φ → ⟦ ξ ⊧ φ ⟧pl* → T (alleq* Γ φ) → ⟦ ξ ⊧ or* Γ ⟧pl*
    subst-alleq-or ξ [ x ] φ [φ] aeq = subst-eq ξ φ x (sym-eq x φ aeq) [φ]
    subst-alleq-or ξ (x ∷ Γ) φ [φ] aeq = inj₁ (subst-eq ξ φ x (sym-eq x φ (∧-eliml aeq)) [φ])

    subst-alleq-or' : ∀ ξ Γ φ → ⟦ ξ ⊧ or* Γ ⟧pl* → T (alleq* Γ φ) → ⟦ ξ ⊧ φ ⟧pl*
    subst-alleq-or' ξ [ x ] φ [φ] aeq = subst-eq ξ x φ aeq [φ]
    subst-alleq-or' ξ (x ∷ Γ) φ (inj₁ x₁) aeq = subst-eq ξ x φ (∧-eliml aeq) x₁
    subst-alleq-or' ξ (x ∷ Γ) φ (inj₂ y) aeq = subst-alleq-or' ξ Γ φ y (∧-elimr (eq x φ) aeq)

    subst-alleq-and' : ∀ ξ Γ φ → ⟦ ξ ⊧ and* Γ ⟧pl* → T (alleq* Γ φ) → ⟦ ξ ⊧ φ ⟧pl*
    subst-alleq-and' ξ [ x ] φ [φ] aeq = subst-eq ξ x φ aeq [φ]
    subst-alleq-and' ξ (x ∷ Γ) φ [φ] aeq = subst-eq ξ x φ (∧-eliml aeq) (proj₁ [φ])

    subst-∈-and : ∀ ξ Γ φ → T (φ ∈* Γ) → ⟦ ξ ⊧ and* Γ ⟧pl* → ⟦ ξ ⊧ φ ⟧pl*
    subst-∈-and ξ [ x ] φ p q = subst-eq ξ x φ (sym-eq φ x p) q
    subst-∈-and ξ (x ∷ Γ) φ p q = ∨-elim (λ k → subst-eq ξ x φ (sym-eq φ x k) (proj₁ q))
                                         (λ k → subst-∈-and ξ Γ φ k (proj₂ q)) p

    subst-eq-and : ∀ ξ Γ Δ → ⟦ ξ ⊧ and* Γ ⟧pl* → T (Δ ⊆pl* Γ) → ⟦ ξ ⊧ and* Δ ⟧pl*
    subst-eq-and ξ Γ [ x ] p f = subst-∈-and ξ Γ x f p
    subst-eq-and ξ Γ (x ∷ Δ) p f = (subst-∈-and ξ Γ x (∧-eliml f) p)
                                   , (subst-eq-and ξ Γ Δ p (∧-elimr (x ∈* Γ) f))

    subst-∈-or : ∀ ξ Γ φ → T (φ ∈* Γ) → ⟦ ξ ⊧ φ ⟧pl* → ⟦ ξ ⊧ or* Γ ⟧pl*
    subst-∈-or ξ [ x ] φ p q = subst-eq ξ φ x p q
    subst-∈-or ξ (x ∷ Γ) φ p q = ∨-elim (λ k → inj₁ (subst-eq ξ φ x k q))
                                        (λ k → inj₂ (subst-∈-or ξ Γ φ k q)) p

    subst-eq-or : ∀ ξ Γ Δ → ⟦ ξ ⊧ or* Γ ⟧pl* → T (Γ ⊆pl* Δ) → ⟦ ξ ⊧ or* Δ ⟧pl*
    subst-eq-or ξ [ x ] Δ p q = subst-∈-or ξ Δ x q p
    subst-eq-or ξ (x ∷ Γ) Δ (inj₁ x₁) q = subst-∈-or ξ Δ x (∧-eliml q) x₁
    subst-eq-or ξ (x ∷ Γ) Δ (inj₂ y) q = subst-eq-or ξ Γ Δ y (∧-elimr (x ∈* Δ) q)

  lem-or-elim : ∀ ξ φ ψ
              → ⟦ ξ ⊧ or* (flatten-or' φ ψ) ⟧pl* → ⟦ ξ ⊧ φ ⟧pl* ⊎ ⟦ ξ ⊧ ψ ⟧pl*
  lem-or-elim ξ $true $true p = p
  lem-or-elim ξ $true $false p = p
  lem-or-elim ξ $true (or* x) p = p
  lem-or-elim ξ $true (and* x) p = p
  lem-or-elim ξ $true (imp* ψ ψ₁) p = p
  lem-or-elim ξ $true ($ x) p = p
  lem-or-elim ξ $false $true p = p
  lem-or-elim ξ $false $false p = p
  lem-or-elim ξ $false (or* x) p = p
  lem-or-elim ξ $false (and* x) p = p
  lem-or-elim ξ $false (imp* ψ ψ₁) p = p
  lem-or-elim ξ $false ($ x) p = p
  lem-or-elim ξ (or* [ x ]) $true p = p
  lem-or-elim ξ (or* [ x ]) $false p = p
  lem-or-elim ξ (or* [ x ]) (or* x₁) p = p
  lem-or-elim ξ (or* [ x ]) (and* x₁) p = p
  lem-or-elim ξ (or* [ x ]) (imp* ψ ψ₁) p = p
  lem-or-elim ξ (or* [ x ]) ($ x₁) p = p
  lem-or-elim ξ (or* (x ∷ xs)) $true p =
    [ inj₁ ∘ inj₁ , (λ x' → Sum.map inj₂ id (lem-or-elim ξ (or* xs) $true x')) ]′ p
  lem-or-elim ξ (or* (x ∷ xs)) $false p =
    [ inj₁ ∘ inj₁ , (λ x' → Sum.map inj₂ id (lem-or-elim ξ (or* xs) $false x')) ]′ p
  lem-or-elim ξ (or* (x ∷ xs)) (or* x₁) p =
    [ inj₁ ∘ inj₁ , (λ x' → Sum.map inj₂ id (lem-or-elim ξ (or* xs) (or* x₁) x')) ]′ p
  lem-or-elim ξ (or* (x ∷ xs)) (and* x₁) p =
    [ inj₁ ∘ inj₁ , (λ x' → Sum.map inj₂ id (lem-or-elim ξ (or* xs) (and* x₁) x')) ]′ p
  lem-or-elim ξ (or* (x ∷ xs)) (imp* ψ ψ₁) p =
    [ inj₁ ∘ inj₁ , (λ x' → Sum.map inj₂ id (lem-or-elim ξ (or* xs) (imp* ψ ψ₁) x')) ]′ p
  lem-or-elim ξ (or* (x ∷ xs)) ($ x₁) p =
    [ inj₁ ∘ inj₁ , (λ x' → Sum.map inj₂ id (lem-or-elim ξ (or* xs) ($ x₁) x')) ]′ p
  lem-or-elim ξ (and* x) $true p = p
  lem-or-elim ξ (and* x) $false p = p
  lem-or-elim ξ (and* x) (or* x₁) p = p
  lem-or-elim ξ (and* x) (and* x₁) p = p
  lem-or-elim ξ (and* x) (imp* ψ ψ₁) p = p
  lem-or-elim ξ (and* x) ($ x₁) p = p
  lem-or-elim ξ (imp* φ φ₁) $true p = p
  lem-or-elim ξ (imp* φ φ₁) $false p = p
  lem-or-elim ξ (imp* φ φ₁) (or* x) p = p
  lem-or-elim ξ (imp* φ φ₁) (and* x) p = p
  lem-or-elim ξ (imp* φ φ₁) (imp* ψ ψ₁) p = p
  lem-or-elim ξ (imp* φ φ₁) ($ x) p = p
  lem-or-elim ξ ($ x) $true p = p
  lem-or-elim ξ ($ x) $false p = p
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  lem-or-elim ξ ($ x) (or* x₁) p = p
  lem-or-elim ξ ($ x) (and* x₁) p = p
  lem-or-elim ξ ($ x) (imp* ψ ψ₁) p = p
  lem-or-elim ξ ($ x) ($ x₁) p = p

  lem-or-elim' : ∀ ξ φ ψ
               → ⟦ ξ ⊧ φ ⟧pl* ⊎ ⟦ ξ ⊧ ψ ⟧pl* → ⟦ ξ ⊧ or* (flatten-or' φ ψ) ⟧pl*
  lem-or-elim' ξ $true $true p = p
  lem-or-elim' ξ $true $false p = p
  lem-or-elim' ξ $true (or* x) p = p
  lem-or-elim' ξ $true (and* x) p = p
  lem-or-elim' ξ $true (imp* ψ ψ₁) p = p
  lem-or-elim' ξ $true ($ x) p = p
  lem-or-elim' ξ $false $true p = p
  lem-or-elim' ξ $false $false p = p
  lem-or-elim' ξ $false (or* x) p = p
  lem-or-elim' ξ $false (and* x) p = p
  lem-or-elim' ξ $false (imp* ψ ψ₁) p = p
  lem-or-elim' ξ $false ($ x) p = p
  lem-or-elim' ξ (or* [ x ]) $true p = p
  lem-or-elim' ξ (or* [ x ]) $false p = p
  lem-or-elim' ξ (or* [ x ]) (or* x₁) p = p
  lem-or-elim' ξ (or* [ x ]) (and* x₁) p = p
  lem-or-elim' ξ (or* [ x ]) (imp* ψ ψ₁) p = p
  lem-or-elim' ξ (or* [ x ]) ($ x₁) p = p
  lem-or-elim' ξ (or* (x ∷ x₁)) $true p = Sum.map id (lem-or-elim' ξ (or* x₁) $true) (lem-⊎ p)
  lem-or-elim' ξ (or* (x ∷ x₁)) $false p = Sum.map id (lem-or-elim' ξ (or* x₁) $false) (lem-⊎ p)
  lem-or-elim' ξ (or* (x ∷ x₁)) (or* x₂) p = Sum.map id (lem-or-elim' ξ (or* x₁) (or* x₂))
                                                                      (lem-⊎ p)
  lem-or-elim' ξ (or* (x ∷ x₁)) (and* x₂) p = Sum.map id (lem-or-elim' ξ (or* x₁) (and* x₂))
                                                                       (lem-⊎ p)
  lem-or-elim' ξ (or* (x ∷ x₁)) (imp* ψ ψ₁) p = Sum.map id (lem-or-elim' ξ (or* x₁) (imp* ψ ψ₁))
                                                                         (lem-⊎ p)
  lem-or-elim' ξ (or* (x ∷ x₁)) ($ x₂) p = Sum.map id (lem-or-elim' ξ (or* x₁) ($ x₂)) (lem-⊎ p)
  lem-or-elim' ξ (and* x) $true p = p
  lem-or-elim' ξ (and* x) $false p = p
  lem-or-elim' ξ (and* x) (or* x₁) p = p
  lem-or-elim' ξ (and* x) (and* x₁) p = p
  lem-or-elim' ξ (and* x) (imp* ψ ψ₁) p = p
  lem-or-elim' ξ (and* x) ($ x₁) p = p
  lem-or-elim' ξ (imp* φ φ₁) $true p = p
  lem-or-elim' ξ (imp* φ φ₁) $false p = p
  lem-or-elim' ξ (imp* φ φ₁) (or* x) p = p
  lem-or-elim' ξ (imp* φ φ₁) (and* x) p = p
  lem-or-elim' ξ (imp* φ φ₁) (imp* ψ ψ₁) p = p
  lem-or-elim' ξ (imp* φ φ₁) ($ x) p = p
  lem-or-elim' ξ ($ x) $true p = p
  lem-or-elim' ξ ($ x) $false p = p
  lem-or-elim' ξ ($ x) (or* x₁) p = p
  lem-or-elim' ξ ($ x) (and* x₁) p = p
  lem-or-elim' ξ ($ x) (imp* ψ ψ₁) p = p
  lem-or-elim' ξ ($ x) ($ x₁) p = p

  lem-and-elim : ∀ ξ φ ψ
               → ⟦ ξ ⊧ and* (flatten-and' φ ψ) ⟧pl* → ⟦ ξ ⊧ φ ⟧pl* × ⟦ ξ ⊧ ψ ⟧pl*
  lem-and-elim ξ $true $true p = p
  lem-and-elim ξ $true $false p = p
  lem-and-elim ξ $true (or* x) p = p
  lem-and-elim ξ $true (and* x) p = p
  lem-and-elim ξ $true (imp* ψ ψ₁) p = p
  lem-and-elim ξ $true ($ x) p = p
  lem-and-elim ξ $false $true p = p
  lem-and-elim ξ $false $false p = p
  lem-and-elim ξ $false (or* x) p = p
  lem-and-elim ξ $false (and* x) p = p
  lem-and-elim ξ $false (imp* ψ ψ₁) p = p
  lem-and-elim ξ $false ($ x) p = p
  lem-and-elim ξ (or* x) $true p = p
  lem-and-elim ξ (or* x) $false p = p
  lem-and-elim ξ (or* x) (or* x₁) p = p
  lem-and-elim ξ (or* x) (and* x₁) p = p
  lem-and-elim ξ (or* x) (imp* ψ ψ₁) p = p
  lem-and-elim ξ (or* x) ($ x₁) p = p
  lem-and-elim ξ (and* [ x ]) $true p = p
  lem-and-elim ξ (and* [ x ]) $false p = p
  lem-and-elim ξ (and* [ x ]) (or* x₁) p = p
  lem-and-elim ξ (and* [ x ]) (and* x₁) p = p
  lem-and-elim ξ (and* [ x ]) (imp* ψ ψ₁) p = p
  lem-and-elim ξ (and* [ x ]) ($ x₁) p = p
  lem-and-elim ξ (and* (x ∷ xs)) $true p =
    Prod.map (_,_ (proj₁ p)) id (lem-and-elim ξ (and* xs) $true (proj₂ p))
  lem-and-elim ξ (and* (x ∷ xs)) $false p =
    Prod.map (_,_ (proj₁ p)) id (lem-and-elim ξ (and* xs) $false (proj₂ p))
  lem-and-elim ξ (and* (x ∷ xs)) (or* x₁) p =
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    Prod.map (_,_ (proj₁ p)) id (lem-and-elim ξ (and* xs) (or* x₁) (proj₂ p))
  lem-and-elim ξ (and* (x ∷ xs)) (and* x₁) p =
    Prod.map (_,_ (proj₁ p)) id (lem-and-elim ξ (and* xs) (and* x₁) (proj₂ p))
  lem-and-elim ξ (and* (x ∷ xs)) (imp* ψ ψ₁) p =
    Prod.map (_,_ (proj₁ p)) id (lem-and-elim ξ (and* xs) (imp* ψ ψ₁) (proj₂ p))
  lem-and-elim ξ (and* (x ∷ xs)) ($ x₁) p =
    Prod.map (_,_ (proj₁ p)) id (lem-and-elim ξ (and* xs) ($ x₁) (proj₂ p))
  lem-and-elim ξ (imp* φ φ₁) $true p = p
  lem-and-elim ξ (imp* φ φ₁) $false p = p
  lem-and-elim ξ (imp* φ φ₁) (or* x) p = p
  lem-and-elim ξ (imp* φ φ₁) (and* x) p = p
  lem-and-elim ξ (imp* φ φ₁) (imp* ψ ψ₁) p = p
  lem-and-elim ξ (imp* φ φ₁) ($ x) p = p
  lem-and-elim ξ ($ x) $true p = p
  lem-and-elim ξ ($ x) $false p = p
  lem-and-elim ξ ($ x) (or* x₁) p = p
  lem-and-elim ξ ($ x) (and* x₁) p = p
  lem-and-elim ξ ($ x) (imp* ψ ψ₁) p = p
  lem-and-elim ξ ($ x) ($ x₁) p = p

  lem-and-elim' : ∀ ξ φ ψ
                → ⟦ ξ ⊧ φ ⟧pl* × ⟦ ξ ⊧ ψ ⟧pl* → ⟦ ξ ⊧ and* (flatten-and' φ ψ) ⟧pl*
  lem-and-elim' ξ $true $true p = p
  lem-and-elim' ξ $true $false p = p
  lem-and-elim' ξ $true (or* x) p = p
  lem-and-elim' ξ $true (and* x) p = p
  lem-and-elim' ξ $true (imp* ψ ψ₁) p = p
  lem-and-elim' ξ $true ($ x) p = p
  lem-and-elim' ξ $false $true p = p
  lem-and-elim' ξ $false $false p = p
  lem-and-elim' ξ $false (or* x) p = p
  lem-and-elim' ξ $false (and* x) p = p
  lem-and-elim' ξ $false (imp* ψ ψ₁) p = p
  lem-and-elim' ξ $false ($ x) p = p
  lem-and-elim' ξ (or* x) $true p = p
  lem-and-elim' ξ (or* x) $false p = p
  lem-and-elim' ξ (or* x) (or* x₁) p = p
  lem-and-elim' ξ (or* x) (and* x₁) p = p
  lem-and-elim' ξ (or* x) (imp* ψ ψ₁) p = p
  lem-and-elim' ξ (or* x) ($ x₁) p = p
  lem-and-elim' ξ (and* [ x ]) $true p = p
  lem-and-elim' ξ (and* [ x ]) $false p = p
  lem-and-elim' ξ (and* [ x ]) (or* x₁) p = p
  lem-and-elim' ξ (and* [ x ]) (and* x₁) p = p
  lem-and-elim' ξ (and* [ x ]) (imp* ψ ψ₁) p = p
  lem-and-elim' ξ (and* [ x ]) ($ x₁) p = p
  lem-and-elim' ξ (and* (x ∷ x₁)) $true p =
    Prod.map id (λ k → lem-and-elim' ξ (and* x₁) $true (k , proj₂ p)) (proj₁ p)
  lem-and-elim' ξ (and* (x ∷ x₁)) $false p =
    Prod.map id (λ k → lem-and-elim' ξ (and* x₁) $false (k , proj₂ p)) (proj₁ p)
  lem-and-elim' ξ (and* (x ∷ x₁)) (or* x₂) p =
    Prod.map id (λ k → lem-and-elim' ξ (and* x₁) (or* x₂) (k , proj₂ p)) (proj₁ p)
  lem-and-elim' ξ (and* (x ∷ x₁)) (and* x₂) p =
    Prod.map id (λ k → lem-and-elim' ξ (and* x₁) (and* x₂) (k , proj₂ p)) (proj₁ p)
  lem-and-elim' ξ (and* (x ∷ x₁)) (imp* ψ ψ₁) p =
    Prod.map id (λ k → lem-and-elim' ξ (and* x₁) (imp* ψ ψ₁) (k , proj₂ p)) (proj₁ p)
  lem-and-elim' ξ (and* (x ∷ x₁)) ($ x₂) p =
    Prod.map id (λ k → lem-and-elim' ξ (and* x₁) ($ x₂) (k , proj₂ p)) (proj₁ p)
  lem-and-elim' ξ (imp* φ φ₁) $true p = p
  lem-and-elim' ξ (imp* φ φ₁) $false p = p
  lem-and-elim' ξ (imp* φ φ₁) (or* x) p = p
  lem-and-elim' ξ (imp* φ φ₁) (and* x) p = p
  lem-and-elim' ξ (imp* φ φ₁) (imp* ψ ψ₁) p = p
  lem-and-elim' ξ (imp* φ φ₁) ($ x) p = p
  lem-and-elim' ξ ($ x) $true p = p
  lem-and-elim' ξ ($ x) $false p = p
  lem-and-elim' ξ ($ x) (or* x₁) p = p
  lem-and-elim' ξ ($ x) (and* x₁) p = p
  lem-and-elim' ξ ($ x) (imp* ψ ψ₁) p = p
  lem-and-elim' ξ ($ x) ($ x₁) p = p

  mutual
    lem-flatten : ∀ ξ φ → ⟦ ξ ⊧ flatten φ ⟧pl* → ⟦ ξ ⊧ φ ⟧pl
    lem-flatten ξ ¥true p = tt
    lem-flatten ξ ¥false p = p
    lem-flatten ξ (y || y') p = Sum.map (lem-flatten ξ y) (lem-flatten ξ y')
                                        (lem-or-elim ξ (flatten y) (flatten y') p)
    lem-flatten ξ (y && y') p = Prod.map (lem-flatten ξ y) (lem-flatten ξ y')
                                         (lem-and-elim ξ (flatten y) (flatten y') p)
    lem-flatten ξ (y => y') p = \ x → lem-flatten ξ y' (p (lem-flatten' ξ y x))
    lem-flatten ξ (¥ y) p = p

    lem-flatten' : ∀ ξ φ → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ flatten φ ⟧pl*
    lem-flatten' ξ ¥true p = tt
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    lem-flatten' ξ ¥false p = p
    lem-flatten' ξ (y || y') p = lem-or-elim' ξ (flatten y) (flatten y')
                                              (Sum.map (lem-flatten' ξ y)
                                                       (lem-flatten' ξ y') p)
    lem-flatten' ξ (y && y') p = lem-and-elim' ξ (flatten y) (flatten y')
                                               (Prod.map (lem-flatten' ξ y)
                                                         (lem-flatten' ξ y') p)
    lem-flatten' ξ (y => y') p = λ x → lem-flatten' ξ y' (p (lem-flatten ξ y x))
    lem-flatten' ξ (¥ y) p = p

_==pl_ : (φ ψ : PL-Formula) → Bool
φ ==pl ψ = eq (flatten φ) (flatten ψ)

private
  lift-flatten : ∀ φ ψ → T (φ ==pl ψ) → ∀ ξ → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ ψ ⟧pl
  lift-flatten φ ψ φ=ψ ξ [φ] = lem-flatten ξ ψ (subst-eq ξ (flatten φ) (flatten ψ)
                                                         φ=ψ (lem-flatten' ξ φ [φ]))

lift-==pl : ∀ φ ψ → T (φ ==pl ψ)
          → ∀ ξ → ((⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ ψ ⟧pl) × (⟦ ξ ⊧ ψ ⟧pl → ⟦ ξ ⊧ φ ⟧pl))
lift-==pl φ ψ φ=ψ ξ = (lift-flatten φ ψ φ=ψ ξ)
                    , (lift-flatten ψ φ (sym-eq (flatten φ) (flatten ψ) φ=ψ) ξ)

lift-==pl→ : ∀ φ ψ → T (φ ==pl ψ) → ∀ ξ → ⟦ ξ ⊧ φ ⟧pl → ⟦ ξ ⊧ ψ ⟧pl
lift-==pl→ φ ψ p ξ = proj₁ (lift-==pl φ ψ p ξ)

lift-==pl← : ∀ φ ψ → T (φ ==pl ψ) → ∀ ξ → ⟦ ξ ⊧ ψ ⟧pl → ⟦ ξ ⊧ φ ⟧pl
lift-==pl← φ ψ p ξ = proj₂ (lift-==pl φ ψ p ξ)
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module Boolean.PL-Formula.DropEquivalence where

open import Boolean.Formula
open import Boolean.PL-Formula.Equivalence

open import Data.Bool
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Nat

open import PropIso

open import Relation.Binary.PropositionalEquality

mutual
  lem-extend-env : ∀ ξ n φ b → T (not ((¥ n) isSubFormula φ))
                 → ⟦ ξ ⊧ φ ⟧pl → ⟦ envupdate ξ n b ⊧ φ ⟧pl
  lem-extend-env ξ n ¥true b n∉φ [φ] = [φ]
  lem-extend-env ξ n ¥false b n∉φ [φ] = [φ]
  lem-extend-env ξ n (y || y') b n∉φ [φ]
    = let π : T _ × T _
          π = lem-bool-∧-s (not (¥ n isSubFormula y)) _ (demorg1 (¥ n isSubFormula y) _ n∉φ)
      in Sum.map (lem-extend-env ξ n y b (proj₁ π)) (lem-extend-env ξ n y' b (proj₂ π)) [φ]
  lem-extend-env ξ n (y && y') b n∉φ [φ]
    = let π : T _ × T _
          π = lem-bool-∧-s (not (¥ n isSubFormula y)) _ (demorg1 (¥ n isSubFormula y) _ n∉φ)
      in Prod.map (lem-extend-env ξ n y b (proj₁ π)) (lem-extend-env ξ n y' b (proj₂ π)) [φ]
  lem-extend-env ξ n (y => y') b n∉φ [φ]
    = let π : T _ × T _
          π = lem-bool-∧-s (not (¥ n isSubFormula y)) _ (demorg1 (¥ n isSubFormula y) _ n∉φ)
      in lem-extend-env ξ n y' b (proj₂ π) ∘ [φ] ∘ lem-extend-env' ξ n y b (proj₁ π)
  lem-extend-env ξ n (¥ y) b n∉φ [φ] with n == y
  ...| true = ⊥-elim n∉φ
  ...| false = [φ]

  lem-extend-env' : ∀ ξ n φ b → T (not ((¥ n) isSubFormula φ))
                  → ⟦ envupdate ξ n b ⊧ φ ⟧pl → ⟦ ξ ⊧ φ ⟧pl
  lem-extend-env' ξ n ¥true b n∉φ [φ] = [φ]
  lem-extend-env' ξ n ¥false b n∉φ [φ] = [φ]
  lem-extend-env' ξ n (y || y') b n∉φ [φ]
    = let π : T _ × T _
          π = lem-bool-∧-s (not (¥ n isSubFormula y)) _ (demorg1 (¥ n isSubFormula y) _ n∉φ)
      in Sum.map (lem-extend-env' ξ n y b (proj₁ π)) (lem-extend-env' ξ n y' b (proj₂ π)) [φ]
  lem-extend-env' ξ n (y && y') b n∉φ [φ]
    = let π : T _ × T _
          π = lem-bool-∧-s (not (¥ n isSubFormula y)) _ (demorg1 (¥ n isSubFormula y) _ n∉φ)
      in Prod.map (lem-extend-env' ξ n y b (proj₁ π)) (lem-extend-env' ξ n y' b (proj₂ π)) [φ]
  lem-extend-env' ξ n (y => y') b n∉φ [φ]
    = let π : T _ × T _
          π = lem-bool-∧-s (not (¥ n isSubFormula y)) _ (demorg1 (¥ n isSubFormula y) _ n∉φ)
      in lem-extend-env' ξ n y' b (proj₂ π) ∘ [φ] ∘ lem-extend-env ξ n y b (proj₁ π)
  lem-extend-env' ξ n (¥ y) b n∉φ [φ] with n == y
  ...| true = ⊥-elim n∉φ
  ...| false = [φ]

private
  lem : ∀ n φ ψ
      → T (not ((¥ n) isSubFormula φ))
      → T (not ((¥ n) isSubFormula ψ))
      → Σ[ ξ ∶ Env ] ⟦ ξ ⊧ ψ ⟧pl
      → Σ[ ξ ∶ Env ] ⟦ ξ ⊧ ((¥ n) <=> φ) && ψ ⟧pl
  lem n φ ψ n∉φ n∉ψ (ξ , [ψ]) = envupdate ξ n (eval-pl ξ φ)
                              , ((lem-extend-env ξ n φ (eval-pl ξ φ) n∉φ ∘ lem-eval' ξ φ ∘
                                     subst T (lem-envupdate ξ n (eval-pl ξ φ)))
                                , subst T (sym (lem-envupdate ξ n (eval-pl ξ φ))) ∘ lem-eval ξ φ ∘
                                     lem-extend-env' ξ n φ (eval-pl ξ φ) n∉φ)
                              , lem-extend-env ξ n ψ (eval-pl ξ φ) n∉ψ [ψ]

  lem' : ∀ n φ ψ
       → T (not ((¥ n) isSubFormula φ))
       → T (not ((¥ n) isSubFormula ψ))
       → Σ[ ξ ∶ Env ] ⟦ ξ ⊧ ((¥ n) <=> φ) && ψ ⟧pl
       → Σ[ ξ ∶ Env ] ⟦ ξ ⊧ ψ ⟧pl
  lem' n φ ψ n∉φ n∉ψ (ξ , [n<=>φ&&ψ]) = ξ , (proj₂ [n<=>φ&&ψ])

∨-false : ∀ b → b ∨ false ≡ b
∨-false true = refl
∨-false false = refl

¬⊂φ : ∀ φ n → (¥ n isSubFormula φ) ≡ (¥ n isSubFormula (~ φ))
¬⊂φ φ n rewrite ∨-false (¥ n isSubFormula φ) = refl

r : ∀ φ ψ n
  → T (not ((¥ n) isSubFormula φ))
  → T (not ((¥ n) isSubFormula ψ))
  → (∀ ξ → ⟦ ξ ⊧ (¥ n <=> ψ) => φ ⟧pl)
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  → ∀ ξ → ⟦ ξ ⊧ φ ⟧pl
r φ ψ n n∉φ n∉ψ f ξ =
  [ id , (λ [~φ] → ⊥-elim $ proj₂ (proj₂ (lem n ψ (~ φ) n∉ψ (subst (λ b → T (not b)) (¬⊂φ φ n) n∉φ)
                                                            (_ , [~φ])))
                                  (f _ (proj₁ (proj₂ (lem n ψ (~ φ) n∉ψ
                                                          (subst (λ b → T (not b)) (¬⊂φ φ n) n∉φ)
                                                          (_ , [~φ]))))))
  ]′ (ex-mid-pl ξ φ)

r' : ∀ φ ψ ρ n
  → T (not ((¥ n) isSubFormula φ))
  → T (not ((¥ n) isSubFormula ψ))
  → T (not ((¥ n) isSubFormula ρ))
  → (∀ ξ → ⟦ ξ ⊧ ((¥ n <=> ψ) && ρ) => φ ⟧pl)
  → ∀ ξ → ⟦ ξ ⊧ ρ => φ ⟧pl
r' φ ψ ρ n n∉φ n∉ψ n∉ρ f = r (ρ => φ) ψ n (demorg2 (¥ n isSubFormula ρ) _
                             (∧-intro (not _) _ n∉ρ n∉φ)) n∉ψ (λ ξ' → curry (f ξ'))
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module RDM.RailYard where

open import Data.List
open import Data.List.Inhabitence
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Empty

open import RDM.fixedtrains

open import Relation.Binary.PropositionalEquality
open import Relation.Decidable

open import Function

record SignalLocation (Segment : Set) (Connected : Segment → Segment → Set) : Set where
  constructor
    sigloc
  field
    facing    : Segment
    trailing  : Segment
    connected : Connected facing trailing

record PhysicalLayout : Set₁ where
  field
    Segment     : Set
    Signal      : Set
    connections : Segment → List Segment

  Connected : Segment → Segment → Set
  Connected s₁ s₂ = s₂ isin connections s₁

  field
    signalLocation : Signal → SignalLocation Segment Connected

record ControlTableEntry (PL : PhysicalLayout) : Set where
  Segment = PhysicalLayout.Segment PL
  Signal  = PhysicalLayout.Signal PL
  field
    start         : Signal
    segments      : List Segment
    normalpoints  : List Segment
    reversepoints : List Segment
    facing        : List Segment

head : ∀ {A} → (l : List A) → Σ[ a ∶ A ] (a isin l) → A
head []      p = ⊥-elim $ proj₂ p
head (l ∷ _) p = l

last : ∀ {A} → (l : List A) → Σ[ a ∶ A ] (a isin l) → A
last []            p = ⊥-elim $ proj₂ p
last (l ∷ [])      p = l
last (l ∷ l' ∷ ls) p = last (l' ∷ ls) (l' , inj₁ refl)

record ControlTable (PL : PhysicalLayout) : Set₁ where
  field
    Route          : Set
    DecidableRoute : Decidable (_≡_ {A = Route})
    entries        : Route → ControlTableEntry PL
    connections    : Route → List Route

  Connected : Route → Route → Set
  Connected rt₁ rt₂ = rt₂ isin connections rt₁

  SegInRoute : PhysicalLayout.Segment PL → Route → Set
  SegInRoute ts rt = ts isin (ControlTableEntry.segments $ entries rt)

  FacingInRoute : PhysicalLayout.Segment PL → Route → Set
  FacingInRoute ts rt = ts isin (ControlTableEntry.facing $ entries rt)

  field
    NonEmptyRoutes : ∀ rt → Σ[ ts ∶ PhysicalLayout.Segment PL ] (SegInRoute ts rt)
    WellFormed : ∀ rt₁ rt₂ rt₃ → Connected rt₁ rt₂ → Connected rt₃ rt₂
               → Σ[ ts ∶ PhysicalLayout.Segment PL ] (SegInRoute ts rt₁ × SegInRoute ts rt₃)

  routeHead : ∀ rt → PhysicalLayout.Segment PL
  routeHead rt = head (ControlTableEntry.segments $ entries rt) (NonEmptyRoutes rt)

  routeLast : ∀ rt → PhysicalLayout.Segment PL
  routeLast rt = last (ControlTableEntry.segments $ entries rt) (NonEmptyRoutes rt)
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  field
    RoutesConnected : ∀ rt₁ rt₂
                    → Connected rt₁ rt₂
                    → (SignalLocation.facing $ PhysicalLayout.signalLocation PL
                               (ControlTableEntry.start $ entries rt₂)) ≡ routeLast rt₁
                    × (SignalLocation.trailing $ PhysicalLayout.signalLocation PL
                               (ControlTableEntry.start $ entries rt₂)) ≡ routeHead rt₂

toLayout : (PL : PhysicalLayout)
         → ControlTable PL
         → Σ[ TrainID ∶ Set ] (Decidable (_≡_ {A = TrainID})) → Layout
toLayout pl ct tid = record {
                       Segment          = PhysicalLayout.Segment pl;
                       Train            = proj₁ tid;
                       DecidableTrain   = proj₂ tid;
                       Route            = ControlTable.Route ct;
                       DecidableRoute   = ControlTable.DecidableRoute ct;
                       RouteConnected   = ControlTable.Connected ct;
                       SegInRoute       = ControlTable.SegInRoute ct;
                       FacingInRoute    = ControlTable.FacingInRoute ct;
                       WellFormedRoutes = ControlTable.WellFormed ct}

record ControlTableSemantics {PL : PhysicalLayout} (C : ControlTable PL) (A : Set) : Set where
  field
    rtSet       : ControlTable.Route     C  → A
    segNormal   : PhysicalLayout.Segment PL → A
    segReverse  : PhysicalLayout.Segment PL → A
    segLock     : PhysicalLayout.Segment PL → A
    segOccupied : PhysicalLayout.Segment PL → A
    sigProceed  : PhysicalLayout.Signal  PL → A
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module RDM.fixedtrains where

open import Data.Nat hiding (_<_)
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Fin hiding (_<_;_+_)
open import Data.Bool
open import Data.Unit
open import Data.Empty

open import Relation.Decidable
open import Relation.Binary.PropositionalEquality as PEQ

open import PropIso

⌚ = ℕ

¬sym : {A : Set} {a b : A} → (a ≢ b) → b ≢ a
¬sym p = p ∘ sym

data Aspect : Set where
  Proceed Stop : Aspect

lemaspect : Proceed ≢ Stop
lemaspect ()

lemaspect' : Stop ≢ Proceed
lemaspect' ()

aspeq : (a a' : Aspect) → a ≡ a' ⊎ a ≢ a'
aspeq Proceed Proceed = inj₁ refl
aspeq Proceed Stop    = inj₂ (λ ())
aspeq Stop    Proceed = inj₂ (λ ())
aspeq Stop    Stop    = inj₁ refl

data Locking : Set where
  Locked Unlocked : Locking

lemlocking : Locked ≢ Unlocked
lemlocking ()

lemlocking' : Unlocked ≢ Locked
lemlocking' ()

lockeq : (a a' : Locking) → a ≡ a' ⊎ a ≢ a'
lockeq Locked   Locked   = inj₁ refl
lockeq Locked   Unlocked = inj₂ (λ ())
lockeq Unlocked Locked   = inj₂ (λ ())
lockeq Unlocked Unlocked = inj₁ refl

record Layout : Set₁ where
  field
    Segment : Set
    Train : Set
    DecidableTrain : Decidable (_≡_ {A = Train})
    Route : Set
    DecidableRoute : Decidable (_≡_ {A = Route})
    RouteConnected : (s₁ s₂ : Route) → Set

    SegInRoute : Segment → Route → Set
    FacingInRoute : (s : Segment) → (rt : Route) → Set

    WellFormedRoutes : ∀ rt₁ rt₂ rt₃
                     → RouteConnected rt₁ rt₂
                     → RouteConnected rt₃ rt₂
                     → Σ[ ts ∶ Segment ] (SegInRoute ts rt₁ × SegInRoute ts rt₃)

-- all things that depend on time single time here
open Layout
record LayoutState (l : Layout) : Set where
  field
    trainRoute   : Train l → Route l
    signalAspect : Route l → Aspect
    locked       : Segment l → Locking

-- signalling princples dependent on time here
open LayoutState
record Railway (l : Layout) : Set where
  field
    layoutState : ⌚ → LayoutState l

    -- trains only move between connected routes with proceed aspects
    CorrectTrains-Route : (t : ⌚)
                        → (tr : Train l)
                        → trainRoute (layoutState t) tr ≡ trainRoute (layoutState (ℕ.suc t)) tr
                          ⊎ (RouteConnected l (trainRoute (layoutState t) tr)
                                              (trainRoute (layoutState (ℕ.suc t)) tr))
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                            × (signalAspect (layoutState t)
                                            (trainRoute (layoutState (ℕ.suc t)) tr) ≡ Proceed)

    Principle-SignalsGuard : (t : ⌚)
                           → (tr : Train l)
                           → (ts : Segment l)
                           → (p : SegInRoute l ts (trainRoute (layoutState t) tr))
                           → (rt : Route l)
                           → (p : SegInRoute l ts rt)
                           → signalAspect (layoutState t) rt ≡ Stop

    Principle-OpposingSignals : (t : ⌚)
                              → (rt₁ rt₂ : Route l)
                              → (ts : Segment l)
                              → (rt₁≢rt₂ : rt₁ ≢ rt₂)
                              → (p : SegInRoute l ts rt₁)
                              → (q : SegInRoute l ts rt₂)
                              → signalAspect (layoutState t) rt₁ ≡ Stop
                                ⊎ signalAspect (layoutState t) rt₂ ≡ Stop

    Principle-ProceedLocked : (t : ⌚)
                            → (rt : Route l)
                            → signalAspect (layoutState t) rt ≡ Proceed
                            → (ts : Segment l)
                            → (q : SegInRoute l ts rt)
                            → FacingInRoute l ts rt
                            → locked (layoutState (t)) ts ≡ Locked

    Principle-TrainLocked : (t : ⌚)
                          → (tr : Train l)
                          → (ts : Segment l)
                          → SegInRoute l ts (trainRoute (layoutState (suc t)) tr)
                          → locked (layoutState t) ts ≡ Locked
                          → locked (layoutState (suc t)) ts ≡ Locked

  CorrectTrains-RouteMoved : (t : ⌚)
                           → (tr : Train l)
                           → trainRoute (layoutState t) tr ≢ trainRoute (layoutState (ℕ.suc t)) tr
                           → (RouteConnected l (trainRoute (layoutState t) tr)
                                               (trainRoute (layoutState (ℕ.suc t)) tr))
                              × (signalAspect (layoutState t)
                                              (trainRoute (layoutState (ℕ.suc t)) tr) ≡ Proceed)
  CorrectTrains-RouteMoved t tr neq = [ ⊥-elim ∘ neq , id ]′ (CorrectTrains-Route t tr)

open Railway
record FacingPointLock {l : Layout} (r : Railway l) : Set where
  attime : ℕ → LayoutState l
  attime = layoutState r

  Safety' : (t : ⌚) → (tr : Train l) → Set
  Safety' t tr = ∀ ts → (q : SegInRoute l ts (trainRoute (attime t) tr))
                      → FacingInRoute l ts (trainRoute (attime t) tr)
                      → locked (attime t) ts ≡ Locked

  Safety : (t : ⌚) → Set
  Safety t = (tr : Train l) → Safety' t tr

  field InitialSafe : Safety 0

  private
    Stationary : ⌚ → Train l → Set
    Stationary t tr = trainRoute (attime t) tr ≡ trainRoute (attime (suc t)) tr
    NotStationary : ⌚ → Train l → Set
    NotStationary t tr = trainRoute (attime t) tr ≢ trainRoute (attime (suc t)) tr

    CaseTrainSameRoute : ∀ t tr → Safety' t tr → Stationary t tr → Safety' (suc t) tr
    CaseTrainSameRoute t tr ih eq ts p q rewrite (sym eq)
      = Principle-TrainLocked r t tr ts (subst (SegInRoute l ts) eq p) (ih ts p q)

    CaseTrainNewRoute : ∀ t tr → NotStationary t tr → Safety' (suc t) tr
    CaseTrainNewRoute t tr eq ts segin facing
      = Principle-TrainLocked r t tr ts segin
            (Principle-ProceedLocked r t (trainRoute (attime (suc t)) tr)
                                     (proj₂ (CorrectTrains-RouteMoved r t tr eq)) ts segin facing)

  AlwaysSafe : (t : ⌚) → Safety t
  AlwaysSafe 0 tr = InitialSafe tr
  AlwaysSafe (suc t) tr = elim-Dec _≡_ (DecidableRoute l (trainRoute (attime t) tr)
                                                         (trainRoute (attime (suc t)) tr))
                                       (CaseTrainSameRoute t tr (AlwaysSafe t tr))
                                       (CaseTrainNewRoute t tr)

record TrainsDontCrash {l : Layout} (r : Railway l) : Set where
  attime : ℕ → LayoutState l
  attime = layoutState r

  Safety' : (t : ⌚) → (tr₁ tr₂ : Train l) → Set
  Safety' t tr₁ tr₂ = ∀ ts → SegInRoute l ts (trainRoute (attime t) tr₁)
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                           → ¬ SegInRoute l ts (trainRoute (attime t) tr₂)

  Safety : (t : ⌚) → Set
  Safety t = (tr₁ tr₂ : Train l) → (tr₁ ≡ tr₂ ⊎ Safety' t tr₁ tr₂)

  field InitialSafe : Safety 0

  private
    Stationary : ⌚ → Train l → Set
    Stationary t tr = trainRoute (attime t) tr ≡ trainRoute (attime (suc t)) tr
    NotStationary : ⌚ → Train l → Set
    NotStationary t tr = trainRoute (attime t) tr ≢ trainRoute (attime (suc t)) tr

    sym-Safety' : ∀ t tr₁ tr₂ → Safety' t tr₁ tr₂ → Safety' t tr₂ tr₁
    sym-Safety' t tr₁ tr₂ p ts tsin1 tsin2 = p ts tsin2 tsin1

    CaseTrainsStationary : ∀ t tr₁ tr₂ → Stationary t tr₁ → Stationary t tr₂ → Safety' t tr₁ tr₂
                         → Safety' (suc t) tr₁ tr₂
    CaseTrainsStationary t tr₁ tr₂ eq₁ eq₂ rewrite eq₁ | eq₂ = id

    CaseOneMoving : ∀ t tr₁ tr₂ → Stationary t tr₁ → NotStationary t tr₂ → Safety' (suc t) tr₁ tr₂
    CaseOneMoving t tr₁ tr₂ eq₁ eq₂ ts tsin₁ tsin₂ rewrite (sym eq₁)
      = lemaspect (trans (sym (proj₂ (CorrectTrains-RouteMoved r t tr₂ eq₂)))
                         (Principle-SignalsGuard r t tr₁ ts tsin₁ _ tsin₂))

    CaseBothMovingDiffRoute : ∀ t tr₁ tr₂
                            → NotStationary t tr₁
                            → NotStationary t tr₂
                            → tr₁ ≢ tr₂
                            → trainRoute (layoutState r (suc t)) tr₁ ≢
                                trainRoute (layoutState r (suc t)) tr₂
                            → Safety' (suc t) tr₁ tr₂
    CaseBothMovingDiffRoute t tr₁ tr₂ eq₁ eq₂ tr₁≢tr₂ eq₃ ts tsin₁ tsin₂
      = [ (λ eq₄ → lemaspect (trans (sym (proj₂ (CorrectTrains-RouteMoved r t tr₁ eq₁))) eq₄)) ,
          (λ eq₄ → lemaspect (trans (sym (proj₂ (CorrectTrains-RouteMoved r t tr₂ eq₂))) eq₄))
        ]′ (Principle-OpposingSignals r t (trainRoute (attime (suc t)) tr₁)
                                                 (trainRoute (attime (suc t)) tr₂)
                                                 ts eq₃ tsin₁ tsin₂)

    CaseBothMoving : ∀ t tr₁ tr₂
                   → NotStationary t tr₁
                   → NotStationary t tr₂
                   → Safety' t tr₁ tr₂
                   → tr₁ ≢ tr₂
                   → Safety' (suc t) tr₁ tr₂
    CaseBothMoving t tr₁ tr₂ eq₁ eq₂ ih tr₁≢tr₂
      = elim-Dec _≡_
          (DecidableRoute l (trainRoute (attime (suc t)) tr₁)
                            (trainRoute (attime (suc t)) tr₂))
          (λ eq₃ → ⊥-elim $ ih (proj₁ (x eq₃)) (proj₁ (proj₂ (x eq₃))) (proj₂ (proj₂ (x eq₃))))
          (CaseBothMovingDiffRoute t tr₁ tr₂ eq₁ eq₂ tr₁≢tr₂)
      where
        x : _ → Σ[ ts ∶ Segment l ] ((SegInRoute l ts (trainRoute (attime t) tr₁))
                                       × (SegInRoute l ts (trainRoute (attime t) tr₂)))
        x eq₃ = WellFormedRoutes l _ (trainRoute (attime (suc t)) tr₁) _
                                     (proj₁ (CorrectTrains-RouteMoved r t tr₁ eq₁))
                                     (subst (RouteConnected l (trainRoute (layoutState r t) tr₂))
                                            (sym eq₃)
                                            (proj₁ (CorrectTrains-RouteMoved r t tr₂ eq₂)))

    CaseNotEqualTrains : ∀ t tr₁ tr₂ → Safety' t tr₁ tr₂ → tr₁ ≢ tr₂ → Safety' (suc t) tr₁ tr₂
    CaseNotEqualTrains t tr₁ tr₂ ih
      = elim-Dec _≡_ (DecidableRoute l (trainRoute (attime t) tr₁)
                                       (trainRoute (attime (suc t)) tr₁))
                 (elim-Dec _≡_
                    (DecidableRoute l (trainRoute (attime t) tr₂)
                                      (trainRoute (attime (suc t)) tr₂))
                    (λ eq1 eq2 _ → CaseTrainsStationary t tr₁ tr₂ eq2 eq1 ih)
                    (λ eq1 eq2 _ → CaseOneMoving t tr₁ tr₂ eq2 eq1))
                 (elim-Dec _≡_
                    (DecidableRoute l (trainRoute (attime t) tr₂)
                                      (trainRoute (attime (suc t)) tr₂))
                    (λ eq1 eq2 _ → sym-Safety' (suc t) tr₂ tr₁ (CaseOneMoving t tr₂ tr₁ eq1 eq2))
                    (λ eq1 eq2 → CaseBothMoving t tr₁ tr₂ eq2 eq1 ih))

    CaseNotEqualTrains' : ∀ t tr₁ tr₂
                        → (tr₁ ≡ tr₂) ⊎ Safety' t tr₁ tr₂ → tr₁ ≢ tr₂ → Safety' (suc t) tr₁ tr₂
    CaseNotEqualTrains' t tr₁ tr₂ ih tr₁≢tr₂
      = CaseNotEqualTrains t tr₁ tr₂ ([ ⊥-elim ∘ tr₁≢tr₂ , id ]′ ih) tr₁≢tr₂

  AlwaysSafe : (t : ⌚) → Safety t
  AlwaysSafe 0       tr₁ tr₂ = InitialSafe tr₁ tr₂
  AlwaysSafe (suc n) tr₁ tr₂ = elim-Dec _≡_ (DecidableTrain l tr₁ tr₂) inj₁
                                       (inj₂ ∘ CaseNotEqualTrains' n tr₁ tr₂ (AlwaysSafe n tr₁ tr₂))
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module Ladder.Core where

open import Data.Nat hiding (_<_)
open import Data.Bool
open import Data.List
open import Data.Product as Prod

open import TransitionSystem

open import Boolean.SatSolver
open import Boolean.Formula

open import Relation.Binary.PropositionalEquality

open import PropIso

open import Function

record Ladder : Set₁ where
  constructor
    ladder
  field
    statevars : ℕ
    inputvars : ℕ
    rungs : List (ℕ × PL-Formula)
    initialstate : List (ℕ × Bool)
    inp-correct : PL-Formula

  State : Set
  State = Σ[ l ∶ List Bool ] (length l ≡ statevars)

  Input : Set
  Input = Σ[ m ∶ Σ[ l ∶ List Bool ] (length l ≡ inputvars) ] (⟦ mkenv (proj₁ m) ⊧ inp-correct ⟧pl)

open Ladder

map-proj : ∀ {A C : Set} {B : A → Set} → List (Σ A (λ x → B x × C)) → List (A × C)
map-proj []       = []
map-proj (x ∷ xs) = Prod.map id proj₂ x ∷ map-proj xs

mkinitial-aux : List (ℕ × Bool) → PL-Formula
mkinitial-aux []            = ¥true
mkinitial-aux (a ∷ [])      = ((¥ ∘ proj₁) a) <=> injbool (proj₂ a)
mkinitial-aux (a ∷ a' ∷ as) = ((¥ ∘ proj₁) a) <=> injbool (proj₂ a) && mkinitial-aux  (a' ∷ as)

mkinitial : Ladder → PL-Formula
mkinitial l = mkinitial-aux (initialstate l)

mkInitialRel : (l : Ladder) → State l → Set
mkInitialRel l init = ⟦ mkenv (proj₁ init) ⊧ mkinitial l ⟧pl

apply-¥-pl : PL-Formula → (ℕ → ℕ) → PL-Formula
apply-¥-pl φ f = elim-pl ¥true ¥false (¥ ∘ f) _||_ _&&_ _=>_ φ

mymap : ℕ → List ℕ → ℕ → ℕ
mymap s []       n = n
mymap s (a ∷ as) n with a == n
mymap s (a ∷ as) n | true  = s + a
mymap s (a ∷ as) n | false = mymap s as n

mktrans-aux : ℕ → List ℕ → List (ℕ × PL-Formula) → PL-Formula
mktrans-aux n v []             = ¥true
mktrans-aux n v ((a , b) ∷ as) = (¥ (n + a) <=> apply-¥-pl b (mymap n v)) &&
                                    mktrans-aux n (a ∷ v) as

mktrans : Ladder → PL-Formula
mktrans l = mktrans-aux (statevars l + inputvars l) [] (rungs l)

mkTransRel : (l : Ladder) → State l → Input l → State l → Set
mkTransRel l b i a = ⟦ mkenv (proj₁ b ++ proj₁ (proj₁ i) ++ proj₁ a) ⊧ mktrans l ⟧pl

mkTransitionSystem : (l : Ladder) → TransitionSystem (Input l)
mkTransitionSystem l = ts (State l) (mkInitialRel l) (mkTransRel l)

♭initial : (init trans safe : PL-Formula) → PL-Formula
♭initial init trans safe = (init && trans) => safe

ψinitial : (init trans safe : PL-Formula) → (before i after : List Bool) → Set
ψinitial init trans safe b i a = ⟦ mkenv (b ++ i ++ a) ⊧ ♭initial init trans safe ⟧pl

♭transition : ∀ (state inp : ℕ) (safe trans inv : PL-Formula) → PL-Formula
♭transition s i safe trans inv = (safe && trans && shiftpl inv s && shiftpl inv (s + i + s)
                                       && shiftpl trans (s + i)) => shiftpl safe (s + i)

ψtransition : (safe trans inv : PL-Formula) → (pre i before i' after : List Bool) → Set
ψtransition safe trans inv pre i before i' after =
  ⟦ mkenv (pre ++ i ++ before) ⊧ safe ⟧pl    × ⟦ mkenv (pre ++ i ++ before) ⊧ trans ⟧pl ×
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  ⟦ mkenv i ⊧ inv ⟧pl × ⟦ mkenv i' ⊧ inv ⟧pl × ⟦ mkenv (before ++ i' ++ after) ⊧ trans ⟧pl
    → ⟦ mkenv (before ++ i' ++ after) ⊧ safe ⟧pl

lemma-transition : {n m : ℕ}
                 → (pre before after : Σ (List Bool) (λ l → length l ≡ n))
                 → (i1 i2 : Σ (List Bool) (λ l → length l ≡ m))
                 → (safety transition inv : PL-Formula)
                 → T (bound (n + m + n) transition)
                 → T (bound (n + m + n) safety)
                 → T (bound m inv)
                 → ⟦ mkenv ((proj₁ pre) ++ (proj₁ i1) ++ (proj₁ before) ++
                            (proj₁ i2) ++ (proj₁ after)) ⊧ ♭transition n m safety transition inv ⟧pl
                 → ψtransition safety transition inv (proj₁ pre)
                               (proj₁ i1) (proj₁ before) (proj₁ i2) (proj₁ after)
lemma-transition (pre , refl) (before , p1) (after , p2) (i1 , refl) (i2 , p4)
                 φs φt φi bt bs bi p (q1 , q2 , q3 , q4 , q5)
  = lem-shift-pl²' φs pre i1 (before ++ i2 ++ after) (p
      ( lem-mkenv-++-pl³ φs pre i1 before (i2 ++ after)
                         (subst (λ k → T (bound (length pre + length i1 + k) φs)) (sym p1) bs) q1
      , lem-mkenv-++-pl³ φt pre i1 before (i2 ++ after)
                         (subst (λ k → T (bound (length pre + length i1 + k) φt)) (sym p1) bt) q2
      , lem-shift-pl φi pre (i1 ++ before ++ i2 ++ after)
                     (lem-mkenv-++-pl φi i1 (before ++ i2 ++ after) bi q3)
      , subst (λ k → ⟦ mkenv (pre ++ i1 ++ before ++ i2 ++ after)
                         ⊧ shiftpl φi (length pre + length i1 + k) ⟧pl) p1
          (lem-shift-pl³ φi pre i1 before (i2 ++ after)
                         (lem-mkenv-++-pl φi i2 after (subst (λ k → T (bound k φi))(sym p4) bi) q4))
      , lem-shift-pl² φt pre i1 (before ++ i2 ++ after) q5))

base-obligation : ∀ l s → PL-Formula
base-obligation l = ♭initial (mkinitial l) (mktrans l)

inductive-obligation : ∀ l s → PL-Formula
inductive-obligation l s = ♭transition (statevars l) (inputvars l) s (mktrans l) (inp-correct l)

⟦base-obligation⟧ : ∀ l s → List Bool → Set
⟦base-obligation⟧ l s x = ⟦ mkenv x ⊧ base-obligation l s ⟧pl

⟦inductive-obligation⟧ : ∀ l s → List Bool → List Bool → List Bool → Set
⟦inductive-obligation⟧ l p s i s' = ⟦ mkenv (s ++ i ++ s') ⊧ inductive-obligation l p ⟧pl

⟦safety⟧ : ∀ s → List Bool → List Bool → List Bool → Set
⟦safety⟧ p b i s = ⟦ mkenv (b ++ i ++ s) ⊧ p ⟧pl

⟦safety⟧π : ∀ s → {A B D : List Bool → Set} → {C : _ → Set} → Σ (List Bool) A
          → Σ (Σ (List Bool) B) C → Σ (List Bool) D → Set
⟦safety⟧π p x y z = ⟦safety⟧ p (proj₁ x) (proj₁ (proj₁ y)) (proj₁ z)

LadderCorrectness : Ladder → PL-Formula → Set
LadderCorrectness l s = Correctness (mkTransitionSystem l) (⟦safety⟧π s)

inductiveproof : ∀ (rl : Ladder) (safety : PL-Formula)
               → (p : T (decproc (base-obligation rl safety)))
               → (q : T (decproc (inductive-obligation rl safety)))
               → (bi : T (bound (statevars rl) (mkinitial rl)))
               → (bt : T (bound (statevars rl + inputvars rl + statevars rl) (mktrans rl)))
               → (bs : T (bound (statevars rl + inputvars rl + statevars rl) safety))
               → (binv : T (bound (inputvars rl) (inp-correct rl)))
               → LadderCorrectness rl safety
inductiveproof rl safety p q bi bt bs binv before (initial .before y) i after trans
 = sound' (base-obligation rl safety) p (mkenv (proj₁ before ++ proj₁ (proj₁ i) ++ proj₁ after))
      ((lem-mkenv-++-pl (mkinitial rl) (proj₁ before) (proj₁ (proj₁ i) ++ proj₁ after)
                        (subst (λ k → T (bound k (mkinitial rl))) (sym (proj₂ before)) bi) y)
      , trans)
inductiveproof rl safety p q bi bt bs binv before (next s r i .before y) i' after trans
 = lemma-transition s before after (proj₁ i) (proj₁ i') safety
                    (mktrans rl) (inp-correct rl) bt bs binv
                    (sound' (inductive-obligation rl safety) q
                            (mkenv (proj₁ s ++ proj₁ (proj₁ i) ++
                                    proj₁ before ++ proj₁ (proj₁ i') ++ proj₁ after)))
                    (inductiveproof rl safety p q bi bt bs binv s r i before y , y
                                              , proj₂ i , proj₂ i' , trans)

abstract
  inductiveProof : (rl : Ladder) → (safety : PL-Formula)
                 → {p : T (decproc (base-obligation rl safety))}
                 → {q : T (decproc (inductive-obligation rl safety))}
                 → {bi : T (bound (statevars rl) (mkinitial rl))}
                 → {bt : T (bound (statevars rl + inputvars rl + statevars rl) (mktrans rl))}
                 → {bs : T (bound (statevars rl + inputvars rl + statevars rl) safety)}
                 → {binv : T (bound (inputvars rl) (inp-correct rl))}
                 → LadderCorrectness rl safety
  inductiveProof rl safety {p} {q} {bi} {bt} {bs}{binv} = inductiveproof rl safety p q bi bt bs binv

ladderapply : ∀ {φ ψ} l → LadderCorrectness l (φ => ψ) → LadderCorrectness l φ
            → LadderCorrectness l ψ
ladderapply l cor→ corφ b r i a tr = cor→ b r i a tr (corφ b r i a tr)
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module TransitionSystem where

record TransitionSystem (Input : Set) : Set₁ where
  constructor
    ts
  field
    State : Set
    Initial : State → Set
    Transition : State → Input → State → Set

data Reachable {I : Set} (l : TransitionSystem I) : TransitionSystem.State l → Set where
  initial : (s : TransitionSystem.State l)
          → TransitionSystem.Initial l s
          → Reachable l s
  next : (s : TransitionSystem.State l)
       → (r : Reachable l s)
       → (i : I)
       → (s' : TransitionSystem.State l)
       → TransitionSystem.Transition l s i s'
       → Reachable l s'

Correctness : {I : Set}
            → (l : TransitionSystem I)
            → (φ : TransitionSystem.State l → I → TransitionSystem.State l → Set)
            → Set
Correctness {I} l φ = (before : TransitionSystem.State l)
                    → Reachable l before
                    → (i : I)
                    → (after : TransitionSystem.State l)
                    → TransitionSystem.Transition l before i after
                    → φ before i after
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module TransitionSystem.Decidable where

open import Data.Nat
open import TransitionSystem
open TransitionSystem.TransitionSystem

record DecidableTransitionSystem {Input : Set} 
                                 (ts : TransitionSystem Input) : Set where
  field
    initialState : State ts
    initialCorrectness : Initial ts initialState
    transitionFunction : State ts → Input → State ts
    transitionCorrectness : ∀ s i → Transition ts s i (transitionFunction s i)

  nthState : (inputs : ℕ → Input) → ℕ → State ts
  nthState inputs zero = initialState
  nthState inputs (suc n) = transitionFunction (nthState inputs n) (inputs n)

  nthReachable : ∀ inputs n → Reachable ts (nthState inputs n)
  nthReachable inputs zero = initial initialState initialCorrectness
  nthReachable inputs (suc n) = next (nthState inputs n) (nthReachable inputs n) 
                                     (inputs n) 
                                     (nthState inputs (suc n)) 
                                     (transitionCorrectness (nthState inputs n) (inputs n))
open DecidableTransitionSystem

nthStateCorrect : {Input : Set}
                → {ts : TransitionSystem Input}
                → (dts : DecidableTransitionSystem ts)
                → ∀ φ
                → Correctness ts φ
                → ∀ n inputs
                → φ (nthState dts inputs n) (inputs n) (nthState dts inputs (suc n))
nthStateCorrect dts φ correct n inputs = correct (nthState dts inputs n) 
                                                 (nthReachable dts inputs n) (inputs n)
                                                 (nthState dts inputs (suc n)) 
                                                 (transitionCorrectness dts (nthState dts inputs n)
                                                                        (inputs n)) 
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module Ladder.Decidable where

open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.List
open import Data.Bool
open import Data.Nat hiding (_<_)
open import Data.List.Inhabitence
open import Data.List.Util using (indicies)

open import Relation.Binary.PropositionalEquality hiding ([_])

open import Ladder.Core

open import TransitionSystem.Decidable
open import TransitionSystem

open import PropIso renaming (_==_ to neq)

open import Boolean.Formula

data FinMap {B : Set} (c : ℕ) : List (ℕ × B) → Set where
  [] : FinMap c []
  [_↦_]∷_ : (a : ℕ)
          → (b : B)
          → {l : List (ℕ × B)}
          → {p : T (a notinℕ indicies l)}
          → {q : T (a < c)}
          → FinMap c l
          → FinMap c ((a , b) ∷ l)

data ListProperty {A : Set} (P : List A → A → Set) : List A → Set where
  [] : ListProperty P []
  [_]<_>∷_ : (a : A) → {l : List A} → (pa : P l a)
                     → (pas : ListProperty P l) → ListProperty P (a ∷ l)

PL-FormulaBound : PL-Formula → ℕ → Set
PL-FormulaBound φ n = T (bound n φ)

πPL-FormulaBound :  ℕ → (ℕ × PL-Formula) → Set
πPL-FormulaBound n p = PL-FormulaBound (proj₂ p) n

record LadderWellFormed (l : Ladder) : Set where
  field
    initialmap : FinMap (Ladder.statevars l) (Ladder.initialstate l)
    rungsmap : FinMap (Ladder.statevars l) (Ladder.rungs l)
    rungvarbound : ListProperty (const (πPL-FormulaBound (Ladder.statevars l + Ladder.inputvars l)))
                                (Ladder.rungs l)

lookup : {A : Set} → ∀ {l} {b} → FinMap {A} b l → (default : A) → ℕ → A
lookup [] d n = d
lookup ([ i ↦ j ]∷ y) d n with neq i n
lookup ([ i ↦ j ]∷ y) d n | true = j
lookup ([ i ↦ j ]∷ y) d n | false = lookup y d n

lookup' : {A : Set} → (partialmap : List (ℕ × A)) → (default : A) → (bound : ℕ) → ℕ → A
lookup' [] default b n = default
lookup' (x ∷ partialmap) default b n with b < suc n
lookup' (x ∷ partialmap) default b n | true = default
lookup' (x ∷ partialmap) default b n | false with neq (proj₁ x) n
lookup' (x ∷ partialmap) default b n | false | true = proj₂ x
lookup' (x ∷ partialmap) default b n | false | false = lookup' partialmap default b n

listify : (n : ℕ) → (f : ℕ → Bool) → List Bool
listify zero f = []
listify (suc n) f = (f 0) ∷ (listify n (f ∘ suc))

listify-length : ∀ n f → length (listify n f) ≡ n
listify-length zero f = refl
listify-length (suc n) f = cong suc (listify-length n _)

lem-listify : ∀ n f → Σ[ l ∶ List Bool ] (length l ≡ n)
lem-listify n f = listify n f , listify-length n f

private
  lem : ∀ m j → T (j < m) → (f : ℕ → Bool) → mkenv (listify m f) j ≡ f j
  lem zero    j       p f = ⊥-elim p
  lem (suc m) zero    p f = refl
  lem (suc m) (suc j) p f = lem m j p (f ∘ suc)

  #lem : ∀ n → (l : List (Σ ℕ (λ x → Bool))) → ∀ j b → T (n < suc j) → b ≡ lookup' l b n j
  #lem n []       j b p = refl
  #lem n (x ∷ xs) j b p rewrite Tb p = refl

  #lem' : ∀ {n} → {A : Set} → {l : List (ℕ × A)} → (m : FinMap {A} n l) → ∀ j b → T (n < suc j)
        → b ≡ lookup m b j
  #lem' {n} []                            j b n<j = refl
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  #lem' {n} ([_↦_]∷_ a b {l} {p} {a<n} y) j d n<j
    rewrite ¬Tb (<→≠ a j (<-trans' a n (suc j) a<n n<j)) = #lem' y j d n<j

  ##lem : ∀ n → (f : ℕ → Bool) → ∀ j → T (n < suc j) → mkenv (listify n f) j ≡ false
  ##lem zero    f j       p = refl
  ##lem (suc n) f zero    p = ⊥-elim p
  ##lem (suc n) f (suc j) p = ##lem n (f ∘ suc) j p

  lem' : ∀ m → (l : List (Σ ℕ (λ x → Bool))) → ∀ j
       → mkenv (listify m (lookup' l false m)) j ≡ lookup' l false m j
  lem' m l j with ex-mid (j < m)
  lem' m l j | inj₁ x = lem m j x (lookup' l false m)
  lem' m l j | inj₂ y = trans (##lem m (lookup' l false m) j (<-¬ j m y))
                              (#lem m l j false (<-¬ j m y))

  lem'' : ∀ n → {l : List (ℕ × Bool)} → (↦ : FinMap n l) → ∀ j
        → mkenv (listify n (lookup ↦ false)) j ≡ lookup ↦ false j
  lem'' m x j with ex-mid (j < m)
  lem'' m x j | inj₁ j<m = lem m j j<m (lookup x false)
  lem'' m x j | inj₂ ¬j<m = trans (##lem m (lookup x false) j (<-¬ j m ¬j<m))
                                  (#lem' x j false (<-¬ j m ¬j<m))

  lem-var : ∀ b → ∀ ξ → T b → ⟦ ξ ⊧ injbool b ⟧pl
  lem-var true  ξ = id
  lem-var false ξ = id

  lem-var' : ∀ b → ∀ ξ → ⟦ ξ ⊧ injbool b ⟧pl → T b
  lem-var' true  ξ = id
  lem-var' false ξ = id

{- INITIAL STATE -}
constructInitialState : (l : ∃ LadderWellFormed)
                      → Σ[ m ∶ List Bool ] length m ≡ Ladder.statevars (proj₁ l)
constructInitialState (l , p) = lem-listify (Ladder.statevars l)
                                            (lookup (LadderWellFormed.initialmap p) false)

module InitialProof where

  lem-πnotin-aux : {i : ℕ}
                 → (l : List (ℕ × Bool))
                 → {z : length l ≡ i}
                 → ∀ n
                 → T (n notinℕ indicies l)
                 → ¬ T ((¥ n) isSubFormula (mkinitial-aux l))
  lem-πnotin-aux {zero} [] n πnotinl q = q
  lem-πnotin-aux {suc i} [] {()} n πnotinl q
  lem-πnotin-aux {zero} (x ∷ xs) {()} n πnotinl q
  lem-πnotin-aux {suc i} ((a , true) ∷ []) n πnotinl q
    rewrite ¬Tb (lem-bool-neg-s (neq n a) (∧-eliml πnotinl)) = q
  lem-πnotin-aux {suc i} ((a , false) ∷ []) n πnotinl q
    rewrite ¬Tb (lem-bool-neg-s (neq n a) (∧-eliml πnotinl)) = q
  lem-πnotin-aux {suc i} ((a , true) ∷ x' ∷ xs) {z} n πnotinl q
    rewrite ¬Tb (lem-bool-neg-s (neq n a) (∧-eliml πnotinl))
    = lem-πnotin-aux {i} (x' ∷ xs) {cong pred z} n (∧-elimr (not (neq n a)) πnotinl) q
  lem-πnotin-aux {suc i} ((a , false) ∷ x' ∷ xs) {z} n πnotinl q
    rewrite ¬Tb (lem-bool-neg-s (neq n a) (∧-eliml πnotinl))
    = lem-πnotin-aux {i} (x' ∷ xs) {cong pred z} n (∧-elimr (not (neq n a)) πnotinl) q

  lem-πnotin : (l : List (ℕ × Bool)) → ∀ n → T (n notinℕ indicies l)
             → ¬ T ((¥ n) isSubFormula (mkinitial-aux l))
  lem-πnotin l = lem-πnotin-aux l {refl}

  #lem-destructlookup : {n : ℕ}
                      → {l : List (ℕ × Bool)}
                      → (m : FinMap n l)
                      → (x₁ : ℕ)
                      → (x₂ : Bool)
                      → (x₃ : T (x₁ notinℕ indicies l))
                      → (x₄ : T (x₁ < n))
                      → ∀ i
                      → T (¥ i isSubFormula (mkinitial-aux l))
                      → lookup ([_↦_]∷_ x₁ x₂ {p = x₃} {q = x₄} m) false i ≡ lookup m false i
  #lem-destructlookup m x₁ x₂ x₁πnotinl x₄ i subform with ex-mid (neq x₁ i)
  #lem-destructlookup {_} {l} m x₁ x₂ x₁πnotinl x₄ i subform | inj₁ x rewrite lift-== x₁ i x
    = ⊥-elim (lem-πnotin l i x₁πnotinl subform)
  #lem-destructlookup m x₁ x₂ x₁πnotinl x₄ i subform | inj₂ y rewrite ¬Tb y = refl

  lem-destructlookup' : {n : ℕ}
                      → {l : List (ℕ × Bool)}
                      → (m : FinMap n l)
                      → (x₁ : ℕ)
                      → (x₂ : Bool)
                      → (x₃ : T (x₁ notinℕ indicies l))
                      → (x₄ : T (x₁ < n))
                      → ⟦ lookup ([_↦_]∷_ x₁ x₂ {p = x₃} {q = x₄} m) false ⊧ mkinitial-aux l ⟧pl
                      → ⟦ lookup m false ⊧ mkinitial-aux l ⟧pl
  lem-destructlookup' {n} {l} m x₁ x₂ x₃ x₄
    = env-subst-guard (lookup ([_↦_]∷_ x₁ x₂ {p = x₃} {q = x₄} m) false)
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                      (lookup m false) (mkinitial-aux l)
                      (#lem-destructlookup m x₁ x₂ x₃ x₄)

  lem-destructlookup : {n : ℕ}
                     → {l : List (ℕ × Bool)}
                     → (m : FinMap n l)
                     → (x₁ : ℕ)
                     → (x₂ : Bool)
                     → (x₃ : T (x₁ notinℕ indicies l))
                     → (x₄ : T (x₁ < n))
                     → ⟦ lookup m false ⊧ mkinitial-aux l ⟧pl
                     → ⟦ lookup ([_↦_]∷_ x₁ x₂ {p = x₃} {q = x₄} m) false ⊧ mkinitial-aux l ⟧pl
  lem-destructlookup {n} {l} m x₁ x₂ x₃ x₄
    = env-subst-guard (lookup m false)
                      (lookup ([_↦_]∷_ x₁ x₂ {p = x₃} {q = x₄} m) false)
                      (mkinitial-aux l)
                      (λ q w → sym (#lem-destructlookup m x₁ x₂ x₃ x₄ q w))

  #InitialCorrect : {i : ℕ}
                  → {l : List (ℕ × Bool)}
                  → {z : length l ≡ i}
                  → {statevars : ℕ}
                  → (initialstate : FinMap statevars l)
                  → ⟦ lookup initialstate false ⊧ mkinitial-aux l ⟧pl
  #InitialCorrect [] = tt
  #InitialCorrect {_} {._} {m} ([ a ↦ b ]∷ []) rewrite Tb (id-== a) = lem-var b _ , lem-var' b _
  #InitialCorrect {zero} {._} {()} ([_↦_]∷_ a b {._} {i} {j} ([ c ↦ d ]∷ xs))
  #InitialCorrect {suc i'} {._} {z} ([_↦_]∷_ a b {._} {i} {j} ([ c ↦ d ]∷ xs)) rewrite Tb (id-== a)
    = (lem-var b _ , lem-var' b _)
    , lem-destructlookup ([ c ↦ d ]∷ xs) a b i j
                         (#InitialCorrect {i'} {_} {cong pred z} ([ c ↦ d ]∷ xs))

  InitialCorrect : {statevars : ℕ}
                 → {l : List (ℕ × Bool)}
                 → (initialstate : FinMap statevars l)
                 → ⟦ mkenv (listify statevars (lookup initialstate false)) ⊧ mkinitial-aux l ⟧pl
  InitialCorrect {statevars} {l} initialstate = env-subst _ _ (mkinitial-aux l)
                                                          (sym ∘ lem'' statevars initialstate)
                                                          (#InitialCorrect {z = refl} initialstate)

InitialCorrect : (l : ∃ LadderWellFormed)
                → TransitionSystem.Initial (mkTransitionSystem (proj₁ l)) (constructInitialState l)
InitialCorrect l = InitialProof.InitialCorrect  (LadderWellFormed.initialmap (proj₂ l))

{-
TRANSITION FUNCTION
-}
_[_==_] : {A : Set} → List A → ℕ → A → List A
[]       [ n     == k ] = []
(x ∷ xs) [ zero  == k ] = k ∷ xs
(x ∷ xs) [ suc n == k ] = x ∷ xs [ n == k ]

lem-putat-length : {A : Set} → (l : List A) → (a : A) → (n : ℕ) → length (l [ n == a ]) ≡ length l
lem-putat-length []       a n       = refl
lem-putat-length (x ∷ xs) a zero    = refl
lem-putat-length (x ∷ xs) a (suc n) = cong suc (lem-putat-length xs a n)

updateState : ∀ {i} → Σ[ m ∶ List Bool ] length m ≡ i → ℕ → Bool → Σ[ m ∶ List Bool ] length m ≡ i
updateState (st , len) r b = st [ r == b ] , trans (lem-putat-length st b r) len

executeRung : ∀ i j
            → (rung : ℕ × PL-Formula)
            → Σ[ m ∶ List Bool ] length m ≡ i
            → Σ[ m ∶ List Bool ] length m ≡ j
            → Σ[ m ∶ List Bool ] length m ≡ i
executeRung i j (r , φ) state inp
  = updateState state r (eval-pl (mkenv (proj₁ state ++ proj₁ inp)) φ)

executeLadder : ∀ i j
              → (rungs : List (ℕ × PL-Formula))
              → Σ[ m ∶ List Bool ] length m ≡ i
              → Σ[ m ∶ List Bool ] length m ≡ j
              → Σ[ m ∶ List Bool ] length m ≡ i
executeLadder i j []       state inp = state
executeLadder i j (x ∷ xs) state inp = executeLadder i j xs (executeRung i j x state inp) inp

assoc-executeLadder : ∀ i j rungs1 rungs2 rungs3 s t
                    → executeLadder i j (rungs1 ++ rungs2 ++ rungs3) s t
                      ≡ executeLadder i j ((rungs1 ++ rungs2) ++ rungs3) s t
assoc-executeLadder i j []       rungs2 rungs3 s t = refl
assoc-executeLadder i j (x ∷ xs) rungs2 rungs3 s t
  = assoc-executeLadder i j xs rungs2 rungs3 (executeRung i j x s t) t

elim++-executeLadder : ∀ i j rungs1 rungs2 s t
                    → executeLadder i j (rungs1 ++ rungs2) s t
                      ≡ executeLadder i j rungs2 (executeLadder i j rungs1 s t) t
elim++-executeLadder i j []       r2 s t = refl
elim++-executeLadder i j (x ∷ r1) r2 s t = elim++-executeLadder i j r1 r2 (executeRung i j x s t) t
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elim++-executeLadder i j (x ∷ r1) r2 s t = elim++-executeLadder i j r1 r2 (executeRung i j x s t) t

_prefix_ : {A : Set} → List A → List A → Set
[]       prefix _        = ⊤
(x ∷ xs) prefix []       = ⊥
(x ∷ xs) prefix (y ∷ ys) = x ≡ y × xs prefix ys

id-take-len : {A : Set} → (l : List A) → l ≡ take (length l) l
id-take-len [] = refl
id-take-len (x ∷ xs) = cong (_∷_ x) (id-take-len xs)

lem-putat-eq : (s : List Bool) → ∀ k x φ → ¬ T (neq k x) → mkenv (s [ x == φ ]) k ≡ mkenv (s) k
lem-putat-eq []       k       x       φ k≠x = refl
lem-putat-eq (s ∷ ss) zero    zero    φ k≠x = ⊥-elim (k≠x tt)
lem-putat-eq (s ∷ ss) zero    (suc n) φ k≠x = refl
lem-putat-eq (s ∷ ss) (suc k) zero    φ k≠x = refl
lem-putat-eq (s ∷ ss) (suc k) (suc x) φ k≠x = lem-putat-eq ss k x φ k≠x

id-notin-executeLadder-aux : ∀ i j rn
                           → (r : List _)
                           → ∀ s t k
                           → T (k notinℕ indicies r)
                           → mkenv (proj₁ (executeLadder i j (take (suc rn) r) s t)) k
                             ≡ mkenv (proj₁ (executeLadder i j (take rn r) s t)) k
id-notin-executeLadder-aux i j zero    [] s t k knotinr = refl
id-notin-executeLadder-aux i j (suc n) [] s t k knotinr = refl
id-notin-executeLadder-aux i j zero    (x ∷ xs) s t k knotinr
  = lem-putat-eq (proj₁ s) k (proj₁ x) (eval-pl (mkenv (proj₁ s ++ proj₁ t)) (proj₂ x))
                 (lem-bool-neg-s _ (∧-eliml knotinr))
id-notin-executeLadder-aux i j (suc rn) (x ∷ xs) s t k knotinr
  = id-notin-executeLadder-aux i j rn xs (executeRung i j x s t) t k
                               (∧-elimr (not (neq k (proj₁ x))) knotinr)

id-notin-executeLadder-aux' : ∀ i j n m
                           → (r : List _)
                           → ∀ s t k
                           → T (k notinℕ indicies r)
                           → mkenv (proj₁ (executeLadder i j (take m r) s t)) k
                             ≡ mkenv (proj₁ (executeLadder i j (take n r) s t)) k
id-notin-executeLadder-aux' i j zero zero r s t k knotinr = refl
id-notin-executeLadder-aux' i j zero (suc n) r s t k knotinr
  = trans (id-notin-executeLadder-aux i j n r s t k knotinr)
          (id-notin-executeLadder-aux' i j 0 n r s t k knotinr)
id-notin-executeLadder-aux' i j (suc n) zero r s t k knotinr
  = trans (id-notin-executeLadder-aux' i j n 0 r s t k knotinr)
          (sym (id-notin-executeLadder-aux i j n r s t k knotinr))
id-notin-executeLadder-aux' i j (suc n) (suc n') r s t k knotinr
  = trans (id-notin-executeLadder-aux i j n' r s t k knotinr)
          (trans (id-notin-executeLadder-aux' i j n n' r s t k knotinr)
                 (sym (id-notin-executeLadder-aux i j n r s t k knotinr)))

id-notin-executeLadder : ∀ i j r s t k
                       → T (k notinℕ indicies r)
                       → mkenv (proj₁ (executeLadder i j r s t)) k ≡ mkenv (proj₁ s) k
id-notin-executeLadder i j r s t k knotinr
  = trans (cong (λ z → mkenv (proj₁ (executeLadder i j z s t)) k) (id-take-len r))
          (id-notin-executeLadder-aux' i j 0 (length r) r s t k knotinr)

id-notin-executeLadder' : ∀ i j r s t k → T (k notinℕ indicies r)
                        → mkenv (proj₁ (executeLadder i j r s t) ++ proj₁ t) k
                          ≡ mkenv (proj₁ s ++ proj₁ t) k
id-notin-executeLadder' i j r s t k knotinr
  = extendenv (proj₁ (executeLadder i j r s t)) (proj₁ s) (proj₁ t)
              (\ z → T (z notinℕ indicies r)) (trans (proj₂ (executeLadder i j r s t))
                                                     (sym (proj₂ s)))
              (id-notin-executeLadder i j r s t) k knotinr

dist-πnotin : ∀ {B} → (a b : List (ℕ × B)) → ∀ c → T (c notinℕ indicies (a ++ b))
            → T (c notinℕ indicies a) × T (c notinℕ indicies b)
dist-πnotin [] b c p = tt , p
dist-πnotin (x ∷ xs) b c p = Prod.map (∧-intro _ _ (∧-eliml {a = not (neq c (proj₁ x))} p)) id
                                      (dist-πnotin xs b c (∧-elimr (not (neq c (proj₁ x))) p))

lem-elim++-eq-aux : ∀ {i} k
                 → (rungs1 rungs2 : List (ℕ × PL-Formula))
                 → T (k isinℕ indicies rungs1)
                 → FinMap i (rungs1 ++ rungs2)
                 → T (k notinℕ indicies rungs2)
lem-elim++-eq-aux k [] r2 kinr1 m = ⊥-elim kinr1
lem-elim++-eq-aux k ((a , b) ∷ xs) r2 kinr1 ([_↦_]∷_ ._ ._ {._} {notinℕ} y) with ex-mid (neq k a)
...| inj₁ x rewrite Tb x | lift-== k a x = proj₂ (dist-πnotin xs r2 a notinℕ)
...| inj₂ y' rewrite ¬Tb y' = lem-elim++-eq-aux k xs r2 kinr1 y

lem-elim++-eq : ∀ i j s t rungs1 rungs2 k
             → T (k isinℕ indicies rungs1)
             → FinMap i (rungs1 ++ rungs2)
             → mkenv (proj₁ (executeLadder i j rungs2 (executeLadder i j rungs1 s t) t)) k
               ≡ mkenv (proj₁ (executeLadder i j rungs1 s t)) k
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lem-elim++-eq i j s t rungs1 rungs2 k kinr1 m
  = id-notin-executeLadder i j rungs2 (executeLadder i j rungs1 s t) t k
                           (lem-elim++-eq-aux k rungs1 rungs2 kinr1 m)

unfold-mymap : ∀ n v vs k → T (neq v k) → mymap n (v ∷ vs) k ≡ n + k
unfold-mymap n v vs k eq rewrite Tb eq | lift-== v k eq = refl

unfold-mymap' : ∀ n v vs k → ¬ T (neq v k) → mymap n (v ∷ vs) k ≡ mymap n vs k
unfold-mymap' n v vs k eq rewrite ¬Tb eq = refl

elim-mymap-c1 : ∀ s t v k → T (k isinℕ v) → mkenv (s ++ t) (mymap (length s) v k) ≡ mkenv t k
elim-mymap-c1 s        t []       k kinv = ⊥-elim kinv
elim-mymap-c1 s        t (v ∷ vs) k kinv with ex-mid (neq v k)
elim-mymap-c1 []       t (v ∷ vs) k kinv | inj₁ x rewrite Tb x | lift-== v k x = refl
elim-mymap-c1 (s ∷ ss) t (v ∷ vs) k kinv | inj₁ x rewrite Tb x
  = trans (cong (mkenv (ss ++ t)) (trans (sym (cong (λ j → length ss + j) (sym (lift-== v k x))))
                                         (sym (unfold-mymap (length ss) v vs k x))))
          (elim-mymap-c1 ss t (v ∷ vs) k kinv)
elim-mymap-c1 s        t (v ∷ vs) k kinv | inj₂ y rewrite ¬Tb y
  = elim-mymap-c1 s t vs k (∨-elim (⊥-elim ∘ y ∘ sym-== k v) id kinv)

elim-mymap-c2 : ∀ s t v k → T (k notinℕ v) → T (k < length s)
              → mkenv (s ++ t) (mymap (length s) v k) ≡ mkenv s k
elim-mymap-c2 s t [] k knotinv k<s = sym (lem-mkenv-++-eq s _ t k refl k<s)
elim-mymap-c2 s t (v ∷ vs) k knotinv k<s
  rewrite ¬Tb (lem-bool-neg-s _ (∧-eliml knotinv) ∘ sym-== v k)
  = elim-mymap-c2 s t vs k (∧-elimr (not (neq k v)) knotinv) k<s

elim-mymap : ∀ s t v k → T (k < length s) → T (k isinℕ v) ⊎ ¬ T (k isinℕ v)
           → mkenv (s ++ t)(mymap (length s) v k) ≡ mkenv t k
             ⊎ mkenv (s ++ t)(mymap (length s) v k) ≡ mkenv s k
elim-mymap s t v k k<s = Sum.map (elim-mymap-c1 s t v k)
                                 (\ x → elim-mymap-c2 s t v k (lem-notisin k v x) k<s)

elim-mymap-in : ∀ n v k → T (k isinℕ v) → mymap n v k ≡ n + k
elim-mymap-in n [] k kinv = ⊥-elim kinv
elim-mymap-in n (x ∷ xs) k kinv with ex-mid (neq x k)
elim-mymap-in n (x ∷ xs) k kinv | inj₁ a rewrite Tb a | lift-== x k a = refl
elim-mymap-in n (x ∷ xs) k kinv | inj₂ a rewrite ¬Tb a | ¬Tb (a ∘ sym-== k x)
  = elim-mymap-in n xs k kinv

elim-mymap-notin : ∀ n v k → T (k notinℕ v) → mymap n v k ≡ k
elim-mymap-notin n []       k knotinv = refl
elim-mymap-notin n (x ∷ xs) k knotinv with ex-mid (neq x k)
elim-mymap-notin n (x ∷ xs) k knotinv | inj₁ x' rewrite Tb (sym-== x k x') = ⊥-elim knotinv
elim-mymap-notin n (x ∷ xs) k knotinv | inj₂ y rewrite ¬Tb y | ¬Tb (y ∘ sym-== k x)
  = elim-mymap-notin n xs k knotinv

open import Algebra
#elim-mymap-in : ∀ i j s t rungs1 rungs2 k
               → T (k isinℕ indicies rungs1)
               → mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                       (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
                 ≡ mkenv (proj₁ (executeLadder i j (rungs1 ++ rungs2) s t)) k
#elim-mymap-in i j s t r1 r2 k isin
  = trans (cong (λ z → mkenv z (mymap (length (proj₁ s ++ proj₁ t)) (indicies r1) k))
                (sym (Monoid.assoc (monoid Bool) (proj₁ s) (proj₁ t)
                                   (proj₁ (executeLadder i j (r1 ++ r2) s t)))))
          (elim-mymap-c1 (proj₁ s ++ proj₁ t)
                         (proj₁ (executeLadder i j (r1 ++ r2) s t)) (indicies r1) k isin)

#elim-mymap-notin : ∀ i j s t rungs1 rungs2 k
                  → T (k < (length (proj₁ s) + length (proj₁ t)))
                  → T (k notinℕ indicies rungs1)
                  → mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                          (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
                    ≡ mkenv (proj₁ s ++ proj₁ t) k
#elim-mymap-notin i j s t r1 r2 k k<s+t notin'
  = trans (cong (λ z → mkenv z (mymap (length (proj₁ s ++ proj₁ t)) (indicies r1) k))
                (sym (Monoid.assoc (monoid Bool) (proj₁ s) (proj₁ t)
                                   (proj₁ (executeLadder i j (r1 ++ r2) s t)))))
          (elim-mymap-c2 (proj₁ s ++ proj₁ t)
                         (proj₁ (executeLadder i j (r1 ++ r2) s t))
                         (indicies r1) k notin'
                         (subst (λ j' → T (k < j')) (lem-length (proj₁ s) (proj₁ t)) k<s+t))

#elim-mymap-in' : ∀ i j s t rungs1 rungs2 k
                → T (k isinℕ indicies rungs1)
                → FinMap i (rungs1 ++ rungs2)
                → mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                        (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
                  ≡ mkenv (proj₁ (executeLadder i j rungs1 s t)) k
#elim-mymap-in' i j s t r1 r2 k isin' m = trans (#elim-mymap-in i j s t r1 r2 k isin')
                                                (trans (cong (λ z → mkenv (proj₁ z) k)
                                                             (elim++-executeLadder i j r1 r2 s t))
                                                       (lem-elim++-eq i j s t r1 r2 k isin' m))

#elim-mymap-notin' : ∀ i j s t rungs1 rungs2 k
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                   → T (k < (length (proj₁ s) + length (proj₁ t)))
                   → T (k notinℕ indicies rungs1)
                   → mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                           (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
                     ≡ mkenv (proj₁ (executeLadder i j rungs1 s t) ++ proj₁ t) k
#elim-mymap-notin' i j s t r1 r2 k k<s+t notin'
  = trans (#elim-mymap-notin i j s t r1 r2 k k<s+t notin')
          (sym (id-notin-executeLadder' i j r1 s t k notin'))

#elim-mymap : ∀ i j s t rungs1 rungs2 k → T (k < (length (proj₁ s) + length (proj₁ t)))
            → T (k isinℕ indicies rungs1) ⊎ ¬ T (k isinℕ indicies rungs1)
            → mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                    (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
              ≡ mkenv (proj₁ (executeLadder i j (rungs1 ++ rungs2) s t)) k
             ⊎ mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                     (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
               ≡ mkenv (proj₁ s ++ proj₁ t) k
#elim-mymap i j s t r1 r2 k k<s+t isin
  = Sum.map (#elim-mymap-in i j s t r1 r2 k)
            (#elim-mymap-notin i j s t r1 r2 k k<s+t ∘ lem-notisin k (indicies r1)) isin

weaken-isin-++ : ∀ k → (r1 r2 : List (ℕ × PL-Formula))
               → T (k isinℕ indicies r1)
               → T (k isinℕ indicies (r1 ++ r2))
weaken-isin-++ k []       r2 = ⊥-elim
weaken-isin-++ k (x ∷ xs) r2 = f∨g {a = neq k (proj₁ x)} id (weaken-isin-++ k xs r2)

#elim-mymap'-aux : ∀ i (r : List (ℕ × PL-Formula)) → ∀ k → T (k isinℕ indicies r) → FinMap i r
                 → T (k < i)
#elim-mymap'-aux i [] k kinr m = ⊥-elim kinr
#elim-mymap'-aux i (.(a , b) ∷ xs) k kinr ([_↦_]∷_ a b {._} {_} {z} y)
  = ∨-elim (λ k=a → subst (λ j → T (j < i)) (sym (lift-== k a k=a)) z)
           (λ z' → #elim-mymap'-aux i xs k z' y) kinr

#elim-mymap' : ∀ i j s t rungs1 rungs2 k → T (k < (length (proj₁ s) + length (proj₁ t)))
             → FinMap i (rungs1 ++ rungs2)
             → mkenv (proj₁ s ++ proj₁ t ++ proj₁ (executeLadder i j (rungs1 ++ rungs2) s t))
                     (mymap (length (proj₁ s ++ proj₁ t)) (indicies rungs1) k)
               ≡ mkenv (proj₁ (executeLadder i j rungs1 s t) ++ proj₁ t) k
#elim-mymap' i j s t r1 r2 k k<s+t m with ex-mid (k isinℕ indicies r1)
...| inj₁ x = trans (#elim-mymap-in' i j s t r1 r2 k x m)
                    (lem-mkenv-++-eq (proj₁ (executeLadder i j r1 s t)) _ (proj₁ t) k refl
                                     (#elim-mymap'-aux _ (r1 ++ r2) k (weaken-isin-++ k r1 r2 x)
                                                    (subst (λ z → FinMap z (r1 ++ r2))
                                                      (sym (proj₂ (executeLadder i j r1 s t))) m)))
...| inj₂ x = #elim-mymap-notin' i j s t r1 r2 k k<s+t (lem-notisin k (indicies r1) x)

lem-putat-eq' : ∀ s x φ → T (x < length s) → mkenv (s [ x == φ ]) x ≡ φ
lem-putat-eq' []       x       φ x<s = ⊥-elim x<s
lem-putat-eq' (x ∷ xs) zero    φ x<s = refl
lem-putat-eq' (x ∷ xs) (suc n) φ x<s = lem-putat-eq' xs n φ x<s

lemma5 : ∀ i j s t rungs a φ
       → T (a < length (proj₁ s))
       → mkenv (proj₁ (executeLadder i j (rungs ++ (a , φ) ∷ []) s t)) a
         ≡ eval-pl (mkenv (proj₁ (executeLadder i j rungs s t) ++ proj₁ t)) φ
lemma5 i j s t [] a φ a<s = lem-putat-eq' (proj₁ s) a (eval-pl (mkenv (proj₁ s ++ proj₁ t)) φ) a<s
lemma5 i j s t ((a' , φ') ∷ rungs) a φ a<s
  = lemma5 i j (executeRung i j (a' , φ') s t) t rungs a φ
           (subst (\ k → T (a < k))
                  (sym (lem-putat-length (proj₁ s) (eval-pl (mkenv (proj₁ s ++ proj₁ t)) φ')
                                         a')) a<s)

lem-apply-¥-∘ : ∀ ξ φ f → ⟦ ξ ⊧ apply-¥-pl φ f ⟧pl ≡ ⟦ ξ ∘ f ⊧ φ ⟧pl
lem-apply-¥-∘ ξ ¥true     f = refl
lem-apply-¥-∘ ξ ¥false    f = refl
lem-apply-¥-∘ ξ (y || y') f = cong₂ _⊎_ (lem-apply-¥-∘ ξ y f) (lem-apply-¥-∘ ξ y' f)
lem-apply-¥-∘ ξ (y && y') f = cong₂ _×_ (lem-apply-¥-∘ ξ y f) (lem-apply-¥-∘ ξ y' f)
lem-apply-¥-∘ ξ (y => y') f = cong₂ (λ a b → a → b) (lem-apply-¥-∘ ξ y f) (lem-apply-¥-∘ ξ y' f)
lem-apply-¥-∘ ξ (¥ y)     f = refl

lem-apply-¥-∘-eval : ∀ ξ φ f → eval-pl ξ (apply-¥-pl φ f) ≡ eval-pl (ξ ∘ f) φ
lem-apply-¥-∘-eval ξ ¥true     f = refl
lem-apply-¥-∘-eval ξ ¥false    f = refl
lem-apply-¥-∘-eval ξ (y || y') f = cong₂ _∨_ (lem-apply-¥-∘-eval ξ y f) (lem-apply-¥-∘-eval ξ y' f)
lem-apply-¥-∘-eval ξ (y && y') f = cong₂ _∧_ (lem-apply-¥-∘-eval ξ y f) (lem-apply-¥-∘-eval ξ y' f)
lem-apply-¥-∘-eval ξ (y => y') f
  = cong₂ (λ a b → not a ∨ b) (lem-apply-¥-∘-eval ξ y f) (lem-apply-¥-∘-eval ξ y' f)
lem-apply-¥-∘-eval ξ (¥ y)     f = refl

mktrans-aux' : ℕ → List (ℕ × PL-Formula) → List (ℕ × PL-Formula) → PL-Formula
mktrans-aux' n v []             = ¥true
mktrans-aux' n v ((a , b) ∷ as) = (¥ (n + a) <=> apply-¥-pl b (mymap n (indicies v))) &&
                                    mktrans-aux' n (v ++ [ (a , b) ]) as

sublist : List (ℕ × PL-Formula) → List (ℕ × PL-Formula) → Set
sublist x y = ∀ γ → T (γ isinℕ indicies x) → T (γ isinℕ indicies y)
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id-sublist : ∀ l → sublist l l
id-sublist l = λ _ → id

elim++-isin : {A : Set} → ∀ k l x → T (x isinℕ indicies {A} (k ++ l))
            → T (x isinℕ indicies k) ⊎ T (x isinℕ indicies l)
elim++-isin []       l x  p = inj₂ p
elim++-isin (x ∷ xs) l x' p with ex-mid (neq x' (proj₁ x))
elim++-isin (x ∷ xs) l x' p | inj₁ x0 = inj₁ (∨-introl _ _ x0)
elim++-isin (x ∷ xs) l x' p | inj₂ y rewrite ¬Tb y = elim++-isin xs l x' p

elim++-isin' : {A : Set} → ∀ k l x → T (x isinℕ indicies k) ⊎ T (x isinℕ indicies l)
             → T (x isinℕ indicies {A} (k ++ l))
elim++-isin' []       l x  p = [ ⊥-elim , id ]′ p
elim++-isin' (x ∷ xs) l x' p with ex-mid (neq x' (proj₁ x))
elim++-isin' (x ∷ xs) l x' p | inj₁ x0 = ∨-introl _ _ x0
elim++-isin' (x ∷ xs) l x' p | inj₂ y rewrite ¬Tb y = elim++-isin' xs l x' p

sublist-extend : (k l : List (ℕ × PL-Formula)) → sublist k l → (x : List (ℕ × PL-Formula))
               → sublist (k ++ x) (l ++ x)
sublist-extend k l p x γ yink+x = elim++-isin' l x γ (Sum.map ( p γ ) id (elim++-isin k x γ yink+x))

_≈_ : List (ℕ × PL-Formula) → List (ℕ × PL-Formula) → Set
a ≈ b = sublist a b × sublist b a

<_≈_,_>++_ : (k l : List (ℕ × PL-Formula)) → k ≈ l → (x : List (ℕ × PL-Formula))
           → (k ++ x) ≈ (l ++ x)
< k ≈ l , p >++ x = (sublist-extend k l (proj₁ p) x) , (sublist-extend l k (proj₂ p) x)

lem-mymap-comm : ∀ (ξ : Env) n (rungs rungs' : List (ℕ × PL-Formula)) v → rungs ≈ rungs'
               → T (ξ (mymap n (indicies rungs) v)) → T (ξ (mymap n (indicies rungs') v))
lem-mymap-comm ξ n r r' v eqi with ex-mid (v isinℕ (indicies r))
lem-mymap-comm ξ n r r' v eqi | inj₁ x rewrite elim-mymap-in n (indicies r) v x
                                             | elim-mymap-in n (indicies r') v (proj₁ eqi v x) = id
lem-mymap-comm ξ n r r' v eqi | inj₂ y
  rewrite elim-mymap-notin n (indicies r) v (lem-notisin v (indicies r) y)
        | elim-mymap-notin n (indicies r') v (lem-notisin v (indicies r') (y ∘ (proj₂ eqi v))) = id

lem-ap-mymap-comm : ∀ ξ n rungs rungs' φ → rungs ≈ rungs'
                  → ⟦ ξ ⊧ apply-¥-pl φ (mymap n (indicies rungs)) ⟧pl
                  → ⟦ ξ ⊧ apply-¥-pl φ (mymap n (indicies rungs')) ⟧pl
lem-ap-mymap-comm ξ n r r' ¥true     eqi = id
lem-ap-mymap-comm ξ n r r' ¥false    eqi = id
lem-ap-mymap-comm ξ n r r' (y || y') eqi = Sum.map (lem-ap-mymap-comm ξ n r r' y eqi)
                                                   (lem-ap-mymap-comm ξ n r r' y' eqi)
lem-ap-mymap-comm ξ n r r' (y && y') eqi = Prod.map (lem-ap-mymap-comm ξ n r r' y eqi)
                                                    (lem-ap-mymap-comm ξ n r r' y' eqi)
lem-ap-mymap-comm ξ n r r' (y => y') eqi
  = λ x → lem-ap-mymap-comm ξ n r r' y' eqi ∘ x ∘ lem-ap-mymap-comm ξ n r' r y (swap eqi)
lem-ap-mymap-comm ξ n r r' (¥ y)     eqi = lem-mymap-comm ξ n r r' y eqi

lem-mktrans-comm : ∀ ξ n rungs1 rungs1' rungs2 → rungs1 ≈ rungs1'
                 → ⟦ ξ ⊧ mktrans-aux' n rungs1 rungs2 ⟧pl
                 → ⟦ ξ ⊧ mktrans-aux' n rungs1' rungs2 ⟧pl
lem-mktrans-comm ξ n r1 r1' []       eqi = id
lem-mktrans-comm ξ n r1 r1' (x ∷ xs) eqi
  = Prod.map (Prod.map (λ x' x0 → lem-ap-mymap-comm ξ n r1 r1' (proj₂ x) eqi (x' x0))
                       (λ x0 x1 → x0 (lem-ap-mymap-comm ξ n r1' r1 (proj₂ x) (swap eqi) x1)))
             (lem-mktrans-comm ξ n (r1 ++ [ x ]) (r1' ++ [ x ]) xs (< r1 ≈ r1' , eqi >++ [ x ]))

append-conc : ∀ r x → (r ++ [ x ]) ≈ (x ∷ r)
append-conc [] x = (\ _ → id) , (\ _ → id)
append-conc (x ∷ xs) x'
  = Prod.map (λ x0 γ → ∨-elim (∨-intror (neq γ (proj₁ x')) _ ∘ ∨-introl (neq γ (proj₁ x)) _)
                              (λ x1 → f∨g {a = neq γ (proj₁ x')}
                                          id (∨-intror (neq γ (proj₁ x)) _) (x0 γ x1)))
             (λ x1 γ → ∨-elim {a = neq γ (proj₁ x')}
                              (∨-intror (neq γ (proj₁ x)) _ ∘ x1 γ ∘ ∨-introl _ _)
                              (f∨g {a = neq γ (proj₁ x)} id (x1 γ ∘ ∨-intror (neq γ (proj₁ x')) _)))
             (append-conc xs x')

lem-mktrans-aux' : ∀ ξ → (n : ℕ) → (r1 r2 : List (ℕ × PL-Formula)) → ⟦ ξ ⊧ mktrans-aux' n r1 r2 ⟧pl
                 → ⟦ ξ ⊧ mktrans-aux n (indicies r1) r2 ⟧pl
lem-mktrans-aux' ξ n r1 [] = id
lem-mktrans-aux' ξ n r1 (x ∷ xs)
  = Prod.map id (λ z → lem-mktrans-aux' ξ n (x ∷ r1) xs
                              (lem-mktrans-comm ξ n (r1 ++ [ x ]) (x ∷ r1) xs (append-conc r1 x) z))

lem-listbound : ∀ n l → ListProperty (λ _ k → T (k < n)) l → ∀ j → ¬ T (j < n) → T (j notinℕ l)
lem-listbound n []       lp                j ¬j<n = tt
lem-listbound n (x ∷ xs) lp                j ¬j<n with ex-mid (neq j x)
lem-listbound n (x ∷ xs) ([ ._ ]< q >∷ lp) j ¬j<n | inj₁ x' rewrite lift-== j x x' = ⊥-elim (¬j<n q)
lem-listbound n (x ∷ xs) ([ ._ ]< q >∷ lp) j ¬j<n | inj₂ y rewrite ¬Tb y
  = lem-listbound n xs lp j ¬j<n

lem-notin-mymap : ∀ n j l → T (j notinℕ l) → j ≡ mymap n l j
lem-notin-mymap n j []       jnotinl = refl
lem-notin-mymap n j (x ∷ xs) jnotinl rewrite ¬Tb ((lem-bool-neg-s _ (∧-eliml jnotinl)) ∘ sym-== x j)
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  = lem-notin-mymap n j xs (∧-elimr (not (neq j x)) jnotinl)

module TransitionProof where

  listprop-proj : (r1 r2 : List (ℕ × PL-Formula)) → ∀ a φ n
                → ListProperty (λ _ x → PL-FormulaBound (proj₂ x) n) (r1 ++ (a , φ) ∷ r2)
                → PL-FormulaBound φ n
  listprop-proj [] r2 a φ n ([ .(a , φ) ]< pa >∷ pas) = pa
  listprop-proj (x ∷ xs) r2 a φ n ([ .x ]< pa >∷ pas) = listprop-proj xs r2 a φ n pas

  TransitionCorrect'-stepa : (r1 r2 : List (ℕ × PL-Formula))
                           → {sv : ℕ}
                           → (a : ℕ)
                           → (φ : PL-Formula)
                           → (rungs : FinMap sv (r1 ++ (a , φ) ∷ r2))
                           → (iv : ℕ)
                           → (rungbound : ListProperty (λ _ x → PL-FormulaBound (proj₂ x) (sv + iv))
                                                       (r1 ++ (a , φ) ∷ r2))
                           → (s : Σ[ m ∶ List Bool ] length m ≡ sv)
                           → (i : Σ[ m ∶ List Bool ] length m ≡ iv)
                           → ∀ k
                           → T (¥ k isSubFormula φ)
                           → (mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++
                                      (a , φ) ∷ r2) s i)) ∘ (mymap (sv + iv) (indicies r1))) k
                             ≡ mkenv (proj₁ (executeLadder sv iv r1 s i) ++ proj₁ i) k
  TransitionCorrect'-stepa r1 r2 {sv} a φ rungs iv rb s i k ksub
    = trans (cong (λ z → mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++
                                 (a , φ) ∷ r2) s i)) (mymap z (indicies r1) k))
                  (trans (cong₂ _+_ (sym (proj₂ s)) (sym (proj₂ i)))
                         (lem-length (proj₁ s) (proj₁ i))))
            (#elim-mymap' sv iv s i r1 ((a , φ) ∷ r2) k
                          (subst (λ z → T (k < z)) (cong₂ _+_ (sym (proj₂ s)) (sym (proj₂ i)))
                              (lem-bound φ (sv + iv) k (listprop-proj r1 r2 a φ (sv + iv) rb) ksub))
                          rungs)

  lem-mkenv-+ : ∀ k l a → mkenv (k ++ l) (length k + a) ≡ mkenv l a
  lem-mkenv-+ []       l a = refl
  lem-mkenv-+ (x ∷ xs) l a = lem-mkenv-+ xs l a

  lem-mkenv-+² : ∀ k l m a → mkenv (k ++ l ++ m) (length k + length l + a) ≡ mkenv m a
  lem-mkenv-+² []       = lem-mkenv-+
  lem-mkenv-+² (x ∷ xs) = lem-mkenv-+² xs

  lem-finmap-proj< : ∀ n → (r1 r2 : List (ℕ × PL-Formula)) → ∀ a φ
                   → (rungs : FinMap n (r1 ++ ((a , φ) ∷ r2)))
                   → T (a < n)
  lem-finmap-proj< n [] r2 a φ ([_↦_]∷_ ._ ._ {._} {_} {z} y) = z
  lem-finmap-proj< n (x ∷ xs) r2 a φ ([_↦_]∷_ ._ ._ {._} {_} {z} y) = lem-finmap-proj< n xs r2 a φ y

  lem-isin : {A : Set} → ∀ r1 a φ → T (a isinℕ indicies {A} (r1 ++ [ (a , φ) ]))
  lem-isin [] a φ = ∨-introl (neq a a) _ (id-== a)
  lem-isin (x ∷ xs) a φ = ∨-intror (neq a (proj₁ x)) _ (lem-isin xs a φ)

  TransitionCorrect'-stepb : (r1 r2 : List (ℕ × PL-Formula))
                           → {sv : ℕ}
                           → (a : ℕ)
                           → (φ : PL-Formula)
                           → (rungs : FinMap sv (r1 ++ (a , φ) ∷ r2))
                           → (iv : ℕ)
                           → (rungbound : ListProperty (λ _ x → PL-FormulaBound (proj₂ x) (sv + iv))
                                                       (r1 ++ (a , φ) ∷ r2))
                           → (s : Σ[ m ∶ List Bool ] length m ≡ sv)
                           → (i : Σ[ m ∶ List Bool ] length m ≡ iv)
                           → mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++
                                     (a , φ) ∷ r2) s i)) (sv + iv + a)
                             ≡ eval-pl (mkenv (proj₁ (executeLadder sv iv r1 s i) ++ proj₁ i)) φ
  TransitionCorrect'-stepb r1 r2 {sv} a φ rungs iv rb s i
    = trans (trans (cong₂  mkenv {y = proj₁ s ++ _} refl
                           (cong₂ (λ x y → x + y + a) (sym (proj₂ s)) (sym (proj₂ i))))
                   ((lem-mkenv-+² (proj₁ s) (proj₁ i) (proj₁ (executeLadder sv iv (r1 ++
                                     (a , φ) ∷ r2) s i)) a)))
            (trans (cong₂ mkenv (cong proj₁ (assoc-executeLadder sv iv r1 ((a , φ) ∷ [])
                                                                 r2 s i)) refl)
                   (trans (cong₂ mkenv (cong proj₁ (elim++-executeLadder sv iv (r1 ++
                                                                         [ (a , φ) ]) r2 s i)) refl)
                          (trans (lem-elim++-eq sv iv s i (r1 ++ [ (a , φ) ]) r2 a (lem-isin r1 a φ)
                                    (subst (FinMap sv) (sym (Monoid.assoc (monoid (ℕ × PL-Formula))
                                                r1 [ (a , φ) ] r2)) rungs))
                                 (lemma5 sv iv s i r1 a φ (subst (T ∘ _<_ a) (sym (proj₂ s))
                                           (lem-finmap-proj< sv r1 r2 a φ rungs))))))

  TransitionCorrect'-step : (r1 r2 : List (ℕ × PL-Formula))
                          → {sv : ℕ}
                          → (a : ℕ)
                          → (φ : PL-Formula)
                          → (rungs : FinMap sv (r1 ++ (a , φ) ∷ r2))
                          → (iv : ℕ)
                          → (rungbound : ListProperty (λ _ x → PL-FormulaBound (proj₂ x) (sv + iv))
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                                                      (r1 ++ (a , φ) ∷ r2))
                          → (s : Σ[ m ∶ List Bool ] length m ≡ sv)
                          → (i : Σ[ m ∶ List Bool ] length m ≡ iv)
                          → ⟦ mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++
                                      (a , φ) ∷ r2) s i))
                              ⊧ ¥ (sv + iv + a) <=> apply-¥-pl φ (mymap (sv + iv) (indicies r1)) ⟧pl
  TransitionCorrect'-step r1 r2 {sv} a φ rungs iv rungbound s i
    rewrite trans (lem-apply-¥-∘ (mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++
                                          (a , φ) ∷ r2) s i))) φ (mymap (sv + iv) (indicies r1)))
                  (env-eq-guard _ _ φ (TransitionCorrect'-stepa r1 r2 a φ rungs iv rungbound s i))
          | TransitionCorrect'-stepb r1 r2 a φ rungs iv rungbound s i
    = lem-eval' (mkenv (proj₁ (executeLadder sv iv r1 s i) ++ proj₁ i)) φ ,
      lem-eval (mkenv (proj₁ (executeLadder sv iv r1 s i) ++ proj₁ i)) φ

  #TransitionCorrect' : (r1 r2 : List (ℕ × PL-Formula))
                     → {sv : ℕ}
                     → (rungs : FinMap sv (r1 ++ r2))
                     → (iv : ℕ)
                     → (rungbound : ListProperty (λ _ x → PL-FormulaBound (proj₂ x) (sv + iv))
                                                 (r1 ++ r2))
                     → (s : Σ[ m ∶ List Bool ] length m ≡ sv)
                     → (i : Σ[ m ∶ List Bool ] length m ≡ iv)
                     → ⟦ mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++ r2) s i))
                               ⊧ mktrans-aux' (sv + iv) r1 r2 ⟧pl
  #TransitionCorrect' r1 [] rungs iv rungbound s i = tt
  #TransitionCorrect' r1 ((a , φ) ∷ r2) {sv} rungs iv rungbound s i
    = TransitionCorrect'-step r1 r2 a φ rungs iv rungbound s i ,
      env-subst-guard _ _ (mktrans-aux' (sv + iv) (r1 ++ (a , φ) ∷ []) r2)
          (λ n p → cong₂ mkenv (cong₂ _++_ {x = proj₁ s} refl (cong₂ _++_ {x = proj₁ i} refl
                     (cong proj₁ (sym (assoc-executeLadder sv iv r1 [ (a , φ) ] r2 s i))))) refl)
          (#TransitionCorrect' (r1 ++ [ (a , φ) ]) r2 (subst (FinMap sv) (sym (Monoid.assoc (monoid
            (ℕ × PL-Formula)) r1 [ (a , φ) ] r2)) rungs) iv (subst (ListProperty
              (λ _ x → PL-FormulaBound (proj₂ x) (sv + iv))) (sym (Monoid.assoc (monoid
              (ℕ × PL-Formula)) r1 [ (a , φ) ] r2)) rungbound) s i)

  TransitionCorrect' : (r1 r2 : List (ℕ × PL-Formula))
                     → {sv : ℕ}
                     → (rungs : FinMap sv (r1 ++ r2))
                     → (iv : ℕ)
                     → (rungbound : ListProperty (λ _ x → PL-FormulaBound (proj₂ x) (sv + iv))
                                                 (r1 ++ r2))
                     → (s : Σ[ m ∶ List Bool ] length m ≡ sv)
                     → (i : Σ[ m ∶ List Bool ] length m ≡ iv)
                     → ⟦ mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++ r2) s i))
                               ⊧ mktrans-aux (sv + iv) (indicies r1) r2 ⟧pl
  TransitionCorrect' r1 r2 {sv} rungs iv rungbound s i
    = lem-mktrans-aux' (mkenv (proj₁ s ++ proj₁ i ++ proj₁ (executeLadder sv iv (r1 ++ r2) s i)))
                       (sv + iv) r1 r2 (#TransitionCorrect' r1 r2 rungs iv rungbound s i)

constructTransitionFunction : (l : ∃ LadderWellFormed)
                            → Ladder.State (proj₁ l)
                            → Ladder.Input (proj₁ l)
                            → Ladder.State (proj₁ l)
constructTransitionFunction (l , p) s i = executeLadder (Ladder.statevars l) (Ladder.inputvars l)
                                                        (Ladder.rungs l) s (proj₁ i)

TransitionCorrect : (l : ∃ LadderWellFormed)
                  → (s : Ladder.State (proj₁ l))
                  → (i : Ladder.Input (proj₁ l))
                  → ⟦ mkenv (proj₁ s ++ proj₁ (proj₁ i) ++
                              proj₁ (constructTransitionFunction l s i)) ⊧ mktrans (proj₁ l) ⟧pl
TransitionCorrect l s i = TransitionProof.TransitionCorrect' [] _
                            (LadderWellFormed.rungsmap (proj₂ l)) (Ladder.inputvars (proj₁ l))
                            (LadderWellFormed.rungvarbound (proj₂ l)) s (proj₁ i)

abstract
  mkDecTransitionSystem : (l : ∃ LadderWellFormed)
                        → DecidableTransitionSystem (mkTransitionSystem (proj₁ l))
  mkDecTransitionSystem l = record {
                              initialState = constructInitialState l;
                              initialCorrectness = InitialCorrect l;
                              transitionFunction = constructTransitionFunction l;
                              transitionCorrectness = TransitionCorrect l }

  mkDecTrans-init-eq : ∀ l
                     → DecidableTransitionSystem.initialState (mkDecTransitionSystem l)
                       ≡ constructInitialState l
  mkDecTrans-init-eq l = refl

open DecidableTransitionSystem

nthLadderStateCorrect : {l : Ladder}
                      → (dts : DecidableTransitionSystem (mkTransitionSystem l))
                      → ∀ φ
                      → LadderCorrectness l φ
                      → ∀ n inputs
                      → ⟦safety⟧π φ (nthState dts inputs n) (inputs n) (nthState dts inputs (suc n))
nthLadderStateCorrect dts φ = nthStateCorrect dts (⟦safety⟧π φ)
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nthLadderStateCorrect dts φ = nthStateCorrect dts (⟦safety⟧π φ)

-- some usefull functions for constructing LadderWellFormed records
isfinmap : ∀ {B} c → (l : List (ℕ × B)) → Bool
isfinmap c []            = true
isfinmap c ((a , b) ∷ l) = (a notinℕ indicies l ∧ (a < c)) ∧ isfinmap c l

mkfinmap : ∀ {B} c → (l : List (ℕ × B)) → T (isfinmap c l) → FinMap c l
mkfinmap c []            = \ _ → []
mkfinmap c ((a , b) ∷ l) = ∧-elim (λ p q → [_↦_]∷_ a b {p = ∧-eliml p}
           {q = ∧-elimr (a notinℕ indicies l) p} (mkfinmap c l q))

isbound : (b : ℕ) → List (ℕ × PL-Formula) → Bool
isbound b []            = true
isbound b ((a , φ) ∷ l) = bound b φ ∧ isbound b l

mkbound : (b : ℕ) → (l : List (ℕ × PL-Formula))
        → T (isbound b l) → ListProperty (const (πPL-FormulaBound b)) l
mkbound b [] = const []
mkbound b ((a , φ) ∷ l) = ∧-elim (λ p q → [ (a , φ) ]< p >∷ (mkbound b l q))
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module CTL.Ladder where

open import CTL.RecordSystem hiding (toState;fromState)
open import CTL.ListGen

open import Coinduction

open import Data.Nat hiding (_<_)
open import Data.Bool renaming (_∧_ to _∧♭_ ; _∨_ to _∨♭_)
open import Data.Vec hiding ([_];lookup;foldr) renaming (_++_ to _++v_)
open import Data.List as List hiding ([_];_++_)
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.List.Util using (repeat;lookup)
open import Data.Fin hiding (_+_;_<_)
open import Data.Fin.Record
open import Data.Fin.EqReasoning
open import Data.String hiding (_==_)

open import Relation.Binary.PropositionalEquality hiding ([_])

open import PropIso renaming (_==_ to nateq)

infixr 7 _∧_
infixr 8 _∨_
infix 9 ~

data BooleanFormula (n m : ℕ) : Set where
  false true : BooleanFormula n m
  _∧_  _∨_ : (φ ψ : BooleanFormula n m) → BooleanFormula n m
  ~ : (φ : BooleanFormula n m) → BooleanFormula n m
  $ : Fin n ⊎ Fin m  → BooleanFormula n m

record Ladder : Set where
  constructor
    ladder
  field
    inp     : ℕ
    state   : ℕ
    initial : Vec Bool state
    rungs   : List (Fin state × BooleanFormula inp state)

  Input : Set
  Input = Vec Bool inp

  State : Set
  State = Vec Bool state

data LadderCTL (n : ℕ) : Set where
  false : LadderCTL n
  _∨_ _∧_ E[_U_] : (φ : LadderCTL n) → (ψ : LadderCTL n) → LadderCTL n
  P[_] : (i : Fin n) → LadderCTL n
  ~ EX EG : (φ : LadderCTL n) → LadderCTL n

data LadderProblem : Set where
  _,_⊧_ : (l : Ladder) → (s : Ladder.State l) → (φ : LadderCTL (Ladder.state l)) → LadderProblem

_[_:=_] : ∀ {n} {A : Set} → Vec A n → Fin n → A → Vec A n
[] [ () := b ]
(x ∷ v) [ zero  := b ] = b ∷ v
(x ∷ v) [ suc a := b ] = x ∷ v [ a := b ]

_[_] : ∀ {n} {A : Set} → Vec A n → Fin n → A
[] [ () ]
(x ∷ v) [ zero  ] = x
(x ∷ v) [ suc i ] = v [ i ]

eval : ∀ {n m} → BooleanFormula n m → Vec Bool n → Vec Bool m → Bool
eval false ξ ζ        = false
eval true ξ ζ         = true
eval (φ ∧ φ₁) ξ ζ     = eval φ ξ ζ ∧♭ eval φ₁ ξ ζ
eval (φ ∨ φ₁) ξ ζ     = eval φ ξ ζ ∨♭ eval φ₁ ξ ζ
eval (~ φ) ξ ζ        = not (eval φ ξ ζ)
eval ($ (inj₁ x)) ξ ζ = ξ [ x ]
eval ($ (inj₂ x)) ξ ζ = ζ [ x ]

executeRungs : ∀ {n m} → List (Fin n × BooleanFormula m n) → Vec Bool n → Vec Bool m → Vec Bool n
executeRungs [] s i            = s
executeRungs ((a , φ) ∷ r) s i = executeRungs r (s [ a := eval φ i s ]) i

mkTransition : (l : Ladder) → Ladder.State l → Ladder.Input l → Ladder.State l
mkTransition l = executeRungs (Ladder.rungs l)

data LadderRun (l : Ladder) (s : Ladder.State l) : Set where
  next : (i : Ladder.Input l) → ∞ (LadderRun l (mkTransition l s i)) → LadderRun l s

run-decompˡ : (l : Ladder)
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           → {s : Ladder.State l}
           → LadderRun l s
           → Σ (Ladder.Input l) (λ x → LadderRun l (mkTransition l s x))
run-decompˡ l (next i y) = i , ♭ y

run-headˡ : (l : Ladder) → {s : Ladder.State l} → LadderRun l s → Ladder.Input l
run-headˡ l r = proj₁ (run-decompˡ l r)

run-tailˡ : (l : Ladder)
          → {s : Ladder.State l}
          → (r : LadderRun l s)
          → LadderRun l (mkTransition l s (run-headˡ l r))
run-tailˡ l r = proj₂ (run-decompˡ l r)

nthˡ : (l : Ladder) → {s : Ladder.State l} → ℕ → LadderRun l s → Ladder.State l
nthˡ l {s} zero r = s
nthˡ l (suc n) r = nthˡ l n (run-tailˡ l r)

⟦_⟧ˡ  : LadderProblem → Set
⟦ l , s ⊧ false ⟧ˡ       = ⊥
⟦ l , s ⊧ ~ φ ⟧ˡ         = ¬ ⟦ l , s ⊧ φ ⟧ˡ
⟦ l , s ⊧ (φ ∨ φ₁) ⟧ˡ    = ⟦ l , s ⊧ φ ⟧ˡ ⊎ ⟦ l , s ⊧ φ₁ ⟧ˡ
⟦ l , s ⊧ (φ ∧ φ₁) ⟧ˡ    = ⟦ l , s ⊧ φ ⟧ˡ × ⟦ l , s ⊧ φ₁ ⟧ˡ
⟦ l , s ⊧ P[ i ] ⟧ˡ      = T (s [ i ])
⟦ l , s ⊧ EX φ ⟧ˡ        = Σ[ run ∶ LadderRun l s ] ⟦ l , nthˡ l 1 run ⊧ φ ⟧ˡ
⟦ l , s ⊧ EG φ ⟧ˡ        = Σ[ run ∶ LadderRun l s ] (∀ i → ⟦ l , nthˡ l i run ⊧ φ ⟧ˡ)
⟦ l , s ⊧ E[ φ U φ₁ ] ⟧ˡ = Σ[ run ∶ LadderRun l s ] Σ[ k ∶ ℕ ]
                                  (((j : ℕ) → T (j < k) → ⟦ l , nthˡ l j run ⊧ φ ⟧ˡ)
                                      × ⟦ l , nthˡ l k run ⊧ φ₁ ⟧ˡ)

toRecord : ∀ {n} → Vec Bool n → Record (repeat 2 n)
toRecord []      = tt
toRecord (x ∷ v) = (fromBool x) , (toRecord v)

fromRecord : ∀ {n} → Record (repeat 2 n) → Vec Bool n
fromRecord {zero} r        = []
fromRecord {suc n} (x , y) = (toBool x) ∷ (fromRecord y)

record-iso1 : ∀ {n} → (v : Vec Bool n) → fromRecord (toRecord v) ≡ v
record-iso1 []      = refl
record-iso1 (x ∷ v) = cong₂ _∷_ (tobool-iso1 x) (record-iso1 v)

record-iso2 : ∀ {n} → (v : Record (repeat 2 n)) → toRecord (fromRecord {n} v) ≡ v
record-iso2 {0} tt          = refl
record-iso2 {suc n} (x , v) = cong₂ _,_ (tobool-iso2 x) (record-iso2 {n} v)

fliprecord1 : ∀ {n} → {v : Vec Bool n}
            → {w :  Record (repeat 2 n)}
            → v ≡ fromRecord w → toRecord v ≡ w
fliprecord1 {._} {[]} {tt} eq = refl
fliprecord1 {._} {x ∷ v} {y , w} eq
  = cong₂ _,_ (flip-toBool1 _ _ (cong head eq)) (fliprecord1 (cong tail eq))

fliprecord2 : ∀ {n} → {v : Vec Bool n}
            → {w :  Record (repeat 2 n)}
            → toRecord v ≡ w → v ≡ fromRecord w
fliprecord2 {._} {[]} {w} eq = refl
fliprecord2 {._} {x ∷ v} {y , w} eq
  = cong₂ _∷_ (flip-toBool2 _ _ (cong proj₁ eq)) (fliprecord2 (cong proj₂ eq))

toState : (l : Ladder) → Ladder.State l → Record (repeat 2 (Ladder.state l))
toState l = toRecord

fromState : (l : Ladder) → Record (repeat 2 (Ladder.state l)) → Ladder.State l
fromState l = fromRecord

toInput : (l : Ladder) → Ladder.Input l → Record (repeat 2 (Ladder.inp l))
toInput l = toRecord

fromInput : (l : Ladder) → Record (repeat 2 (Ladder.inp l)) → Ladder.Input l
fromInput l = fromRecord

toSymFSM : (l : Ladder) → FSMʳ
toSymFSM l = frm (repeat 2 (Ladder.state l))
                 (const (repeat 2 (Ladder.inp l)))
                 (toState l (Ladder.initial l) ∷ [])
                 ((λ s i → toState l (mkTransition l (fromState l s) (fromInput l i))))

toRunˡ' : (l : Ladder)
        → (s t : Ladder.State l)
        → (fromState l (toState l t)) ≡ s
        → LadderRun l s
        → Runʳ (toSymFSM l) (toState l t)
toRunˡ' l  ._ t refl (next i x)
  = next (toState l t)
         (toInput l i)
         (♯ toRunˡ' l _ _ (trans (record-iso1 (mkTransition l (fromRecord (toRecord t))
                                                              (fromRecord (toRecord i))))
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                                 (cong (mkTransition l (fromRecord (toRecord t))) (record-iso1 i)))
                          (♭ x))

toRunˡ : (l : Ladder) → (s : Ladder.State l) → LadderRun l s → Runʳ (toSymFSM l) (toState l s)
toRunˡ l s r = toRunˡ' l _ _ (record-iso1 s) r

fromRunˡ' : (l : Ladder)
          → (s t : Ladder.State l)
          → (fromState l (toState l t) ≡ s)
          → Runʳ (toSymFSM l) (toState l t)
          → LadderRun l s
fromRunˡ' l ._ t refl (next ._ i x)
  = next (fromInput l i)
         (♯ fromRunˡ' l _ _ (record-iso1 (mkTransition l (fromRecord (toRecord t))
                                                         (fromRecord i)))
                            (♭ x))

fromRunˡ : (l : Ladder)
         → (s : Ladder.State l)
         → Runʳ (toSymFSM l) (toState l s)
         → LadderRun l s
fromRunˡ l s r = fromRunˡ' l _ _ (record-iso1 s) r

lem-nth'ˡ : (l : Ladder)
          → {s t : Ladder.State l}
          → (r : LadderRun l s)
          → (n : ℕ)
          → (eq : fromState l (toState l t) ≡ s)
          → nthˡ l n r ≡ fromState l (nthʳ (toSymFSM l) n (toRunˡ' l s t eq r))
lem-nth'ˡ l r zero refl = refl
lem-nth'ˡ l {._} {t} (next i r) (suc n) refl = lem-nth'ˡ l (♭ r) n _

lem-nthˡ : (l : Ladder)
         → {s : Ladder.State l}
         → (r : LadderRun l s)
         → (n : ℕ)
         → nthˡ l n r ≡ fromState l (nthʳ (toSymFSM l) n (toRunˡ l s r))
lem-nthˡ l {s} r n = lem-nth'ˡ l {s} {s} r n (record-iso1 s)

lem-nth'ˡ' : (l : Ladder)
           → {s t : Ladder.State l}
           → (r : Runʳ (toSymFSM l) (toState l t))
           → (n : ℕ)
           → (eq : fromState l (toState l t) ≡ s)
           → fromState l (nthʳ (toSymFSM l) n r) ≡ nthˡ l n (fromRunˡ' l s t eq r)
lem-nth'ˡ' l r zero refl = refl
lem-nth'ˡ' l {._} {t} (next ._ a r) (suc n) refl = lem-nth'ˡ' l (♭ r) n _

lem-nthˡ' : (l : Ladder)
          → {s : Ladder.State l}
          → (r : Runʳ (toSymFSM l) (toState l s))
          → (n : ℕ)
          → fromState l (nthʳ (toSymFSM l) n r) ≡ nthˡ l n (fromRunˡ l _ r)
lem-nthˡ' l r n = lem-nth'ˡ' l r n _

const-two : ∀ {n} → (i : Fin n) → [ id , const 0 ]′ (lookup (repeat 2 n) (toℕ i)) ≡ 2
const-two zero    = refl
const-two (suc i) = const-two i

one : ∀ {n} → (i : Fin n) → Fin ([ id , const 0 ]′ (lookup (repeat 2 n) (toℕ i)))
one i = subst Fin (sym (const-two i)) (suc zero)

toSymCTL : {n : ℕ} → LadderCTL n → CTLʳ (repeat 2 n)
toSymCTL false       = false
toSymCTL (~ φ)       = ~ (toSymCTL φ)
toSymCTL (φ ∨ φ₁)    = toSymCTL φ ∨ toSymCTL φ₁
toSymCTL (φ ∧ φ₁)    = toSymCTL φ ∧ toSymCTL φ₁
toSymCTL P[ i ]      = P[ toℕ i == one i ]
toSymCTL (EX φ)      = EX (toSymCTL φ)
toSymCTL (EG φ)      = EG (toSymCTL φ)
toSymCTL E[ φ U φ₁ ] = E[ toSymCTL φ U toSymCTL φ₁ ]

toSymCTLProblem : LadderProblem → CTLProblemʳ
toSymCTLProblem (l , s ⊧ φ) = (toSymFSM l) , (toState l s) ⊧ʳ (toSymCTL φ)

evalˡ : LadderProblem → Bool
evalˡ l = evalʳ (toSymCTLProblem l)

private
  ladder-correct-proposition1 : ∀ {n}
                              → (s : Vec Bool n)
                              → (i : Fin n)
                              → T (s [ i ])
                              → T (record-lookup (repeat 2 n) (toRecord s)
                                                 (toℕ i , subst Fin (sym (const-two i)) (suc zero)))
  ladder-correct-proposition1 [] () p
  ladder-correct-proposition1 (x ∷ s) zero p rewrite Tb p = tt
  ladder-correct-proposition1 (x ∷ s) (suc i) p = ladder-correct-proposition1 s i p
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  ladder-correct-proposition1 (x ∷ s) (suc i) p = ladder-correct-proposition1 s i p

  ladder-correct-proposition2 : ∀ {n}
                              → (s : Vec Bool n)
                              → (i : Fin n)
                              → T (record-lookup (repeat 2 n) (toRecord s)
                                                 (toℕ i , subst Fin (sym (const-two i)) (suc zero)))
                              → T (s [ i ])
  ladder-correct-proposition2 [] () p
  ladder-correct-proposition2 (true ∷ s) zero p = tt
  ladder-correct-proposition2 (false ∷ s) zero p = p
  ladder-correct-proposition2 (x ∷ s) (suc i) p = ladder-correct-proposition2 s i p

mutual
  ladder-correct1 : ∀ (P : LadderProblem) → ⟦ P ⟧ˡ → ⟦ toSymCTLProblem P ⟧ʳ
  ladder-correct1 (l , s ⊧ false) q    = q
  ladder-correct1 (l , s ⊧ ~ φ) q      = q ∘ ladder-correct2 (l , s ⊧ φ)
  ladder-correct1 (l , s ⊧ (φ ∨ φ₁)) q = Sum.map (ladder-correct1 (l , s ⊧ φ))
                                                 (ladder-correct1 (l , s ⊧ φ₁)) q
  ladder-correct1 (l , s ⊧ (φ ∧ φ₁)) q = Prod.map (ladder-correct1 (l , s ⊧ φ))
                                                  (ladder-correct1 (l , s ⊧ φ₁)) q
  ladder-correct1 (l , s ⊧ P[ i ]) q   = ladder-correct-proposition1 s i q
  ladder-correct1 (l , s ⊧ EX φ) q
    = Prod.map (toRunˡ l s)
               (λ {r} → subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ ⟧ʳ)
                              (cong (toState l) (trans (lem-nthˡ l r 1) (record-iso1 _))) ∘
                          ladder-correct1 (l , nthˡ l 1 r ⊧ φ)) q
  ladder-correct1 (l , s ⊧ EG φ) q
    = Prod.map (toRunˡ l s)
               (λ {r} → λ x n → subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ ⟧ʳ)
                                      (fliprecord1 (lem-nthˡ l r n))
                                      (ladder-correct1 (l , nthˡ l n r ⊧ φ) (x n))) q
  ladder-correct1 (l , s ⊧ E[ φ U φ₁ ]) q
    = Prod.map (toRunˡ l s)
               (λ {r} → Prod.map id (λ {i} → Prod.map (λ x j x₁ →
               subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ ⟧ʳ)
                     (fliprecord1 (lem-nthˡ l r j))
                     (ladder-correct1 (l , nthˡ l j r ⊧ φ) (x j x₁)))
               (subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ₁ ⟧ʳ)
                      (fliprecord1 (lem-nthˡ l r i)) ∘ ladder-correct1 (l , nthˡ l i r ⊧ φ₁)))) q

  ladder-correct2 : ∀ (P : LadderProblem) → ⟦ toSymCTLProblem P ⟧ʳ → ⟦ P ⟧ˡ
  ladder-correct2 (l , s ⊧ false) q    = q
  ladder-correct2 (l , s ⊧ ~ φ) q      = q ∘ ladder-correct1 (l , s ⊧ φ)
  ladder-correct2 (l , s ⊧ (φ ∨ φ₁)) q = Sum.map (ladder-correct2 (l , s ⊧ φ))
                                                 (ladder-correct2 (l , s ⊧ φ₁)) q
  ladder-correct2 (l , s ⊧ (φ ∧ φ₁)) q = Prod.map (ladder-correct2 (l , s ⊧ φ))
                                                  (ladder-correct2 (l , s ⊧ φ₁)) q
  ladder-correct2 (l , s ⊧ P[ i ]) q   = ladder-correct-proposition2 s i q
  ladder-correct2 (l , s ⊧ EX φ) q
    = Prod.map (fromRunˡ l s)
               (λ {r} → subst (λ s' → ⟦ l , s' ⊧ φ ⟧ˡ)
                              (trans (sym (record-iso1 _)) (lem-nthˡ' l r 1)) ∘
                          ladder-correct2 (l , _ ⊧ φ)) q
  ladder-correct2 (l , s ⊧ EG φ) q
    = Prod.map (fromRunˡ l s)
               (λ {r} → λ x i → subst (λ s' → ⟦ l , s' ⊧ φ ⟧ˡ)
                                      (lem-nthˡ' l r i)
                                      (ladder-correct2 (l , _ ⊧ φ)
                                        (subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ ⟧ʳ)
                                               (sym (record-iso2 {Ladder.state l} _)) (x i)))) q
  ladder-correct2 (l , s ⊧ E[ φ U φ₁ ]) q
    = Prod.map (fromRunˡ l s)
               (λ {r} → Prod.map id (λ {i} → Prod.map (λ x j x₁ →
               subst (λ s' → ⟦ l , s' ⊧ φ ⟧ˡ)
                     (lem-nthˡ' l r j)
                     (ladder-correct2 (l , _ ⊧ φ)
                                      (subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ ⟧ʳ)
                                             (sym (record-iso2 {Ladder.state l} _))
                                             (x j x₁))))
               (λ x → subst (λ s' → ⟦ l , s' ⊧ φ₁ ⟧ˡ)
                            (lem-nthˡ' l r i)
                            (ladder-correct2 (l , _ ⊧ φ₁)
                                             (subst (λ s' → ⟦ toSymFSM l , s' ⊧ʳ toSymCTL φ₁ ⟧ʳ)
                                                    (sym (record-iso2 {Ladder.state l} _)) x))))) q

soundnessˡ : (P : LadderProblem) → (T (evalˡ P)) → ⟦ P ⟧ˡ
soundnessˡ P p = ladder-correct2 P (soundnessʳ (toSymCTLProblem P) p)

completenessˡ : (P : LadderProblem) → ⟦ P ⟧ˡ → (T (evalˡ P))
completenessˡ P p = completenessʳ (toSymCTLProblem P) (ladder-correct1 P p)

AG : {n : ℕ} → LadderCTL n → LadderCTL n
AG φ = ~ E[ ~ false U ~ φ ]

from_toplus_ : ℕ → ℕ → List ℕ
from_toplus_ n zero    = []
from_toplus_ n (suc m) = n ∷ from suc n toplus m
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private primitive primShowNat : ℕ → String

showfin : {n : ℕ} → Fin n → String
showfin = primShowNat ∘ toℕ

_elem_by_ : {A : Set} → A → List A → (A → A → Bool) → Bool
x elem [] by f     = false
x elem a ∷ as by f = f x a ∨♭ (x elem as by f)

showformula : {n m : ℕ} → List ℕ → BooleanFormula n m → String
showformula v (φ ∧ ψ)              = "(" ++ showformula v φ ++ " & " ++ showformula v ψ ++ ")"
showformula v (φ ∨ ψ)              = "(" ++ showformula v φ ++ " | " ++ showformula v ψ ++ ")"
showformula v (~ φ)                = "!(" ++ showformula v φ ++ ")"
showformula v false                = "FALSE"
showformula v true                 = "TRUE"
showformula v ($ (inj₁ y))         = "ivar" ++ showfin y
showformula v ($ (inj₂ y)) with toℕ y elem v by nateq
showformula v ($ (inj₂ y)) | true  = "next(var" ++ showfin y ++ ")"
showformula v ($ (inj₂ y)) | false = "var" ++ showfin y

showladder : {n m : ℕ} → List ℕ → List (Fin n × BooleanFormula m n) → String
showladder v []             = ""
showladder v ((a , y) ∷ as) = "    next(var" ++
                                     showfin a ++ ") := " ++ showformula v y ++ ";\n" ++
                                     showladder (toℕ a ∷ v) as
showbool : Bool → String
showbool true  = "TRUE"
showbool false = "FALSE"

showinit : (n : ℕ) → ℕ → Vec Bool n → String
showinit zero m []               = ""
showinit (suc zero) m (b ∷ [])   = "    init(var" ++ primShowNat m ++ ") := " ++ showbool b ++ ";\n"
showinit (suc (suc n)) m (b ∷ y) = "    init(var" ++ primShowNat m ++ ") := " ++ showbool b ++
                                     ";\n" ++ showinit (suc n) (suc m) y

showspec : {n : ℕ} → LadderCTL n → String
showspec false      = "FALSE"
showspec (~ φ)      = "!(" ++ showspec φ ++ ")"
showspec (φ ∨ ψ)    = "(" ++ showspec φ ++ ") | (" ++ showspec ψ ++ ")"
showspec (φ ∧ ψ)    = "(" ++ showspec φ ++ ") & (" ++ showspec ψ ++ ")"
showspec P[ i ]     = "var" ++ showfin i
showspec (EX φ)     = "EX (" ++ showspec φ ++ ")"
showspec (EG φ)     = "EG (" ++ showspec φ ++ ")"
showspec E[ φ U ψ ] = "E[" ++ showspec φ ++ " U " ++ showspec ψ ++ "]"

genSMVFromLadder : LadderProblem → String
genSMVFromLadder (ladder inp state init rungs , s ⊧ φ) = header ++ ivar ++ var ++ assign ++ spec
  where
    header = "MODULE main\n"

    ivar = "IVAR\n" ++ foldr _++_ "" (List.map (λ n → "    ivar" ++ primShowNat n ++
              " : boolean;\n") (from 0 toplus inp))

    var = "VAR\n" ++ foldr _++_ "" (List.map (λ n → "    var" ++ primShowNat n ++
              " : boolean;\n") (from 0 toplus state))

    assign = "ASSIGN\n" ++ showinit state 0 init ++ showladder [] rungs

    spec = "SPEC\n    " ++ showspec φ ++ ";\n"

{-# BUILTIN UNIT ⊤ #-}
{-# BUILTIN TRIV tt #-}
{-# BUILTIN EMPTY ⊥ #-}
{-# BUILTIN ATOM T #-}

TOOL : String
TOOL = "nusmv"

{-# BUILTIN ATPTOOL TOOL #-}
{-# BUILTIN ATPPROBLEM LadderProblem #-}
{-# BUILTIN ATPINPUT genSMVFromLadder #-}
{-# BUILTIN ATPDECPROC evalˡ #-}
{-# BUILTIN ATPSEMANTICS ⟦_⟧ˡ #-}
{-# BUILTIN ATPSOUND soundnessˡ #-}
{-# BUILTIN ATPCOMPLETE completenessˡ #-}
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module CTL.Pelicon where

open import CTL.Ladder
open import Data.Fin
open import Data.Fin.Arithmetic
open import Data.Vec
open import Data.Nat
open import Data.Product
open import Data.List
open import Data.Sum
open import Data.Bool hiding (_∧_;_∨_)

open import PropIso hiding (_$_)

inputlatchcount : ℕ
inputlatchcount = 1

Input : Set
Input = Fin inputlatchcount

statelatchcount : ℕ
statelatchcount = 4

State : Set
State = Fin statelatchcount

Pressed : Input
Pressed = fromℕ< 0 tt

Requested : State
Requested = fromℕ< 0 tt

Crossing : State
Crossing = fromℕ< 1 tt

PLightG : State
PLightG = fromℕ< 2 tt

TLightG : State
TLightG = fromℕ< 3 tt 

private
  infix 6 _:=_
  _:=_ : State → BooleanFormula 1 4 → State × BooleanFormula 1 4
  _:=_ = _,_

rungs : List (State × BooleanFormula 1 4)
rungs = Crossing  := (~ ($ (inj₂ Crossing)) ∧ $ (inj₂ Requested))
      ∷ Requested := ($ (inj₁ Pressed) ∧ ~ ($ (inj₂ Crossing)))
      ∷ PLightG   := ($ (inj₂ Crossing))
      ∷ TLightG   := (~ ($ (inj₂ Crossing)) ∧ ~ ($ (inj₂ Requested)))
      ∷ []

pelicon-ladder : Ladder
pelicon-ladder = ladder 1 4 (false ∷ false ∷ false ∷ false ∷ []) rungs

φ : LadderCTL 4
φ = AG (~ P[ PLightG ] ∨ ~ P[ TLightG ])

prob : LadderProblem
prob = pelicon-ladder , Ladder.initial pelicon-ladder ⊧ φ

X : T (evalˡ prob)
X = tt
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module Pelicon.PeliconModel where

open import Data.Nat
open import Data.Product
open import Data.Sum
open import Data.Nat.Properties

open import Relation.Binary.PropositionalEquality
open import Relation.Decidable

open import Function

open import Algebra.Structures

{-
  Pedestrial Light Controlled Corssing -- Simulator

               P1
  -------------------------
      T1    = MUX =    T2
  -------------------------
               P2
-}

-- some needed lemmata
+-id : ∀ a b → a + b ∸ a ≡ b
+-id zero b = refl
+-id (suc a) b = +-id a b

stream-simplify : ∀ (X Y : ℕ → ℕ) → X 0 ≡ Y 0
                → (∀ n → X (suc n) ≡ X n + Y (suc n) ∸ Y n) → ∀ n → X n ≡ Y n
stream-simplify X Y base-eq stream-def zero = base-eq
stream-simplify X Y base-eq stream-def (suc n) rewrite stream-def n 
                                                     | stream-simplify X Y base-eq stream-def n 
                                                          = +-id (Y n) (Y (suc n))

simplify : ∀ (V W X Y Z : ℕ → ℕ) 
         → V 0 ≡ 0 → W 0 ≡ 0 → X 0 ≡ 0
         → (∀ t → W t ≡ Z (suc t))
         → (∀ t → X t ≡ Y (suc t))
         → (∀ t → V (suc t) ≡ V t + (W (suc t) + X (suc t)) ∸ (Y (suc t) + Z (suc t)))
         → ∀ t → V t ≡ W t + X t
simplify V W X Y Z baseV baseW baseX WZeq XYeq stream-def 
  = stream-simplify V (λ t → W t + X t) 
                    (trans baseV (sym (cong₂ _+_ baseW baseX)))
                    (λ t → trans (stream-def t) (cong (λ k → V t + (W (suc t) + X (suc t)) ∸ k)
                            (trans (cong₂ _+_ (sym (XYeq t)) (sym (WZeq t)))
                              (IsCommutativeMonoid.comm
                                (IsCommutativeSemiring.+-isCommutativeMonoid isCommutativeSemiring)
                                (X t) (W t)))))

data Aspect : Set where
  red green : Aspect

aspect-dec : Decidable (λ x y → type-signature Aspect x ≡ y)
aspect-dec red red = yes refl
aspect-dec red green = no (λ ())
aspect-dec green red = no (λ ())
aspect-dec green green = yes refl

data Area : Set where
  P1 P2 T1 T2 MUX : Area

record State : Set where
  field 
    numcars : Area → ℕ
    numpeds : Area → ℕ
    movingcars : Area → Area → ℕ
    movingpeds : Area → Area → ℕ
    traffic : Aspect
    pedest : Aspect

open State

record Controller : Set where
  field
    nthState : ℕ → State

    taxm1 : ∀ t → traffic (nthState t) ≡ red
          → movingcars (nthState (suc t)) T1 MUX ≡ 0 
            × movingcars (nthState (suc t)) T2 MUX ≡ 0
    taxm2 : ∀ t → movingcars (nthState t) T1 MUX ≡ movingcars (nthState (suc t)) MUX T2
    taxm3 : ∀ t → movingcars (nthState t) T2 MUX ≡ movingcars (nthState (suc t)) MUX T1
    taxm4 : ∀ t → movingcars (nthState (suc t)) T1 MUX ≤ numcars (nthState t) T1
    taxm5 : ∀ t → movingcars (nthState (suc t)) T2 MUX ≤ numcars (nthState t) T2
    taxm6 : ∀ t → numcars (nthState (suc t)) MUX ≡ numcars (nthState t) MUX
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                     + (movingcars (nthState (suc t)) T1 MUX + movingcars (nthState (suc t)) T2 MUX)
                     ∸ (movingcars (nthState (suc t)) MUX T1 + movingcars (nthState (suc t)) MUX T2)

    paxm1 : ∀ t → pedest (nthState t) ≡ red
          → movingpeds (nthState (suc t)) P1 MUX ≡ 0 × movingpeds (nthState (suc t)) P2 MUX ≡ 0
    paxm2 : ∀ t → movingpeds (nthState t) P1 MUX ≡ movingpeds (nthState (suc t)) MUX P2
    paxm3 : ∀ t → movingpeds (nthState t) P2 MUX ≡ movingpeds (nthState (suc t)) MUX P1
    paxm4 : ∀ t → movingpeds (nthState (suc t)) P1 MUX ≤ numpeds (nthState t) P1
    paxm5 : ∀ t → movingpeds (nthState (suc t)) P2 MUX ≤ numpeds (nthState t) P2
    paxm6 : ∀ t → numpeds (nthState (suc t)) MUX ≡ numpeds (nthState t) MUX
                     + (movingpeds (nthState (suc t)) P1 MUX + movingpeds (nthState (suc t)) P2 MUX)
                     ∸ (movingpeds (nthState (suc t)) MUX P1 + movingpeds (nthState (suc t)) MUX P2)

    safetyp : ∀ t → (movingcars (nthState t) T1 MUX ≡ 0 × movingcars (nthState t) T2 MUX ≡ 0)
                    ⊎ (movingpeds (nthState t) P1 MUX ≡ 0 × movingpeds (nthState t) P2 MUX ≡ 0)

open Controller 

record Safe (c : Controller) : Set where
  ψ : ℕ → Set
  ψ n = numcars (nthState c n) MUX ≡ 0 ⊎ numpeds (nthState c n) MUX ≡ 0

  field
    initnousers : (movingcars (nthState c 0) T1 MUX ≡ 0 × movingcars (nthState c 0) T2 MUX ≡ 0)
                  × (movingpeds (nthState c 0) P1 MUX ≡ 0 × movingpeds (nthState c 0) P2 MUX ≡ 0)
                  × numcars (nthState c 0) MUX ≡ 0 × numpeds (nthState c 0) MUX ≡ 0

  CarMuxStream : ∀ n 
               → numcars (nthState c n) MUX 
                 ≡ movingcars (nthState c n) T1 MUX + movingcars (nthState c n) T2 MUX
  CarMuxStream = simplify (λ t → numcars (nthState c t) MUX)
                          (λ t → movingcars (nthState c t) T1 MUX)
                          (λ t → movingcars (nthState c t) T2 MUX)
                          (λ t → movingcars (nthState c t) MUX T1)
                          (λ t → movingcars (nthState c t) MUX T2)
                          (proj₁ $ proj₂ $ proj₂ initnousers)
                          (proj₁ $ proj₁ initnousers)
                          (proj₂ $ proj₁ initnousers)
                          (taxm2 c) (taxm3 c) (taxm6 c) 

  PedMuxStream : ∀ n
               → numpeds (nthState c n) MUX
                 ≡ movingpeds (nthState c n) P1 MUX + movingpeds (nthState c n) P2 MUX
  PedMuxStream = simplify (λ t → numpeds (nthState c t) MUX)
                          (λ t → movingpeds (nthState c t) P1 MUX)
                          (λ t → movingpeds (nthState c t) P2 MUX)
                          (λ t → movingpeds (nthState c t) MUX P1)
                          (λ t → movingpeds (nthState c t) MUX P2)
                          (proj₂ $ proj₂ $ proj₂ initnousers)
                          (proj₁ $ proj₁ $ proj₂ initnousers)
                          (proj₂ $ proj₁ $ proj₂ initnousers)
                          (paxm2 c) (paxm3 c) (paxm6 c) 

  IsSafe : ∀ t → ψ t
  IsSafe t = [ (λ x → inj₁ (trans (CarMuxStream t) (cong₂ _+_ (proj₁ x) (proj₂ x)))) , 
               (λ x → inj₂ (trans (PedMuxStream t) (cong₂ _+_ (proj₁ x) (proj₂ x)))) 
             ]′ (safetyp c t)
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module Pelicon.Ladder where

open import Data.List
open import Data.Nat
open import Data.Product
open import Data.Bool
open import Data.Unit

open import Ladder.Decidable
open import Ladder.Core

open import TransitionSystem
open import TransitionSystem.Decidable

open import Boolean.Formula

CROSSING = 0
REQ = 1
TLIGHT = 2
PLIGHT = 3
PRESSED = 4

rungs : List (ℕ × PL-Formula)
rungs = (CROSSING , ~ (¥ CROSSING) && ¥ REQ) 
      ∷ (REQ , ¥ PRESSED && ~ (¥ CROSSING)) 
      ∷ (TLIGHT , ~ (¥ CROSSING) && ~ (¥ REQ)) 
      ∷ (PLIGHT , ¥ CROSSING) 
      ∷ []

initstate : List (ℕ × Bool)
initstate = (CROSSING , false) 
          ∷ (REQ , false) 
          ∷ (TLIGHT , false) 
          ∷ (PLIGHT , false) 
          ∷ []

pelicon-ladder : Ladder 
pelicon-ladder = ladder 4 1 rungs initstate ¥true

pelicon-fsm : TransitionSystem (Ladder.Input pelicon-ladder)
pelicon-fsm = mkTransitionSystem pelicon-ladder

PeliconLadderWellFormed : LadderWellFormed pelicon-ladder
PeliconLadderWellFormed =
  record { initialmap = mkfinmap (Ladder.statevars pelicon-ladder)
                                 (Ladder.initialstate pelicon-ladder) tt;
           rungsmap = mkfinmap (Ladder.statevars pelicon-ladder)
                               (Ladder.rungs pelicon-ladder) tt;
           rungvarbound = mkbound (Ladder.statevars pelicon-ladder + Ladder.inputvars pelicon-ladder)
                                  (Ladder.rungs pelicon-ladder) tt
         }

PeliconDecidableLadder : DecidableTransitionSystem pelicon-fsm
PeliconDecidableLadder = mkDecTransitionSystem (pelicon-ladder , PeliconLadderWellFormed)
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module Pelicon.State where

open import Pelicon.Ladder
open import Pelicon.PeliconModel

open import Boolean.Formula

open import Ladder.Decidable
open import Ladder.Core

open import TransitionSystem.Decidable renaming (DecidableTransitionSystem to DTS)
open import TransitionSystem

open import Data.List
open import Data.Nat
open import Data.Product
open import Data.Bool
open import Data.Sum

open import Relation.Binary.PropositionalEquality

open import PropIso

≤-id : ∀ n → n ≤ n
≤-id zero = z≤n
≤-id (suc n) = s≤s (≤-id n)

Input : Set
Input = ℕ → Ladder.Input pelicon-ladder

UsersInput : Set
UsersInput = ℕ → ℕ × ℕ × ℕ × ℕ

πT1 : ℕ × ℕ × ℕ × ℕ → ℕ
πT1 = proj₁

πT2 : ℕ × ℕ × ℕ × ℕ → ℕ
πT2 = proj₁ ∘ proj₂

πP1 : ℕ × ℕ × ℕ × ℕ → ℕ
πP1 = proj₁ ∘ proj₂ ∘ proj₂

πP2 : ℕ × ℕ × ℕ × ℕ → ℕ
πP2 = proj₂ ∘ proj₂ ∘ proj₂

sigmap : Bool → Aspect
sigmap true = green
sigmap false = red

lem-sigmap : ∀ b → T b → sigmap b ≡ green
lem-sigmap true _ = refl
lem-sigmap false ()

lem-sigmap' : ∀ b → ¬ T b → sigmap b ≡ red
lem-sigmap' false p = refl
lem-sigmap' true p = ⊥-elim $ p _

archCarAspect : Ladder.State pelicon-ladder → Aspect
archCarAspect s = sigmap $ eval-pl (mkenv (proj₁ s)) $ ¥ TLIGHT

archPedAspect : Ladder.State pelicon-ladder → Aspect
archPedAspect s = sigmap $ eval-pl (mkenv (proj₁ s)) $ ¥ PLIGHT

carmoving' : (Area → Area → ℕ) → (Area → ℕ)→ Ladder.State pelicon-ladder → Area → Area → ℕ
carmoving' moving position s P1  a'  = 0
carmoving' moving position s P2  a'  = 0
carmoving' moving position s T1  P1  = 0
carmoving' moving position s T1  P2  = 0
carmoving' moving position s T1  T1  = 0
carmoving' moving position s T1  T2  = 0
carmoving' moving position s T1  MUX with archCarAspect s
carmoving' moving position s T1  MUX | red = 0
carmoving' moving position s T1  MUX | green = position T1
carmoving' moving position s T2  P1  = 0
carmoving' moving position s T2  P2  = 0
carmoving' moving position s T2  T1  = 0
carmoving' moving position s T2  T2  = 0
carmoving' moving position s T2  MUX with archCarAspect s
carmoving' moving position s T2  MUX | red = 0
carmoving' moving position s T2  MUX | green = position T2
carmoving' moving position s MUX P1  = 0
carmoving' moving position s MUX P2  = 0
carmoving' moving position s MUX T1  = moving T2 MUX
carmoving' moving position s MUX T2  = moving T1 MUX
carmoving' moving position s MUX MUX = 0

carposition' : (ℕ × ℕ × ℕ × ℕ) → (Area → Area → ℕ) → (Area → ℕ) → Area → ℕ
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carposition' inp moving position P1  = 0
carposition' inp moving position P2  = 0
carposition' inp moving position T1  = position T1 + πT1 inp ∸ moving T1 MUX
carposition' inp moving position T2  = position T2 + πT2 inp ∸ moving T2 MUX
carposition' inp moving position MUX = position MUX + (moving T1 MUX + moving T2 MUX)
                                                    ∸ (moving MUX T1 + moving MUX T2)
mutual
   carmoving : Input → UsersInput → ℕ → Area → Area → ℕ
   carmoving i ui zero    = \ _ _ → 0
   carmoving i ui (suc t) = carmoving' (carmoving i ui t)
                                       (carposition i ui t)
                                       (DTS.nthState PeliconDecidableLadder i t)

   carposition : Input → UsersInput → ℕ → Area → ℕ
   carposition i ui zero    = λ _ → 0
   carposition i ui (suc t) = carposition' (ui t) (carmoving i ui (suc t))
                                           (carposition i ui t)

pedestmoving' : (Area → Area → ℕ) → (Area → ℕ) → Ladder.State pelicon-ladder → Area → Area → ℕ
pedestmoving' moving position s T1  a'  = 0
pedestmoving' moving position s T2  a'  = 0
pedestmoving' moving position s P1  P1  = 0
pedestmoving' moving position s P1  P2  = 0
pedestmoving' moving position s P1  T1  = 0
pedestmoving' moving position s P1  T2  = 0
pedestmoving' moving position s P1  MUX with archPedAspect s
pedestmoving' moving position s P1  MUX | red = 0
pedestmoving' moving position s P1  MUX | green = position P1
pedestmoving' moving position s P2  P1  = 0
pedestmoving' moving position s P2  P2  = 0
pedestmoving' moving position s P2  T1  = 0
pedestmoving' moving position s P2  T2  = 0
pedestmoving' moving position s P2  MUX with archPedAspect s
pedestmoving' moving position s P2  MUX | red = 0
pedestmoving' moving position s P2  MUX | green = position P2
pedestmoving' moving position s MUX T1  = 0
pedestmoving' moving position s MUX T2  = 0
pedestmoving' moving position s MUX P1  = moving P2 MUX
pedestmoving' moving position s MUX P2  = moving P1 MUX
pedestmoving' moving position s MUX MUX = 0

pedestposition' : (ℕ × ℕ × ℕ × ℕ) → (Area → Area → ℕ) → (Area → ℕ) → Area → ℕ
pedestposition' inp moving position T1  = 0
pedestposition' inp moving position T2  = 0
pedestposition' inp moving position P1  = position P1 + πP1 inp ∸ moving P1 MUX
pedestposition' inp moving position P2  = position P2 + πP2 inp ∸ moving P2 MUX
pedestposition' inp moving position MUX = position MUX + (moving P1 MUX + moving P2 MUX)
                                                    ∸ (moving MUX P1 + moving MUX P2)
mutual
   pedestmoving : Input → UsersInput → ℕ → Area → Area → ℕ
   pedestmoving i ui zero = \ _ _ → 0
   pedestmoving i ui (suc t) = pedestmoving' (pedestmoving i ui t)
                                             (pedestposition i ui t)
                                             (DTS.nthState PeliconDecidableLadder i t)

   pedestposition : Input → UsersInput → ℕ → Area → ℕ
   pedestposition i ui zero = λ _ → 0
   pedestposition i ui (suc t) = pedestposition' (ui t) (pedestmoving i ui (suc t))
                                                        (pedestposition i ui t)

SimState : Set
SimState = (Area → ℕ) × (Area → ℕ) × (Area → Area → ℕ) × (Area → Area → ℕ)

nc : SimState → Area → ℕ
nc = proj₁

np : SimState → Area → ℕ
np = proj₁ ∘ proj₂

mc : SimState → Area → Area → ℕ
mc = proj₁ ∘ proj₂ ∘ proj₂

mp : SimState → Area → Area → ℕ
mp = proj₂ ∘ proj₂ ∘ proj₂

nextState : SimState × Ladder.State pelicon-ladder
          → Ladder.Input pelicon-ladder
          → (ℕ × ℕ × ℕ × ℕ)
          → SimState × Ladder.State pelicon-ladder
nextState s i ui
  = (carposition' ui (carmoving' (mc $ proj₁ s) (nc $ proj₁ s) (proj₂ s)) (nc $ proj₁ s)
      , pedestposition' ui (pedestmoving' (mp $ proj₁ s) (np $ proj₁ s) (proj₂ s)) (np $ proj₁ s)
      , carmoving' (mc $ proj₁ s) (nc $ proj₁ s) (proj₂ s)
      , pedestmoving' (mp $ proj₁ s) (np $ proj₁ s) (proj₂ s))
     , (DTS.transitionFunction PeliconDecidableLadder (proj₂ s) i)

initSimState : SimState
initSimState = ( (const 0) , (const 0) , (const $ const 0) , (const $ const 0) )
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nthState : Input → UsersInput → ℕ → SimState × Ladder.State pelicon-ladder
nthState i ui zero = initSimState , DTS.initialState PeliconDecidableLadder
nthState i ui (suc t) = nextState (nthState i ui t) (i t) (ui t)

archState : Input → UsersInput → ℕ → State
archState i ui t = record {
                    numcars = nc $ proj₁ $ nthState i ui t;
                    numpeds = np $ proj₁ $ nthState i ui t;
                    movingcars = mc $ proj₁ $ nthState i ui t;
                    movingpeds = mp $ proj₁ $ nthState i ui t;
                    traffic = archCarAspect $ proj₂ $ nthState i ui t;
                    pedest = archPedAspect $ proj₂ $ nthState i ui t }

lem-carmoving : ∀ i ui t → State.traffic (archState i ui t) ≡ red
              → State.movingcars (archState i ui (suc t)) T1 MUX ≡ 0
                × State.movingcars (archState i ui (suc t)) T2 MUX ≡ 0
lem-carmoving i ui t tred with sigmap (mkenv (proj₁ (proj₂ (nthState i ui t))) TLIGHT)
lem-carmoving i ui t tred | red = refl , refl
lem-carmoving i ui t () | green

lem-carmoving2 : ∀ i ui t
               → State.movingcars (archState i ui (suc t)) T1 MUX
                   ≤ State.numcars (archState i ui t) T1
lem-carmoving2 i ui t with sigmap (mkenv (proj₁ (proj₂ (nthState i ui t))) TLIGHT)
lem-carmoving2 i ui t | red = z≤n
lem-carmoving2 i ui t | green = ≤-id _

lem-carmoving3 : ∀ i ui t
               → State.movingcars (archState i ui (suc t)) T2 MUX
                   ≤ State.numcars (archState i ui t) T2
lem-carmoving3 i ui t with sigmap (mkenv (proj₁ (proj₂ (nthState i ui t))) TLIGHT)
lem-carmoving3 i ui t | red = z≤n
lem-carmoving3 i ui t | green = ≤-id _

lem-pedestmoving : ∀ i ui t → State.pedest (archState i ui t) ≡ red
              → State.movingpeds (archState i ui (suc t)) P1 MUX ≡ 0
                × State.movingpeds (archState i ui (suc t)) P2 MUX ≡ 0
lem-pedestmoving i ui t tred with sigmap (mkenv (proj₁ (proj₂ (nthState i ui t))) PLIGHT)
lem-pedestmoving i ui t tred | red = refl , refl
lem-pedestmoving i ui t () | green

lem-pedestmoving2 : ∀ i ui t
                  → State.movingpeds (archState i ui (suc t)) P1 MUX
                      ≤ State.numpeds (archState i ui t) P1
lem-pedestmoving2 i ui t with sigmap (mkenv (proj₁ (proj₂ (nthState i ui t))) PLIGHT)
lem-pedestmoving2 i ui t | red = z≤n
lem-pedestmoving2 i ui t | green = ≤-id _

lem-pedestmoving3 : ∀ i ui t
                  → State.movingpeds (archState i ui (suc t)) P2 MUX
                      ≤ State.numpeds (archState i ui t) P2
lem-pedestmoving3 i ui t with sigmap (mkenv (proj₁ (proj₂ (nthState i ui t))) PLIGHT)
lem-pedestmoving3 i ui t | red = z≤n
lem-pedestmoving3 i ui t | green = ≤-id _

nthReachable' : ∀ i ui n → Reachable pelicon-fsm (proj₂ $ nthState i ui n)
nthReachable' i ui zero = initial (DTS.initialState PeliconDecidableLadder)
                                  (DTS.initialCorrectness PeliconDecidableLadder)
nthReachable' i ui (suc n) = next (proj₂ $ nthState i ui n) (nthReachable' i ui n)
                                  (i n)
                                  (proj₂ $ nthState i ui (suc n))
                                  (DTS.transitionCorrectness PeliconDecidableLadder
                                                             (proj₂ $ nthState i ui n) (i n))

nthLadderStateCorrect' : ∀ φ
                       → LadderCorrectness pelicon-ladder φ
                       → ∀ n i ui
                       → ⟦safety⟧π φ (proj₂ $ nthState i ui n) (i n) (proj₂ $ nthState i ui (suc n))
nthLadderStateCorrect' φ lc n i ui = lc (proj₂ $ nthState i ui n)
                                        (nthReachable' i ui n)
                                        (i n)
                                        (proj₂ $ nthState i ui (suc n))
                                        (DTS.transitionCorrectness PeliconDecidableLadder
                                                                   (proj₂ $ nthState i ui n) (i n))

private
  φ = (~ (¥ TLIGHT) || ~ (¥ PLIGHT))

open import Boolean.TPTP

peliconproof : LadderCorrectness pelicon-ladder φ
peliconproof = inductiveProof pelicon-ladder φ

peliconProof : ∀ t (i : Input) (ui : UsersInput) → ⟦ mkenv (proj₁ $ proj₂ $ nthState i ui t) ⊧ φ ⟧pl
peliconProof t i ui = lem-mkenv-++-pl' φ (proj₁ $ proj₂ $ nthState i ui t)
                          (proj₁ (proj₁ (i t)) ++ proj₁ (proj₂ (nthState i ui (suc t))))
                          (subst (λ k → T (bound k φ)) (sym (proj₂ (proj₂ (nthState i ui t)))) _)
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                          (subst (λ k → T (bound k φ)) (sym (proj₂ (proj₂ (nthState i ui t)))) _)
                          (nthLadderStateCorrect' φ peliconproof t i ui)

safety : ∀ i ui t
       → State.movingcars (archState i ui t) T1 MUX ≡ 0
           × State.movingcars (archState i ui t) T2 MUX ≡ 0
         ⊎ State.movingpeds (archState i ui t) P1 MUX ≡ 0
             × State.movingpeds (archState i ui t) P2 MUX ≡ 0
safety i ui zero = inj₁ (refl , refl)
safety i ui (suc t) with peliconProof t i ui
safety i ui (suc t) | inj₁ x rewrite lem-sigmap' _ x = inj₁ (refl , refl)
safety i ui (suc t) | inj₂ y rewrite lem-sigmap' _ y = inj₂ (refl , refl)

pelicon-controller : Input → UsersInput → Controller
pelicon-controller i ui = record {
                       nthState = archState i ui;
                       taxm1 = lem-carmoving i ui;
                       taxm4 = lem-carmoving2 i ui;
                       taxm5 = lem-carmoving3 i ui;
                       paxm1 = lem-pedestmoving i ui;
                       paxm4 = lem-pedestmoving2 i ui;
                       paxm5 = lem-pedestmoving3 i ui;
                       safetyp = safety i ui;
                       taxm2 = λ t → refl; taxm3 = λ t → refl; taxm6 = λ t → refl;
                       paxm2 = λ t → refl; paxm3 = λ t → refl; paxm6 = λ t → refl }
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module Pelicon.Safe where

open import Pelicon.PeliconModel
open import Pelicon.State
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality

pelicon-safe : (i : Input) → (ui : UsersInput) → Safe (pelicon-controller i ui)
pelicon-safe i ui = record { initnousers = (refl , refl) , (refl , refl) , refl , refl } 
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module Pelicon.Simulator where

open import IO.Console
open import Foreign.Haskell

open import Data.String as String hiding (_==_) renaming (_++_ to _+++_)
open import Data.Char
open import Data.Bool
open import Data.List as List
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Nat hiding (_<_)
open import Data.Maybe

open import Relation.Binary.PropositionalEquality

open import Coinduction
open import coparse as P hiding (choice)

open import PropIso

open import TransitionSystem.Decidable

open import Pelicon.Ladder

showBool : Bool → String
showBool true  = "True"
showBool false = "False"

showState : Σ[ l ∶ List Bool ] (List.length l ≡ 4) → String
showState (crossing ∷ req ∷ tlight ∷ plight ∷ [] , proj₂) =
  "Crossing: "  +++ showBool crossing      +++ "\n" +++
  "Requested: " +++ showBool req           +++ "\n" +++
  "Car Green: " +++ showBool tlight        +++ "\n" +++
  "Pedestrian Green: " +++ showBool plight +++ "\n\n"
showState _ = "IMPOSSIBLE ERROR"

parseRequested : Parser Bool
parseRequested s = maybe′ just (P.choice' (parseDataSp "no" false) (parseDataSp "n" false) s)
                               (P.choice' (parseDataSp "yes" true) (parseDataSp "r" true) s)

readRequested : IOConsole Bool
readRequested = do (putStrLn (toCostring "Request Crossing [yes/no] ")) \ _ →
              ♯ do getLine \ l →
              ♯ choice (parseRequested l) (return ∘ proj₁) readRequested

readInput : IOConsole (Σ[ l ∶ List Bool ] (List.length l ≡ 1))
readInput = readRequested >>= λ b →
          ♯ return ( b ∷ [] , refl)

readExit : IOConsole Choice
readExit = do (putStrLn (toCostring "do you want to exit? [yes/no]")) \ _ →
         ♯ do getLine \ l1 →
         ♯ choice (parseChoice l1) (return ∘ proj₁) readExit

mainloop : Σ[ l ∶ List Bool ] (List.length l ≡ 4) → IOConsole Unit
mainloop s = (do (putStrLn (toCostring (showState s))) \ _ → ♯ return unit) >>= const
             (♯ readInput) >>= λ inp →
             ♯ mainloop
               (DecidableTransitionSystem.transitionFunction PeliconDecidableLadder s (inp , _))

program : IOConsole Unit
program = (do (putStrLn (toCostring "Pelicon Crossing Simulator 0.01\nentering main loop...")) \ _ →
        ♯ mainloop (DecidableTransitionSystem.initialState PeliconDecidableLadder))

main : PrimIO Unit
main = translateIOConsole program
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module Pelicon.SimulatorFull where

open import IO.Console
open import Foreign.Haskell

open import Data.String as String hiding (_==_) renaming (_++_ to _+++_)
open import Data.Char
open import Data.Bool
open import Data.List as List
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.Nat hiding (_<_)
open import Data.Maybe

open import Relation.Binary.PropositionalEquality

open import Coinduction
open import coparse as P hiding (choice)

open import PropIso

open import TransitionSystem.Decidable

open import Pelicon.Ladder
open import Pelicon.State
open import Pelicon.PeliconModel

showBool : Bool → String
showBool true  = "True"
showBool false = "False"

showState : Σ[ l ∶ List Bool ] (List.length l ≡ 4) → String
showState (crossing ∷ req ∷ tlight ∷ plight ∷ [] , proj₂) =
  "Crossing: " +++ showBool crossing +++ "\n" +++
  "Requested: " +++ showBool req +++ "\n" +++
  "Car Green: " +++ showBool tlight +++ "\n" +++
  "Pedestrian Green: " +++ showBool plight +++ "\n"
showState _ = "IMPOSSIBLE ERROR"

primitive
  primShowNat : ℕ → String

-- append the moving users
showSimState : SimState → String
showSimState (nc , np , mc , mp) =
 "Area\tPeople\tCars\n" +++
 "P1\t" +++ primShowNat (np P1) +++ "\t" +++ primShowNat (nc P1) +++ "\n" +++
 "P2\t" +++ primShowNat (np P2) +++ "\t" +++ primShowNat (nc P2) +++ "\n" +++
 "T1\t" +++ primShowNat (np T1) +++ "\t" +++ primShowNat (nc T1) +++ "\n" +++
 "T2\t" +++ primShowNat (np T2) +++ "\t" +++ primShowNat (nc T2) +++ "\n" +++
 "MUX\t" +++ primShowNat (np MUX) +++ "\t" +++ primShowNat (nc MUX) +++ "\n\n" +++
 "P1->MUX: " +++ primShowNat (mp P1 MUX) +++ "   P2->MUX: " +++ primShowNat (mp P2 MUX) +++ "\n" +++
 "MUX->P1: " +++ primShowNat (mp MUX P1) +++ "   MUX->P2: " +++ primShowNat (mp MUX P2) +++ "\n" +++
 "T1->MUX: " +++ primShowNat (mc T1 MUX) +++ "   T2->MUX: " +++ primShowNat (mc T2 MUX) +++ "\n" +++
 "MUX->T1: " +++ primShowNat (mc MUX T1) +++ "   MUX->T2: " +++ primShowNat (mc MUX T2) +++ "\n\n"

parseRequested : Parser Bool
parseRequested s = maybe′ just (P.choice' (parseDataSp "no" false) (parseDataSp "n" false) s)
                               (P.choice' (parseDataSp "yes" true) (parseDataSp "r" true) s)

readRequested : IOConsole Bool
readRequested = do (putStrLn (toCostring "Request Crossing [yes/no] ")) \ _ →
              ♯ do getLine \ l →
              ♯ choice (parseRequested l) (return ∘ proj₁) readRequested

readApproachT1 : IOConsole ℕ
readApproachT1 = do (putStrLn (toCostring "Enter no. cars embarking T1")) \ _ →
                 ♯ do getLine \ l1 →
                 ♯ choice (parseSpaced parseNat l1) (return ∘ proj₁) readApproachT1

readApproachT2 : IOConsole ℕ
readApproachT2 = do (putStrLn (toCostring "Enter no. cars embarking T2")) \ _ →
                 ♯ do getLine \ l1 →
                 ♯ choice (parseSpaced parseNat l1) (return ∘ proj₁) readApproachT2

readApproachP1 : IOConsole ℕ
readApproachP1 = do (putStrLn (toCostring "Enter no. people embarking P1")) \ _ →
                 ♯ do getLine \ l1 →
                 ♯ choice (parseSpaced parseNat l1) (return ∘ proj₁) readApproachP1

readApproachP2 : IOConsole ℕ
readApproachP2 = do (putStrLn (toCostring "Enter no. people embarking P2")) \ _ →
                 ♯ do getLine \ l1 →
                 ♯ choice (parseSpaced parseNat l1) (return ∘ proj₁) readApproachP2

readInput : IOConsole (Σ[ l ∶ List Bool ] (List.length l ≡ 1))
readInput = readRequested >>= λ b →
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          ♯ return ( b ∷ [] , refl)

readExit : IOConsole Choice
readExit = do (putStrLn (toCostring "do you want to exit? [yes/no]")) \ _ →
         ♯ do getLine \ l1 →
         ♯ choice (parseChoice l1) (return ∘ proj₁) readExit

mainloop : SimState × (Σ[ l ∶ List Bool ] (List.length l ≡ 4)) → IOConsole Unit
mainloop s = (do (putStrLn (toCostring (showState (proj₂ s)))) \ _ →
             ♯ do (putStrLn (toCostring (showSimState (proj₁ s)))) \ _ →
             ♯ return unit) >>= const
             (♯ readInput) >>= λ inp →
             ♯ (readApproachT1 >>= λ t1 →
             ♯ (readApproachT2 >>= λ t2 →
             ♯ (readApproachP1 >>= λ p1 →
             ♯ (readApproachP2 >>= λ p2 →
             ♯ mainloop (nextState s (inp , _) (t1 , t2 , p1 , p2))))))

program : IOConsole Unit
program = (do (putStrLn (toCostring "Pelicon Crossing Simulator \nentering main loop...\n")) \ _ →
        ♯ mainloop (initSimState , DecidableTransitionSystem.initialState PeliconDecidableLadder))

main : PrimIO Unit
main = translateIOConsole program
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module Gwili.Layout where

open import RDM.RailYard
open import RDM.fixedtrains

open import Data.Fin using (Fin;suc;zero;#_)
open import Data.Fin.Arithmetic
open import Data.Fin.Decidable
open import Data.Nat as Nat hiding (_<_)
open import Data.Bool
open import Data.List
open import Data.Product as Prod
open import Data.Sum as Sum
open import Data.List.Inhabitence

open import Relation.Decidable
open import Relation.Binary.PropositionalEquality hiding ([_])

open import TransitionSystem.Decidable

open import PropIso

gwiliConnections : Fin 9 → List (Fin 9)
gwiliConnections zero                                                 = [ # 1 ]
gwiliConnections (suc zero)                                           = # 0 ∷ # 2 ∷ []
gwiliConnections (suc (suc zero))                                     = # 1 ∷ # 3 ∷ # 6 ∷ []
gwiliConnections (suc (suc (suc zero)))                               = # 2 ∷ # 4 ∷ []
gwiliConnections (suc (suc (suc (suc zero))))                         = # 3 ∷ # 7 ∷ # 5 ∷ []
gwiliConnections (suc (suc (suc (suc (suc zero)))))                   = [ # 4 ]
gwiliConnections (suc (suc (suc (suc (suc (suc zero))))))             = # 2 ∷ # 7 ∷ []
gwiliConnections (suc (suc (suc (suc (suc (suc (suc zero)))))))       = # 4 ∷ # 6 ∷ # 8 ∷ []
gwiliConnections (suc (suc (suc (suc (suc (suc (suc (suc zero)))))))) = [ # 7 ]
gwiliConnections (suc (suc (suc (suc (suc (suc (suc (suc (suc ())))))))))

data Route (l : List ℕ) : Set where
  <_> : (n : ℕ) → {q : T (n isinℕ l)} → Route l

unRoute : ∀ {l} → Route l → ℕ
unRoute < n > = n

decroute : ∀ {l} → Decidable (_≡_ {_} {Route l})
decroute {l} (<_> m {mp}) (<_> n {np}) with Nat._≟_ m n
...| yes x rewrite x = yes (cong (λ p → < n > {p}) (uip-isinℕ n l mp np))
...| no x = no (x ∘ cong unRoute)

gwiliRoutes = 3 ∷ 2 ∷ 6 ∷ 4 ∷ 19 ∷ 17 ∷ 16 ∷ 7 ∷ 5 ∷ 18 ∷ 20 ∷ []

elimRoute : {A : Set} → ∀ l → (f : (n : ℕ) → T (n isinℕ l) → A) → Route l → A
elimRoute l f (<_> p {q}) = f p q

record ElimGwiliRoute (A : Route gwiliRoutes → Set) : Set where
  field
    f3  : A < 3 >
    f2  : A < 2 >
    f6  : A < 6 >
    f4  : A < 4 >
    f19 : A < 19 >
    f17 : A < 17 >
    f16 : A < 16 >
    f7  : A < 7 >
    f5  : A < 5 >
    f18 : A < 18 >
    f20 : A < 20 >

record ElimGwiliRouteInspect (A : Route gwiliRoutes → Set) (rt : Route gwiliRoutes) : Set where
  field
    f3  : (eq : rt ≡ < 3 >) → A < 3 >
    f2  : (eq : rt ≡ < 2 >) → A < 2 >
    f6  : (eq : rt ≡ < 6 >) → A < 6 >
    f4  : (eq : rt ≡ < 4 >) → A < 4 >
    f19 : (eq : rt ≡ < 19 >) → A < 19 >
    f17 : (eq : rt ≡ < 17 >) → A < 17 >
    f16 : (eq : rt ≡ < 16 >) → A < 16 >
    f7  : (eq : rt ≡ < 7 >) → A < 7 >
    f5  : (eq : rt ≡ < 5 >) → A < 5 >
    f18 : (eq : rt ≡ < 18 >) → A < 18 >
    f20 : (eq : rt ≡ < 20 >) → A < 20 >

elimGwiliRoute : (A : Route gwiliRoutes → Set) → ElimGwiliRoute A → (r : Route gwiliRoutes) → A r
elimGwiliRoute A egr (<_> 0  {()})
elimGwiliRoute A egr (<_> 1  {()})
elimGwiliRoute A egr (<_> 2  {p}) = ElimGwiliRoute.f2 egr
elimGwiliRoute A egr (<_> 3  {p}) = ElimGwiliRoute.f3 egr
elimGwiliRoute A egr (<_> 4  {p}) = ElimGwiliRoute.f4 egr
elimGwiliRoute A egr (<_> 5  {p}) = ElimGwiliRoute.f5 egr
elimGwiliRoute A egr (<_> 6  {p}) = ElimGwiliRoute.f6 egr
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elimGwiliRoute A egr (<_> 7  {p}) = ElimGwiliRoute.f7 egr
elimGwiliRoute A egr (<_> 8  {()})
elimGwiliRoute A egr (<_> 9  {()})
elimGwiliRoute A egr (<_> 10 {()})
elimGwiliRoute A egr (<_> 11 {()})
elimGwiliRoute A egr (<_> 12 {()})
elimGwiliRoute A egr (<_> 13 {()})
elimGwiliRoute A egr (<_> 14 {()})
elimGwiliRoute A egr (<_> 15 {()})
elimGwiliRoute A egr (<_> 16 {p}) = ElimGwiliRoute.f16 egr
elimGwiliRoute A egr (<_> 17 {p}) = ElimGwiliRoute.f17 egr
elimGwiliRoute A egr (<_> 18 {p}) = ElimGwiliRoute.f18 egr
elimGwiliRoute A egr (<_> 19 {p}) = ElimGwiliRoute.f19 egr
elimGwiliRoute A egr (<_> 20 {p}) = ElimGwiliRoute.f20 egr
elimGwiliRoute A egr (<_> ((suc (suc (suc (suc (suc (suc (suc (suc
                           (suc (suc (suc (suc (suc (suc (suc (suc
                           (suc (suc (suc (suc (suc n)))))))))))))))))))))) {()})

elimGwiliRouteInspect : (A : Route gwiliRoutes → Set) → (r : Route gwiliRoutes)
                      → ElimGwiliRouteInspect A r → A r
elimGwiliRouteInspect A (<_> 0 {()})  egr
elimGwiliRouteInspect A (<_> 1 {()})  egr
elimGwiliRouteInspect A (<_> 2 {p})   egr = ElimGwiliRouteInspect.f2 egr refl
elimGwiliRouteInspect A (<_> 3 {p})   egr = ElimGwiliRouteInspect.f3 egr refl
elimGwiliRouteInspect A (<_> 4 {p})   egr = ElimGwiliRouteInspect.f4 egr refl
elimGwiliRouteInspect A (<_> 5 {p})   egr = ElimGwiliRouteInspect.f5 egr refl
elimGwiliRouteInspect A (<_> 6 {p})   egr = ElimGwiliRouteInspect.f6 egr refl
elimGwiliRouteInspect A (<_> 7 {p})   egr = ElimGwiliRouteInspect.f7 egr refl
elimGwiliRouteInspect A (<_> 8 {()})  egr
elimGwiliRouteInspect A (<_> 9 {()})  egr
elimGwiliRouteInspect A (<_> 10 {()}) egr
elimGwiliRouteInspect A (<_> 11 {()}) egr
elimGwiliRouteInspect A (<_> 12 {()}) egr
elimGwiliRouteInspect A (<_> 13 {()}) egr
elimGwiliRouteInspect A (<_> 14 {()}) egr
elimGwiliRouteInspect A (<_> 15 {()}) egr
elimGwiliRouteInspect A (<_> 16 {p})  egr = ElimGwiliRouteInspect.f16 egr refl
elimGwiliRouteInspect A (<_> 17 {p})  egr = ElimGwiliRouteInspect.f17 egr refl
elimGwiliRouteInspect A (<_> 18 {p})  egr = ElimGwiliRouteInspect.f18 egr refl
elimGwiliRouteInspect A (<_> 19 {p})  egr = ElimGwiliRouteInspect.f19 egr refl
elimGwiliRouteInspect A (<_> 20 {p})  egr = ElimGwiliRouteInspect.f20 egr refl
elimGwiliRouteInspect A (<_> ((suc (suc (suc (suc (suc (suc (suc (suc
                              (suc (suc (suc (suc (suc (suc (suc (suc
                              (suc (suc (suc (suc (suc n)))))))))))))))))))))) {()}) egr

gwiliPhysicalLayout : PhysicalLayout
gwiliPhysicalLayout = record {
                        Segment = Fin 9;
                        Signal = Route gwiliRoutes;
                        connections = gwiliConnections;
                        signalLocation = elimGwiliRoute
                                           (const
                                            (SignalLocation (Fin 9)
                                                            (λ a b → b isin gwiliConnections a)))
                                           (record {
                                              f3  = sigloc (# 0) (# 1) (inj₁ refl);
                                              f2  = sigloc (# 1) (# 2) (inj₂ (inj₁ refl));
                                              f6  = sigloc (# 1) (# 2) (inj₂ (inj₁ refl));
                                              f4  = sigloc (# 1) (# 2) (inj₂ (inj₁ refl));
                                              f19 = sigloc (# 3) (# 2) (inj₁ refl);
                                              f17 = sigloc (# 6) (# 2) (inj₁ refl);
                                              f16 = sigloc (# 1) (# 0) (inj₁ refl);
                                              f7  = sigloc (# 6) (# 7) (inj₂ (inj₁ refl));
                                              f5  = sigloc (# 3) (# 4) (inj₂ (inj₁ refl));
                                              f18 = sigloc (# 5) (# 4) (inj₁ refl);
                                              f20 = sigloc (# 5) (# 4) (inj₁ refl) }) }

gwiliRoute : Route gwiliRoutes → ControlTableEntry gwiliPhysicalLayout
gwiliRoute =
  elimGwiliRoute (const (ControlTableEntry gwiliPhysicalLayout))
    (record {
       f3  = record {
               start         = < 3 >;
               segments      = [ # 1 ];
               normalpoints  = [];
               reversepoints = [];
               facing        = []
             };
       f2  = record {
               start         = < 2 >;
               segments      = # 2 ∷ [ # 3 ];
               normalpoints  = [ # 2 ];
               reversepoints = [];
               facing        = [ # 2 ]
             };
       f6  = record {
               start         = < 6 >;
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               segments      = # 2 ∷ [ # 6 ];
               normalpoints  = [];
               reversepoints = [ # 2 ];
               facing        = [ # 2 ]
             };
       f4  = record {
               start         = < 4 >;
               segments      = # 2 ∷ [ # 3 ];
               normalpoints  = [ # 2 ];
               reversepoints = [];
               facing        = [ # 2 ]
             };
       f19 = record {
               start         = < 19 >;
               segments      = # 2 ∷ [ # 1 ];
               normalpoints  = [ # 2 ];
               reversepoints = [];
               facing        = []
             };
       f17 = record {
               start         = < 17 >;
               segments      = # 2 ∷ [ # 1 ];
               normalpoints  = [];
               reversepoints = [ # 2 ];
               facing        = []
             };
       f16 = record {
               start         = < 16 >;
               segments      = [ # 0 ];
               normalpoints  = [];
               reversepoints = [];
               facing        = []
             };
       f7  = record {
               start         = < 7 >;
               segments      = # 7 ∷ # 4 ∷ [ # 5 ];
               normalpoints  = [];
               reversepoints = # 4 ∷ [ # 7 ];
               facing        = [ # 7 ]
             };
       f5  = record {
               start         = < 5 >;
               segments      = # 4 ∷ [ # 5 ];
               normalpoints  = [ # 4 ];
               reversepoints = [];
               facing        = []
             };
       f18 = record {
               start         = < 18 >;
               segments      = # 4 ∷ # 7 ∷ [ # 6 ];
               normalpoints  = [];
               reversepoints = # 4 ∷ [ # 7 ];
               facing        = [ # 4 ]
             };
       f20 = record {
               start         = < 20 >;
               segments      = # 4 ∷ [ # 3 ];
               normalpoints  = [ # 4 ];
               reversepoints = [];
               facing        = [ # 4 ]
             }})

gwiliPoints : List (Fin 9)
gwiliPoints = # 2 ∷ # 4 ∷ [ # 7 ]

-- basic connections, does not allow for trains to be reversed
gwiliRouteConnections : Route gwiliRoutes → List (Route gwiliRoutes)
gwiliRouteConnections = elimGwiliRoute (const $ List $ Route gwiliRoutes)
                          (record {
                             f3  = < 2 > ∷ < 6 > ∷ [ < 4 > ];
                             f2  = [ < 5 > ];
                             f6  = [ < 7 > ];
                             f4  = [ < 5 > ];
                             f19 = [ < 16 > ];
                             f17 = [ < 16 > ];
                             f16 = [];
                             f7  = [];
                             f5  = [];
                             f18 = [ < 17 > ];
                             f20 = [ < 19 > ] })

GwiliRouteConnections : Route gwiliRoutes → Route gwiliRoutes → Set
GwiliRouteConnections rt₁ rt₂ = rt₂ isin gwiliRouteConnections rt₁

subst' : ∀ {a b x} → (eq : a ≡ b) → x isin gwiliRouteConnections a → x isin gwiliRouteConnections b
subst' {a} {b} {x} = (subst (λ k → x isin gwiliRouteConnections k))

Gwili.Layout Page 444



private
  ψ' : (rt₁ rt₃ : Route gwiliRoutes) → Set
  ψ' rt₁ rt₃ =  ∃ (λ ts → (ts isin (ControlTableEntry.segments (gwiliRoute rt₁)))
                                    × (ts isin (ControlTableEntry.segments (gwiliRoute rt₃))))

  ψ : (rt₁ rt₂ rt₃ : Route gwiliRoutes) → Set
  ψ rt₁ rt₂ rt₃ = rt₂ isin gwiliRouteConnections rt₁
                      → rt₂ isin gwiliRouteConnections rt₃
                      → ψ' rt₁ rt₃

  ψ'' : (rt : Route gwiliRoutes) → Set
  ψ'' rt₄ = {rt₁ rt₂ : Route gwiliRoutes}
                      → (rt₃ : Route gwiliRoutes)
                      → (rt₁ ≡ rt₄)
                      → rt₂ isin gwiliRouteConnections rt₁
                      → rt₂ isin gwiliRouteConnections rt₃
                      → ψ' rt₄ rt₃

abstract
  GwiliWellFormedRoutes2 : ψ'' < 2 >
  GwiliWellFormedRoutes2 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ →  ψ' (< 2 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = const (, (inj₁ refl , inj₁ refl));
         f6 = const (, (inj₁ refl , inj₁ refl));
         f4 = const (, (inj₁ refl , inj₁ refl));
         f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes2 rt₃ refl (inj₂ y)    rt₂▸rt₃ = ⊥-elim y

  GwiliWellFormedRoutes3 : ψ'' < 3 >
  GwiliWellFormedRoutes3 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 3 >) rt₃) rt₃
      (record {
        f3 = const (, (inj₁ refl , inj₁ refl));
        f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes3 rt₃ refl (inj₂ (inj₁ refl)) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 3 >) rt₃) rt₃
      (record {
        f3 = const (, (inj₁ refl , inj₁ refl));
        f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes3 rt₃ refl (inj₂ (inj₂ (inj₁ refl))) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 3 >) rt₃) rt₃
      (record {
        f3 = const (, (inj₁ refl , inj₁ refl));
        f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
        f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
        f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes3 rt₃ refl (inj₂ (inj₂ (inj₂ y))) rt₂▸rt₃ = ⊥-elim y

  GwiliWellFormedRoutes4 : ψ'' < 4 >
  GwiliWellFormedRoutes4 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 4 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = const (, (inj₁ refl , inj₁ refl));
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         f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f4 = const (, (inj₁ refl , inj₁ refl));
         f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes4 rt₃ refl (inj₂ y)    rt₂▸rt₃ = ⊥-elim y

GwiliWellFormedRoutes5 : ψ'' < 5 >
GwiliWellFormedRoutes5 rt₃ refl eq rt₂▸rt₃ = ⊥-elim eq

abstract
  GwiliWellFormedRoutes6 : ψ'' < 6 >
  GwiliWellFormedRoutes6 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 6 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f6 = const (, (inj₁ refl , inj₁ refl));
         f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes6 rt₃ refl (inj₂ y) rt₂▸rt₃ = ⊥-elim y

GwiliWellFormedRoutes7 : ψ'' < 7 >
GwiliWellFormedRoutes7 rt₃ refl eq rt₂▸rt₃ = ⊥-elim eq

GwiliWellFormedRoutes16 : ψ'' < 16 >
GwiliWellFormedRoutes16 rt₃ refl eq rt₂▸rt₃ = ⊥-elim eq

abstract
  GwiliWellFormedRoutes17 : ψ'' < 17 >
  GwiliWellFormedRoutes17 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 17 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f19 = const (, (inj₁ refl , inj₁ refl));
         f17 = const (, (inj₁ refl , inj₁ refl));
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes17 rt₃ refl (inj₂ y) rt₂▸rt₃ = ⊥-elim y

  GwiliWellFormedRoutes18 : ψ'' < 18 >
  GwiliWellFormedRoutes18 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 18 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 =  λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 =  λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = const (, (inj₁ refl , inj₁ refl));
         f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes18 rt₃ refl (inj₂ y) rt₂▸rt₃ = ⊥-elim y

  GwiliWellFormedRoutes19 : ψ'' < 19 >
  GwiliWellFormedRoutes19 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 19 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f19 = const (, (inj₁ refl , inj₁ refl));
         f17 = const (, (inj₁ refl , inj₁ refl));
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
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         f20 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃) })
  GwiliWellFormedRoutes19 rt₃ refl (inj₂ y) rt₂▸rt₃ = ⊥-elim y

  GwiliWellFormedRoutes20 : ψ'' < 20 >
  GwiliWellFormedRoutes20 rt₃ refl (inj₁ refl) rt₂▸rt₃
    = elimGwiliRouteInspect (\ rt₃ → ψ' (< 20 >) rt₃) rt₃
      (record {
         f3 = λ eq → [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′ (subst' eq rt₂▸rt₃);
         f2 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f6 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f4 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f19 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f17 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f16 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f7 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f5 = λ eq → ⊥-elim (subst' eq rt₂▸rt₃);
         f18 = λ eq → [ (λ ()) , (λ ()) ]′ (subst' eq rt₂▸rt₃);
         f20 = const (, (inj₁ refl , inj₁ refl)) })
  GwiliWellFormedRoutes20 rt₃ refl (inj₂ y) rt₂▸rt₃ = ⊥-elim y

GwiliWellFormedRoutes : (rt₁ rt₂ rt₃ : Route gwiliRoutes) → ψ rt₁ rt₂ rt₃
GwiliWellFormedRoutes rt₁ rt₂ rt₃ rt₂▸rt₁ rt₂▸rt₃ =
  elimGwiliRouteInspect (\ rt₁ → ψ' rt₁ rt₃) rt₁
    (record {
       f3 = λ eq → GwiliWellFormedRoutes3 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f2 = λ eq → GwiliWellFormedRoutes2 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f6 = λ eq → GwiliWellFormedRoutes6 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f4 = λ eq → GwiliWellFormedRoutes4 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f19 = λ eq → GwiliWellFormedRoutes19 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f17 = λ eq → GwiliWellFormedRoutes17 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f16 = λ eq → GwiliWellFormedRoutes16 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f7 = λ eq → GwiliWellFormedRoutes7 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f5 = λ eq → GwiliWellFormedRoutes5 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f18 = λ eq → GwiliWellFormedRoutes18 rt₃ eq rt₂▸rt₁ rt₂▸rt₃;
       f20 = λ eq → GwiliWellFormedRoutes20 rt₃ eq rt₂▸rt₁ rt₂▸rt₃ }
    )

GwiliNonEmptyRoutes : ∀ rt → Σ[ ts ∶ Fin 9 ] (ts isin (ControlTableEntry.segments $ gwiliRoute rt))
GwiliNonEmptyRoutes = elimGwiliRoute _ (record {
                                          f3 = , inj₁ refl;
                                          f2 = , inj₁ refl;
                                          f6 = , inj₁ refl;
                                          f4 = , inj₁ refl;
                                          f19 = , inj₁ refl;
                                          f17 = , inj₁ refl;
                                          f16 = , inj₁ refl;
                                          f7 = , inj₁ refl;
                                          f5 = , inj₁ refl;
                                          f18 = , inj₁ refl;
                                          f20 = , inj₁ refl })

private
  φ : (rt₁ rt₂ : Route gwiliRoutes) → Set
  φ rt₁ rt₂ = rt₂ isin gwiliRouteConnections rt₁
              → (SignalLocation.facing (PhysicalLayout.signalLocation gwiliPhysicalLayout
                                                      (ControlTableEntry.start $ gwiliRoute rt₂)))
                ≡ last (ControlTableEntry.segments $ gwiliRoute rt₁) (GwiliNonEmptyRoutes rt₁)
              × (SignalLocation.trailing (PhysicalLayout.signalLocation gwiliPhysicalLayout
                                                      (ControlTableEntry.start $ gwiliRoute rt₂)))
                ≡ head (ControlTableEntry.segments $ gwiliRoute rt₂) (GwiliNonEmptyRoutes rt₂)

  φ' : (rt₁ : Route gwiliRoutes) → Set
  φ' rt₁ = (rt₂ : Route gwiliRoutes) → φ rt₁ rt₂

GwiliRoutesConnected3 : φ' < 3 >
GwiliRoutesConnected3 .(< 2 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected3 .(< 6 >) (inj₂ (inj₁ refl)) = refl , refl
GwiliRoutesConnected3 .(< 4 >) (inj₂ (inj₂ (inj₁ refl))) = refl , refl
GwiliRoutesConnected3 rt₂ (inj₂ (inj₂ (inj₂ ())))

GwiliRoutesConnected2 : φ' < 2 >
GwiliRoutesConnected2 .(< 5 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected2 rt₂ (inj₂ ())

GwiliRoutesConnected6 : φ' < 6 >
GwiliRoutesConnected6 .(< 7 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected6 rt₂ (inj₂ ())

GwiliRoutesConnected4 : φ' < 4 >
GwiliRoutesConnected4 .(< 5 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected4 rt₂ (inj₂ ())

GwiliRoutesConnected19 : φ' < 19 >
GwiliRoutesConnected19 .(< 16 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected19 rt₂ (inj₂ ())

GwiliRoutesConnected17 : φ' < 17 >
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GwiliRoutesConnected17 .(< 16 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected17 rt₂ (inj₂ ())

GwiliRoutesConnected18 : φ' < 18 >
GwiliRoutesConnected18 .(< 17 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected18 rt₂ (inj₂ ())

GwiliRoutesConnected20 : φ' < 20 >
GwiliRoutesConnected20 .(< 19 >) (inj₁ refl) = refl , refl
GwiliRoutesConnected20 rt₂ (inj₂ ())

GwiliRoutesConnected : ∀ rt₁ rt₂ → φ rt₁ rt₂
GwiliRoutesConnected rt₁ rt₂ = elimGwiliRoute (\ rt₁ → φ rt₁ rt₂)
                                   (record {
                                      f3 =  GwiliRoutesConnected3 rt₂;
                                      f2 =  GwiliRoutesConnected2 rt₂;
                                      f6 =  GwiliRoutesConnected6 rt₂;
                                      f4 =  GwiliRoutesConnected4 rt₂;
                                      f19 = GwiliRoutesConnected19 rt₂;
                                      f17 = GwiliRoutesConnected17 rt₂;
                                      f16 = ⊥-elim;
                                      f7 =  ⊥-elim;
                                      f5 =  ⊥-elim;
                                      f18 = GwiliRoutesConnected18 rt₂;
                                      f20 = GwiliRoutesConnected20 rt₂ }) rt₁

gwiliControlTable : ControlTable gwiliPhysicalLayout
gwiliControlTable = record {
                      Route = Route gwiliRoutes;
                      DecidableRoute = decroute;
                      entries = gwiliRoute;
                      connections = gwiliRouteConnections;
                      NonEmptyRoutes = GwiliNonEmptyRoutes;
                      WellFormed = GwiliWellFormedRoutes;
                      RoutesConnected = GwiliRoutesConnected }

GwiliLayout : Layout
GwiliLayout = toLayout gwiliPhysicalLayout gwiliControlTable (Fin 2 , findecidableeq)
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module Ladder.LockingTable where

open import Data.Nat
open import Data.List hiding (reverse)
open import Data.Product as Prod
open import Data.Bool

open import Relation.Binary.PropositionalEquality hiding ([_])

open import Boolean.Formula

open import Ladder.Core

open import PropIso

data Leaver : Set where
  _R  _N _B : ℕ → Leaver

record TableEntry : Set where
  constructor releasedby_locks_bothways_
  field
    releasedby : List ℕ
    locks      : List ℕ
    bothways   : List ℕ

Table : Set
Table = List TableEntry

♭leaver : Leaver → PL-Formula
♭leaver (y R) = ¥ y
♭leaver (y N) = ~ (¥ y)
♭leaver (y B) = ¥true

_elem_ : ℕ → List ℕ → Bool
_elem_ l []       = false
_elem_ l (x ∷ xs) = x == l ∨ l elem xs

requirenormal : List ℕ → PL-Formula
requirenormal []       = ¥true
requirenormal (x ∷ xs) = ♭leaver (x N) && requirenormal xs

requirereverse : List ℕ → PL-Formula
requirereverse []       = ¥true
requirereverse (x ∷ xs) = ♭leaver (x R) && requirereverse xs

-- a state is wellformed iff it does not violate constraints in the locking table
WellFormedState : Table → ℕ → PL-Formula
WellFormedState [] n = ¥true
WellFormedState (releasedby r locks l bothways b ∷ xs) n
  = (♭leaver (n N) || requirereverse r && requirenormal l) && WellFormedState xs (suc n)

{- any leavers that locks this one (snd arg) bothways are normal -}
bothwayslocks-aux : List ℕ → ℕ → ℕ → PL-Formula
bothwayslocks-aux bw n l = if l elem bw then ♭leaver (n N) else ¥true

bothwayslocks : Table → ℕ → ℕ → PL-Formula
bothwayslocks []       n l = ¥true
bothwayslocks (x ∷ xs) n l = bothwayslocks-aux (TableEntry.bothways x) n l &&
                           bothwayslocks xs (suc n) l

{- any backlock on this leaver (3rd arg) are normal -}
backlocks-aux : List ℕ → ℕ → ℕ → PL-Formula
backlocks-aux relby n l = if l elem relby then ♭leaver (n N) else ¥true

backlocks : Table → ℕ → ℕ → PL-Formula
backlocks []       n l = ¥true
backlocks (x ∷ xs) n l = backlocks-aux (TableEntry.releasedby x) n l &&
                           backlocks xs (suc n) l

{- any leaver that locks this leaver (3rd arg) are normal -}
notlocked-aux : List ℕ → ℕ → ℕ → PL-Formula
notlocked-aux loks n l = if l elem loks then ♭leaver (n N) else ¥true

notlocked : Table → ℕ → ℕ → PL-Formula
notlocked []       n l = ¥true
notlocked (x ∷ xs) n l = notlocked-aux (TableEntry.locks x) n l &&
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                           notlocked xs (suc n) l

{-
a leaver is freetomove (r) when:
  all leavers that lock this leaver (N) are N
  all leavers that relsease this leaver to go R are N
  all leavers that lock this B are N
  all leavers that this leaver locks (N) are N, without
    conditionals this is eqiv to first condition
-}

freetomoveentryʳ : TableEntry → PL-Formula
freetomoveentryʳ te = requirereverse (TableEntry.releasedby te) &&
                        requirenormal (TableEntry.locks te)

freetomoveʳ-aux : Table → ℕ → PL-Formula
freetomoveʳ-aux []       l       = ¥false
freetomoveʳ-aux (x ∷ xs) zero    = freetomoveentryʳ x
freetomoveʳ-aux (x ∷ xs) (suc n) = freetomoveʳ-aux xs n

freetomoveʳ : Table → ℕ → PL-Formula
freetomoveʳ t l = freetomoveʳ-aux t l && notlocked t 0 l && bothwayslocks t 0 l

{-
a leaver is freetomove (n) when
  all leavers that lock this leaver B are N
  all leavers that this leaver releases are N
-}
freetomoveⁿ : Table → ℕ → PL-Formula
freetomoveⁿ t l = backlocks t 0 l && bothwayslocks t 0 l

-- the input for the ladder is: i0 i1 ... in
-- where n is the number of leavers.
-- i0 idicates to move normal/reverse true == reverse, false == normal
-- i1 .. in idicates which leaver to move, need input invariance.

-- the state of the ladder is given by s0 ... s(n-1),
-- normal / reverse for each leaver.

-- i₀ : Table → ℕ
-- i₀ t = length t

-- i : Table → ℕ → ℕ -- input variable
-- i t zero = suc (i₀ t)
-- i t (suc n) = suc (i t n)

mkRungs-aux : ℕ → Table → Table → ℕ → List (ℕ × PL-Formula)
mkRungs-aux l _ [] n = []
-- true == reverse, false == normal
mkRungs-aux l t (x ∷ xs) n = (n , (¥ (n + l) && ((~ (¥ n)) && (freetomoveʳ t n) ||
                                     (¥ n) && (~ (freetomoveⁿ t n))))
                           || ~ (¥ (n + l)) && ¥ n) ∷ mkRungs-aux l t xs (suc n)

mkRungs : Table → List (ℕ × PL-Formula)
mkRungs t = mkRungs-aux (length t) t t 0

mkInitial : ℕ → List (ℕ × Bool)
mkInitial zero    = []
mkInitial (suc n) = (n , false) ∷ mkInitial n

mkDisj : ℕ → ℕ → PL-Formula
mkDisj l zero    = ¥false
mkDisj l (suc n) = ¥ (n + l) || mkDisj l n

mkInvariant-aux : ℕ → ℕ → PL-Formula
mkInvariant-aux l zero    = ¥true
mkInvariant-aux l (suc n) = (¥ (n + l) => ~ (mkDisj l n)) && mkInvariant-aux l n

-- at most one leaver can go high at a time, need this over inputs.
mkInvariant : ℕ → PL-Formula
mkInvariant n = (mkInvariant-aux n n)

mkLadder : Table → Ladder
mkLadder t = ladder (length t) (length t) (mkRungs t) (mkInitial (length t))
                    (mkInvariant-aux 0 (length t))
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module Gwili.Ladder where

open import Ladder.LockingTable
open import Ladder.Core
open import Ladder.Decidable

open import Data.List
open import Data.Product as Prod
open import Data.Nat hiding (_<_)
open import Data.Bool

open import PropIso

open import Boolean.Formula using (PL-Formula;bound)

open import TransitionSystem.Decidable

-- private
--   points = 0
--   lock = 1
--   signal = 2
--   direction = 3
--   pointsrq = 4
--   lockrq = 5
--   signalrq = 6
--   points' = 7
--   lock' = 8
--   signal' = 9

-- pointstable : Table
-- pointstable = releasedby []         locks [] bothways []
--             ∷ releasedby []         locks [] bothways [ points ]
--             ∷ releasedby [ lock ]   locks [] bothways []
--             ∷ []

{-
need mapping from leavers into the railyard equipment they control

0 ↦ ⊥ -- added by me to preserve numbering
1 ↦ ⊥ -- space
2 ↦ sig
3 ↦ sig
4 ↦ sig
5 ↦ sig
6 ↦ sig
7 ↦ sig
8 ↦ ? -- spare
9 ↦ ⊥ -- space
10 ↦ ? -- space
11 ↦ ? -- space
12 ↦ fpl
13 ↦ points
14 ↦ points
15 ↦ fpl
16 ↦ sig
17 ↦ sig
18 ↦ sig
19 ↦ sig
20 ↦ sig
21 ↦ ? -- space
-}

--original version
gwilitable : Table
gwilitable = releasedby []            locks []                                           bothways []
{- 1  -}   ∷ releasedby []            locks []                                           bothways []
{- 2  -}   ∷ releasedby [ 12 ]        locks (3 ∷ 4 ∷ 5 ∷ 7 ∷ 8  ∷ 13 ∷ 16 ∷ 19 ∷ [ 20 ]) bothways []
{- 3  -}   ∷ releasedby [ 12 ]        locks (2 ∷ 4 ∷ 5 ∷ 7 ∷ 8  ∷ 13 ∷ 16 ∷ 19 ∷ [ 20 ]) bothways []
{- 4  -}   ∷ releasedby [ 12 ]        locks (2 ∷ 5 ∷ 7 ∷ 8 ∷ 13 ∷ 14 ∷ 16 ∷ 19 ∷ [ 20 ]) bothways []
{- 5  -}   ∷ releasedby []            locks (2 ∷ 3 ∷ 4 ∷ 6 ∷ 11 ∷ 13 ∷ 14 ∷ 19 ∷ [ 20 ]) bothways []
{- 6  -}   ∷ releasedby (12 ∷ [ 13 ]) locks (5 ∷ 7 ∷ 8 ∷ 16 ∷ 17 ∷ [ 18 ])               bothways []
 -- fails fpl for shunt signal, so added 15 to be pulled
{- 7  -}   ∷ releasedby (14 ∷ [ 15 ]) locks (2 ∷ 3 ∷ 4 ∷ 6 ∷ 8 ∷ 11 ∷ 13 ∷ 17 ∷ [ 18 ])  bothways []
{- 8  -}   ∷ releasedby []            locks (10 ∷ 14 ∷ 18 ∷ 20 ∷ [ 21 ])                 bothways []
{- 9  -}   ∷ releasedby []            locks []                                           bothways []
{- 10 -}   ∷ releasedby []            locks (8 ∷ [ 11 ])                                 bothways []
{- 11 -}   ∷ releasedby []            locks (5 ∷ 7 ∷ 8 ∷ 10 ∷ [ 21 ])                    bothways []
{- 12 -}   ∷ releasedby []            locks []                                       bothways [ 13 ]
{- 13 -}   ∷ releasedby []            locks (2 ∷ 3 ∷ 4 ∷ 19 ∷ [ 20 ])                    bothways []
{- 14 -}   ∷ releasedby []            locks (4 ∷ 5 ∷ [ 20 ])                             bothways []
{- 15 -}   ∷ releasedby []            locks []                                       bothways [ 14 ]
{- 16 -}   ∷ releasedby []            locks (2 ∷ 3 ∷ 4 ∷ 6 ∷ [ 13 ])                     bothways []
{- 17 -}   ∷ releasedby [ 13 ]        locks (6 ∷ 7 ∷ [ 14 ])                             bothways []
{- 18 -}   ∷ releasedby (14 ∷ [ 15 ]) locks (6 ∷ 7 ∷ 8 ∷ 13 ∷ [ 19 ])                    bothways []
{- 19 -}   ∷ releasedby []            locks (2 ∷ 3 ∷ 4 ∷ 13 ∷ 14 ∷ [ 18 ])               bothways []
{- 20 -}   ∷ releasedby [ 15 ]        locks (2 ∷ 3 ∷ 4 ∷ 8 ∷ 13 ∷ [ 14 ])                bothways []
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{- 21 -}   ∷ releasedby []            locks (8 ∷ [ 11 ])                                 bothways []
           ∷ []

gwiliLadder = mkLadder gwilitable
GwiliLadder = mkTransitionSystem gwiliLadder

GwiliLadderWellFormed : LadderWellFormed gwiliLadder
GwiliLadderWellFormed = record { initialmap   = mkfinmap 22 (Ladder.initialstate gwiliLadder) _;
                                 rungsmap     = mkfinmap 22 (Ladder.rungs gwiliLadder) _;
                                 rungvarbound = mkbound 44 (Ladder.rungs gwiliLadder) _ }

GwiliDecidableLadder : DecidableTransitionSystem GwiliLadder
GwiliDecidableLadder = mkDecTransitionSystem (, GwiliLadderWellFormed)

gstatesWellFormed : LadderCorrectness gwiliLadder (WellFormedState gwilitable 0)
gstatesWellFormed = inductiveProof gwiliLadder (WellFormedState gwilitable 0)
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module Gwili.State where

open import RDM.fixedtrains
open import RDM.RailYard

open import Data.Nat hiding (_<_)
open import Data.Fin hiding (_<_;pred)
open import Data.Product as Prod
open import Data.List
open import Data.List.Inhabitence
open import Data.Bool
open import Data.Sum as Sum

open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Decidable

open import Gwili.Layout
open import Gwili.Abstract
open import Gwili.Ladder

open import Ladder.Core

open import Boolean.Formula renaming (¥ to var_)

open import PropIso

data TrainDirection : Set where
  moving : (Route gwiliRoutes) → TrainDirection
  stationary : TrainDirection

Inputs : Set
Inputs = ℕ → Ladder.Input gwiliLadder

TrainInputs : Set
TrainInputs = ℕ → Fin 2 → TrainDirection

aspmap : Bool → Aspect
aspmap true  = Proceed
aspmap false = Stop

lockmap : Bool → Locking
lockmap true  = Locked
lockmap false = Unlocked

archSignalState : Ladder.State gwiliLadder → Route gwiliRoutes → Aspect
archSignalState s rt = aspmap $ mkenv (proj₁ s) (unRoute rt)

archSegmentLock : Ladder.State gwiliLadder → Fin 9 → Locking
archSegmentLock s (suc (suc zero)) = lockmap $ mkenv (proj₁ s) 12
archSegmentLock s (suc (suc (suc (suc zero)))) = lockmap $ mkenv (proj₁ s) 15
archSegmentLock s (suc (suc (suc (suc (suc (suc (suc zero))))))) = lockmap $ mkenv (proj₁ s) 15
archSegmentLock s _ = Locked

initTrainPosition : Fin 2 → Route gwiliRoutes
initTrainPosition zero = < 3 >
initTrainPosition _    = < 16 >

decasp : Decidable (_≡_ {_} {Aspect})
decasp Proceed Proceed = yes refl
decasp Stop Proceed    = no (λ ())
decasp Proceed Stop    = no (λ ())
decasp Stop Stop       = yes refl

mutual
  trainPosition-aux : (inp : Inputs)
                    → TrainInputs
                    → (t : ℕ)
                    → Fin 2
                    → Route gwiliRoutes
                    → List (Route gwiliRoutes)
                    → Route gwiliRoutes
  trainPosition-aux inp tinp t tr rt [] = trainPosition inp tinp t tr
  trainPosition-aux inp tinp t tr rt (rt' ∷ rts)
    = elim-Dec (_≡_ {A = Route gwiliRoutes}) (decroute rt rt')
               (elim-Dec (_≡_ {A = Aspect}) (decasp (archSignalState (nthState inp t) rt) Proceed)
                         (λ _ _ → rt) (λ _ _ → trainPosition inp tinp t tr))
               (λ _ → trainPosition-aux inp tinp t tr rt rts)

  trainPosition : Inputs → TrainInputs → ℕ → Fin 2 → Route gwiliRoutes
  trainPosition inp tinp 0       tr = initTrainPosition tr
  trainPosition inp tinp (suc t) tr with tinp t tr
  trainPosition inp tinp (suc t) tr | moving rt
    = trainPosition-aux inp tinp t tr rt (gwiliRouteConnections (trainPosition inp tinp t tr))
  trainPosition inp tinp (suc t) tr | stationary = trainPosition inp tinp t tr
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toArchState : ℕ → Inputs → TrainInputs → LayoutState GwiliLayout
toArchState n inputs tinp = record {
                              trainRoute   = trainPosition inputs tinp n;
                              signalAspect = archSignalState (nthState inputs n);
                              locked       = archSegmentLock (nthState inputs n)
                            }
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module Gwili.ControlTableCorrect where

open import RDM.RailYard

open import Gwili.Layout
open import Gwili.Ladder

open import Boolean.Formula
open import Boolean.SatSolver

open import Ladder.Core

open import Data.Nat
open import Data.Bool
open import Data.Unit
open import Data.List
open import Data.Fin hiding (_+_)

open import Function

open ControlTableEntry

rtSet : Route gwiliRoutes → PL-Formula
rtSet < n > = ¥ n

segNormal : Fin 9 → PL-Formula
segNormal (suc (suc zero)) = ~ (¥ 13)
segNormal (suc (suc (suc (suc zero)))) = ~ (¥ 14)
segNormal (suc (suc (suc (suc (suc (suc (suc zero))))))) = ~ (¥ 14)
segNormal _ = ¥true

segReverse : Fin 9 → PL-Formula
segReverse = ~ ∘ segNormal

segLocked : Fin 9 → PL-Formula
segLocked (suc (suc zero)) = ¥ 12
segLocked (suc (suc (suc (suc zero)))) = ¥ 15
segLocked (suc (suc (suc (suc (suc (suc (suc zero))))))) = ¥ 15
segLocked _ = ¥true

ControlTableCorrectness : Route gwiliRoutes → PL-Formula
ControlTableCorrectness rt
  = rtSet rt => (foldr (λ s x → segNormal s && x) ¥true
                       (normalpoints (ControlTable.entries gwiliControlTable rt)) &&
                 foldr (λ s x → segReverse s && x) ¥true
                       (reversepoints (ControlTable.entries gwiliControlTable rt)) &&
                 foldr (λ s x → segLocked s && x) ¥true
                       (facing (ControlTable.entries gwiliControlTable rt)))

private
  ψ : ∀ rt → PL-Formula
  ψ rt = (ControlTableCorrectness rt)

  allψ = ψ < 3 >   && ψ < 2 >   && ψ < 6 >   && ψ < 4 >   &&
         ψ < 19 >  && ψ < 17 >  && ψ < 16 >  && ψ < 7 >   &&
         ψ < 5 >   && ψ < 18 >  && ψ < 20 >

ControlTableCorrect : LadderCorrectness gwiliLadder allψ
ControlTableCorrect = inductiveProof gwiliLadder allψ
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module Gwili.Abstract where

open import Data.Nat
open import Data.Bool
open import Data.Product
open import Data.Sum
open import Data.List

open import Relation.Binary.PropositionalEquality

open import Boolean.Formula

open import Ladder.Core
open import Ladder.Decidable

open import TransitionSystem.Decidable

open import Gwili.Ladder

abstract
  rung' : List (ℕ × PL-Formula)
  rung' = Ladder.rungs gwiliLadder

  initialcfg' : List (ℕ × Bool)
  initialcfg' = Ladder.initialstate gwiliLadder

gwiliLadder' : Ladder
gwiliLadder' = ladder (Ladder.statevars gwiliLadder) (Ladder.inputvars gwiliLadder)
                      rung' initialcfg' (Ladder.inp-correct gwiliLadder)

abstract
  gwili-eq : gwiliLadder' ≡ gwiliLadder
  gwili-eq = refl

  nthState : (ℕ → Ladder.Input gwiliLadder') → ℕ → Ladder.State gwiliLadder'
  nthState = DecidableTransitionSystem.nthState GwiliDecidableLadder

  nthState-eq : nthState ≡ DecidableTransitionSystem.nthState GwiliDecidableLadder
  nthState-eq = refl

  nthState0-eq : ∀ inp
               → nthState inp 0 ≡ constructInitialState (gwiliLadder , GwiliLadderWellFormed)
  nthState0-eq inp = mkDecTrans-init-eq (gwiliLadder , GwiliLadderWellFormed)
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module Gwili.Abstract-level2 where

open import Data.Nat

open import Boolean.Formula

open import Ladder.Core
open import Ladder.Decidable

open import TransitionSystem.Decidable

open import Gwili.Ladder
open import Gwili.Abstract

open import Relation.Binary.PropositionalEquality

abstract
  nthLadderStateCorrect' : (φ : PL-Formula)
                         → LadderCorrectness gwiliLadder' φ
                         → (n : ℕ)
                         → (inputs : ℕ → Ladder.Input gwiliLadder')
                         → ⟦safety⟧π φ (nthState inputs n) (inputs n) (nthState inputs (suc n))
  nthLadderStateCorrect' = subst (\ l → (φ : PL-Formula)
                                      → LadderCorrectness l φ
                                      → (n : ℕ)
                                      → (i : ℕ → Ladder.Input gwiliLadder')
                                      → ⟦safety⟧π φ (nthState i n) (i n) (nthState i (suc n)))
                                 (sym gwili-eq)
                                 (subst (\ f → (φ : PL-Formula)
                                             → LadderCorrectness gwiliLadder φ
                                             → (n : ℕ)
                                             → (i : ℕ → Ladder.Input gwiliLadder)
                                             → ⟦safety⟧π φ (f i n) (i n) (f i (suc n)))
                                        (sym nthState-eq)
                                        (nthLadderStateCorrect {gwiliLadder} GwiliDecidableLadder))
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module Gwili.Ladder.OpposingRoutes where

open import Boolean.Formula

open import Gwili.Ladder
open import Gwili.Abstract
open import Gwili.Abstract-level2

open import Ladder.Core
open import Ladder.Decidable

open import Data.Nat
open import Data.Product
open import Data.Sum
open import Data.List
open import Data.Unit
open import Data.Bool

open import Relation.Binary.PropositionalEquality

open import Ladder.LockingTable

open import Function

φopp : ℕ → ℕ → PL-Formula
φopp n m = ~ (¥ n) || ~ (¥ m)

private
  φ : PL-Formula
  φ = φopp 3  19   && φopp 3  17   &&
      φopp 2  6    && φopp 2  19   &&
      φopp 2  17   && φopp 2  20   &&
      φopp 6  4    && φopp 6  17   &&
      φopp 6  18   && φopp 6  19   &&
      φopp 4  17   && φopp 4  19   &&
      φopp 4  20   && φopp 17 19   &&
      φopp 5  7    && φopp 5  18   &&
      φopp 5  20   && φopp 7  18   &&
      φopp 7  20   && φopp 18 20   &&
      φopp 2  4

  abstract
    OpposingProof : LadderCorrectness gwiliLadder' φ
    OpposingProof = subst (\ l → LadderCorrectness l φ)
                          (sym gwili-eq)
                          (ladderapply {(WellFormedState gwilitable 0)} {φ}
                                gwiliLadder
                                (inductiveProof gwiliLadder ((WellFormedState gwilitable 0) => φ))
                                gstatesWellFormed)

  #OpposingProof : ∀ t inp → ⟦safety⟧π φ (nthState inp t) (inp t) (nthState inp (suc t))
  #OpposingProof t inp = nthLadderStateCorrect' φ OpposingProof t inp

  ##OpposingProof : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ φ ⟧pl
  ##OpposingProof t inp = lem-mkenv-++-pl' φ
                   (proj₁ (nthState inp t))
                   (proj₁ (proj₁ (inp t)) ++
                    proj₁ (nthState inp (suc t)))
                  (subst (λ n → T (bound n φ))
                      (sym (proj₂ (nthState inp t))) tt) (#OpposingProof t inp)

Opp-3-19 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 3 19) ⟧pl
Opp-3-19 t inp = proj₁ $ ##OpposingProof t inp

Opp-3-17 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 3 17) ⟧pl
Opp-3-17 t inp = proj₁ $ proj₂ $ ##OpposingProof t inp

Opp-2-6 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 2 6) ⟧pl
Opp-2-6 t inp = proj₁ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-2-19 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 2 19) ⟧pl
Opp-2-19 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-2-17 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 2 17) ⟧pl
Opp-2-17 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-2-20 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 2 20) ⟧pl
Opp-2-20 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-6-4 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 6 4) ⟧pl
Opp-6-4 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-6-17 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 6 17) ⟧pl
Opp-6-17 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 ##OpposingProof t inp

Gwili.Ladder.OpposingRoutes Page 458



Opp-6-18 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 6 18) ⟧pl
Opp-6-18 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ ##OpposingProof t inp

Opp-6-19 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 6 19) ⟧pl
Opp-6-19 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-4-17 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 4 17) ⟧pl
Opp-4-17 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-4-19 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 4 19) ⟧pl
Opp-4-19 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-4-20 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 4 20) ⟧pl
Opp-4-20 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-17-19 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 17 19) ⟧pl
Opp-17-19 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                  proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-5-7 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 5 7) ⟧pl
Opp-5-7 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-5-18 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 5 18) ⟧pl
Opp-5-18 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 ##OpposingProof t inp

Opp-5-20 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 5 20) ⟧pl
Opp-5-20 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ ##OpposingProof t inp

Opp-7-18 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 7 18) ⟧pl
Opp-7-18 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-7-20 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 7 20) ⟧pl
Opp-7-20 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                 proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-18-20 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 18 20) ⟧pl
Opp-18-20 t inp = proj₁ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                  proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                  proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-2-4 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 2 4) ⟧pl
Opp-2-4 t inp = proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $ proj₂ $
                proj₂ $ proj₂ $ proj₂ $ proj₂ $ ##OpposingProof t inp

Opp-19-3 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 19 3) ⟧pl
Opp-19-3 t inp = [ inj₂ , inj₁ ]′ (Opp-3-19 t inp)

Opp-17-3 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 17 3) ⟧pl
Opp-17-3 t inp = [ inj₂ , inj₁ ]′ (Opp-3-17 t inp)

Opp-6-2 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 6 2) ⟧pl
Opp-6-2 t inp = [ inj₂ , inj₁ ]′ (Opp-2-6 t inp)

Opp-19-2 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 19 2) ⟧pl
Opp-19-2 t inp = [ inj₂ , inj₁ ]′ (Opp-2-19 t inp)

Opp-17-2 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 17 2) ⟧pl
Opp-17-2 t inp = [ inj₂ , inj₁ ]′ (Opp-2-17 t inp)

Opp-20-2 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 20 2) ⟧pl
Opp-20-2 t inp = [ inj₂ , inj₁ ]′ (Opp-2-20 t inp)

Opp-4-6 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 4 6) ⟧pl
Opp-4-6 t inp = [ inj₂ , inj₁ ]′ (Opp-6-4 t inp)

Opp-17-6 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 17 6) ⟧pl
Opp-17-6 t inp = [ inj₂ , inj₁ ]′ (Opp-6-17 t inp)

Opp-18-6 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 18 6) ⟧pl
Opp-18-6 t inp = [ inj₂ , inj₁ ]′ (Opp-6-18 t inp)
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Opp-19-6 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 19 6) ⟧pl
Opp-19-6 t inp = [ inj₂ , inj₁ ]′ (Opp-6-19 t inp)

Opp-17-4 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 17 4) ⟧pl
Opp-17-4 t inp = [ inj₂ , inj₁ ]′ (Opp-4-17 t inp)

Opp-19-4 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 19 4) ⟧pl
Opp-19-4 t inp = [ inj₂ , inj₁ ]′ (Opp-4-19 t inp)

Opp-20-4 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 20 4) ⟧pl
Opp-20-4 t inp = [ inj₂ , inj₁ ]′ (Opp-4-20 t inp)

Opp-19-17 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 19 17) ⟧pl
Opp-19-17 t inp = [ inj₂ , inj₁ ]′ (Opp-17-19 t inp)

Opp-7-5 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 7 5) ⟧pl
Opp-7-5 t inp = [ inj₂ , inj₁ ]′ (Opp-5-7 t inp)

Opp-18-5 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 18 5) ⟧pl
Opp-18-5 t inp = [ inj₂ , inj₁ ]′ (Opp-5-18 t inp)

Opp-20-5 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 20 5) ⟧pl
Opp-20-5 t inp = [ inj₂ , inj₁ ]′ (Opp-5-20 t inp)

Opp-18-7 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 18 7) ⟧pl
Opp-18-7 t inp = [ inj₂ , inj₁ ]′ (Opp-7-18 t inp)

Opp-20-7 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 20 7) ⟧pl
Opp-20-7 t inp = [ inj₂ , inj₁ ]′ (Opp-7-20 t inp)

Opp-20-18 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 20 18) ⟧pl
Opp-20-18 t inp = [ inj₂ , inj₁ ]′ (Opp-18-20 t inp)

Opp-4-2 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ (φopp 4 2) ⟧pl
Opp-4-2 t inp = [ inj₂ , inj₁ ]′ (Opp-2-4 t inp)
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module Gwili.OpposingSignals where

open import RDM.fixedtrains
open import RDM.RailYard

open import Gwili.Layout
open import Gwili.State
open import Gwili.Abstract
open import Gwili.Ladder
open import Gwili.Ladder.OpposingRoutes

open import Boolean.Formula renaming (¥ to var)

open import Data.Nat
open import Data.Sum
open import Data.Product
open import Data.List
open import Data.List.Inhabitence
open import Data.Fin using (Fin;zero;suc;#_)

open import Relation.Binary.PropositionalEquality

open import PropIso

-- Assemble opposing signal proof
#OppSig : (inputs : Inputs)
        → ∀ t
        → (rt₁ rt₂ : Route gwiliRoutes)
        → ⟦ mkenv (proj₁ (nthState inputs t)) ⊧ (φopp (unRoute rt₁) (unRoute rt₂)) ⟧pl
        → archSignalState (nthState inputs t) rt₁ ≡ Stop
          ⊎ archSignalState (nthState inputs t) rt₂ ≡ Stop
#OppSig inputs t < rt₁ > < rt₂ > (inj₁ x) rewrite ¬Tb x = inj₁ refl
#OppSig inputs t < rt₁ > < rt₂ > (inj₂ y) rewrite ¬Tb y = inj₂ refl

private
  ψ' : (inputs : Inputs) (t : ℕ) (rt₁ : Route gwiliRoutes) → Set
  ψ' inputs t rt₁
    = ∀ rt₂ ts
       → rt₁ ≢ rt₂
       → ts isin (ControlTableEntry.segments $ gwiliRoute rt₁)
       → ts isin (ControlTableEntry.segments $ gwiliRoute rt₂)
       → archSignalState (nthState inputs t) rt₁ ≡ Stop
         ⊎ archSignalState (nthState inputs t) rt₂ ≡ Stop

  ψ'' : (rt₁ : Route gwiliRoutes) → Set
  ψ'' rt₁ = (inputs : Inputs) (t : ℕ) → ψ' inputs t rt₁

  ψ : Set
  ψ = (inputs : Inputs) (t : ℕ) (rt₁ : Route gwiliRoutes) → ψ' inputs t rt₁

  ψ''' : (inputs : Inputs) (t : ℕ) (ts : Fin 9) → (rt₁ rt₂ : Route gwiliRoutes) → Set
  ψ''' inputs t ts rt₁ rt₂ = ts isin (ControlTableEntry.segments $ gwiliRoute rt₂)
   → archSignalState (nthState inputs t) rt₁ ≡ Stop ⊎ archSignalState (nthState inputs t) rt₂ ≡ Stop

OppSig3 : ψ''  < 3 >
OppSig3 inputs t rt₂ ts eq (inj₂ ())
OppSig3 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 1) (< 3 >)) rt₂
      (record {
         f3  = ⊥-elim ∘ eq ∘ sym;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const $ const $ #OppSig inputs t (< 3 >) (< 19 >) (Opp-3-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 3 >) (< 17 >) (Opp-3-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})

OppSig2 : ψ'' < 2 >
OppSig2 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 2) (< 2 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = ⊥-elim ∘ eq ∘ sym;
         f6  = const $ const $ #OppSig inputs t (< 2 >) (< 6 >) (Opp-2-6 t inputs);
         f4  = const $ const $ #OppSig inputs t (< 2 >) (< 4 >) (Opp-2-4 t inputs);
         f19 = const $ const $ #OppSig inputs t (< 2 >) (< 19 >) (Opp-2-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 2 >) (< 17 >) (Opp-2-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const $ const $ #OppSig inputs t (< 2 >) (< 20 >) (Opp-2-20 t inputs)})
OppSig2 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
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  = elimGwiliRouteInspect (ψ''' inputs t (# 3) (< 2 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = ⊥-elim ∘ eq ∘ sym;
         f6  = const $ const $ #OppSig inputs t (< 2 >) (< 6 >) (Opp-2-6 t inputs);
         f4  = const $ const $ #OppSig inputs t (< 2 >) (< 4 >) (Opp-2-4 t inputs);
         f19 = const $ const $ #OppSig inputs t (< 2 >) (< 19 >) (Opp-2-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 2 >) (< 17 >) (Opp-2-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const $ const $ #OppSig inputs t (< 2 >) (< 20 >) (Opp-2-20 t inputs)})
OppSig2 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig6 : ψ'' < 6 >
OppSig6 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 2) (< 6 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const $ const $ #OppSig inputs t (< 6 >) (< 2 >) (Opp-6-2 t inputs);
         f6  = ⊥-elim ∘ eq ∘ sym;
         f4  = const $ const $ #OppSig inputs t (< 6 >) (< 4 >) (Opp-6-4 t inputs);
         f19 = const $ const $ #OppSig inputs t (< 6 >) (< 19 >) (Opp-6-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 6 >) (< 17 >) (Opp-6-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const $ const $ #OppSig inputs t (< 6 >) (< 18 >) (Opp-6-18 t inputs);
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})
OppSig6 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 6) (< 6 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const $ const $ #OppSig inputs t (< 6 >) (< 2 >) (Opp-6-2 t inputs);
         f6  = ⊥-elim ∘ eq ∘ sym;
         f4  = const $ const $ #OppSig inputs t (< 6 >) (< 4 >) (Opp-6-4 t inputs);
         f19 = const $ const $ #OppSig inputs t (< 6 >) (< 19 >) (Opp-6-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 6 >) (< 17 >) (Opp-6-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const $ const $ #OppSig inputs t (< 6 >) (< 18 >) (Opp-6-18 t inputs);
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})
OppSig6 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig4 : ψ'' < 4 >
OppSig4 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 2) (< 4 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const $ const $ #OppSig inputs t (< 4 >) (< 2 >) (Opp-4-2 t inputs);
         f6  = const $ const $ #OppSig inputs t (< 4 >) (< 6 >) (Opp-4-6 t inputs);
         f4  = ⊥-elim ∘ eq ∘ sym;
         f19 = const $ const $ #OppSig inputs t (< 4 >) (< 19 >) (Opp-4-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 4 >) (< 17 >) (Opp-4-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const $ const $ #OppSig inputs t (< 4 >) (< 20 >) (Opp-4-20 t inputs)})
OppSig4 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 3) (< 4 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const $ const $ #OppSig inputs t (< 4 >) (< 2 >) (Opp-4-2 t inputs);
         f6  = const $ const $ #OppSig inputs t (< 4 >) (< 6 >) (Opp-4-6 t inputs);
         f4  = ⊥-elim ∘ eq ∘ sym;
         f19 = const $ const $ #OppSig inputs t (< 4 >) (< 19 >) (Opp-4-19 t inputs);
         f17 = const $ const $ #OppSig inputs t (< 4 >) (< 17 >) (Opp-4-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const $ const $ #OppSig inputs t (< 4 >) (< 20 >) (Opp-4-20 t inputs)})
OppSig4 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig19 : ψ'' < 19 >
OppSig19 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 2) (< 19 >)) rt₂
      (record {
         f3  = const $ const $ #OppSig inputs t (< 19 >) (< 3 >) (Opp-19-3 t inputs);
         f2  = const $ const $ #OppSig inputs t (< 19 >) (< 2 >) (Opp-19-2 t inputs);
         f6  = const $ const $ #OppSig inputs t (< 19 >) (< 6 >) (Opp-19-6 t inputs);
         f4  = const $ const $ #OppSig inputs t (< 19 >) (< 4 >) (Opp-19-4 t inputs);
         f19 = ⊥-elim ∘ eq ∘ sym;
         f17 = const $ const $ #OppSig inputs t (< 19 >) (< 17 >) (Opp-19-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
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         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})
OppSig19 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 1) (< 19 >)) rt₂
      (record {
         f3  = const $ const $ #OppSig inputs t (< 19 >) (< 3 >) (Opp-19-3 t inputs);
         f2  = const $ const $ #OppSig inputs t (< 19 >) (< 2 >) (Opp-19-2 t inputs);
         f6  = const $ const $ #OppSig inputs t (< 19 >) (< 6 >) (Opp-19-6 t inputs);
         f4  = const $ const $ #OppSig inputs t (< 19 >) (< 4 >) (Opp-19-4 t inputs);
         f19 = ⊥-elim ∘ eq ∘ sym;
         f17 = const $ const $ #OppSig inputs t (< 19 >) (< 17 >) (Opp-19-17 t inputs);
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})
OppSig19 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig17 : ψ'' < 17 >
OppSig17 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 2) (< 17 >)) rt₂
      (record {
         f3  = const $ const $ #OppSig inputs t (< 17 >) (< 3 >) (Opp-17-3 t inputs);
         f2  = const $ const $ #OppSig inputs t (< 17 >) (< 2 >) (Opp-17-2 t inputs);
         f6  = const $ const $ #OppSig inputs t (< 17 >) (< 6 >) (Opp-17-6 t inputs);
         f4  = const $ const $ #OppSig inputs t (< 17 >) (< 4 >) (Opp-17-4 t inputs);
         f19 = const $ const $ #OppSig inputs t (< 17 >) (< 19 >) (Opp-17-19 t inputs);
         f17 = ⊥-elim ∘ eq ∘ sym;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})
OppSig17 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 1) (< 17 >)) rt₂
      (record {
         f3  = const $ const $ #OppSig inputs t (< 17 >) (< 3 >) (Opp-17-3 t inputs);
         f2  = const $ const $ #OppSig inputs t (< 17 >) (< 2 >) (Opp-17-2 t inputs);
         f6  = const $ const $ #OppSig inputs t (< 17 >) (< 6 >) (Opp-17-6 t inputs);
         f4  = const $ const $ #OppSig inputs t (< 17 >) (< 4 >) (Opp-17-4 t inputs);
         f19 = const $ const $ #OppSig inputs t (< 17 >) (< 19 >) (Opp-17-19 t inputs);
         f17 = ⊥-elim ∘ eq ∘ sym;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})
OppSig17 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig16 : ψ'' < 16 >
OppSig16 inputs t rt₂ ts eq (inj₂ ())
OppSig16 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 0) (< 16 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = ⊥-elim ∘ eq ∘ sym;
         f7  = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f5  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f18 = const [ (λ ()) , [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′ ]′;
         f20 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′})

OppSig5 : ψ'' < 5 >
OppSig5 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 4) (< 5 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 5 >) (< 7 >) (Opp-5-7 t inputs);
         f5  = ⊥-elim ∘ eq ∘ sym;
         f18 = const $ const $ #OppSig inputs t (< 5 >) (< 18 >) (Opp-5-18 t inputs);
         f20 = const $ const $ #OppSig inputs t (< 5 >) (< 20 >) (Opp-5-20 t inputs)})
OppSig5 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 5) (< 5 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
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         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 5 >) (< 7 >) (Opp-5-7 t inputs);
         f5  = ⊥-elim ∘ eq ∘ sym;
         f18 = const $ const $ #OppSig inputs t (< 5 >) (< 18 >) (Opp-5-18 t inputs);
         f20 = const $ const $ #OppSig inputs t (< 5 >) (< 20 >) (Opp-5-20 t inputs)})
OppSig5 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig7 : ψ'' < 7 >
OppSig7 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 7) (< 7 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = ⊥-elim ∘ eq ∘ sym;
         f5  = const $ const $ #OppSig inputs t (< 7 >) (< 5 >) (Opp-7-5 t inputs);
         f18 = const $ const $ #OppSig inputs t (< 7 >) (< 18 >) (Opp-7-18 t inputs);
         f20 = const $ const $ #OppSig inputs t (< 7 >) (< 20 >) (Opp-7-20 t inputs)})
OppSig7 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 4) (< 7 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = ⊥-elim ∘ eq ∘ sym;
         f5  = const $ const $ #OppSig inputs t (< 7 >) (< 5 >) (Opp-7-5 t inputs);
         f18 = const $ const $ #OppSig inputs t (< 7 >) (< 18 >) (Opp-7-18 t inputs);
         f20 = const $ const $ #OppSig inputs t (< 7 >) (< 20 >) (Opp-7-20 t inputs)})
OppSig7 inputs t rt₂ ._  eq (inj₂ (inj₂ (inj₁ refl)))
  = elimGwiliRouteInspect (ψ''' inputs t (# 5) (< 7 >)) rt₂
      (record {
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;  f3  = const [ (λ ()) , (λ ()) ]′;
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;  f16 = const [ (λ ()) , (λ ()) ]′;
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;  f7  = ⊥-elim ∘ eq ∘ sym;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f5  = const $ const $ #OppSig inputs t (< 7 >) (< 5 >) (Opp-7-5 t inputs);
         f18 = const $ const $ #OppSig inputs t (< 7 >) (< 18 >) (Opp-7-18 t inputs);
         f20 = const $ const $ #OppSig inputs t (< 7 >) (< 20 >) (Opp-7-20 t inputs)})
OppSig7 inputs t rt₂ ts eq (inj₂ (inj₂ (inj₂ ())))

OppSig18 : ψ'' < 18 >
OppSig18 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 4) (< 18 >)) rt₂
      (record {
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;  f3  = const [ (λ ()) , (λ ()) ]′;
         f6  = const $ const $ #OppSig inputs t (< 18 >) (< 6 >) (Opp-18-6 t inputs);
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 18 >) (< 7 >) (Opp-18-7 t inputs);
         f5  = const $ const $ #OppSig inputs t (< 18 >) (< 5 >) (Opp-18-5 t inputs);
         f18 = ⊥-elim ∘ eq ∘ sym;
         f20 = const $ const $ #OppSig inputs t (< 18 >) (< 20 >) (Opp-18-20 t inputs)})
OppSig18 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 7) (< 18 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const $ const $ #OppSig inputs t (< 18 >) (< 6 >) (Opp-18-6 t inputs);
         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 18 >) (< 7 >) (Opp-18-7 t inputs);
         f5  = const $ const $ #OppSig inputs t (< 18 >) (< 5 >) (Opp-18-5 t inputs);
         f18 = ⊥-elim ∘ eq ∘ sym;
         f20 = const $ const $ #OppSig inputs t (< 18 >) (< 20 >) (Opp-18-20 t inputs)})
OppSig18 inputs t rt₂ ._  eq (inj₂ (inj₂ (inj₁ refl)))
  = elimGwiliRouteInspect (ψ''' inputs t (# 6) (< 18 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f6  = const $ const $ #OppSig inputs t (< 18 >) (< 6 >) (Opp-18-6 t inputs);
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         f4  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 18 >) (< 7 >) (Opp-18-7 t inputs);
         f5  = const $ const $ #OppSig inputs t (< 18 >) (< 5 >) (Opp-18-5 t inputs);
         f18 = ⊥-elim ∘ eq ∘ sym;
         f20 = const $ const $ #OppSig inputs t (< 18 >) (< 20 >) (Opp-18-20 t inputs)})
OppSig18 inputs t rt₂ ts eq (inj₂ (inj₂ (inj₂ ())))

OppSig20 : ψ'' < 20 >
OppSig20 inputs t rt₂ ._ eq (inj₁ refl)
  = elimGwiliRouteInspect (ψ''' inputs t (# 4) (< 20 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const $ const $ #OppSig inputs t (< 20 >) (< 2 >) (Opp-20-2 t inputs);
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const $ const $ #OppSig inputs t (< 20 >) (< 4 >) (Opp-20-4 t inputs);
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 20 >) (< 7 >) (Opp-20-7 t inputs);
         f5  = const $ const $ #OppSig inputs t (< 20 >) (< 5 >) (Opp-20-5 t inputs);
         f18 = const $ const $ #OppSig inputs t (< 20 >) (< 18 >) (Opp-20-18 t inputs);
         f20 = ⊥-elim ∘ eq ∘ sym})
OppSig20 inputs t rt₂ ._  eq (inj₂ (inj₁ refl))
  = elimGwiliRouteInspect (ψ''' inputs t (# 3) (< 20 >)) rt₂
      (record {
         f3  = const [ (λ ()) , (λ ()) ]′;
         f2  = const $ const $ #OppSig inputs t (< 20 >) (< 2 >) (Opp-20-2 t inputs);
         f6  = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f4  = const $ const $ #OppSig inputs t (< 20 >) (< 4 >) (Opp-20-4 t inputs);
         f19 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f17 = const [ (λ ()) , [ (λ ()) , (λ ()) ]′ ]′;
         f16 = const [ (λ ()) , (λ ()) ]′;
         f7  = const $ const $ #OppSig inputs t (< 20 >) (< 7 >) (Opp-20-7 t inputs);
         f5  = const $ const $ #OppSig inputs t (< 20 >) (< 5 >) (Opp-20-5 t inputs);
         f18 = const $ const $ #OppSig inputs t (< 20 >) (< 18 >) (Opp-20-18 t inputs);
         f20 = ⊥-elim ∘ eq ∘ sym})
OppSig20 inputs t rt₂ ts eq (inj₂ (inj₂ ()))

OppSig : ψ
OppSig inputs t
  = elimGwiliRoute (\ rt₁ → ψ' inputs t rt₁)
      (record {
        f3  = OppSig3 inputs t;
        f2  = OppSig2 inputs t;
        f6  = OppSig6 inputs t;
        f4  = OppSig4 inputs t;
        f19 = OppSig19 inputs t;
        f17 = OppSig17 inputs t;
        f16 = OppSig16 inputs t;
        f7  = OppSig7 inputs t;
        f5  = OppSig5 inputs t;
        f18 = OppSig18 inputs t;
        f20 = OppSig20 inputs t})
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module Gwili.Ladder.Facing where

open import Boolean.Formula

open import Gwili.Ladder
open import Gwili.Abstract
open import Gwili.Abstract-level2

open import Ladder.Core
open import Ladder.Decidable
open import Ladder.LockingTable

open import Data.Nat
open import Data.Product
open import Data.Sum
open import Data.List
open import Data.Unit
open import Data.Bool

open import Relation.Binary.PropositionalEquality

φ-points13/fpl12 : PL-Formula
φ-points13/fpl12 = ((¥ 4 || ¥ 2 || ¥ 6) => ¥ 12)

φ-points14/fpl15 : PL-Formula
φ-points14/fpl15 = ((¥ 18 || ¥ 20 || ¥ 7) => ¥ 15)

points13/fpl12 : ∀ t inp
               → ⟦safety⟧π φ-points13/fpl12 (nthState inp t) (inp t) (nthState inp (suc t))
points13/fpl12 t inp = subst (λ f → ⟦safety⟧π φ-points13/fpl12 (f inp t) (inp t) (f inp (suc t)))
                             (sym nthState-eq)
                             (nthLadderStateCorrect {gwiliLadder} GwiliDecidableLadder
                                φ-points13/fpl12 (inductiveProof gwiliLadder φ-points13/fpl12) t
                                inp)

points14/fpl15 : ∀ t inp
               → ⟦safety⟧π φ-points14/fpl15 (nthState inp t) (inp t) (nthState inp (suc t))
points14/fpl15 t inp = subst (λ f → ⟦safety⟧π φ-points14/fpl15 (f inp t) (inp t) (f inp (suc t)))
                             (sym nthState-eq)
                             (nthLadderStateCorrect {gwiliLadder} GwiliDecidableLadder
                                φ-points14/fpl15 (inductiveProof gwiliLadder φ-points14/fpl15) t
                                inp)

Faceing-13 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ φ-points13/fpl12 ⟧pl
Faceing-13 t inp = lem-mkenv-++-pl' ((¥ 4 || ¥ 2 || ¥ 6) => ¥ 12)
                     (proj₁ (nthState inp t))
                     (proj₁ (proj₁ (inp t)) ++ proj₁ (nthState inp (suc t)))
                     (subst (λ n → T (bound n φ-points13/fpl12))
                      (sym (proj₂ (nthState inp t))) tt)
                     (points13/fpl12 t inp)

Faceing-14 : ∀ t inp → ⟦ mkenv (proj₁ (nthState inp t)) ⊧ φ-points14/fpl15 ⟧pl
Faceing-14 t inp = lem-mkenv-++-pl' φ-points14/fpl15
                     (proj₁ (nthState inp t))
                     (proj₁ (proj₁ (inp t)) ++ proj₁ (nthState inp (suc t)))
                     (subst (λ n → T (bound n φ-points14/fpl15))
                      (sym (proj₂ (nthState inp t))) tt)
                     (points14/fpl15 t inp)
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module Gwili.FacingPointLock where

open import RDM.fixedtrains
open import RDM.RailYard

open import Gwili.Layout
open import Gwili.State
open import Gwili.Ladder
open import Gwili.Abstract
open import Gwili.Ladder.Facing

open import Boolean.Formula renaming (¥ to var)

open import Data.Nat
open import Data.Sum
open import Data.Product
open import Data.List
open import Data.List.Inhabitence
open import Data.Fin using (Fin;zero;suc;#_)
open import Data.Bool

open import Relation.Binary.PropositionalEquality

open import PropIso

lem-aspmap : ∀ b → aspmap b ≡ Proceed → T b
lem-aspmap false ()
lem-aspmap true _ = tt

private
  ψ : ℕ → Fin 9 → Aspect → Locking → Set
  ψ v ts a l = ∀ inputs t rt → (⟦ mkenv (proj₁ (nthState inputs t)) ⊧ (var (unRoute rt)) ⟧pl
                                → ⟦  mkenv (proj₁ (nthState inputs t)) ⊧ (var v) ⟧pl)
                             → archSignalState (nthState inputs t) rt ≡ a
                             → archSegmentLock (nthState inputs t) ts ≡ l

-- Assemble opposing signal proof
#SegLock2 : ψ 12 (# 2) Proceed Locked
#SegLock2 inputs t < rt > p eq rewrite Tb (p (lem-aspmap _ eq)) = refl

#SegLock4 : ψ 15 (# 4) Proceed Locked
#SegLock4 inputs t < rt > p eq rewrite Tb (p (lem-aspmap _ eq)) = refl

#SegLock7 : ψ 15 (# 7) Proceed Locked
#SegLock7 inputs t < rt > p eq rewrite Tb (p (lem-aspmap _ eq)) = refl

private
  ψ' : ∀ inp t rt → Set
  ψ' inp t rt = archSignalState (nthState inp t) rt ≡ Proceed
        → (ts : Fin 9)
        → ts isin (ControlTableEntry.segments $ gwiliRoute rt)
        → ts isin (ControlTableEntry.facing $ gwiliRoute rt)
        → archSegmentLock (nthState inp t) ts ≡ Locked

SegLock : ∀ inputs t rt → ψ' inputs t rt
SegLock inputs t
  = elimGwiliRoute (ψ' inputs t)
      (record {
        f3  = λ _ _ _ → ⊥-elim; f19 = λ _ _ _ → ⊥-elim;
        f17 = λ _ _ _ → ⊥-elim; f16 = λ _ _ _ → ⊥-elim;
        f2  = λ { eq ._ p (inj₁ refl) →
                     #SegLock2 inputs t (< 2 >) (Faceing-13 t inputs ∘ inj₂ ∘ inj₁) eq ;
                 eq ts p (inj₂ ()) };
        f6  = λ { eq ._ p (inj₁ refl) →
                    #SegLock2 inputs t (< 6 >) (Faceing-13 t inputs ∘ inj₂ ∘ inj₂) eq ;
                  eq ts p (inj₂ ()) };
        f4  = λ { eq ._ p (inj₁ refl) →
                   #SegLock2 inputs t (< 4 >) (Faceing-13 t inputs ∘ inj₁) eq ;
                 eq ts p (inj₂ ()) };
        f7  = λ { eq ._ p (inj₁ refl) →
                     #SegLock4 inputs t (< 7 >) (Faceing-14 t inputs ∘ inj₂ ∘ inj₂) eq ;
                  eq ts p (inj₂ ()) };
        f5  = λ _ _ _ → ⊥-elim;
        f18 = λ { eq ._ p (inj₁ refl) →
                     #SegLock4 inputs t (< 18 >) (Faceing-14 t inputs ∘ inj₁) eq ;
                  eq ts p (inj₂ ()) };
        f20 = λ { eq ._ p (inj₁ refl) →
                     #SegLock4 inputs t (< 20 >) (Faceing-14 t inputs ∘ inj₂ ∘ inj₁) eq ;
                  eq ts p (inj₂ ()) } })
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module Gwili.Interlocking where

open import RDM.fixedtrains
open import RDM.RailYard

open import Gwili.Layout
open import Gwili.State
open import Gwili.OpposingSignals
open import Gwili.FacingPointLock
open import Gwili.Abstract

open import Relation.Binary.PropositionalEquality
open import Relation.Decidable

open import Data.Nat
open import Data.Sum
open import Data.Product
open import Data.List
open import Data.List.Inhabitence

mutual
  CorrectTrainsAux : ∀ inp tinp t tr rt l
                   → (∀ x → x isin l → x isin gwiliRouteConnections (trainPosition inp tinp t tr))
                → trainPosition inp tinp t tr ≡ trainPosition-aux inp tinp t tr rt l
                  ⊎ (GwiliRouteConnections (trainPosition inp tinp t tr)
                                           (trainPosition-aux inp tinp t tr rt l)
                    × archSignalState (nthState inp t)
                                      (trainPosition-aux inp tinp t tr rt l) ≡ Proceed)
  CorrectTrainsAux inp tinp t tr rt [] q = inj₁ refl
  CorrectTrainsAux inp tinp t tr rt (rt' ∷ rts) q with decroute rt rt'
  CorrectTrainsAux inp tinp t tr rt (rt' ∷ rts) q | yes p
    with decasp (archSignalState (nthState inp t) rt) Proceed
  CorrectTrainsAux inp tinp t tr rt (rt' ∷ rts) q | yes p₁ | yes p = inj₂ (q rt (inj₁ p₁) , p)
  CorrectTrainsAux inp tinp t tr rt (rt' ∷ rts) q | yes p  | no ¬p = inj₁ refl
  CorrectTrainsAux inp tinp t tr rt (rt' ∷ rts) q | no ¬p
    = CorrectTrainsAux inp tinp t tr rt rts (λ x y → q x (inj₂ y))

  CorrectTrains : ∀ inp tinp t tr
                → trainPosition inp tinp t tr ≡ trainPosition inp tinp (suc t) tr
                  ⊎ (GwiliRouteConnections (trainPosition inp tinp t tr)
                                           (trainPosition inp tinp (suc t) tr)
                    × archSignalState (nthState inp t)
                                      (trainPosition inp tinp (suc t) tr) ≡ Proceed)
  CorrectTrains inp tinp t tr with tinp t tr
  CorrectTrains inp tinp t tr | moving x = CorrectTrainsAux inp tinp t tr x
                                             (gwiliRouteConnections (trainPosition inp tinp t tr))
                                             (λ _ x → x)
  CorrectTrains inp tinp t tr | stationary = inj₁ refl

CorrectInputs-SigGuard : Inputs → TrainInputs → Set
CorrectInputs-SigGuard inp tinp
  = ∀ t tr ts → ts isin (ControlTableEntry.segments (gwiliRoute (trainPosition inp tinp t tr)))
              → ∀ rt
              → ts isin (ControlTableEntry.segments (gwiliRoute rt))
              → archSignalState (nthState inp t) rt ≡ Stop

CorrectInputs-TrainLocked : Inputs → TrainInputs → Set
CorrectInputs-TrainLocked inp tin
  = ∀ t tr ts → ts isin (ControlTableEntry.segments (gwiliRoute (trainPosition inp tin (suc t) tr)))
              → archSegmentLock (nthState inp t) ts ≡ Locked
              → archSegmentLock (nthState inp (suc t)) ts ≡ Locked

-- the interlocking does not enforce that signals guard, i.e. does not clear when a train is
-- trailing a signal. thus, it is assumed that the signal man enforces this principle.
gwilirailway : (i : Inputs)
             → (ti : TrainInputs)
             → CorrectInputs-SigGuard i ti
             → CorrectInputs-TrainLocked i ti
             → Railway GwiliLayout
gwilirailway inputs tinputs sigguard trainlock
  = record {
      layoutState = λ n → toArchState n inputs tinputs;
      CorrectTrains-Route = CorrectTrains inputs tinputs;
      Principle-SignalsGuard = sigguard;
      Principle-OpposingSignals = OppSig inputs;
      Principle-ProceedLocked = SegLock inputs;
      Principle-TrainLocked = trainlock}
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module Gwili.Safe where

open import RDM.fixedtrains

open import Gwili.State
open import Gwili.Interlocking
open import Gwili.Layout
open import Gwili.Abstract

open import Data.Fin
open import Data.Sum
open import Data.Product
open import Data.Empty

open import Relation.Binary.PropositionalEquality

open import PropIso

open import Ladder.Core

open Layout

GwiliNoCrashInit : (tr₁ tr₂ : Fin 2)
                 → tr₁ ≡ tr₂
                   ⊎ (∀ ts → SegInRoute GwiliLayout ts (initTrainPosition tr₁)
                           → ¬ SegInRoute GwiliLayout ts (initTrainPosition tr₂))
GwiliNoCrashInit zero zero = inj₁ refl
GwiliNoCrashInit zero (suc zero)
  = inj₂ λ { ._ (inj₁ refl) → λ { (inj₁ ()) ; (inj₂ ()) } ; ts (inj₂ ()) }
GwiliNoCrashInit zero (suc (suc ()))
GwiliNoCrashInit (suc zero) zero
  = inj₂ λ { ._ (inj₁ refl) → λ { (inj₁ ()) ; (inj₂ ()) } ; ts (inj₂ ()) }
GwiliNoCrashInit (suc zero) (suc zero) = inj₁ refl
GwiliNoCrashInit (suc zero) (suc (suc ()))
GwiliNoCrashInit (suc (suc ())) tr₂

GwiliLockInit : ∀ i tr ts
              → SegInRoute GwiliLayout ts (initTrainPosition tr)
              → FacingInRoute GwiliLayout ts (initTrainPosition tr)
              → archSegmentLock (nthState i 0) ts ≡ Locked
GwiliLockInit i zero ts q p = ⊥-elim p
GwiliLockInit i (suc zero) ts q p = ⊥-elim p
GwiliLockInit i (suc (suc ())) ts q p

Safe : (i : Inputs)
     → (ti : TrainInputs)
     → (q₁ : CorrectInputs-SigGuard i ti)
     → (q₂ : CorrectInputs-TrainLocked i ti)
     → TrainsDontCrash (gwilirailway i ti q₁ q₂)
       × FacingPointLock (gwilirailway i ti q₁ q₂)
Safe i ti q₁ q₂ = record { InitialSafe = GwiliNoCrashInit }
                , record { InitialSafe = GwiliLockInit i }
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module Gwili.GwiliSimulator where

open import IO.Console
open import Foreign.Haskell
open import Data.Char
open import Data.Colist
open import Data.Bool
open import Data.String as String hiding (_==_) renaming (_++_ to _+++_)
open import Data.Product as Prod
open import Data.Conat hiding (_+_)
open import Data.Nat hiding (_<_)
open import Data.List as List
open import Data.Colist
open import Data.Maybe
open import Data.Sum

open import Coinduction

open import coparse as P hiding (choice)

open import Relation.Binary.PropositionalEquality
open import Relation.Decidable

open import PropIso

open import Gwili.Ladder

open import TransitionSystem.Decidable renaming (DecidableTransitionSystem to DTS)

open import Ladder.LockingTable

open import Boolean.Formula

private
  defhead : ∀ {A : Set} → A → List A → A
  defhead a [] = a
  defhead a (x ∷ _) = x

  deftail : ∀ {A : Set} → List A → List A → List A
  deftail a [] = a
  deftail a (_ ∷ x) = x

decList : ∀ {A : Set} → Decidable (_≡_ {A = A}) → Decidable (_≡_ {A = List A})
decList d [] [] = yes refl
decList d [] (x ∷ y) = no (λ ())
decList d (x ∷ x₁) [] = no (λ ())
decList d (x ∷ x₁) (x₂ ∷ y) with d x x₂
decList d (x ∷ x₁) (x₂ ∷ y) | yes p with decList d x₁ y
decList d (x ∷ x₁) (x₂ ∷ y) | yes p₁ | yes p = yes (cong₂ _∷_ p₁ p)
decList d (x ∷ x₁) (x₂ ∷ y) | yes p | no ¬p = no (λ x₃ → ¬p (cong (deftail []) x₃))
decList d (x ∷ x₁) (x₂ ∷ y) | no ¬p = no (λ x₃ → ¬p (cong (defhead x) x₃))

decState : Decidable (_≡_ {A = List Bool})
decState = decList Data.Bool._≟_

showBool : Bool → String
showBool true = "Reverse"
showBool false = "Normal"

showSig : Bool → String
showSig false = "Danger"
showSig true  = "Clear "

showLock : Bool → String
showLock true = "Locked"
showLock false = "Unlocked"

showState : Σ[ l ∶ List Bool ] (List.length l ≡ 22) → String
showState (_ ∷ _ ∷ sig2 ∷ sig3 ∷ sig4 ∷ sig5 ∷ sig6 ∷ sig7 ∷ _ ∷
           _ ∷ _ ∷ _ ∷ fpl12 ∷ point13 ∷ point14 ∷ fpl15 ∷ sig16 ∷
           sig17 ∷ sig18 ∷ sig19 ∷ sig20 ∷ _ ∷ [] , proj₂) = "\nSignals:\n" +++
  "2: "  +++ showSig sig2  +++ " | " +++  "16: " +++ showSig sig16 +++ "\n" +++
  "3: "  +++ showSig sig3  +++ " | " +++  "17: " +++ showSig sig17 +++ "\n" +++
  "4: "  +++ showSig sig4  +++ " | " +++  "18: " +++ showSig sig18 +++ "\n" +++
  "5: "  +++ showSig sig5  +++ " | " +++  "19: " +++ showSig sig19 +++ "\n" +++
  "6: "  +++ showSig sig6  +++ " | " +++  "20: " +++ showSig sig20 +++ "\n" +++
  "7: "  +++ showSig sig7  +++ "\n\n" +++
  "fpl 12 / point 13:\n  " +++ showLock fpl12 +++ " / " +++ showBool point13 +++ "\n" +++
  "fpl 15 / point 14:\n  " +++ showLock fpl15 +++ " / " +++ showBool point14 +++ "\n\n"
showState _ = "IMPOSSIBLE ERROR"

readLeaverNumber : IOConsole (Σ[ n ∶ ℕ ] (T (n < 22 ∧ 0 < n)))
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readLeaverNumber = do (putStrLn (toCostring "enter leaver to move [1..21]")) \ _ →
                 ♯ do getLine \ l1 →
                 ♯ choice (parseSpaced parseNat l1)
                          (λ n → choice ([ just , const nothing ]′ (ex-mid (proj₁ n < 22 ∧
                                                                            0 < proj₁ n )))
                                        (λ np → return (proj₁ n , np))
                                        readLeaverNumber)
                          readLeaverNumber

lowlist : (n : ℕ) → Σ[ l ∶ List Bool ] (List.length l ≡ n)
lowlist 0 = [] , refl
lowlist (suc n) = Prod.map (λ x → false ∷ x) (cong suc) (lowlist n)

mklist : (length high : ℕ) → List Bool
mklist zero h = []
mklist (suc l) zero = true ∷ proj₁ (lowlist l)
mklist (suc l) (suc h) = false ∷ mklist l h

lem-mklist : ∀ (length high : ℕ) → List.length (mklist length high) ≡ length
lem-mklist zero h = refl
lem-mklist (suc l) zero = cong suc (proj₂ (lowlist l))
lem-mklist (suc l) (suc h) = cong suc (lem-mklist l h)

--takes a number n in [1..21] and produces an input list l, such
--      that l[n] = true and all m!=n l[m]=false
mkinputs : ((Σ[ n ∶ ℕ ] (T (n < 22 ∧ 0 < n)))) → Σ[ l ∶ List Bool ] (List.length l ≡ 22)
mkinputs ((n , np))  = (mklist 22 n) , (lem-mklist 22 n)

mkDisj' : ℕ → PL-Formula
mkDisj' zero = ¥false
mkDisj' (suc n) = ¥ n || mkDisj' n

mkInvariant-aux' : ℕ → PL-Formula
mkInvariant-aux' zero = ¥true
mkInvariant-aux' (suc n) = (¥ (n) => ~ (mkDisj' n)) && mkInvariant-aux' n

lem-lowlist : ∀ a b → ¬ T (mkenv (proj₁ (lowlist a)) b)
lem-lowlist zero b = id
lem-lowlist (suc a) zero = id
lem-lowlist (suc a) (suc b) = lem-lowlist a b

lem-mklist' : ∀ a b c → T (mkenv (mklist a b) c) → b ≡ c
lem-mklist' zero b c = ⊥-elim
lem-mklist' (suc a) zero zero = const refl
lem-mklist' (suc a) zero (suc c) = ⊥-elim ∘ lem-lowlist a c
lem-mklist' (suc a) (suc b) zero = ⊥-elim
lem-mklist' (suc a) (suc b) (suc c) = cong suc ∘ lem-mklist' a b c

disj-bound : ∀ a → T (bound a (mkDisj' a) )
disj-bound zero = _
disj-bound (suc a) = ∧-intro _ _ (<-ord a)
                                 (injbound (mkDisj' a) a (suc a)
                                   (<-rsuc a (suc a) (<-ord a)) (disj-bound a))

lem-mkmk-bound : ∀ a b → T (b < a)
               → mkenv (mklist (suc (suc a)) (suc a)) b ≡ mkenv (mklist (suc a) a) b
lem-mkmk-bound zero b ()
lem-mkmk-bound (suc a) zero p = refl
lem-mkmk-bound (suc a) (suc b) p = lem-mkmk-bound a b p

lem-mkmk : ∀ a → ¬ ⟦ mkenv (mklist (suc a) a) ⊧ mkDisj' a ⟧pl
lem-mkmk zero p = p
lem-mkmk (suc zero) (inj₁ x) = x
lem-mkmk (suc (suc a)) (inj₁ x) = lem-mkmk (suc a) (inj₁ x)
lem-mkmk (suc a) (inj₂ y) = lem-mkmk a
                              (env-eq-bound-subst (mkenv (mklist (suc (suc a)) (suc a)))
                               (mkenv (mklist (suc a) a)) (mkDisj' a) a (disj-bound a)
                               (lem-mkmk-bound a) y)

↯ : ∀ {w} {Whatever : Set w} → ⊥ → Whatever
↯ = ⊥-elim

Empty : ℕ → Set
Empty 0 = ⊥
Empty (suc n) = ⊥ ⊎ Empty n

↯⊎ : ∀ {w} {Whatever : Set w} → (n : ℕ) → Empty n → Whatever
↯⊎ zero = ⊥-elim
↯⊎ (suc n) = [ ⊥-elim , ↯⊎ n ]′

inputsproof : (p : Σ[ n ∶ ℕ ] (T (n < 22 ∧ 0 < n)))
            → ⟦ mkenv (proj₁ (mkinputs p)) ⊧ mkInvariant-aux 0 22 ⟧pl
inputsproof (0 , p) = ⊥-elim p
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inputsproof (1  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 1)  , ↯ , _
inputsproof (2  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 2)  , ↯ , ↯ , _
inputsproof (3  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 3)  , ↯ , ↯ , ↯ , _
inputsproof (4  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , const (↯⊎ 4)  , ↯ , ↯ , ↯ , ↯ , _
inputsproof (5  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , const (↯⊎ 5)  , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (6  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , const (↯⊎ 6)  , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (7  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , const (↯⊎ 7)  , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (8  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       const (↯⊎ 8)  , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (9  , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       const (↯⊎ 9)  , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (10 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 10) ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (11 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 11) ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (12 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 12) , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (13 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 13) , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (14 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 14) , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (15 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 15) , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (16 , p) = ↯ , ↯ , ↯ , ↯ , ↯ , const (↯⊎ 16) , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (17 , p) = ↯ , ↯ , ↯ , ↯ , const (↯⊎ 17) , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (18 , p) = ↯ , ↯ , ↯ , const (↯⊎ 18) , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (19 , p) = ↯ , ↯ , const (↯⊎ 19) , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (20 , p) = ↯ , const (↯⊎ 20) , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
                       ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
-- agda does not support builtin naturals > 20 in case distinctions
inputsproof (suc (suc (suc (suc (suc (suc (suc (suc
             (suc (suc (suc (suc (suc (suc (suc (suc
             (suc (suc (suc (suc (suc zero)))))))))))))))))))) , p)
  = const (↯⊎ 21) , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ ,
    ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , ↯ , _
inputsproof (suc (suc (suc (suc (suc (suc (suc (suc
             (suc (suc (suc (suc (suc (suc (suc (suc
             (suc (suc (suc (suc (suc (suc n))))))))))))))))))))) , p) = ⊥-elim p

mkinput : Σ[ n ∶ ℕ ] (T (n < 22 ∧ 0 < n))
        → Σ[ m ∶ Σ[ l ∶ List Bool ] (List.length l ≡ 22) ]
             ⟦ mkenv (proj₁ m) ⊧ mkInvariant-aux 0 22 ⟧pl
mkinput p = mkinputs p  , inputsproof p

-- readExit : IOConsole Choice
-- readExit = do (putStrLn (toCostring "do you want to exit? [yes/no]")) \ _ →
--          ♯ do getLine \ l1 →
--          ♯ choice (parseChoice l1) (return ∘ proj₁) readExit

mutual
  mainloop : Σ[ l ∶ List Bool ] (List.length l ≡ 22) → IOConsole Unit
  mainloop s = (do (putStrLn (toCostring (showState s))) \ _ → ♯ return unit) >>= const
               (♯ readLeaverNumber) >>= λ inp →
               ♯ eval (DecidableTransitionSystem.transitionFunction GwiliDecidableLadder
                                                               s (mkinput inp)) s

  eval : Σ[ l ∶ List Bool ] (List.length l ≡ 22)
       → Σ[ l ∶ List Bool ] (List.length l ≡ 22)
       → IOConsole Unit
  eval new old with decState (proj₁ new) (proj₁ old)
  eval new old | yes p = do (putStrLn (toCostring "## Request failed ##")) \ _ →
                       ♯ mainloop new
  eval new old | no ¬p = mainloop new

program : IOConsole Unit
program = (do (putStrLn (toCostring
                        "Gwili Rail simulator\nentering main loop...\n\ninitial state:")) \ _ →
        ♯ mainloop (DTS.initialState GwiliDecidableLadder))

main : PrimIO Unit
main = translateIOConsole program
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Oracle + Justification, 44

Oracle + Reflection, 49

ATPCOMPLETE, 105

ATPDECPROC, 103

ATPINPUT, 104

ATPPROBLEM, 103

ATPSEMANTICS, 105

ATPSOUND, 105

ATPTOOL, 104

BooleanFormula, 58, 97, 193

bound, 195

built-in, 50, 87

built-in function, 91

consistent, 92

co-induction, 28

computer science, 2

ControlTable, 169

Connected, 170

connections, 169

entries, 169

FacingInRoute, 170

NormalInRoute, 170

ReverseInRoute, 170

Route, 169

RouteEq, 169

SegInRoute, 170

ControlTableEntry, 169

facing, 169

normalpoints, 169

reversepoints, 169

segments, 169

start, 169

correct-list, 128

correct-rule, 126

Correct-Train, 176

Correctness

SAT, 59

SymCTL, 84

createList, 135
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CTL, 63

J , ⊧ K, 64

false, 63

¬, 63

∨, 63

∧, 63

ctlcheck, 66

EG, 63

E[ U ], 63

EX, 63

P, 63

DecidableTransitionSystem, 200

initialCorrect, 200

initialState, 200

transitionCorrect, 200

transitionFunction, 200

decode, 74

decode-Σ, 77

∆, see Rule System

derivation, 128

domain analysis, 34

downRun, 70

∃, 27

encode, 74

encode-Σ, 77

executeLadder, 202

Fin, 58, 98

fin-pair, 73

fin-unpair, 73

♭, 28

Flattened, 142

formal methods, 3

formula, 128

framework, 41

fromInput, 215

fromRun, 82

fromState, 215

fromSymRun, 215

FSM, 63

arrow, 63

atom, 63

CTL, 63

downRun, 70

fsm, 63

initial, 63

label, 63

liftCTL, 69

liftRun, 70

mkSink, 68

next, 63

Run, 63

state, 63

transition, 63

fsm, 63

garbage collection, 113

GC, 107

generic interface, 102

guarded recursion, 28

∞, 28

Initial, 196

initial, 63, 79

initialCorrect, 200

initialState, 200

initialstate, 193

inp-correct, 193

Input, 195, 213

inpvars, 193

instantiate, 58, 97

interlocking systems, 1

isin, 165

ITP, 11

label, 63

Ladder, 193, 213

bound, 195

init-map<, 195

init-map≠, 195

initialstate, 193

inp-correct, 193
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Input, 195

inpvars, 193

invar-bound, 195

rung-bound, 195

rungs, 193

State, 194

statevars, 193

trans-map<, 195

trans-map≠, 195

TransitionSystem, 196

LadderCTL, 211, 213

BooleanFormula, 213

fromInput, 215

fromState, 215

fromSymRun, 215

Input, 213

Ladder, 213

LadderRun, 214

mkTransitionFunction, 213

State, 213

toInput, 215

toState, 215

toSymCTL, 215

toSymFSM, 215

toSymRun, 215

Layout, 172

FacingInRoute, 172

Route, 172

RouteConnected, 172

RouteEq, 172

SegInRoute, 172

Segment, 172

Train, 172

TrainEq, 172

WellFormed, 172

LayoutState, 175

locked, 175

signalAspect, 175

trainRoute, 175

life cycle, 3

liftCTL, 69

liftRun, 70

Locking, 175

lookup, 79, 200

mkdts, 208

mkinit, 197

mkInitialState, 200

mkSink, 68

mktrans, 199

mkTransitionFunction, 204, 213

mkts, 199

mutator, 107

MUX, 5

N, 23

natural deduction, 126

nthState, 175, 200

Opposing Signals, 177

P1, 5

P2, 5

paxm1, 7

paxm2, 7

paxm3, 7

paxm4, 7

paxm5, 7

paxm6, 7

PHP, 111

PhysicalLayout, 165

Connected, 165

connections, 165

Segment, 165

Signal, 165

signalLocation, 165

Π, 74

pigeonhole, 66, 110

premise, 128

primed, 197

primExternal, 134

primitive function, 92

Proceed Locked, 178
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ProofList, 128

ProofNode, 128

proofnode, 128

propositional logic, 129

pseudo built-in, 96

Record, 74

repeat, 214

results

CTL, 114

SAT, 106

rule, 128

Rule System

arity, 126

correct-rule, 126

ProofNode, 128

formula, 128

premise, 128

proofnode, 128

rule, 128

sound-rule, 127

Run, 63

rungs, 193

S1, 5, 177

S1-Init, 179

S2, 5, 177

S2-Init, 179

safety conditions, 8

safety principle, 8

SAT

J K , 58

BooleanFormula, 97

instantiate, 58, 97

rank, 97

tautology, 59

sequent, 129

♯, 28

shift, 198

Signalling Principle, 3

1, see Opposing Signals

2, see Signals Guard

3, see Proceed Locked

4, see Train Holds Lock

SignalLocation, 165

Signals Guard, 178

software engineering, 2

sound-list, 129

State, 194, 196, 213

state, 63, 79

statevars, 193

SymCTL, 83

J , ⊧ K, 84

symctlcheck, 84

SymFSM, 79

arrow, 79

fromRun, 82

fsm, 79

initial, 79

state, 79

SymCTL, 83

SymRun, 82

toCTL, 83

toFSM, 80

toRun, 82

transition, 79

SymRun, 82

T, 24

tag, 90

tautology-sound, 59

taxm1, 7

taxm2, 7

taxm3, 7

taxm4, 7

taxm5, 7

taxm6, 7

toCTL, 83

toFSM, 80

toInput, 215

toLayout, 173

tool, 107
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toRun, 82

toState, 215

toSymCTL, 215

toSymFSM, 215

toSymRun, 215

total, 107

track plan, 162

Train Holds Lock, 178

train simulator, 209

initPosition, 209

trainInput, 209

TrainInputs, 209

Transition, 196

transition, 63, 79

transitionCorrect, 200

transitionFunction, 200

TransitionSystem, 196

Decidable, 200

executeLadder, 202

Initial, 196

mkdts, 208

mkinit, 197

mkInitialState, 200

mktrans, 199

mkTransitionFunction, 204

mkts, 199

nthState, 200

State, 196

Transition, 196

ts, 196

validation, 3

Vec, 23

Vec∗, 127
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