
Formal Verification of

Ladder Logic

Karim Kanso

A thesis submitted to the University of Wales in
candidature for the degree of Master of Research

Department of Computer Science
Swansea University

October 1, 2010

II

Abstract

This project studied whether a digital interlocking which had been pro-

grammed with ladder logic (Boolean program) would obey generic safety

properties. This was carried out by translating the ladder logic into an

alternate representation and applying various techniques to allow specifica-

tion of safety properties. Finally, a proof engine was used to formally verify

if these properties were fulfilled and if they are not, then human readable

documentation would be generated.

III

IV

Declaration

This work has not been previously accepted in substance for any degree and
is not being concurrently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1

This thesis is the result of my own investigations, except where otherwise
stated. Other sources are acknowledged by footnotes giving explicit refer-
ences. A bibliography is appended.

Signed .. (candidate)

Date ..

Statement 2

I hereby give my consent for my thesis, if accepted, to be available for photo-
copying and for inter-library loan, and for the title and summary to be made
available to outside organisations.

Signed .. (candidate)

Date ..

V

VI

Contents

1 Overview 1

1.1 Invensys . 1

1.2 Problem 1© – Verification . 2

1.3 Problem 2© – Signalling Principles 10

1.4 Implementation . 10

2 Background 13

2.1 History . 13

2.2 Railway Yards . 15

2.3 Ladder Logic . 18

3 Techniques 21

3.1 Boolean Satisfaction Problem 21

3.2 Ladder Logic and Interlockings 22

3.3 Ladder Invariants . 25

4 Literature Review 27

4.1 Topologies . 28

4.2 CNF Generation . 29

4.3 SAT-Solvers . 30

4.4 Safety Conditions . 31

4.5 Interlocking Specification Languages 32

4.6 First Order Logic . 33

VII

VIII CONTENTS

4.7 Railway Signalling Principles 34

5 Ladder Logic Translation 36

5.1 Rungs . 38

5.2 Näıve Translation . 41

5.3 Renaming . 43

6 Safety Conditions 46

6.1 Signalling Principles . 46

6.2 Safety Conditions . 62

6.3 Proving . 62

7 Results Obtained 69

7.1 Software Architecture . 69

7.2 Variables of Configuration . 70

7.3 Experiments . 70

8 Conclusions 78

8.1 Feasibility . 78

8.2 Software Review . 78

8.3 Limitations . 79

8.4 Areas of Further Research . 81

8.5 Recommendations . 83

8.6 Implementation . 84

Appendices 86

A Userguide 86

A.1 Introduction . 86

A.2 Installation . 87

A.3 Software Architecture . 89

A.4 Usage . 100

A.5 Produced Counterexamples 112

A.6 Expanding . 113

CONTENTS IX

Bibliography 115

X

Acknowledgements

I would like to thank Simon Chadwick, Nick Smith and Peter Duggen from

Westinghouse Rail Systems Limited for their prompt replies to questions and

their guidance.

Oliver Kullmann for guidance with the Boolean Satisfaction Problem,

Anton Setzer and Faron Moller from Swansea University for their guidance

and supervision throughout the project.

Markus Roggenbach from Swansea University and Achim Jung from The

University of Birmingham for their comments and help improving this thesis.

XI

XII

List of Tables

1.1 Traffic Scenario States . 8

2.1 Example Control Table . 18

2.2 Ladder Logic Symbols . 20

5.1 Cell Types . 38

7.1 Type Shorthands . 72

A.1 Symbols and Units . 87

A.2 General Formula programs . 91

A.3 General Formula files . 92

A.4 Phase 1 programs . 94

A.5 Phase 1 files . 94

A.6 Phase 2 programs . 97

A.7 Phase 2 files . 98

A.8 Phase 3 programs . 99

A.9 Phase 3 files . 100

A.10 The stations Predicates . 105

A.11 Syntax of Operations in cond files 106

XIII

List of Figures

1.1 Execution Strategy of Ladder 3

1.2 Example Rung in Ladder Logic 3

1.3 Picture of a Pelican Crossing 5

1.4 Diagram of a Pelican Crossing 6

1.5 Pelican Ladder Logic Diagram 7

1.6 Problem 1 Software Architecture 11

1.7 Problem 2 Software Architecture 12

2.1 Pictures of Old Signal Rooms 14

2.2 Example Railway Yard . 16

2.3 Graphical Representation of Routes from Table 2.1. 17

2.4 Example Ladder Logic Diagram 19

3.2 CSP Diagram of Execution Strategy 22

3.1 Execution Strategy for Interlocking Ladders 23

3.3 Timer Interaction . 24

4.1 Example Signalling Principle 32

5.1 Cell Link Graphical Representations 37

5.2 Näıve Translation Strategy . 40

5.3 Optimised Translation Strategy 40

6.1 Basic Hierarchy of Entity Types 47

XIV

LIST OF FIGURES XV

6.2 Graphical Representation of Routes from Table 2.1. 55

6.3 Reachable States . 64

6.4 3-Way Switch . 66

7.1 Top Level Dataflow . 70

8.1 Backwards Reachability . 81

8.2 Valid Time Line . 83

8.3 Invalid Time Line . 83

A.1 Flow Diagram Symbols . 87

A.2 Top Level Dataflow . 90

A.3 General Formula Architecture 91

A.4 Rail Verifier Architecture . 93

A.5 Phase 1 Architecture . 94

A.6 Phase 2 Architecture . 96

A.7 Phase 3 Architecture . 99

A.8 Basic Layout of the Station 113

XVI

Chapter 1
Overview

1.1 Invensys

In 1869 George Westinghouse patented the air brake for trains and started
the Westinghouse Air Brake Company, latter became Invensys. This device
allows trains to brake with fail safe precision, and works by using air pressure
to keep the brake pads off the wheels, so as soon as the pressure is released
the train stops. This happens when power is cut in the case of an emergency
or guaranteeing that a train stops at a platform, “Arms” are placed on the
track such that when a train goes over, they release the air pressure making
a train brake with fail safe precision.

Continuing along the line of railway safety Westinghouse has become one
of the largest suppliers of railway control equipment in the world. Some
of the countries that rely on Westinghouse include Australia, Hong Kong,
Germany, Spain and the UK.

Westinghouse Train Radio and Advanced Control Equipment (Westrace)
which is the interlocking the project is concerned with; these are used in
over 12 countries. Westrace’s are programmed with Ladder logic which is
a graphical representation of Boolean valued assignments. The Westrace
was first designed over 10 years ago and is continuously upgraded as new
technologies are discovered. This upgrade process is greatly simplified due
to the modularised design of the Westrace.

Invensys contacted Swansea University in the summer of 2007 to initiate
a project for formal verification of Westrace’s programmed with ladder logic.

1

2 1.2. Problem 1© – Verification

1.1.1 Objectives

Westinghouse has many objectives, one of which is “to ensure foreseeable
technical risk is systematically engineered out of our products and systems
and that the risks associated with the construction, maintenance and use
of our products and systems are identified, assessed and combated at their
source”. This project falls under the above mentioned objective.

After a discussion with Westinghouse, it was decided that the project will
deliver a functioning prototype capable of formally verifying that a specific
interlocking ratifies with arbitrary signalling principles.

The project was split into two problems, the first is concerned with the
actual verification of an interlocking with respect to a safety condition and
the second is concerned with the verification of signalling principles.

1.2 Problem 1© – Verification

Problem 1© can be described as “verifying whether a safety condition holds
in a specific Westrace interlocking”. This task is composed of four sub-tasks,

1. Building a propositional model of the ladder logic program to be veri-
fied, and

2. Generating propositional proof formulæ that can verify whether the
ladder logic fulfils safety conditions, and

3. Entering the proof formulæ into a proof engine (SAT-Solver), and

4. In the case a counter example is identified, documentation is generated.

Tasks 1-3 are the main tasks of interest, task 4 is concerned with process-
ing the output of task 3 (proving).

Task 1 is discussed in detail in Sect. 5, Ladder logic canonically translates
to a Boolean program consisting of a list of assignments, where variables are
assigned evaluated propositional formulæ. The ladder logic is what represents
the assembly language level for the interlocking as it is at the lowest level.
Higher level languages are translated into ladder logic.

Execution of the ladder logic commences by first initialising variables to
initial values, then starting a repetitive loop. See Fig. 1.1 for the execution
strategy.

1. Overview 3

Initialise Variables

while(true) {
Output

Input

x1 := ϕ1
...

xn := ϕn

}

Figure 1.1: Execution Strategy of Ladder, where xi are variables and ϕj are
propositional formula

The loop repetitively outputs values of variables to the hardware, inputs
values from the controls and hardware to variables and evaluates the ladder
which updates variables.

An example assignment d := (a ∧ ¬b) ∨ c would be represented in ladder
logic as

|a|

|c|

|6b| (d)

Figure 1.2: Example Rung in Ladder Logic

a, b, c and d are latches, 6b is a negation and the brackets around d indicate
that it an output. The diagram’s semantics are very similar to that of a
circuit diagram, as ladder logic was originally used to program microchips.

The second task of proof formula generation constructs propositional for-
mula used for the proving stage. See Sect. 6 for a detailed discussion of the
proof formula. In short, the aim is to show that a safety condition ψ holds
always after each execution of the ladder. There are different techniques

4 1.2. Problem 1© – Verification

that can be used, for this project the principle of induction is applied with
promising results.

The principle of induction requires that two formulæ hold, the base case
and the inductive step. The base case shows that from the initial state ϕI

and after one execution of the ladder ϕL the safety condition ψ holds.

ϕI ∧ ϕL → ψ′ (1.1)

The inductive step, requires that from an arbitrary state where the safety
condition holds and after one execution of the ladder the safety condition
holds.

ψ ∧ ϕL → ψ′ (1.2)

where ϕL has the form (x′1 ↔ ϕ′
1) ∧ · · · ∧ (x′n ↔ ϕ′

n). x′i is a new propo-
sition representing the state of variable xi after execution. ϕ′

i is the result
of replacing x1,. . . ,xi−1 by x′1,. . . ,x

′
i−1 in ϕi, where ϕi is the same as ϕi in

Fig. 1.1. ψ′ is the result of replacing xi by x′i in ψ.
If its possible to falsify formulæ 1.1 or 1.2, then this indicates possible

existence of a counter example. The counter example is only a real counter
example if it is in a reachable state. Two techniques are used to characterise
reachable states, the first technique is to identify valid combinations of inputs
and the second is to mathematically prove invariance about the system using
formulæ 1.1 and 1.2. i.e. a signal should not be red and green simultaneously.
The first technique is used to restrict possible inputs. I.e. a switch that can
be in one of three positions, is represented by three propositional variables
A, B and C, one for each position. At most one of these variables should be
true.

These invariances can be used to weaken the proof formulæ, allowing for
many unreachable states to be discarded. Given an invariance ϕInv, the proof
formulæ become:

ϕI ∧ ϕL ∧ ψInv → ψ′ (1.3)

and
ψ ∧ ϕL ∧ ψInv → ψ′ (1.4)

Task 3, proving can be performed by a SAT-Solver, for the proof it is
required to show that formulæ 1.3 and 1.4 hold always. Thus, the negation
of these formulæ should never hold.

¬(ϕI ∧ ϕL ∧ ψInv → ψ′) (1.5)

and
¬(ψ ∧ ϕL ∧ ψInv → ψ′) (1.6)

1. Overview 5

The two formulæ 1.5 and 1.6 are entered into a SAT-Solver, in the case that
the solver indicates unsatisfiability the safety condition ψ holds always. Oth-
erwise, a counter example has been identified and documentation is produced
(task 4).

1.2.1 Example

To help explain the principles of problem 1© a scenario of a Pelican1 crossing
has been constructed, see Fig. 1.5 for the ladder logic diagram that controls
the “toy” crossing. See Fig. 1.3 for an image of a Pelican crossing and Fig. 1.4
for a diagram of the Pelican crossing used in the scenario.

Figure 1.3: Picture of a Pelican Crossing in Swansea, UK

1Pelican being an acronym for PEdestrian LIght CONtrolled crossing.

6 1.2. Problem 1© – Verification

Scenario for the example:

A simple “Pelican crossing” consisting of two traffic lights that can be either
red or green, two pedestrian lights that can be either red or green, two push
buttons and an audible signal for the blind. The traffic signals should never
show a green aspect at the same time that pedestrians see a green aspect.

A

B

Figure 1.4: Diagram of a Pelican Crossing

1. Overview 7

There are 8 variables used in the ladder logic, consisting of 1 input, 5
outputs and 2 latches. See Fig. 1.5 for the ladder.

|/| | | ()

crossing req crossing

Rung 1

| | |/| ()

pressed crossing req

Rung 2

|/| |/| ()

crossing req tlight.g

Rung 3

| | ()

| |

crossing tlight.r

req

Rung 4

| | ()

crossing plight.g

Rung 5

|/| ()

crossing plight.r

Rung 6

|/| ()

crossing audio

Rung 7

Figure 1.5: Example pelican ladder logic digram.

8 1.2. Problem 1© – Verification

The system has one input, namely pressed that goes high when a pedes-
trian has their finger on the request crossing button. There are also 5 outputs
that control the hardware, namely

plight.g tlight.g audio

plight.r tlight.r

The p’s and t’s represent pedestrians and traffic respectively. audio is used
to drive an audible signal such that blind people can use the crossing.

Internally the system has two latches which control the state of the sys-
tem, crossing and req. The inputs (and past inputs) determine the state
of these latches which are then used to determine the outputs. The state of
latch crossing indicates whether the system is letting pedestrians cross the
road and the state of req to indicate that a pedestrian has requested to cross
the road.

A simple analysis shows that the system has four possible states, namely

crossing req State

false false Neither crossing or pedestrians waiting.

false true Requested but not crossing.

true false Crossing but not requested.

true true Crossing and requested.

Table 1.1: Traffic Scenario States

Reachable States The state where crossing and req are both true is
not a reachable state, if the system is letting people cross the road, then it
is not possible (according to the ladder logic) to also request a crossing.

It should be noted that this example is simplified in the sense that time
is not considered, between requesting to cross the road and receiving a green
signal to cross would be almost instant, there is a delay on one cycle which
can be measured in milliseconds.

Converting the 7 rungs in the ladder into a simple program consisting of
Boolean valued assignments would be:

1. Overview 9

crossing := ¬crossing ∧ req

req := pressed ∧ ¬crossing

tlight.g := ¬crossing ∧ ¬req

tlight.r := crossing ∧ req

plight.g := crossing

plight.r := ¬crossing

audio := crossing

Then, converting these assignments into propositional logic yields:

[(crossing′ ↔ ¬crossing ∧ req) ,

(req′ ↔ pressed ∧ ¬crossing′) ,

(tlight.g′ ↔ ¬crossing′ ∧ ¬req′) ,

(tlight.r′ ↔ crossing′ ∧ req′) ,

(plight.g′ ↔ crossing′) ,

(plight.r′ ↔ ¬crossing′) ,

(audio′ ↔ crossing′)]

where the primes are assumed to be fresh.
Finally, let ϕL be a conjunction of these formulæ. ϕL is a complete model

of the ladders execution in propositional logic.

1.2.2 Proof Formulæ

Given a safety condition to be proven for the system such as “the traffic
and pedestrians do not both see a green light at the same time”. Formulated
into propositional logic as ¬(tlight.g ∧ plight.g); assuming the initial state
is when crossing and req are both false and let the invariance be ψInv :=
¬(crossing ∧ req), the proof formulæ 5 and 6 would become

¬(crossing ∧ req) ∧ ϕL ∧ ¬(crossing ∧ req) → ¬(tlight.g′ ∧ plight.g′)

and

¬(tlight.g ∧ plight.g) ∧ ϕL ∧ ¬(crossing ∧ req) → ¬(tlight.g′ ∧ plight.g′)

which are provable.

10 1.3. Problem 2© – Signalling Principles

1.3 Problem 2© – Signalling Principles

Problem 2© can be described as verifying that an interlocking ratifies with
signalling principles. A full discussion of signalling principles and the trans-
lation into safety conditions is in Sect. 6. An example signalling principle
would be “points in a rail yard should not be set to the normal and reverse
positions simultaneously”. Typically first order logic can be used to formalise
signalling principles, the above condition would be formalised as

∀pt ∈ Points : ¬(normal(pt) ∧ reverse(pt))

To resolve this principle into safety conditions, it is necessary to construct
a topology model of the rail yard the interlocking is being verified for. This
model is then queried for relevant information to facilitate the construction
of safety conditions. Prolog facts and terms were used to build such models.

All rail yards are finite, i.e. there are a finite number of points. Thus,
it is possible to replace universal quantification by a finite conjunction and
existential quantification by a finite disjunction. Canonical rules are used to
remove predicates from the resulting formula.

The final safety condition will typically be a large conjunction of more
specific safety conditions (as a result of removing universal quantification)
and verify that the interlocking ratifies with the signalling principle. To
more precisely identify the cause of a counter example, if any, the final safety
condition is split up into conjuncts, testing smaller portions of the system at
a time.

For example, suppose a simple rail yard with two points pt1 and pt2, the
above signalling principle would be translated into two safety conditions,

¬(normal(pt1) ∧ reverse(pt1))

and
¬(normal(pt2) ∧ reverse(pt2))

1.4 Implementation

Both problems have had solutions implemented, the first problem was solved
using Haskell as it allowed for rapid development and is ideal for manipulating
inductively defined tree structures, i.e. formula’s. The ladder translation and
proof formulæ construction has been successful in terms of feasibility, for a
real world ladder with 331 rungs and 599 variables. The second problem was
solved using Prolog and Java, which was also successful.

1. Overview 11

The basic architectures for both of these problems are shown in Fig. 1.6
and Fig. 1.7 respectively.

Ladder

Ladder
Translation

Proof Formula
Generation

Safety Condition

SAT-Solver

Document
Generator

Counter Example
Document

Figure 1.6: Problem 1 Software Architecture

12 1.4. Implementation

Signalling
Principles

General Formula

Topology Model

Safety
Conditions

Figure 1.7: Problem 2 Software Architecture

Chapter 2
Background

2.1 History

There have been many attempts to formally verify railway interlocking sys-
tems, some have been successful as in the case of Banverket [Eri97b, Han94,
FGHvV98] while others have not. In the cases where verification has not been
successful, the failure is due to feasibility because verification is a complex
problem and interlockings are complex systems.

Since the birth of British railways in 1826 there has been a tremendous
effort directed toward controlling the trains that run on them in a careful
way so that they do not collide, derail or deadlock. This was important
because a single accident on the railway has the potential of killing many
people. Trains and the railway infrastructure cost a lot of money and the
reputation of a railway can easily be damaged when a train derails or worse.
This control became known as signalling.

In the early days of signalling, before the 1840’s policemen were respon-
sible for ensuring safety by using a system of coloured hand held flags during
the day and oil lit lanterns by night [KR01]. There was no communication be-
tween policemen, they simply relied upon a time interval system to prevent
following trains from running into the train ahead. The policeman would
show a red flag to following trains for 5 minutes after a train had passed him,
and a green flag for a further 5 minutes. Only after more than 10 minutes
had passed would a white flag be shown to approaching drivers. If a train
stopped unexpectedly after passing a policeman and out of his sight, then
the driver of a following train only had his own vision for warning.

During the 1840’s mechanical signals were placed at stations and junc-
tions, although, it was not clear where trains should stop when signalled to
do so. Train drivers were responsible for selecting a good location to stop

13

14 2.1. History

the train. These signals were initially controlled locally, but was soon dis-
covered that groups of signals could be controlled from central locations by
pulling leavers, Fig. 2.1. These central control locations created a new job of
the signal operator. From these central locations, it was soon realised that
specific combinations of these leavers should not be pulled simultaneously:
i.e. two opposing routes should not both be set.

Figure 2.1: A traditional signal room (left) with the associated interlocking
(right).

At Kentish Town1 in 1860 a device which prevented specific combina-
tions of leavers being pulled simultaneously was trialled. This device became
known as an interlocking and would become the basis of railway signalling.
During the same time period electronic communication between stations be-
came possible. This allowed for the development of the block section, a
signalling concept. Trains would travel along a train line; the next train was
not allowed to follow the first until the signal operator gave it the all clear;
the signal operator knew to give the all clear when the signal operator at the
next signal sent a signal back saying that a train had passed. If this signal
was not received in a reasonable amount of time, then it could be assumed
that the train had broken down somewhere on the line.

Over the following years, much of the signalling hardware was upgraded
to be electrical, notably during the 1920’s mechanical signals were starting
to be replaced by electronic versions and techniques were being tried which
allowed for the position of a train on a line to be detected electronically.

It is clear that the mechanical interlockings were limited by the materials
used. Coupled with the advent of valves and later during the 1920’s relays,
digital interlockings were being developed. Interlockings progressed through
to microprocessors. It is worth noting that currently on the United Kingdom
(UK) railways there are various types of interlockings in use. There are still

1London, UK

2. Background 15

signal rooms such as the one in Fig. 2.1 operating on smaller lines. The
rational for keeping old interlocking systems in use comes from the idea that
they have worked for many years and there is no real need to upgrade them
as long as the railway yard they are operating on is not modified, such as
adding new signals or lines.

The first digital interlocking built using microprocessors used in the UK
was the “British Rail Solid State Interlocking” and this project was started
in 1976, [Cri87]. The interlocking was first used (piloted) at Leamington Spa
and was specified using the formal language Z, [Kin94]. This was a great
success and paved the way for subsequent interlockings.

2.2 Railway Yards

Throughout this document the term railway yard is intended to mean a
section of a railway such as a station or a depot. Railway yards are then
connected by lines, i.e. two adjacent stations are connected by a railway line.
The terms railway yard and rail yard are used interchangeably.

Typically a railway yard is made from components such as tracks, signals
and points. The tracks are divided up into track segments, each track segment
has an associated id and track circuit which is responsible for detecting if the
track segment is occupied. Signals are also classified into subcategories with
two important categories being main and distant. Distant signals display
information about the next main signal on the line so that if the train needs
to stop, it can slow down in advance and reduce the risk of a collision.
There are other signalling schemes such as n-aspect signalling but these are
ignored in this document. Each component is given an identifier which plays
an important role in the verification, most railway operators use their own
naming schemes for these identifiers which can complicate matters.

In Fig. 2.2 there is an example station that is the terminus of a bidirec-
tional line. Trains approach the station on the top line and enter one of the
two platforms if vacant or they should wait at ms1. The train should then
leave via the bottom line if ms4 permits it. Track segment ts2a is a point,
it comprises of two parts, the first connects ts1a to ts3a (normal position)
and the second connects ts3a to ts2b (reverse position). The track segments
ts2a, ts2b, ts3a and ts3b are points, pt1, pt3, pt2 and pt4 respectively.
Typically, pt1 and pt3 should be treated as a single point, i.e. both points
should be set to the same position, and move together when required.

Considering a map of the railway yard such as that in Fig. 2.2, it is
clear that the concept of a train route can be defined as “a sequence of
adjacent track segments along with signalling information”. This signalling

16 2.2. Railway Yards

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Signal

Points

Platform

Track Segment

Figure 2.2: An example railway yard, all parts of the yard are named. The
grey boxes on the right are platforms. The arrows on the left side indicate
the direction trains are supposed to travel down the lines. The black boxes
on the right are “end of line” markers. The “lollipops” named ms1, ms2, . . . ,
ms6 are signals.

information specifies configurations for relevant signals and points. Train
routes never extend through a main signal, but start and end at main signals.

When a railway yard is being designed not only are the topological aspects
of how various components are connected, but also the operational protocols
and safety properties are defined by means of control tables, see Table 2.1 for
an example. These tables contain the signalling information discussed above.

From Table 2.1 it can be seen that route A takes trains from ms1 to ms3

and uses track segments ts1a, ts2a, ts3a, ts4a and ts5a; ts6a is required
to be clear for overlap protection of the route. Overlap protection is where
track segments following the route (nut not part of the route) are required to
be unoccupied so that if the train does not stop in time, the risk of an accident
occurring is mitigated. Both sets of points are set to the normal position.
The signal aspect in the control table is not descriptive for this example,
but with more complicated layouts where there are open lines or n aspect
signalling2 in operation, then the column describes the signal’s behaviour.
See Fig. 2.3 for a graphical depiction of the four routes.

Not all possible routes have been listed but it could be assumed that there
are at least two more routes; one of these routes takes trains from ms4 to the
next station and another route that terminates at ms1 which brings in trains.

2n aspect signalling is not explained in this document as the actual implementation
does not affect the verification in question.

2. Background 17

Route A

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Route B

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Route C

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Route D

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Figure 2.3: Graphical Representation of Routes from Table 2.1.

18 2.3. Ladder Logic

G = Green and R = Red
R

o
u
t
e

N
a
m

e

S
t
a
r
t

E
x
it

S
ig

n
a
l
A

s
p
e
c
t

C
o
n
d
it

io
n

T
r
a
c
k

S
e
g
m

e
n
t
s

P
o
in

t
s

N
o
r
m

a
l

P
o
in

t
s

R
e
v
e
r
s
e

A ms1 ms3
G Route Set ts1a, ts2a, ts3a, ts4a,

ts5a, ts6a
ts2*,
ts3*R Route Unset

B ms1 ms6
G Route Set ts1a, ts2a, ts3a, ts3b,

ts4b, ts5b, ts6b
ts2* ts3*

R Route Unset

C ms2 ms4
G Route Set ts4a, ts3a, ts2a, ts2b,

ts1b, ts0b
ts3* ts2*

R Route Unset

D ms5 ms4
G Route Set ts4b, ts3b, ts2b, ts1b,

ts0b

ts2*,
ts3*R Route Unset

Table 2.1: An example (incomplete) control table for the railway yard of
Fig. 2.2. The ‘start’ and ‘exit’ columns indicate which signals the route
starts and ends at; the ‘track segments’ column displays the track segments
that must be unoccupied for a train to enter the route. The points columns
together show the configuration which points must be in for a train to enter
the route. tsn* stands for tsna and tsnb.

2.3 Ladder Logic

Ladder logic3 is a graphical language that is used to design integrated circuits;
it is expressively equivalent to propositional logic, and as such there exists
a canonical translation between the two languages [FHG+98]. Ladder logic
consists of 3 operations: disjunction, conjunction and negation, and it can be
shown that all other Boolean operations can be defined from these operations.

Typically, ladder logic consists of a sequence of rungs (Boolean formulæ);
each rung can have one or more coils (resultants). These resultants can be fed
into rungs lower down in the ladder as atomic propositions. For this project
a restricted version of this ladder logic is considered; each rung has exactly
one coil. This restriction helps to simplify the processing of the ladder but
does not reduce the expressiveness as a rung with multiple coils can be split
into multiple rungs with exactly one coil on each rung.

In order to define ladder logic, the set of propositional formulæ is defined
as follows: atomic propositions p are propositional formulæ and if ϕ and ψ
are propositional formulæ so are

3Ladder logic is defined in IEC 61131-3 and BSI EN 61131-3:2003

2. Background 19

• ϕ ∧ ψ,

• ϕ ∨ ψ and

• ¬ϕ.

An example ladder can be seen in Fig. 2.4 and in Fig. 1.5. A strict
partitioning of the propositional variables in the ladder can be defined, there
are inputs, outputs and latches. Latches remember their value from one cycle
to the next. Outputs are a special case of latches where their value is output
to the real world at the end of every cycle. The data flow is depicted in
Fig. 3.2.

|a| |6 b| (c)Rung 1

|a| (d)

|c|

Rung 2

Figure 2.4: An example ladder logic diagram that depicts two rungs.

The ladder logic diagram depicted in Fig. 2.4 is made from the following

20 2.3. Ladder Logic

symbols:

Symbol Name Meaning

|x| Normal Represents the value of propositional variable x

|6x| Closed
Represents the negated value of propositional
variable x

|x| |y| Represents conjunction x ∧ y, where x and y are
propositional variables

|x|
|y|

Represents disjunction x ∨ y, where x and y are
propositional variables

(x) Coil
Represents the propositional variable that stores
the result of the rung

where x and y are Boolean valued variables.

Table 2.2: Ladder Logic Symbols

Using the above translation rules, it can be derived that rung 1 is equiv-
alent to c := (a ∧ ¬b) and rung 2 is equivalent to d := (a ∨ c).

Rungs are represented as 2 arity tuples, (a,ϕ), where the first element is
the coil and the second element is a formula expressing the value semantics
of the rung. Thus a ladder can be viewed as a list of tuples.

The example above is ladder logic in its simplest form; one complexity
with ladder logic occurs because rung 1 is evaluated first, then rung 2. If
rung 2 overwrites output c, then using standard propositional logic this can
be represented by creating intermediary variables. This point is of great im-
portance to a proof engine. The discussion of the translation will be reviewed
in Sect. 5

Chapter 3
Techniques

Various mathematical techniques are applied to create a sound basis for the
formal verification of the interlockings w.r.t. safety conditions, briefly, sat-
isfying propositional formulæ along with the principle of induction. These
concepts are introduced in the following sections.

3.1 Boolean Satisfaction Problem

Given a propositional formula built from propositions pi and Boolean con-
nectives, then in its simplest form the satisfaction problem is assigning to
each of the pi’s a truth value such that the formula is satisfied. Suppose the
following propositional formula:

(A ∨B) ∧ (A ∨ ¬B) ∧ (¬A ∨B)

then there exists exactly one satisfying assignment, namely when A 7→ tt and
B 7→ tt.

S. Cook was the first person to explore the complexities of the Boolean
Satisfaction Problem (SAT-Problem1); it was proven that the problem was
in the complexity class NP-Hard [Coo71]. The implication of this proof is
that the SAT-Problem is computationally equivalent to the hardest problems,
therefore, by assumption2 it will often be stated that the SAT-Problem is a
hard problem. The reason for this is that every variable in a given formula
has a choice of two potential values, so a formula with n variables will have
an upper bound of 2n assignments and there is no known decision algorithm
that terminates in polynomial time for determining if a given propositional

1Also abbreviated to SAT.
2It is not known if there exists a polynomial space and time decision algorithm for SAT.

21

22 3.2. Ladder Logic and Interlockings

formula with n variables has a satisfying assignment. Every time a new
unique variable is added to the formula, the search space is doubled. From
this view it is simple to see that the complexity of solving a formula with n−1
variables is half that of solving a formula with n variables, i.e. exponential
complexity. There are different, more intelligent methods of solving SAT but
no polynomial algorithm has been found. There are classes of propositional
formulæ that do have polynomial time decision algorithms [GK05, Kul08],
but these are not of particular use for checking whether safety conditions
hold in general.

3.2 Ladder Logic and Interlockings

The interlockings of interest are programmable using ladder logic; this pro-
gram can be updated allowing for different operation. The ladder logic can
be thought of as a Boolean program for the interlocking.

The execution of the Boolean program commences as follows [Wes06],
formalised in Fig. 3.1 and Fig. 3.2:

1. Variables are set to their initial values, usualy false.

2. Write outputs to the real world.

3. Read inputs from the real world.

4. Update the timers.

5. Sequentially evaluate each rung of the ladder, storing the result in the
correct variable.

6. Goto step 2, there is no termination condition.

Ladder
Inputs Outputs

Latches

System Boundary

Figure 3.2: Model of the ladder execution as a concurrent sequential process
style diagram.

3. Techniques 23

/* entry point */

main() {

initialise();

executeladder();

}

initialise() {

send outputs default values and

setup initial state of variables

}

/*

this is execution algorithm comes from the westrace, if it were to

be designed by me then the output would be done after the loop,

not before.

*/

executeladder() {

while(true) {

output();

input();

a0 := phi0;

a1 := phi1;

...

an := phin;

}

}

output() {

send outputs the logical values from the ladder

}

input() {

read inputs from the world and store them to the ladder

}

Figure 3.1: Execution Strategy for Interlocking Ladders [Wes06]

24 3.2. Ladder Logic and Interlockings

This loop continues for ever unless a fault is detected at which time the
interlocking will shut down, hence the loop is terminated violently.

To allow the logic to handle temporal aspects, timers are allowed; during
the design stage a time period to time is specified. These timers are operated
by two latches: the first latch timeraIn starts and stops timera; the second
latch timeraOut is read only and is set to true to indicate that timera’s time
period has elapsed. See Fig. 3.3 for an example where the timer’s period is
2 cycles.

i i+ 2 i+ 4 i+ 6 i+ 8

true

false

true

false

timeraIn

timeraOut

t

Figure 3.3: Timer interaction, t is the time period associated to timera.

When timeraIn is set to true, timera is started. If the time period t
expires, then timeraOut is set to true as long as timeraIn is true (as at time
i + 4). But if timeraIn is set to false before time period t expires, then
timera is stopped and reset.

All the resultants from the ladder are stored in a memory and are available
for the next cycle. This is where values are placed when inputs are read from
the real world and taken from when sent to the real world. A subtle note,
each resultant of a rung and output is written to exactly once during each
execution of the ladder. This completes the model of execution of interest to
this project.

When attempting to formally verify that this Boolean program satisfies
various safety conditions, there are two main paths, differing only in the
granularity of the analysis: the first could be to use Hoare logic [Hoa69]
directly; each rung would have a pre and post conditon and the rung would
be the command. These pre and post conditons for all the rungs can then be

3. Techniques 25

linked together to provide a complete invariant of the ladder. The second, a
more directly applicable method would be to translate the problem to that
of the Boolean satisfaction problem, then apply Hoare logic to the whole
ladder. The second approach is used for the project and Dr O. Kullmann is
an expert in SAT who has provided much advice and guidance in this area
of research [Kul08].

3.3 Ladder Invariants

The ladder consists of a finite set of atomic propositions L, and an ordered
list of assignments for these propositions. Thus a ladder can be viewed as
an imperative program P, where each program line of P is an assignment.
The ladder shown in Sect. 2.3 would be equivalent to the following program
fragment:

while(true) {
/* do io operations */

c := a ∧ ¬b
d := a ∨ c

}
More generally an arbitary ladder L with rungs (a0,ϕ0), ... , (an,ϕn) is

equivelent to the following program imperative fragment:

while(true) {
/* do io operations */

a0 := ϕ0
...

an := ϕn

}

Notation Assume a ladder with input variables

b1, . . . , bm

Assume after the ith iteration of the while loop the value of bj is

bj [i]

Then let the atomic propositional variables of the ladder be

a1, . . . , an

26 3.3. Ladder Invariants

ak[i] is the value of the variable ak after the ith iteration. Strictly, ak[i]
depends on the previous inputs to the ladder, written as

ab
k[i]

where

b =











(b1[0], . . . , b1[i]),
(b2[0], . . . , b2[i]),

...
(bm[0], . . . , bm[i])











Assuming the ladder L has an initial configuration for the propositions in L.
An invariant of the ladder is a property ψ expressed using propositional logic
over the atomic propositions in L. Extending the notation above; semantics
of ψ[i] is defined as the same as that of ψ with each of the ak substituted for
ak[i].

An invariant of the ladder is a formula that holds after arbitrarily > 0
many iterations of the while loop assuming arbitrary choices for the input
variables b1,. . .,bm. Concluding the definition, if ψ is an invariant, then ψ[i]
must hold for all i > 0.

Formally an invariant ψ can be expressed as,

∀b ∀i (i > 0) ∧ ψ(b1[i], . . . , bm[i], ab
0[i], . . . , a

b
n[i])

Chapter 4
Literature Review

There have been many attempts to apply formal methods to railways and
the interlockings. Banverket (Swedish National Rail Administration) has
applied formal methods with great success; they have been working for over
10 years in this field [Eri97b, Eri97a, EF99]. The approach taken by L.H.
Eriksson works by creating two models: the first is that of the interlocking
and consists of rules and the second is of the railway yard for which the
interlocking has been designed. For formal verification of these models, a
proof engine produced by the company Prover1 called NP-Tools was used
[Eri97a]. NP-Tools is a collection of tools packaged with a proof engine;
these tools translate various problems into an acceptable format for the proof
engine to process them. NP-Tools has been used by many other companies
for formal verification of critical systems such as ADTranz, Saab and Volvo.

Metra Transport International operates the Paris metro system. ME-
TEOR is a driverless metro line that is controlled by automatic train protec-
tion (ATP) and automatic train operation (ATO). The control software for
this system is distributed over a large geographical region; some of the con-
trol is centralised, other parts are track side and on-board the trains. This
was an extremely complicated system to develop, and the fact that it was
a critical system means that there was no margin for error. Metra Trans-
port decided to use the “B-Method” during development [BBFM99, Sab04];
B is a formal language, a successor to Z. B is a complex language to use
partly because the specification and implementation are deeply intertwined,
[Abr96]. Perhaps Metra Transport decided to use the “B-Method” as it was
developed in France, so they had a good resource of local expertise. Using
the “B-Method” Metra Transport were able to verify 100% of the safety and
liveliness properties required of the ATP/ATO systems. It was claimed that

1Swedish based company started by Gunnar St̊almarck.

27

28 4.1. Topologies

no bugs were found during the validation, in house testing, on site testing
and since METEOR went live [BBFM99]. This is clearly an exceptionally
good result for such a complicated critical system.

The Vienna Development Method (VDM) developed by International
Business Machines (IBM) Vienna laboratory in the 1970’s is one of the longest
established formal methods for the development of computer based systems.
Therefore, it is only fair to include a railway interlocking that has been for-
mally verified using the VDM; K.Hansen has done just this [Han94]. The
whole development cycle is very structured and clean, with clear conditions
that should be proved to be correct. This development method was applied
to the interlockings of a small number of Danish state owned stations, and
the results were positive. The first attempt did not fulfill the requirements
as there was no manual override control, i.e. this made it very hard to shunt
trains about as routes had to be allocated by the interlocking. This was a
simple matter to fix by adding an extra state to points which indicate if they
are under control of the interlocking or manual control, [Han94].

In recent years, a grand challenge has been issued known as TRain,
[Bjø04]. This challenge is to create a domain theory for the railway infras-
tructure. Although the grand challenge has a vastly wider scope than this
project including topological, operational and tactical aspects some of the
material is of interest. One such article providing a good overview of verifi-
cation using temporal logic, interactive theorem proving and model checkers
is by Wolfgang Reif et al. [ROTS04].

4.1 Topologies

There are many different data structures which can be used to model the
topology of the railway yards. Below is a discussion of the main methods
in use today. Using predicate logic, it is a simple matter to define n-ary
relations between objects, a “Prolog like” syntax is suited very well to this.
This is the approach taken by L.H. Eriksson when modelling the Swedish rail
topology [Eri97b, Eri97a]. Simply put, consider two track segments, ts1 and
ts2 then connected to(ts1,ts2) and connected to(ts2,ts1) are defined
iff they are connected in the real world. Using objects and relations between
them the real world can be modelled precisely. Assuming the objects and
relations have applicable names; the model will be readable by humans.

Another approach taken by K. Hansen which originated from M. Monigel
uses graph theory, [Han94, Mon92]. The basic idea is that each track segment
is a vertex in the graph, each edge corresponds to two track segments being
connected, i.e. it is possible for a train to pass from one segment to the other.

4. Literature Review 29

For technical reasons, generally the graphs are directed and doubly linked
such that given two connected tack segments ts1 and ts2 which are vertices,
then the edges (ts1,ts2) and (ts2,ts1) are defined. It is also possible to
add signals to this definition by allowing each edge to have a label. If the
label is set for a given edge, then it means “if the train is travelling along
that edge in the given direction then the signal is visible”. This is because
signals can only be seen from one direction.

4.2 CNF Generation

Ladder logic can be canonically translated into propositional logic, but in
general SAT solvers demand that the propositional logic be in Conjunctive
Normal Form (CNF) as satisfiability is required. Using De-Morgan’s laws
a näıve translation can be defined but this has performance issues with a
SAT-solver, because when the formula is translated, it explodes in size, al-
though no intermediate variables are added. A secondary issue with näıve
CNF translations relates to the loss of original structure in the formula, i.e.
given two literals a and b, the following a ↔ b would be translated into
CNF as (¬a ∨ b) ∧ (¬b ∨ a), whereas the optimal strategy would be for the
SAT-Solver to constrain a and b to the same value [Kul08, FM07]. D. Sheri-
dan and M.N. Velev have both shown alternate translations [She04, Vel04],
Velev’s translation is procedural and is intended for the formal verification of
microprocessors. Sheridan’s translation on the other hand uses graph theory
and is intended for a more general translation of any propositional formula
into a CNF formula that is intended for use with the SAT problem. Sheri-
dan’s translation, if provided with a list of identical sub-formulæ, can remove
them and replace them by a variable for improved efficiency.

The Tseitin translation [Tse68] for converting an arbitrary propositional
logic formula into CNF provides a good base algorithm, because it intro-
duces new auxiliary variables for each node in the tree, and these are used to
mirror the structure of the original formula so that SAT-Solvers can use this
structure to help satisfy/falsify the formula. If logical equivalences are left
in the formula base2, particularly chains of equivalences, then the basic algo-
rithm can be augmented to take advantage of this, mitigating the exponential
clause explosion realised with the näıve method. Dr. Kullmann provides a
detailed discussion of the exponential blow up concerned with problems with
equivalence chains, also known as bi-conditional formulæ [Kul08].

2Formulas are built from the following base: ∧, ∨, ↔ and ¬.

30 4.3. SAT-Solvers

4.3 SAT-Solvers

The following are informative on the current state of the SAT problem,
[GOMS04, Kul08, PV04].

The criteria for choosing a SAT-Solver is not as simple as it might appear
at first because different SAT-Solvers implement different algorithms and
branching strategies. Thus, different encodings (in the sense of adding auxil-
iary variables) of a problem into CNF will require non-proportional amounts
of time to solve on different solvers. Some solvers use the auxiliary variables
if used correctly to speed up the solving.

The basic algorithm for the Boolean satisfaction problem is known
as Davis-Putnam-Logemann-Loveland (DPLL), originally proposed in 1960
as DP, [DP60], then later as DLL, [DLL62], and finally combined into
DPLL. The algorithm works by iteratively selecting a variable and satis-
fying/falsifying it until the clause set is satisfied or no more variables are
left. In the second case, the algorithm will backtrack and try again with an-
other new combination of satisfying/falsifying the literals. If this continues
until there are no more combinations left, then the clause set is not satisfi-
able. With respect to the project, this last scenario where the clause set is
not satisfiable translates to the fact that no counter examples found.

Generally there are three main classes of SAT-Solvers [Kul08]:

Backtracking The simplest class that attempts to assign values to vari-
ables; if the current (possibly partial) assignment yields a falsifying
assignment, then backtracking is used. The DPLL satisfaction algo-
rithm in its pure form is an example of a backtracking algorithm, and
for obvious reasons there is an exponential search space. The following
two methods are current de facto standards as they augment the basic
backtracking approach.

Conflict-Driven Conflict driven algorithms add a conflict analysis to the
basic backtracking such that clashes between literals are detectable, i.e.
when two constraints are identified, implying that x has to be satisfied
and falsified at the same time. When a conflict is identified, then the
algorithm must backtrack as the current branch of the search tree is
unsatisfiable. Also instead of having a fixed backtracking strategy, the
algorithm can jump back to any branched literal in the search tree using
a heuristic function. A final change that conflict driven algorithms have
over basic DPLL is that they can restart randomly. The MinSat solver
is an example of a conflict driven SAT-Solver. Conflict driven SAT-
Solvers have been shown to be good at processing large clause sets
which are simple in nature, and this type of data occurs in industry.

4. Literature Review 31

The rationale for random restarts comes from the principle that if the
clause set is satisfiable, then the solution should be easy to find, so if the
solver has been running down a pointless branch for a long time then
restarting will hopefully reduce the total time taken to find a solution.

Look-Ahead The look ahead algorithms perform higher levels of reasoning
by looking at the structure of the clause set, typically translating the
CNF into a graph. These solvers are still based upon the DPLL. A
look ahead SAT-Solver can tackle hard3 and random clause sets but
struggles on industrial problems in comparison to the conflict driven
solvers. The OKSolver is an example of a look ahead SAT-Solver. The
unit clause/boolean constraint propagation algorithm is an example of
look-ahead. Research has shown that SAT solvers spend roughly 90%
of the time performing unit clause propogation, [Alo06].

G. Pan and M.Y. Vardi discuss the implications of searching as described
above or using symbolic model checking for the purpose of SAT solving
[PV04].

The answer to the question about which criteria should be used to se-
lect a SAT-Solver is unclear. Whether there is a simple answer, or if lots of
experiments with different SAT-Solvers with different clause set generation
techniques is the only method. Conflict driven SAT-Solvers would be a nat-
ural choice due to their apparent applications to industrial problems. The
ambiguity these questions raise reflect the lack of human knowledge of the
underlying structure of the SAT problem.

4.4 Safety Conditions

Safety conditions are directly derivable from the control tables. Therefore,
assuming the control table can be read automatically, these conditions can be
generated automatically. W. Fokkink shows how these safety conditions can
be produced mechanically, [FHG+98]. This type of verification verifies that
the interlocking implements the control tables correctly, hence transitively
safety conditions are met.

Signalling principles are also provable, L.H. Eriksson gives a detailed dis-
cussion about how this can be implemented by creating a formal model of
the railway yard [Eri97a] and suggests a formal language to reason about the
model [EF99].

3Hard in the sense that they contain many more constraints to satisfy not referring to
the size of the clause set. Industrial problems are typically large but have fewer constraints.

32 4.5. Interlocking Specification Languages

4.5 Interlocking Specification Languages

There have been many attempts to produce an Interlocking Specification
Language (ISL), and these languages are built on a formal language. One of
the most notable languages is LARIS 1.0 developed at the CWI, Amsterdam
[FGHvV98]. LARIS is an acronym for LAnguage for Railway Interlocking
Specifications. LARIS is a typed version of the graphical language EUropean
Railway Interlocking Specification (EURIS). In the latter language the whole
interlocking is modularised; each module can send messages to other modules
or the real world, and modules can also receive messages from the real world.
All these modules are assumed to be asynchronous, therefore, the order the
messages are processed is not fixed.

EURIS consists of a set of four sub-languages; three of these languages are
used to model the railway yard and the routes. The final language models
how the actual entities, such as a signal, operate. EURIS lacks a formal
mathematical background, thus proving safety conditions is very difficult
due to ambiguity. An attempt has been made to verify safety properties of
a EURIS program by translating the program into a Petri net which has
a precise mathematical meaning. There are many tools which can be used
to simulate and show properties of Petri nets, one such tool is ExSpect. A
thorough discussion of this technique can be found in [BBV95].

L.H. Eriksson has suggested that such a language should be proprietary
free and designed independent of any specific interlocking [EF99]. This also
translates to the problem of modelling concurrent sequential processes (CSP);
the approach taken by LARIS.

This project does not require the use of an ISL although the syntax intro-
duced by L.H. Eriksson is appropriate for formalising signalling principles,
[EF99]. See Fig. 4.1 for an example of this language. The language is very
similar to first order logic (FOL) as it uses quantifiers and Boolean con-
nectives. The predicates would be replaced by their definitions or atomic
propositions to produce a proper FOL formula.

(A) for all points p (part of(p,rt) and route locked(rt)) →
locked(pt)

(B) ∀p(point(p) ∧ part of(p, rt) ∧ route locked(rt)) → locked(pt)

Figure 4.1: An example signalling principle from [EF99], (B) is the first order
formula of (A).

4. Literature Review 33

4.6 First Order Logic

The formal syntax of the language introduced in Sect. 4.5 is clearly an exten-
sion of propositional logic, where quantifiers have been added to the language.
This is known as First Order Logic (FOL). Informally, the semantics of FOL
can express that a property holds for all numbers or some numbers, [vD04].

It is a requirement to remove such judgements from a formula to con-
struct a clause set; there are various methods. A common approach is to
use Herbrand and Skolem functions, [Bus94, Her71]. The Herbrand func-
tion removes universal quantification from a FOL formula, whereas Skolem
function removes existential quantification from a FOL formula. Combining
both of these functions allows for all quantifiers to be systematically removed
assuming that it is possible to select an x for the Skolem functions.

The removal of existential quantification causes problems, the only way
to select such an x, if one exists, will, in general, require solving of formulæ
(signalling principle) by “cloning” the formula for each possible selection of
x and taking a disjunction of all such clones.

The variables in the FOL of safety conditions range over finite sets of
rail yard objects, some real such as Track Segments and some abstract such
as Train Routes. A simple translation is applied, one that does not use
Herbrand and Skolem functions. Each universal quantification is substituted
by a conjunction with a finite number of conjuncts, one for each possible
value the variable can range over substituted into the matrix4 of the formula.
For example

∀ x ∈ Points ϕ(x)

could become,

ϕ(p1) ∧ · · · ∧ ϕ(pn)

where Points is a finite set of n point id’s p1, ..., pn.
Dually the existential quantification can be removed by a complementary

process that substitutes the existential quantifier by a disjunction, one dis-
junct for each possible value that variable can range over substituted into
the matrix of the quantification. For example:

∃ x ∈ Points ϕ(x)

could become,

ϕ(p1) ∨ · · · ∨ ϕ(pn)

4Given ∀xψ(x), ψ(x) is the matrix.

34 4.7. Railway Signalling Principles

where Points is a finite set of n point id’s p1, ..., pn.
From these translations it is apparent the different meanings of these two

forms of quantification. The first requires that a property ϕ holds for all x.
The second requires that a property ϕ holds for at least one x.

When a signalling principle is translated into propositional logic there is
an issue of “cutting” up the formula such that each instance of the signalling
principle can be tested independently. When given a signalling principle ψ
:= ∀ p ∈ Points ϕ(p), this would have the semantics

for all points p, the safety condition ϕ holds

In practice, if the safety condition does not hold for a given point p,
then the signalling principle is falsified without indicating for which point it
failed5. The following would be a better series of conditions:

the safety condition holds for point 1, and
the safety condition holds for point 2, ...
the safety condition holds for point n.

Although they are essentially equivalent, the second form allows for each
safety condition to be tested by the solver individually. To produce the
second form, the formula needs to be placed into prenex normal form6. Then
the translation above is applied in order to remove quantifiers. Finally, all the
top level conjunctions are broken down such that there is a list of conjuncts
which do not have as a root, a conjunction. This is the list of safety conditions
that are to be proven from the signalling principle.

4.7 Railway Signalling Principles

The following books were provided by Invensys, they detail the operations of
the British railways. However not a full picture of all signalling principles is
given as each different operator can use variations of these principles mainly
due to historic reasons.

• Introduction to Railway Signalling - A simple to understand book which
introduces many of the techniques and various hardware which is used
on the railway. [KR01]

5Although deep analysis of the counterexample should yield this information.
6Let ϕ be a FOL formula, a prenex normal form of ϕ is a formula obtained from ϕ by

first renaming bound variables in ϕ so that no variable is quantified more than once in ϕ
and then using the axioms of the Prenex translation to move all quantifiers to the outside.

4. Literature Review 35

• Railway Signalling - A more technical and advanced book which cov-
ers many of the topological aspects of the railway and “philosophical”
aspects of the signalling principles. [Noc02]

• Railway Control Systems - A supplement to the above book, explains
techniques such as level crossing and train detection, and also covers
“philosophical” aspects of signalling. [Lea03]

Chapter 5
Ladder Logic Translation

To produce a propositional model of the ladder logic, a translation is required.
This section describes how to translate the Graphical Configuration Sub-
System (GCSS) file format into a propositional formula.

The ladder logic when read from the GCSS file can be described as a
list of rungs, where each rung is a list of cells. A cell has the following
information: coordinates x, y, what type of cell is it, which of the adjacent
cells it is connected to and an identifier. This information can be represented
as a 5-arity tuple.

(x, y, type, id, links)

where x, y ∈ N, type ranges over types in Table 5.1, links ⊆ Links :=
{Top,Bottom, Left} and id is a possibly empty String, which in the case of
Normal, Closed and Coil cell types refers to the literal name.

Links indicate where the cell gets its inputs from, making the simplifica-
tion that there are only 2|Links| = 8 different combinations which links can
be, so links ∈ N8. These are depicted graphically in Fig. 5.1, the right link
is implied by the cell type, see Table 5.1.

The following equivalences can be observed between types:

Ladder ≡ list(Rung) ≡ list(list(Cell))

and

Cell ≡ N × N × Type×L× N8

where L is a finite, non-empty set of atomic propositions such that L ⊂ Σ∗,
where Σ is a given alphabet.

36

5. Ladder Logic Translation 37

Top link only Bottom link only

Left link only Top and Bottom links

Top and Left links Bottom and Left links

All links No links

Figure 5.1: Cell Link Graphical Representations

The rung in Fig. 5.2 can be encoded as

[(1, 1, Normal, a, [top, bottom]) ,

(2, 1, Normal, c, [bottom, left]) ,

(3, 1, Coil, e, [bottom, left]) ,

(1, 2, Normal, b, [top, bottom]) ,

(2, 2, Empty, , [top, left]) ,

(3, 2, Empty, , [top, bottom]) ,

(1, 3, Empty, , [top, bottom]) ,

(3, 3, Empty, , [top, bottom]) ,

(1, 4, Horizontal, , [top, bottom]) ,

(2, 4, Closed, d, [left]) ,

(3, 4, Empty, , [top, left])]

Outline The translation works as follows: starting with the first rung, find
the coil; working backwards from the coil, follow all the different pathways
back to where the x coordinate is one yields the correct propositional formula,
Sect. 5.1; move on to the next rung and continue to the last rung; rename
the literals in the rungs to force a model of sequential execution, Sect. 5.3,

38 5.1. Rungs

Type Symbol Description

Normal |x| A cell with a single propositional variable.

Closed |6x| A cell with a single negated propositional
variable.

Horizontal
Horizontal link from cell on right, does not
need to link to left cell.

Coil (x)
Resultant of the rung, a propositional vari-
able. Invensys only allow there to be one
per rung.

Empty (x)

An empty cell, has no semantical mean-
ing during the translation. Only provides
placeholder for links, used primarily for
corners and vertical links.

Table 5.1: Cell Types. The cells not link the left side of the cell. Coil and
Empty do not link to the right cell. Combines with the links in Fig. 5.1 to
provide a complete graphical model of various cell configurations.

finalise the translation by taking a conjunction of all these rungs. The result
is a model of the ladder in propositional logic.

5.1 Rungs

The goal of this section is to show the translation from a list of elements of
Cell to a 2-arity tuple where the first element is the literal from the coil and
the second is a propositional formula, the value of which is assigned to the
coil.

The Cell type is ambiguous; it is possible to have repeated occurrences of
different cells at the same coordinates. Ladder logic adds the constraint that

5. Ladder Logic Translation 39

for any coordinate there is at most one cell. Thus defining a partial function

rungi : N × N
∼
→ Type× L× N8

to constrain the input, where i is the rung index.

The software used to produce these diagrams enforces other constraints
upon each rung; a coil must be placed in the top row and can not be “shorted
out”, i.e. can not be directly connected to the left hand column without going
through a normal or closed cell type.

The data type N8 is an encoding of the links possible for the cells; to help
with subsequent definitions, a new relation can be defined,

linkedi : N × N × N × N → B

linkedi(x1, y1, x2, y2) :=







tt if first cell (x1, y1) is immediately linked to
second cell (x2, y2) in rung i,

ff otherwise

where i is the rung identifier. linked is not symmetric as there are no right
links. I.e.

linkedi(x1, y1, x2, y2) 6⇒ linkedi(x2, y2, x1, y1)

The next step is to select what to do for each type of cell, only left, top
and bottom links are considered branches from the current cell.

Normal This is a conjunction of the literal with a disjunction of all the
branches.

Closed This is a conjunction of the negated literal with a disjunction of all
the branches.

Horizontal Disjunction of all branches from the cell (always travelling left).

Empty These cells should never be reached when translating into proposi-
tional logic, thus have no logical meaning.

There are two strategies that can be applied to yield the translation.
These are graphically represented in Fig. 5.2 and Fig. 5.3. The optimised
strategy, is better because the result is part way to being a CNF.

40 5.1. Rungs

(A) Näıve

|a|

|b|

|c|

|6d|

(e)•

e := ¬d ∨ (c ∧ (a ∨ b))

Figure 5.2: Näıve Translation Strategy

(B) Optimised

|a|

|b|

|c|

|6d|

(e)
x4
•

x3
•

x1
•

x0
•

x5
•

x2
•

x5 := b
x4 := a
x3 := x4 ∨ x5

x1 := c ∨ x3

x2 := ¬d
x0 := x1 ∨ x2

e := x0

Figure 5.3: Optimised Translation Strategy

5. Ladder Logic Translation 41

The näıve translation works in reverse, starting at the right most column
where the coil is and working back to the start column. Each cell which is not
empty, such as a coil, has a formula φ that is a disjunction of all cells in the
column immediately right of the current column which are reachable from
the current cell without travelling right, i.e. travelling up or down a number
of times and then once left. If the current cell is not a coil and contains
a non-negated propositional variable x, then the formula assigned to that
cell would be x ∧ φ and if it is a negated propositional variable x, then the
formula assigned to that cell would be ¬x∧ φ, otherwise φ is assigned to the
cell. The result is similar to the optimised translation without introducing
auxiliary variables.

For example, in Fig. 5.2, at the bullet mark the formula assigned to the
shaded cell would be (a∨ b)∧ c. If the propositional variable c in the shaded
cell was negated, then the formula assigned to the shaded cell would be
(a ∨ b) ∧ ¬c

The optimised translation, see Fig. 5.3, keeps the structure of the ladder
intact but adds auxiliary variables. These variables are used to mimic the
structure, while at the same time simplifying the rung by splitting it up
into smaller rungs. A conjunction of the smaller rungs can be used to start
producing the CNF of the rung which is required by the solvers; all that
is needed is to convert the smaller rungs into CNF formulæ. Formally, the
optimised translation starts on the left hand column and progresses through
to the right hand column where the coil is, building sub-formulæ up for
each required cell. The required cells are cells which contain normal latches,
negated latches or vertical links (a disjunction). Each sub-formula is assigned
a fresh variable xi to store its result. These variables are placed immediately
after each normal or negated latch and immediately after a disjunction. The
xi’s are used in place of the actual formulæ, thus each sub-formula consists
of at most one operation and two variables.

Both translation strategies will terminate assuming the rung is finite as at
every step the column index is incremented or decremented depending on the
strategy. The näıve translation will terminate; eventually the algorithm ends
up at column 1, similarly for the optimised strategy. If the rung is infinite,
then the optimised translation will obviously never terminate and the näıve
version will never start as it will never find the coil.

5.2 Näıve Translation

The remainder of this section will focus on the Näıve translation as this
was the technique which was implemented in this research as the optimised

42 5.2. Näıve Translation

translation was not discovered until after the implementation was done.
Translation works back from the coil to the left hand column, constructing

the formula as it goes. A critical part of the translation is deciding which
cells to visit from the current cell. Typically a given cell (x, y) in the rung
has its formula built up by examining the connected cells in the x−1 column.
This gives rise to a new function,

nexti : N × N → set(N)

which returns a set of y coordinates indicating cells in the x− 1 column that
are connected to the current cell, where i is the rung identifier.

A cell (x1, y1) is connected with another cell (x2, y2) if cell (x2, y2) is
reachable from the first cell (x1, y1) by travelling up or down an arbitrary
(possibly 0) many times then left once. The notion of travelling as used here
requires that there are cell links to travel along, i.e. if the current cell does
not have a top link, then it is not possible to travel up an arbitrary number
of cells. Formally, conn and can be defined as,

conni : N × N × N × N → B

Where i is the identifier of the rung and takes two pairs of cell coordinates,
the first is the cell in the xth column and the second is the cell in the xth − 1
column.

conni(x1, y1, x2, y2) :=







































linkedi(x1, y1, x2, y2) if y1 = y2,

conni(x1, y1 + 1, x2, y2) if y1 < y2 ∧

linkedi(x1, y1, x1, y1 + 1),

conni(x1, y1 − 1, x2, y2) if y1 > y2 ∧

linkedi(x1, y1, x1, y1 − 1),

ff otherwise

The constraint of x1 = x2 + 1 is not explicitly defined but is implied by the
first clause, the second and third clauses are used for vertical traversal.

Concluding the definition of nexti,

nexti(x, y) := {z | z ∈ N, conni(x, y, x− 1, z)}

The resultant set is finite, as a given rung has a finite number of cells.
To define the näıve translation, the use of an auxiliary function is required

which searches for the coil in a given rung i. The type signature is,

findCoil : N
∼
→ N × N

5. Ladder Logic Translation 43

such that findCoil(n) is a pair (x, y) indicating the coordinates of the coil
in rung n if one exists, otherwise undefined. The actual naı̈ve translation
has the following type,

naı̈ve : N → L× Formula

and implementation,

naı̈ve(i) := (π2(rungi ◦ findCoil(i)), naı̈ve
′ ◦ findCoil(i))

where π2 projects the second argument from a tuple and naı̈ve′ performs
the actual translation by taking a disjunction of all the connected cells along
with the current cell operation.

naı̈ve′i : N × N → Formula

naı̈ve′i(x, y) :=

(

(
∨

{naı̈ve′i(x
′, y′) | (x′, y′) ∈ ({x− 1} × nexti(x, y))})

∧ cellopi(x, y)

)

where cellop is the operation of the current cell and can be defined as,

cellopi : N × N → Formula

cellopi(x, y) :=



















tt if cell (x, y) has type is coil or

horizontal

π2(rungi(x, y)) if cell (x, y) has type is normal

¬π2(rungi(x, y)) if cell (x, y) has type is closed

The first case has no effect on the generated formula as cellop is only used
to build up a conjunction in naı̈ve′. The other two cases project the literal
name out from the underlying data structure and negate it accordingly. This
completes the näıve translation of each rung in the ladder to propositional
logic.

5.3 Renaming

Renaming of variables in the rungs is of great importance; it finalises the
translation into propositional logic such that the result is a model of a
Boolean program with an execution strategy as described in Sect. 3.2 and
[Wes06].

Assuming the ladder has been translated into a list of pairs, i.e. by
applying naı̈ve to each rung of the ladder, preserving the original order of

44 5.3. Renaming

the rungs. The goal is to produce a single propositional formula that models
the whole ladder. For example, assume that the ladder is as follows:

[(a, b ∧ c) ,

(b,¬b) ,

(c, a ∨ b) ,

(a, c)]

This should be translated to

(a′ ↔ b ∧ c)
∧ (b′ ↔ ¬b)
∧ (c′ ↔ a′ ∨ b′)
∧ (a′′ ↔ c′)

where the primes and double primes are fresh variables.
Before formalising the translation, the following definitions are required.

Let L be a finite set of literals and the type Sub be the type of substitutions,
i.e. L → L. The function

(a 7→ a′) : Sub

(a 7→ a′)(x) =

{

a′ if x = a

x otherwise

creates substitutions, i.e. replaces propositional variable a by a′. subst(s, ϕ)
applies substitution s to the formula ϕ, formally subst(s, ϕ) is the result of
replacing all atomic propositions p in ϕ by s(p). The identity function is
required for technical reasons, defined as

id : Sub

id(p) := p

The algorithm used for the translation is inspired by Robert Milner’s
algorithm for deriving types in polymorphic programs, [Mil78]. The trans-
lation is formalised by defining a function rename, the function recursively
builds up a substitution. Before defining rename, rename′ is defined as

rename′ : list(L × Formula) → Sub→ list(Formula) × Sub

The result of rename′ is a pair; the first element is a list of the rungs
renamed and the second is a substitution that specifies the renaming. The
substitution is reused for producing the safety conditions in Sect. 6.3. The
function works as follows: take the first rung and produce a new variable a′

5. Ladder Logic Translation 45

that does not occur in the ladder for the rungs resultant a. Substitute in all
subsequent rungs and the resultant of the current rung a for a′, written as
[a := a′]; repeat the process in order on the subsequent rungs.

Given a fresh variable a′, and let (fs′, s′) = rename′(fs, s ◦ (a 7→ a′)), the
implementation of rename′ is

rename′(cons
(

(a, ϕ), fs
)

, s) := (cons
(

a′ ↔ subst(s, ϕ), fs′
)

, s′)

To utilise the rename′ function, the top level call should be initialised
with the identity substitution. While stepping through the rungs each atomic
proposition a is added to the substitution chain.

Finally, the rename function is defined as

rename : list(L × Formula) → list(Formula) × Sub

rename(ladder) := rename′(ladder, id)

Chapter 6
Safety Conditions

6.1 Signalling Principles

Signalling principles are a method of defining safety conditions between ab-
stract entities. All entities have types1 associated with them. These types can
be arranged hierarchically, as shown by Eriksson in [Eri97b]. This technique
is known as sub-typing which is used in object oriented (OO) programming
where all classes (types) derive directly or indirectly from the base Object

type. Each different type of entity has different properties and relations to
other entities, and this information along with the parent entity type makes
up the entity type.

The basic entity type yardobject2 is extremely general, and all other enti-
ties are related directly or indirectly to this one. The exact hierarchical type
structure depends on the real system being modelled and has implications re-
garding the semantics of the signalling principles. Typically all railway yards
can consist of track segments, points and signals. There are many different
types of signals, thus, the signals entity type consists of all the different kinds
of signals. Signals can also be split up into sub types3 main signal and distant
signal, where a distant signal is one which provides information about the
next main signal on the route so that a train has time to stop if required.
These can also be split up into more types that represent actual types of
signals, i.e. stop, 3 aspect, 2 aspect or n aspect signal types. The correct type
hierarchy of signals is not clear, should the stop signal entity type be a sub
type of main signal or should main signal entity type be a sub type of stop
signal as all signals have a red aspect. The approach taken by Eriksson was

1Similar to normal programming, where variables have types, i.e. int or bool.
2Equivalent to Object type in traditional OO programming.
3Can also be thought of as a specialisation of the signals type.

46

6. Safety Conditions 47

to make stop signal a super type of main signal. See Fig. 6.1 for the basic
hierarchical structure of the entity types.

yardobject

releasable

point signal

main signal

2-aspect 3-aspect

distant signal

route

track segment

Figure 6.1: Basic Hierarchy of Entity Types

Let pt be a point, formally pt ∈ point then by a transitive relationship
pt ∈ releasable and pt ∈ yardobject. These relationships are often called
isA4, i.e. pt isA point and pt isA yardobject.

Signalling principles can be viewed as specifying a single safety condition
that applies for different entities of the given types. The restriction of an
entity type is required to ensure that only compatible entities have to satisfy
the safety condition. Suppose that ϕ is a signalling principle that has the
semantics, when a route is set then all points in the routes should be locked,
without the constraint that the first entity is a route and the rest are points,
absurd safety conditions could be conceived. The first entity requires that it
has the property of being set, while the remaining entities requires that they
can be locked; these types can be added to the hierarchy if needed.

Thus a signalling principle has two parts: the first is the actual abstract
condition expressed as a formula and the second part details which entity
types the condition is applicable to. Entity types are essentially finite sets
of real entities hierarchically organised using the ⊇ operator. e.g. releasable
entities include points and signals and point entities only include points. The
choice of entity types and the hierarchy is critical while authoring signalling
principles.

The actual entities model real world entities or real world concepts as in
the case of train routes. An entity consists of n-ary relations to other entities

4Pronounced ‘is a’.

48 6.1. Signalling Principles

and a current state, i.e. each track segment is related to other track segments;
typically each track segment is connected to a predecessor and successor in
the case of a straight line; but terminal segments and points do not follow this
scheme. Sect. 6.1.1 discusses this in detail. The state of an entity, in the case
of a signal indicates which aspects are currently presented to trains, in the
case of points whether they are in the normal, reverse or neither positions.

6.1.1 Railway Yard Modelling

The concept of an entity type hierarchy can be modelled in many different
ways. Regardless of the methodology, the following two points need to be
considered; firstly, the actual type hierarchy needs to be defined including
the actual relations and possible states of the various entity types. Secondly,
the actual entities need to be defined formally and given types.

There are many different formal languages which these concepts can be
encoded into. Propositional predicate calculus is a natural choice as it is
built around the concept of relations on arbitrary objects. These definitions
can then be used in FOL predicate calculus to query information about the
railway yard.

Given the track plans and the signalling information, a model for a rail-
way yard can been built according to a chosen entity type hierarchy. The
following sections use GNU Prolog syntax for defining the railway yard model
as it seems a natural choice for this task given that it is based on predicate
calculus.

Prolog does not know anything about the entities; they are treated as
literals. Thus a relationship rel between two entities e1 and e2 can be
represented by:

rel(e1,e2).

Where rel has an arity of two, and written as rel/2; ‘.’ indicates the end
of the term. To specify that an entity e is of a given type type a unary arity
predicate can be used,

type(e).

unary predicates can be thought of as adding an attribute to an entity. In this
case the attribute is the fact that entity e is of type type. Unary predicates
are used extensively to define the finite sets of entities as described above.

6.1.1.1 Track Segments

The basic structure of the railway yard is the track segment, and each track
segment has an identifier, e.g. ts1, ts2, . . . , tsn. This is defined by:

6. Safety Conditions 49

tracksegment(ts1).

tracksegment(ts2).

.

.

.

tracksegment(tsn).

To state that all track segments are also of type yardobject the following
line defines this relationship

yardobject(X) :- tracksegment(X).

Track segments are connected to each other, usually a track segment will
at most connect to two other track segments, but points can connect to three
other track segments and terminus segments connect to one other segment.
Using a predicate connects to/25, which track segments are connected to
other track segments can be defined.

connects_to(ts1,ts2).

connects_to(ts2,ts3).

connects_to(ts2,ts4).

The above description would indicate that ts2 is a point. When two track
segments are connected there should be no direction for this connection such
that trains can go both directions over these track segments. For this there
are two possibilities: the first, is to duplicate the data and swap over the
operands to the predicates; and the second, is to introduce another predicate
connected/2:

connected(X,Y) :- connects_to(X,Y) | connects_to(Y,X) .

The vertical bar indicates a disjunction.
The example railway yard from Sect. 2.2 would have the following track

segments defined

tracksegment(ts0a).

tracksegment(ts0b).

tracksegment(ts1a).

tracksegment(ts1b).

tracksegment(ts2a).

tracksegment(ts2b).

5The ‘/2’ indicates that the predicate takes two arguments, namely, the two track
segments which are connected.

50 6.1. Signalling Principles

tracksegment(ts3a).

tracksegment(ts3b).

tracksegment(ts4a).

tracksegment(ts4b).

tracksegment(ts5a).

tracksegment(ts5b).

tracksegment(ts6a).

tracksegment(ts6b).

with the following connects_to/2 relations defining the topology of the rail
yard.

connects_to(ts0a,ts1a).

connects_to(ts1a,ts2a).

connects_to(ts2a,ts3a).

connects_to(ts3a,ts4a).

connects_to(ts4a,ts5a).

connects_to(ts5a,ts6a).

connects_to(ts0b,ts1b).

connects_to(ts1b,ts2b).

connects_to(ts2b,ts3b).

connects_to(ts3b,ts4b).

connects_to(ts4b,ts5b).

connects_to(ts5b,ts6b).

connects_to(ts2a,ts2b).

connects_to(ts3a,ts3b).

6.1.1.2 Releasable

The releasable entity type is a super set of all entity types that can released
to the maintainer for local control. This includes rail yard objects such as
points and signals.

Extending the definition of yardobject to be the super type of all re-
leasable entities and track segments the following definition can be given
as

yardobject(X) :- tracksegment(X) | releasable(X).

where releasable is defined progressively in subsequent sections. This def-
inition has the semantics a yard object is a track segment or is a releasable
entity.

6. Safety Conditions 51

6.1.1.3 Signals

There are different types of signal: main signal and distant signal but each
has an identifier so we can define them by:

mainsignal(ms1).

mainsignal(ms2).

distantsignal(ds1,ms1).

distantsignal(ds2,ms2).

signal(X) :- mainsignal(X) | distantsignal(X,_).

From these definitions it can be seen that ms1, ms2, ds1 and ds2 are all
signals, where ms1 and ms2 are main signals, and ds1 and ds2 are distant
signals. Where ds1 is the distant signal of ms1 and likewise for ds2.

To show that signals are also of type releasable and indirectly of type
yardobject the definition of releasable is

releasable(X) :- signal(X).

A signal can only be seen from one direction and can only occur between
two track segments. To define this, two more predicates are introduced,
infrontof/2 and inrearof/2. A signal can be seen from trains approaching
from the track segment indicated by infrontof but not by trains approach-
ing from track segment indicated by inrearof.

infrontof(ts1,ms1).

inrearof(ts2,ms1).

Defines that ms1 is between ts1 and ts2 and can be seen from trains ap-
proaching on ts1.

The example railway yard from Sect. 2.2 does not have any distant signals,
thus has the following entity type definitions

mainsignal(ms1).

mainsignal(ms2).

mainsignal(ms3).

mainsignal(ms4).

mainsignal(ms5).

mainsignal(ms6).

with the infrontof/2 relations

52 6.1. Signalling Principles

infrontof(ts0a,ms1).

infrontof(ts5a,ms2).

infrontof(ts5a,ms3).

infrontof(ts1b,ms4).

infrontof(ts5b,ms5).

infrontof(ts5b,ms6).

and the inrearof/2 relations

inrearof(ts1a,ms1).

inrearof(ts4a,ms2).

inrearof(ts6a,ms3).

inrearof(ts0b,ms4).

inrearof(ts4b,ms5).

inrearof(ts6b,ms6).

NOTE: for pragmatic reasons of the GNU Prolog engine, the predicates
are grouped together.

6.1.1.4 Points

Points are track segments and also have their own identifier so a simple
predicate point/2 is introduced that relates a point identifier to a track
segment identifier. The connected track segments do not need to be specified
here because they have already been defined by the connects to predicate.

point(pt1,ts2).

Points are also releasable yard objects, to reflect this the definition of
releasable is updated to

releasable(X) :- signal(X) | point(X).

which has the semantics a releasable entity is a signal or a point.

The model needs to know which is the normal and which is the reverse
branch of the point. This is done by the introduction of two more predicates
normal branch/2 and reverse branch/2.

normal_branch(ts3,pt1).

reverse_branch(ts4,pt1).

The example railway yard from Sect. 2.2 has four points,

6. Safety Conditions 53

point(pt1,ts2a).

point(pt2,ts3a).

point(pt3,ts2b).

point(pt4,ts3b).

with the normal branches defined as

normal_branch(ts1a,pt1).

normal_branch(ts4a,pt2).

normal_branch(ts3b,pt3).

normal_branch(ts2b,pt4).

and the reverse branches defined as

reverse_branch(ts2b,pt1).

reverse_branch(ts3b,pt2).

reverse_branch(ts2a,pt3).

reverse_branch(ts3a,pt4).

6.1.1.5 Routes

Routes consist of a list of connected track segments through a railway yard
that start and stop at a main signal. These main signals should be ‘in front
of’ the direction of the route, i.e. such that the train can see them. There
should be no other main signal on the route other than the start and stop
signals, introducing a predicate route/1 that defines routes and a predicate
part of/2 that relates a track segment to a route.

route(rt1).

route(rt2).

part_of(ts2,rt1).

part_of(ts3,rt1).

part_of(ts2,rt2).

part_of(ts4,rt2).

Routes are also releasable yard objects, to reflect this the definition of
releasable is updated to

releasable(X) :- signal(X) | point(X) | route(X).

which has the semantics a releasable entity is a signal, a point or a route.
Each route has a direction that can not always be derived from the loca-

tion of the main signals. This can be specified by choosing a track segment
directly before the start of the route:

54 6.1. Signalling Principles

before(ts1,rt1).

before(ts1,rt2).

This scheme is limited in the sense that it does not consider routes that start
on a terminal track segment such as in a rail depot.

The example railway yard from Sect. 2.2 has four routes as defined in
Table 2.1 and depicted in Fig. 6.2. These can be formally represented in the
model as

route(A).

route(B).

route(C).

route(D).

where A, B, C and D are identifiers not variables, capital letters in Prolog
denote variables; they should be encapsulated within single quotes but have
not been for readability. The part of/2 relations are as follows

part_of(ts1a,A).

part_of(ts2a,A).

part_of(ts3a,A).

part_of(ts4a,A).

part_of(ts5a,A).

part_of(ts1a,B).

part_of(ts2a,B).

part_of(ts3a,B).

part_of(ts3b,B).

part_of(ts4b,B).

part_of(ts5b,B).

part_of(ts4a,C).

part_of(ts3a,C).

part_of(ts2a,C).

part_of(ts2b,C).

part_of(ts1b,C).

part_of(ts4b,D).

part_of(ts3b,D).

part_of(ts2b,D).

part_of(ts1b,D).

6. Safety Conditions 55

Route A

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Route B

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Route C

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Route D

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

ms1 ms2 ms3

ms4 ms5 ms6

Figure 6.2: Graphical Representation of Routes from Table 2.1.

56 6.1. Signalling Principles

Routes can also have overlap and flank protection; these are specified by
two more predicates: overlap/2 that indicates that a given track segment
is an overlap of a given route, and flank/3 that indicates that a given point
provides flank protection for a given route.

Overlap Protection It is possible that a train does not stop in time when
shown a stop aspect, thus for safety reasons a number of track segments
are allocated immediately following a route. The actual number of track
segments depends on the maximal stopping distance of train using the route.
Assuming that the required overlap protection is one track segment, the
following defines the overlap using overlap/2

overlap(ts6a,A).

overlap(ts6b,B).

overlap(ts0b,C).

overlap(ts0b,D).

Flank Protection A flank point is a point which, if traversed by an over-
running train in the facing direction, could direct that train towards a route
and overlap that has been allocated for an authorised train movement. Flank
protection is defined as the setting of flank points to the position whereby
an overrunning train will be diverted away from a route and overlap that
has been allocated for an authorised train movement, i.e. a set route. The
points providing flank protection for the route can be related to the route
using flank/3 which takes as operands a point identifier, a configuration and
a route identifier. For route A, in the running example

flank(pt3,normal,A).

flank(pt4,normal,A).

6.1.1.6 Auxiliary Predicates

While writing signalling principles, it is often convenient to create auxiliary
predicates in the model which simplify the process of writing the conditions.
i.e. determine whether a point is part of a route.

equality It is often useful to test equality between entities while writing
the signalling principles, this can be done by wrapping the prolog equality
operator into a predicate,

equal(X,Y) :- X == Y.

6. Safety Conditions 57

negation While writing auxiliary predicates, negation is a useful feature
and can be defined by,

not(G) :- G, !,

fail.

not(_).

where ! is the cut operator to stop matching the second case of not in the
case that G is true. The second case accepts anything and is only matched
in the case that G does not hold. fail is a built in predicate that will never
hold.

route main signal Determining if a signal is the main signal of a route
can be done as follows in prolog code,

route_main_signal(MSI,RT) :- before(TS,RT),

connected(TS,TSS),

part_of(TSS,RT),

infrontof(TS,MSI),

inrearof(TSS,MSI).

point part of Determining if a point is part of a route can be done as
follows in prolog code,

point_part_of(PT,RT) :- route(RT), point(PT,TS), part_of(TS,RT).

pointnormal Determining if a point should be normal in a route can be
done as follows in prolog code,

pointnormal(PT,RT) :- point_part_of(PT,RT),

normal_branch(TS,PT),

part_of(TS,RT).

This works by first checking that the point is part of the route then checks
that the normal branch of the point is part of the route.

pointreverse Determining if a point should be reverse in a route can be
done as follows in prolog code,

pointreverse(PT,RT) :- point_part_of(PT,RT),

point(PT,_),

not(pointnormal(PT,RT)).

It works by first checking that the point is part of the route then negates the
validity of pointnormal/2.

58 6.1. Signalling Principles

6.1.2 Safety Condition Generation

The reduction of a signalling principle to a safety condition produces many
safety conditions. Given a signalling principle ϕ with quantifiers of the form

∀xi : τi

or
∃xi : τi

where each τi is a type defined in the entity hierarchy. All different entity
types must be finite as all rail yards only have finitely many components,
thus conversion of ψ can proceed as follows:

• Construct the prenex normal form of ψ, called ψprenex.

• Using structural induction recurse through ψprenex replacing universal
and existential quantifiers for the appropriate conjunctions and dis-
junctions, respectively.

6.1.2.1 Prenex Normal Form

A prenex normal form of a FOL formula ψ is where all the quantifiers occur-
ring in ψ are moved to the front of the formula so it is of the form

(∀x1 . . . xn1)(∃y1)(∀xn1+1 . . . xn2)(∃y2) . . . (∀xnr+1 . . . xnr+1)(∃yr+1)ϕ

where ϕ is quantifier free, also known as the matrix.
The reason that the signalling principles are placed into prenex normal

form is that separation of the safety conditions becomes easier. Typically a
signalling principle will use universal quantification ∀x : τ , each possibility
that the quantification can assign to x will yield a different safety condition.
The next section shows how to remove quantifiers, where universal quan-
tification is replaced by a finite conjunction, i.e. each conjunct is a safety
condition. Thus, the matrix becomes a safety condition to prove after being
instantiated with entities defined by the quantifiers.

If the signalling principle was not placed into prenex normal form, then, if
the author of the conditions does not fully understand the logic, unexpected
results could occur, i.e. instead of generating lots of small safety condi-
tions, they generate one very large safety condition, being a conjunction of
the smaller ones. Although the large safety condition and a conjunction of
the small ones have the same semantics, if one of the smaller ones does not
hold, then the whole of the large condition does not hold making it harder
to determine the reason the signalling principle does not hold.

6. Safety Conditions 59

The first step of the translation is to make sure that no two quantifiers in
ψ use the same variable, a simple rename operation can be applied. If this
was not the case, then in prenex normal form there might be ambiguity in
the matrix with the variable quantified more than once.

The following function can be defined using case distinctions and struc-
tural induction, [vD04]:

prenex : FOLFormula→ PrenexFOLFormula

Let x′ be a fresh variable not occurring in either ϕ and ψ.

prenex((�x : τ ϕ) � ψ) := �x′ : τ prenex((ϕ[x := x′]) � ψ)
prenex(ϕ� (�x : τ ψ)) := �x′ : τ prenex(ϕ� (ψ[x := x′]))
prenex(¬∀x : τ ϕ) := ∃x : τ prenex(¬ϕ)
prenex(¬∃x : τ ϕ) := ∀x : τ prenex(¬ϕ)

where � ∈ {∀, ∃} and � ∈ {∧,∨}. The first two cases rename the variable x
such that there are no clashes with other free variables.

The trivial cases (inc. base cases) that recurse the formula’s structure
have been omitted for simplicity. The above translation is only valid in
classical logic, conjunction and negation cause problems in intuitionistic logic.
prenex can be extended to implications a → b by translating to ¬a ∨ b and
applying the rules above. The result is:

prenex((∀x : τ ϕ) → ψ) := ∃x : τ prenex(ϕ → ψ[x := x′])
prenex((∃x : τ ϕ) → ψ) := ∀x : τ prenex(ϕ → ψ[x := x′])
prenex(ϕ → (�x : τ ψ)) := �x : τ prenex(ϕ[x := x′] → ψ)

Through a similar reasoning it is possible to extend prenex to equivalences
although care must be taken as quantifiers are duplicated so a renaming
strategy is required.

6.1.2.2 Quantifier Removal

The basic strategy for removal of quantifiers was introduced in Sect. 4.6.
Suppose a signalling principle ϕA in prenex normal form

∀pt : Point ϕ′
A(pt)

which has the semantics, for all points ϕ′
A holds. There are only a finitely

number of many points in any given rail yard, let pt1, pt2, . . ., ptn define the
set Point i.e. pti ∈ Point. So each pti substituted into ϕ′

A produces a new
safety condition.

60 6.1. Signalling Principles

Taking a conjunction of all such safety conditions has the same semantics
as ϕA, i.e.

ϕA ⇔ ϕ′
A(pt1) ∧ ϕ

′
A(pt2) ∧ · · · ∧ ϕ′

A(ptn)

Following a similar argument for existential quantification, suppose a sig-
nalling principle ϕE in prenex normal form

∃pt : Point ϕ′
E(pt)

which has the semantics, there exists at least one point where ϕ′
E holds. This

has an identical meaning to a list of disjunctions, i.e. let p, q and r be atomic
propositions.

p ∨ q ∨ r

holds exactly when one or more p, q or r holds. Thus

ϕE ⇔ ϕ′
E(pt1) ∨ ϕ

′
E(pt2) ∨ · · · ∨ ϕ′

E(ptn)

6.1.2.3 Predicate Removal

The final phase of the translation from signalling principles into safety con-
ditions requires that the predicates used to reason about the rail yard and
its entities are resolved into literals.

For simplicity here, tt and ff are assumed to be literals constrained to
true and false values respectively.

Predicates that exist within the model, such as

connected(ts1,ts2).

can be looked up in the model and replaced with tt and ff accordingly.

Example Let ψ be a safety condition that must hold for all connected
track segments, formulated into a signalling principle as

∀t1 : TrackSegment ∀t2 : TrackSegment (connected to(t1, t2) → ψ(t1, t2))

which has the semantics if t1 is connected to t2, then ψ must hold where
t1 and t2 are track segment identifiers. As universal quantification over an
entity type τ is replaced by a finite conjunction with |τ | (the number of
entities with type τ in the rail yard) conjuncts, this technique produces a large
number of conjuncts6, in the example above |TrackSegment|2 conjuncts are
produced. Resolving connected(ts1,ts2) into a constant Boolean value
using the topology model in each of the |TrackSegment|2 conjuncts and
applying standard Boolean rules to remove constants from the formula leaves
only the conjuncts where t1 is connected to t2; conjuncts where t1 is not
connected to t2 are removed.

6Safety conditions in this case.

6. Safety Conditions 61

Literal Predicates A second class of predicates that exists within the
context of signalling principles relates to the encoding of literals in the ladder.
Typically literals within the ladder follow a naming convention such as given
a point identifier, appending various strings to this identifier will result in
properties about the point. This notion can be extended to all entities on the
railway yard. The actual strings that can be appended change from railway
yard to railway yard and should be specified in the naming convention for a
given railway yard.

Example, let Points := {pt1, pt2, . . . , ptn}. If pt ∈ Points, then
pt.Normal, pt.Reverse and pt.Locked are valid literals. Note: This is a
fictional naming convention not based on any convention in particular.

Introducing a new function custom : String2 → String which concate-
nates two strings together. Thus assuming a canonical mapping f from
elements of Points to textual representations, fPoints : Points → String,
f is the equivalent of toString in a conventional programming language.
Continuing the above example,

∀pt ∈ Points⇒ custom(fPoints(pt), “.Normal”) is a valid literal.

The custom function has a simple reduction strategy identical to the
‘concatenation of two lists’. The only constraint is that the variables in the
operands must be instantiated, otherwise they yield ambiguous results.

6.1.2.4 Example Reduction

The example introduced in Sect. 1.3 demonstrates the reduction of a sig-
nalling principle into a safety condition. Repeated here for simplicity.

Suppose a signalling principle such as “points in a rail yard should not be
set to the normal and reverse positions simultaneously”, which when formu-
lated into FOL becomes

∀pt ∈ Points : ¬(normal(pt) ∧ reverse(pt))

Also, suppose that the rail yard to be ratified against this signalling prin-
ciple has two points, namely pta and ptb. Note that the formula is already
in prenex normal form so this step is skipped. Removal of quantifiers would
yield

¬(normal(pta) ∧ reverse(pta)) ∧ ¬(normal(ptb) ∧ reverse(ptb))

and, removal of predicates would yield

¬(pta.Normal ∧ pta.Reverse) ∧ ¬(ptb.Normal ∧ ptb.Reverse)

62 6.2. Safety Conditions

As there are no constant Boolean values introduced while reducing the
predicates, the removal of the constants is skipped. Finally, the conjuncts
are extracted, these conjuncts are the safety conditions to be verified.

¬(pta.Normal ∧ pta.Reverse)

and

¬(ptb.Normal ∧ ptb.Reverse)

This completes the example.

6.2 Safety Conditions

The difference between signalling principles and safety conditions is that,
safety conditions can not use quantification or predicates. Mathematically,
this is the difference between first order logic and propositional logic.

Safety conditions are propositional formulæ which range over literals in
the ladder. I.e. safety conditions have no quantification and no predicates,
only literals from the ladder are used as atomic propositions.

6.3 Proving

Only safety conditions are used while attempting to prove safety properties
as they relate directly to the safety conditions used in the proof formulæ. The
following sections describe induction as used for this project. This section
describes the proof formulæ chosen to be entered into the SAT-Solver and
the reasoning behind the chosen formulæ.

6.3.1 Proof of Safety Properties using Induction

As already discussed in Sect. 3.2, ladder logic uses a sequential execution
strategy where an undefined n number of cycles are consecutively executed
performing input and output operations between these cycles. The only dis-
tinguishing property of these cycles is the state of the memory between ex-
ecuting cycles. This is known as the state of the program, and in the case
of the ladder it consists of truth values associated to the literals that consist
within the ladder.

To prove that a given safety property ψ holds for a given ϕL, it suffices to
verify that in all states (excluding the initial state) of the program ψ holds.

6. Safety Conditions 63

The goal of the verification is to prove that a safety condition ψ holds after
n execution cycles of the ladder. Formally,

∀n ∈ N \ {0} ψ(n)

There are different methods of performing this verification; a simple method
is to enumerate all possible states of the program and check that for each state
ψ holds; ignoring reachability of the counter example. A different technique
is to use induction.

To show that a safety condition holds in each nth cycle of the ladder the
induction principle can be applied. The base case requires that the safety
condition ψ holds after the first cycle of the ladder. The reason that the
condition is only proven to hold after the first execution of the ladder is that
the initial state of the ladder could invalidate the condition, but after the
ladder has executed one cycle the system is deemed to be in a safe state.
Thus the base case formula is

ψI ∧ ϕL → ψ′

where ψI is the initial configuration of the variables and ψ′ is a renamed
version of ψ using the substitution constructed while translating the ladder
in Sect. 5.3.

The inductive step of the proof states that if ψ holds in the nth cycle,
then it holds in the nth + 1 cycle.

ψ ∧ ϕL → ψ′

where ψ′ is as above.

6.3.1.1 Limitations

The inductive proof system described is limited in the sense that if a counter
example is found, then finding a reachability trace is not trivial in the sense
that a counter example might be in an unreachable state. Counter example
traces are of interest to Invensys. Although, in the case no counter example
is found, then it is proven the safety conditions hold after the nth iteration
for an arbitrary n.

Similarly another major weakness is that if a counter example is found,
would this be a real counter example? i.e. whether from the initial state it is
possible to end up in a state where the safety condition does not hold. This is
mitigated by appending invariance to the formulæ. These invariances restrict
the possible states considered; invariance is discussed at length in the next
section.

64 6.3. Proving

6.3.2 Invariance & Reachable States

After each execution cycle of the ladder the system can be in exactly one
unique state; each state is characterised by the configuration of the proposi-
tional variables within the ladder. Some of these configurations are invalid
in the sense that the ladder will never reach these states under any circum-
stances, i.e. regardless of the number of cycles of the ladder and the inputs
given to the ladder throughout these cycles. There are two reasons for this
restriction, one is the hardware forbids certain input combinations and the
second reason is that the ladder logic forbids certain states. For example, let
a and b be atomic propositions in the ladder, it could be the case that the
ladder logic enforces a↔ ¬b.

A propositional formula ψ built from the atomic propositions in the ladder
that holds for all states that are reachable (valid) is called an invariance of
the ladder. See Fig. 6.3 for an example. In practice, many invariants hold not
only in the reachable states but in some unreachable states. For example, the
invariant a ↔ ¬b would hold in all reachable states and many unreachable
states in all but the most trivial ladders.

ψ

Figure 6.3: Each circle indicates a state the of the system, a state comprises
of the configuration of the variables. The double lined state is the initial
state and arrows define the transitions between the states. The shaded area
indicates states where a formula ψ holds.

Construction of an invariance ψ of the ladder such that it holds exactly
in the reachable states is a complex problem. There are two methods that
are orthogonal, the first constructs an invariance based on the actual inputs
to the ladder enforcing the operational semantics of the hardware, thus re-
moving states that are assumed by the system’s designers to be invalid even

6. Safety Conditions 65

if the logic permits such a state. This type of invariance is not provable,
but follows from the system design, see Sect. 6.3.2.1. The second method
produces provable invariances of the ladder, and can be proven to be invari-
ances using the same method as used for proving safety conditions, i.e. a
logical consequence of executing the ladder, see Sect. 6.3.2.2. Hence, safety
conditions are also safety invariants.

Given a safety condition ψS and an invariance ψInv that defines reachable
states of a given ladder ϕL, it is required that if ψInv holds in a given state,
then so does the safety condition ψS. States in which ψInv does not hold are
not of interest as the system can never reach them so it does not matter if
the safety condition ψS fails to hold in these states.

In practice it is hard to construct a strong7 invariance ψInv, as shown
in Fig. 6.3, that only accepts reachable states. It is easier to construct
a slightly weaker version which accepts all reachable states and a few un-
reachable states. Also to prove that a given invariance accepts exactly the
reachable states is not trivial for non-trivial ladders, ideally all states could
be enumerated as in Fig. 6.3 with the transitions between these states de-
fined. When such a state diagram has been built, it is a trivial matter to
extract the reachable states by starting with the initial state and following
all transitions. Typically a ladder with 600 atomic propositions would have
2600 ≈ 10180 states making a careful analysis of all the states and the tran-
sitions between them not feasible. In practice, ladders can have thousands
of atomic propositions with the number only set to increase in the future;
currently Invensys are producing ladders with > 3000 rungs. I.e a ladder
with 6000 atomic propositions can have ≈ 101806 states.

If a counter example is found, a question can be raised is this a real
counter example? The reason this question is raised directly relates to
whether the invariance used is strong enough. Suppose while verifying a
safety condition a counter example is found, is this counter example in a
reachable state? Is a stronger invariance required?

6.3.2.1 Physical Invariances

Physical invariances are states that can not occur because the real world
hardware does not allow them. Suppose a switch with three physical con-
tacts representing positions A, B and C, these contacts are closed by the switch
so it should not be possible for a switch to be in more than one position si-
multaneously8, although it could be possible for neither contact to be closed
while the switch is moving between contacts. Fig. 6.4 shows a three way

7An invariance that accepts exactly the reachable states.
8Assuming that the hardware is working correctly with no short circuits.

66 6.3. Proving

switch, the switch is between positions A and B. The switch is represented
within the ladder by three atomic propositional variables, one for each phys-
ical contact inside the switch. When moved left the contacts for A are closed
and an atomic proposition in the ladder representing this action goes high,
then if moved right the atomic proposition goes low. When turned further
to the right, the switch is in the B position and an atomic proposition in the
ladder representing this action goes high. Likewise for position C.

A B

C

Figure 6.4: 3-Way Switch

These invariances require a careful analysis of a railway yard and sig-
nalling principles to construct.

It has been suggested that a correctly implemented ladder logic program
should not require physical invariance to be specified during the proof as
the program should enforce these constrains internally, i.e. a switch should
be in at most one position. If there is a conflict, then the safest available
option should be chosen. This design approach makes the system resilient
against short circuits. Although enough short circuits will always result in
ambiguous behaviour of the interlocking, especially if they are maliciously
instigated.

6.3.2.2 Mathematical Invariances

A mathematical invariance is a formula ψ which is an invariant of the ladder,
i.e. holds in all the reachable states, excluding the initial state.

Let ψInv be a formula which rejects unreachable states for a given ladder
ϕL. The formulæ defined in Sect. 6.3.1 can be refined to filter out unreachable
states. The base case becomes

ψI ∧ ϕL ∧ ψInv → ψ′

where ψI is the initial configuration of the variables and ψ′ is a renamed
version of ψ using the substitution constructed while translating the ladder
in Sect. 5.3.

The base case does not strictly require the reachable condition as it is
trivially reachable by definition. It starts with the initial configuration of the

6. Safety Conditions 67

variables as the ladder would in reality. The reachable condition is of great
importance to the inductive step.

The inductive step of the proof states that if the safety condition ψ holds
in the nth cycle and the cycle is reachable, then it holds in the nth +1 cycle.

ψ ∧ ϕL ∧ ψInv → ψ′

where ψ′ is as above.
Invariance formulæ can be built by hand with an intimate knowledge

of the ladder and the signalling principles for simple systems. Hand built
invariance for large ladders is also useful, but can not be expected to be
comprehensive in terms of defining the reachable states.

An approach suggested by Dr A. Setzer to aid in automating the genera-
tion of invariance is to compute all satisfying assignments of the ladder and
look for pairs (a, b) of atomic propositions such that

• a↔ b or

• a↔ ¬b

is an invariance of the ladder. When these pairs are identified, they are fed
back into the proof formulæ as an invariance (see below) and starts again,
and is continued until no more pairs can be identified which fulfil the above
conditions. This is obviously a terminating procedure as there are only a
finite number of variables in a given ladder but the number of cycles required
before termination is not clear. Although this will pick all dependencies
between pairs of variables, the approach does not directly scale to finding an
invariance with an arbitrary number ≥ 3 of atomic propositions built from
arbitrary operations.

6.3.3 Proof Formulæ

While performing the verification, it is necessary to show that the formulæ
introduced in Sect. 6.3.2.2 always hold. This is done by negating the two
formula’s, i.e.

¬(ψI ∧ ϕL ∧ ψInv → ψ′)

and
¬(ψ ∧ ϕL ∧ ψInv → ψ′)

Thus, in the case both of these formulæ are unsatisfiable, the proof is
complete that safety condition ψ holds in all reachable states except the
initial. If it is possible to satisfy one of these formula’s, then a counter
example has been found.

68 6.3. Proving

When these formulæ are entered into a SAT-Solver, the solver will search
for a satisfying assignment ⇒ counter example.

Chapter 7
Results Obtained

There were many different safety conditions that were made available, some
of these were given by Invensys others were produced during the project for
testing purposes.

This chapter discusses the results of the experimental verification of sig-
nalling principle, for legal reasons detailed analysis of counter examples, if
they occurred, have been omitted, along with the proof formulæ because the
information could be used to detrimental effects. The signalling principle to
be verified is given in each case, but without the topology model it is not
possible to construct the actual proof formulæ.

7.1 Software Architecture

The software used to produce safety conditions from signalling principles dif-
fers from the software used to verify the ladder logic. A top level architecture
is shown in Fig. 7.1. The two boxes indicate the two parts of the program,
general formula takes a signalling principle and produces safety conditions
(*.cond files). Rail Verifier reads safety conditions and produces clause sets,
which are entered automatically into OKSolver. The output of OKSolver is
processed to produce counter example documentation, if a counter example
was found. The user guide in Appendix A has a comprehensive description
of both parts of the software.

69

70 7.2. Variables of Configuration

Signalling
Principles

General Formula

Topology Model

Rail VerifierLadder

Counter Example
Document

*.cond files

Figure 7.1: Top Level Dataflow

7.2 Variables of Configuration

All benchmarks were carried out using a Dell R© Precision WorkStationTM

T3400 running Ubuntu R© 7.10 Gutsy 64-bit. The machine is configured with
two 1GB DDR2 memory modules running at 800MHz. There is one memory
module for each CPU core. The CPU is a Intel R© Core 2 DuoTM E6850,
running at 3GHz.

The proof engine used is OKSolver, using an optimised1 64-bit build.

The project has been concerned with a specific ladder logic program with
331 rungs and 599 variables. The actual station the ladder logic is for can not
be named for legal reasons but has a similar design to the example station
shown in the introduction, Sect. 2.2. The names of railway yard entities differ
and the topology is more complex.

7.3 Experiments

The list below shows some of the signalling principles that have been exper-
imented with. The signalling principles are all written using first order logic

1Built using GCC with the -O3 compiler option.

7. Results Obtained 71

with general predicates, and the generated safety conditions are written in
propositional logic.

Experiments were commenced as follows,

1. Create a root directory, and 6 subdirectories; one for each signalling
principle. In practice all the signalling principles can be placed in
one directory but for benchmarking purposes there is only one in each
directory. These directories are numbered 1 . . . 6.

2. Enter the signalling principles into text files and save into the subdi-
rectories. These text files have the extension gen, although this does
not matter.

3. Run the gen files through the software to produce safety conditions
using the topological model of the station. The resulting files have
the extension cond, and contain many safety conditions. Each gen file
produces exactly one cond file.

4. Using the software produced during the project, generate clause sets
which encode the proof formulæ introduced previously. Each safety
condition produces two clause sets required for the induction hypothesis
to be valid.

5. Enter the clause sets into a proof engine, saving the output into files in
the case a counterexample is found. These files are then processed to
help with building documentation.

6. When counterexamples are discovered, generate the correct documen-
tation and concatenate all counterexample documentation into a single
file.

7. Save the output from /usr/bin/time program for latter analysis. The
items 4 to 6 are an atomic command and passed into /usr/bin/time for
benchmarking purposes. The time program provides a detailed analysis
of what the process spent its time doing, along with page faults and
other information. bash comes with a built in time command but this
caused segmentation faults when used with developed proof system, so
should not be used.

There are 6 signalling principle selected for experimentation, which will be
discussed below; these are of varying complexity to demonstrate the flexibility
of the system.

72 7.3. Experiments

Variable Name Type

cpt Combinedpoint
pt Point
rt Route
s Signal
ts TrackSegment

Table 7.1: Type Shorthands

To aid in condensing the signalling principles below, the types of variables
are omitted but instead specific letters are used to indicate elements of a given
type. See Table 7.1 for a list of these shorthands.

In practice, there are two types of point identifiers Combined and Normal,
because points appear in pairs. Sometimes each point in a pair has its own
identifier and other times the combined pair has an identifier and is treated
as an atomic railway yard entity. There are also cases where hybrids of the
two methods are applied, i.e. certain literals only refer to a single point
and others refer to both points in the pair. The combined points were not
introduced in Sect. 6.1.1 for simplicity.

Signalling principles and safety conditions often make use of logical impli-
cations, ‘→’, following the usual standard, implications are right associative.
Thus,

a→ (b→ (c→ d))

can be written as,

a → b
→ c
→ d

7.3.1 Red Aspect with Occupied Trailing Segment

A signal faces in a given direction, such that only trains approaching from
one side should be able to see its aspect. Thus, if a train passes a given
signal, the next train to approach the signal should see a red aspect unless
the first train has travelled a sufficient distance down the line. If the first
train is still occupying the track segment directly behind the signal, then the
second train should see red aspect on the signal. The formula below encodes
this principle

∀s, ts inrearof(ts, s) → occupied(ts)
→ redaspect(s)

7. Results Obtained 73

The predicate inrearof(ts, s) holds exactly when track segment ts is be-
hind the signal, validity of the predicate is resolved from the topology model.
The second two predicates are used to build the safety condition, and they
can be seen as describing the state of the railway yard entities rather than
topological relationships.

When this signalling principle is translated to safety conditions the
inrearof(ts, s) predicate is removed using the topological model and replaced
by the correct logical value, this constant can then be removed using standard
Boolean laws. The resultant safety conditions are of the form

occupied(ts) → redaspect(s)

where these predicates are reduced to literals representing the correct state
assuming ts and s satisfy inrearof(ts, s). The final reduction of these pred-
icates into literals is not presented as it does not yield further insight into
the process. The above signalling principle was expanded into 4 safety con-
ditions, one for each signal in the rail yard.

The total time taken was 3 minutes and 10 seconds to find that there
were no counter examples.

7.3.2 Conflicting Routes can not be Set

If two or more routes require the same track segments, then these routes
conflict. This can be formalised into a signalling principle as

∀rt, rt′, ts rt 6= rt′ → (part of(ts, rt) ∧ part of(ts, rt′))
→ ¬(routeset(rt) ∧ routeset(rt′))

which has the semantics: if track segment ts is part of two distinct routes rt
and rt′, then at most one of these routes can be selected at any one time.

The part of(ts, rt) predicates are resolved using the topology model,
yielding safety conditions of the form

¬(routeset(rt) ∧ routeset(rt′))

where routes rt and rt′ conflict with each other. The signalling principle was
expanded to 5 safety conditions, but in fact there are only two routes which
are compatible within the example railway yard.

The total time taken was 4 minutes and 9 seconds, no counter examples
were found.

Side Note: Non conflicting routes has been proven valid and has been
added to the list of invariants the program uses to help reduce the number
of reachable states.

74 7.3. Experiments

7.3.3 Points not Normal and Reverse

A fairly important signalling principle is that the interlocking does not try
to move a point into the normal and reverse positions simultaneously. This
could have unpredictable results, more importantly there should never be a
scenario according to the signalling rules where such a situation is required.
Formally, this condition can be written as

∀cpt ¬(normal(cpt) ∧ reverse(cpt))

There are no topological predicates here so removal of the quantifier yields
the structure of the produced safety conditions.

¬(normal(cpt) ∧ reverse(cpt))

A safety condition of the above form will be produced for each combined
point in the railway yard. There are 2 combined points in the railway yard
that is being tested, thus, there are 2 produced safety conditions.

The benchmarking shows that these two safety conditions are provable in
1 minute and 20 seconds.

Side Note: The condition that points can not be moved normal and
reverse simultaneously has been added to the invariance the program uses
after being proved as a valid consequence of the ladder.

7.3.4 Occupied Points Locked

When a train is on the same track segment as a point, then the point should
be locked. i.e. the interlocking should not allow a request to move it. The
signalling principle is below, note that it makes use of both normal and
combined point identifiers because the logic only allows combined points to
be locked but individual points are related to track segments in the topology
model.

∀cpt, pt, ts part of(pt, cpt) → point(pt, ts)
→ occupied(ts)
→ (normal(cpt) ∨ reverse(cpt))

The part of(pt, cpt) and point(pt, ts) predicates are solved by the topology
model, the other 3 are used to construct the safety conditions. The structure
of the safety conditions, after removing the topology predicates becomes:

occupied(ts) → (normal(cpt) ∨ reverse(cpt))

7. Results Obtained 75

There are 4 points in the example railway yard, thus 4 safety condition
are generated.

The benchmark took 3 minutes and 20 seconds and found counter ex-
amples in all cases, including the base cases. These counter examples are
attributed to the fact that the proof system allows for trains to magically
disappear and/or reappear. Thus, supposing a point was not locked, then
suddenly a train appears on the point. As the point is not locked, the inter-
locking would need to know if it should be locked in the normal or reverse
positions. Perhaps this signalling principle was not chosen well for the above
reason, although it demonstrates the difficulty with writing good signalling
principles.

It is possible to adapt the proof system, see Sect. 8.5.1, such that the proof
formula verifies from a state where the safety condition ψ does not hold, then
after executing the ladder ϕL the safety condition holds. Omitting invariance,
the proof formula would become,

¬ψ ∧ ϕL → ψ′

7.3.5 Points Locked when Route Set

Before a route can be selected specific constraints must be satisfied, these
constraints are specified in the control tables. One of these constraints is
that all the necessary points in the route are moved and locked to the correct
positions, normal or reverse; assuming that the point has not been released
to the maintainer.

The following formula specifies this as a signalling principle,

∀rt, cpt point part of(cpt, rt) → (routeset(rt) ∧ ¬released(cpt))

→









(

pointnormal(cpt, rt) →
normal(cpt)

)

∧

(

pointreverse(cpt, rt) →
reverse(cpt)

)









where point part of(cpt, rt) holds only when cpt is a point in route
rt and is resolved using the topology model. pointnormal(cpt, rt) and
pointreverse(cpt, rt) hold iff, cpt is normal or reverse respectively, in route
rt. The other predicates are used to construct the safety conditions.

The last conclusion consisting of a conjunction of two formulæ is used
to select whether a point should be normal or reverse in the route. When
resolving the pointnormal and pointreverse predicates in the conjunction,

76 7.3. Experiments

only one of these will remain after applying Boolean laws for removing con-
stants as a point should never be specified to be in the normal and reverse
positions within the same route.

The generated safety conditions take the form of,

(routeset(rt) ∧ released(cpt)) → �(cpt)

where � is either normal or reverse as appropriate for the point cpt in route
rt. One of these safety conditions is produced for each combined point in each
route. i.e. suppose there are two combined points and four routes, each using
both of these points as in Table 2.1, then there would be 8 safety conditions
produced. In the example railway yard being verified, there are 8 safety
conditions, the total time taken to verify these conditions was 7 minutes and
6 seconds. Counter examples were found in all the inductive steps, although
Invensys has said that these counter examples were already known about
and do not present a safety threat as the interlocking will correct itself in the
subsequent cycle, Sect. 8.5.1. The cycle time is at most 1 second, [Wes06].

7.3.6 Tracks Clear with Green Aspect and Route Set

One of the constraints for a route to be selected is that all track segments
that make up the route should be unoccupied, assuming the train has not
entered into the route. When the train enters into the route, the main signal
guarding the route changes from a green (proceed) aspect to a red aspect.
Thus, when a route is selected and the guarding signal shows a green aspect,
then all track segments within the route should be unoccupied. This can be
written as a signalling principle as,

∀rt, s route main signal(s, rt) → greenaspect(s) ∧ routeset(rt)

→ ∀ts

(

part of(ts, rt) →
¬occupied(ts)

)

which is not in prenex normal form, although it has the correct semantics.
When converting this into safety conditions the formula is automatically
translated into prenex normal form, yielding

∀rt, s, ts route main signal(s, rt) → greenaspect(s) ∧ routeset(rt)

→

(

part of(ts, rt) →
¬occupied(ts)

)

where route main signal(s, rt) holds iff signal s is the main signal of route
rt and part of(ts, rt) holds iff track segment ts is part of route rt. Both of

7. Results Obtained 77

these predicates are resolved using the topology model. The other predicates
are used for producing the safety conditions. The safety conditions are of
the form,

(greenaspect(s) ∧ routeset(rt)) → (¬occupied(ts))

such that the necessary constraints are satisfied. One safety condition is pro-
duced for each track segment in each route; this has the effect that if the
condition does not hold for one track segment, then this track segment is im-
mediately identifiable. In the example railway yard this condition produced
25 safety conditions. Verification of these 25 conditions took 23 minutes and
14 seconds with no counter examples found.

Chapter 8
Conclusions

8.1 Feasibility

The main focus of the project was to determine whether formal verification
of ladder logic with respect to railway signalling principles is feasible. The
project has been concerned with a specific ladder logic program with 331
rungs and 599 variables. The actual station the ladder logic is for can not
be named for legal reasons but has a similar design to the example station
shown in the introduction, Sect. 2.2. The names of railway yard entities differ
and the topology is more complex.

The task of formal verification can be split into two main sub tasks:
generation of the proof formulæ as described in previous sections and actually
entering these fromulæ into a proof engine to yield a result. The current
implementation of the generation of the proof formulæ is not optimal. There
are many techniques which can be applied that will decrease the time required
for the complete verification cycle but this non-optimal program has shown
that the task is feasible. After many discussions with researchers in this area,
it has been suggested that the time taken for the clause set generation could
be in the order of seconds not minutes.

8.2 Software Review

As already indicated the software is not optimal but works. The software is
written to run on Linux using a multitude of languages including:

Haskell Used for parsing the ladder logic program and generating the clause
sets. This part of the system is open for many optimisations. An

78

8. Conclusions 79

optimal solution would be to use a native language such as C++ along
with optimal algorithms.

Python Post processing of the counter examples.

Latex Production of documentation of the counter examples.

Java Used to translate the signalling principles into safety conditions.

Bash Scripting Used for many different purposes, mainly used to incorpo-
rate the different parts of the program into one program.

Makefile Coordinates the proving of clause sets and generation of the doc-
umentation.

The major component of the software is written in Haskell primarily
because Haskell is a high level language that allows for complex functions
to be written simply and provides a type checking system that picks up
many erroneous statements that would not be discovered in a conventional
programming language until the testing phase. A major drawback of Haskell
is efficiency compared to a language such as C++.

The program uses the Näıve translation introduced in Sect. 5.2 to produce
the model of the ladder, whereas the Optimised translation would be better
as the result is a conjunction of equivalences which would save processing
later when producing the clause sets1. The optimised translation was not
considered until the software had been written; it was decided that as the
software works it was best not to modify it.

The parser of the ladder logic which is stored in a file format developed
by Invensys needs to be extended because it currently was only written to
interpret the ladder logic used for the specific interlocking being verified. It
was decided that parsing of any arbitrary ladder logic in the file format was
not required for this project, but could be required for subsequent work, thus
the basic architecture within the software is in place.

8.3 Limitations

8.3.1 Pre and Post Variable References

The safety conditions can not reference both values before and after execution
of the loop, i.e. all output variables are recomputed after each iteration of the
ladder. Thus if a safety condition relies upon the previous value of an output

1Clause sets are in conjunctive normal form.

80 8.3. Limitations

variable, then the safety condition can not be represented. It is possible
to change the generated proof formulæ such that it allows for pre and post
variables to be extracted, but as the majority of safety conditions can be
expressed with the current system the change was not applied, although
further research of this principle will be required for a comprehensive system
capable of fulfilling Invensys’s requirements.

One possibility is to adapt the proof formulæ as follows:

I ∧ ϕL0 → ψ1

I ∧ ϕL0∧L1 → ψ2

ϕLn
∧ ψn ∧ ϕL(n+1)

∧ ψ(n+1) → ψ(n+2)

where I is the initial configuration of variables, ϕLi
is a propositional model

of the ladder representing the ith iteration of the ladder and ψi is the safety
condition for the ith iteration. All of the above formulæ omit the invariance
for readability.

The proof formula as shown in Sect. 6.3 has only one base case, whereas
those shown above have two. The reason for this is because the inductive
step requires that the safety condition holds in the previous two states.

The inductive step has two iterations of the ladder, thus, it is possible to
select pre and post variables for all the variables in the ladder. The current
system only has one iteration allowing for only pre and post values of the
variables which are computed during the execution of the ladder.

8.3.2 Counter Example Traces

Originally the scope of the project was to not only formally verify the in-
terlocking, but in the cases where counter examples were discovered an ex-
planation of how to reproduce these violations (a trace) was required. As
the project progressed it became clear that the chosen methodologies did not
allow for this. The idea was to encode into the clause set extra information
which would allow for this trace to be automatically constructed, but time
was a limiting factor, thus this branch of research was never examined.

The reason for this limitation comes from the proof formulæ used; the
proof formulæ rely upon the principle of induction. Thus, when a counter
example is discovered for an arbitrary state f , there is no information on how
to get from the initial state to state f . See Fig. 8.1, which demonstrates,
that in order to get from the initial state b to state f there are many ways.
Supposing the state transition diagram has not been constructed, then a
backwards reachability analysis is required. One possible solution is to start

8. Conclusions 81

with state f and enumerate all possible states that lead to f , in the example
from Fig. 8.1 this would only be state d. Continuing this analysis recursively
until the initial state has been enumerated, from state d there are 3 states,
namely {b, c, d}, here b, the initial state has been enumerated, thus a trace
of getting from the initial state to a counter example found in state f could
be b −→ d −→ f , but there are many others, some including cycles allowing
for an infinite number of different traces, although the use of fixed points can
help here. If a counter example had been found in state s, there is no way
of getting back to the initial state so the counter example is not valid.

a x

y
k

b

c
l

e
d

z

m f s

t

Figure 8.1: Each circle indicates a state, a state comprises of the configuration
of the variables. The double lined state is the initial state and arrows define
the transitions between the states.

This is a computationally expensive problem as the algorithm works back-
wards, i.e. traversing the arrows of the state diagram in reverse. Travelling in
the direction of the arrows is relatively simple as these are logical conclusions.

8.4 Areas of Further Research

8.4.1 Verification versus Validation

This project is concerned with verification, i.e. proving that the ladder logic
fulfils an arbitrary safety condition, but specification of these safety condi-
tions is a separate issue. A typical suggestion is to derive the safety conditions
from the control tables, i.e. check that the ladder logic program fulfils the con-
straints within the control tables. There are however other safety conditions
which the control tables do not cover, these are the signalling principles.

82 8.4. Areas of Further Research

Typically, verifying that the interlocking fulfils a signalling principle is
straight forward assuming the signalling principles have been specified pre-
cisely. L.H. Eriksson while formally verifying the Swedish national railways
was presented with this problem, [Eri97b, Eri97a]. A major part of the
time Eriksson spent on the project was formalising the signalling principles.
The signalling principles were in books written by signalling engineers, but
while formalising these principles ambiguities were found, requiring a discus-
sion with the engineers to resolve these ambiguities. Although the signalling
principles appear to be comprehensive and have fulfilled the needs of the
railway industry thus far, to aid in the formal verification these principles
they need to be specified in a formal language which leaves no ambiguities.

8.4.2 Reachability

There has been a great deal of research in the area of backwards reachability,
mainly in the field of model checking with finite state automata which could
help with this project. Shankar Govindaraju and David Dill have described
such a method in [GD98]. The method works by successive approximations of
subsets of the total set of states. If these subsets are empty, then the counter
example was not a real one, but in the cases where the approximation is not
an empty subset, then there is a possibility that a real counter example has
been found and requires further analysis. Hence the naming of the method.
These approximations are built by working from the initial state and the
counter example to find a path between these states, known as forward and
backward reachability. This method was applied to the Stanford FLASH
Multiprocessor and real counter examples were found.

A second method which requires modification of the proof formula is to
simulate the interlocking for n cycles where n is sufficiently large. When
a counter example is found, then a trace of how to reproduce the example
can be extracted from the clause sets through a canonical procedure. The
serious problem with this method is to select a sufficiently large n, it could
be possible that a counter example is not found in n iterations, but one is
found in n + 1 iterations of the ladder, no matter how unlikely. The one
exception is when all reachable states have been visited and the nth + 1 only
visits a previously visited state for n.

8. Conclusions 83

8.5 Recommendations

8.5.1 Proof Formulæ

Throughout the course of the project a number of counter examples were
found, many of these were later disregarded due to bugs in the software used
to generate the proof formulæ.

The counter examples found that were real are already known by Invensys,
details are omitted for legal and security reasons. These counter examples
were said to only be intermittent, i.e. self correcting after one cycle and did
not pose a safety issue. A typical execution cycle is variable between 0.5 and
1 second, [Wes06].

It is possible to check for these self correcting problems by changing the
proof formulæ to check every cycle and second cycle, see the formula below.

¬ψ ∧ ϕL → ψ′

where ψ is a safety condition, ψ′ is the renamed safety condition and ϕL is
a propositional model of the ladder. The proof formula states that, if there
exists a state where the safety condition ψ does not hold, then in the direct
successor state it must hold. This effectively allows a safety condition to be
violated for a state such that it holds in the previous and next states. This
can be depicted as a time line, see Fig. 8.2 and Fig. 8.3.

✓ ✘ ✓ ✘ ✓ ✓ ✓ ✘ ✓

i i+ 8

Figure 8.2: Valid Time Line

✓ ✘ ✓ ✘ ✘ ✓ ✓ ✘ ✓

i i+ 8

Figure 8.3: Invalid Time Line

The check marks indicate that the safety condition holds at the given
state and a cross indicates that the condition does not hold. The time lines
are arbitrary segments of greater time lines starting at the ith ≥ 0 iteration
of the ladder and ending at the ith + 8 iteration of the ladder. In the second
figure, the time line is invalid because the safety condition does not hold for
more than one consecutive iteration.

84 8.6. Implementation

8.5.2 Proof Engine

The selected proof engine for this project was OKSolver, version 2002. This
version only accepts DIMACS file formats; these are formulæ represented as
clause sets, (conjunctive normal form). There are many other solvers which
will accept formulæ not written in conjunctive normal form. An advantage
of using a proof engine which accepts arbitrary propositional formulæ over
the base {∧,∨,→,↔,¬} is that information is not lost. One major advan-
tage of not first converting the proof formulæ into clause sets comes when
equivalences are used, the proof engines can make use of this information to
improve the efficiency. This improvement is particularly important when one
of the operands is an atomic proposition and can be replaced by the other
operand throughout the formula, reducing the search space. Typically there
are many different methods of translating a formula into conjunctive normal
form, these different methods have different impacts upon the proof engine,
thus if the translation is left to the proof engine, then the proof engine will
choose the most appropriate method available to it.

8.5.3 Model Checking

The use of SAT applied to this problem works well, but perhaps a more
applicable method would be to apply model checking. Model checking has
been used successfully for many verification applications, and lots of research
has been done in various different areas of model checking.

One area which model checking has been used successfully is verifying
finite state automata. Not only would model checking verify the ladder, it
would also provide a backwards reachability trace of how to reproduce the
counter example which would be of great interest to Invensys.

8.6 Implementation

The project included implementation of a prototype system which can for-
mally verify whether ladder logic specifying an interlocking satisfies arbitrary
signalling principles.

This required building a topological model of the railway yard, then using
this model to build safety conditions from the signalling principles.

The verification stage takes as input, a safety condition and the ladder
logic specification2, this results in a two clause sets being generated, one for

2File format of the ladder logic specification is property of Invensys.

8. Conclusions 85

the base case and one for the inductive step. These clauses sets are then
input into a SAT solver, which determines satisfiability of the cases.

Appendix A
Userguide

A.1 Introduction

This is a short user guide that explains important information required to
utilise the software for the rail verification tools.

The guide is split up into three sections, installation, architecture and
usage. Throughout this guide there are web links, these links are intended to
provide extra information that will help with the understanding and increase
proficiency but not is essential reading.

It is assumed that the user will have read the thesis accompanying this
user guide as it explains what is going on conceptually, especially under-
standing the results requires this knowledge.

A.1.1 Notations

Within this user guide the notion of a general safety condition is equivalent
to a signalling principle and specific safety condition is equivalent to safety
condition as used in the thesis.

86

A. Userguide 87

Symbol Units

B 1 Byte
KB 1024 Bytes
MB 1024 KB
GB 1024 MB

~ Home directory
makefile See http://www.gnu.org/make/

quotation mark "

Table A.1: Symbols and Units

This is a
Document

This is a Process

Figure A.1: Flow Diagram Symbols

Flow Diagrams Fig. A.1 shows the basic symbols for flow diagrams, doc-
uments (i.e. data) and processes. Data flow is shown by an arrow between
processes or documents. Data flow could be a file read/write operation or
sending the output from a program to another program.

A.2 Installation

If only testing or performing a clean install (including Linux) then see
Sect. A.2.3.

A.2.1 Requirements

Currently only install packages for debian Linux1 have been produced, but
it is not necessary to run debian, the programs will work on Red Hat Linux,
although will have to be manually installed.

Hardware requirements are as follows:

• 512MB ram (1GB if running as ‘live cd’), 2GB Recommended.

• At least 1GB free hard disk space after Linux install.

• Printer.

1see http://www.debian.org

88 A.2. Installation

The following software is required by various phases, assuming you have
a working Linux install:

GNU Make Version 3.81

http://www.gnu.org/software/make/

Latex A complete latex install is required for building of the documentation.
pdfTeX 1.40.3 was used during development which is part of texlive.

http://www.tug.org/applications/pdftex/

http://www.tug.org/texlive/

dviconcat This is sometimes included in a complete latex install or in some
axillary package such as dviutils.

http://www.ctan.org/tex-archive/help/Catalogue/entries/dviconcat.html

These software packages are usually available through the distributions
repositories. They are all available for Ubuntu, and are pre-installed on the
live CD’s.

A.2.2 Process

There should be four *.deb files:

1. oksolver-X.Y.Z-i386.deb

2. railverifier-X.Y.Z-i386.deb

3. railverifier-doc-X.Y.Z-all.deb

4. generalformula-X.Y.Z-all.deb

Where X, Y and Z are version numbers.

Install these files in the order listed, depending on the Linux distribution
there are different ways of achieving this. Usually double clicking on the
file will start the installer. NOTE: if they are installed out of order then
dependency errors will be raised, also a connection to the Internet will be
required as other dependency’s are automatically resolved.

A. Userguide 89

A.2.3 Live CD

The live CD has two purposes, firstly it is a computer operating system that
is executed upon boot, without installation to a hard disk drive and secondly
it can install to the hard disk drive a new operating system.

The first feature will not affect the existing software on the computer but
there will be a large performance hit, also any changes made and files saved
will be discarded when the system is rebooted as it is running from RAM. To
use this mode place the live CD in the computer and reboot, the BIOS might
need to be reconfigured to boot from CD. Once the CD has loaded, select
your language from the list and then select the first option which reads “Try
Ubuntu Without Any Change To Your Computer”. Ubuntu should boot up
with all the required software installed. Be prepared to spend 10 minutes or
more waiting for the system to boot.

The second feature is recommended for execution speed and files can
be saved to the hard disk drive such that they persist after a reboot. The
process is similar to the above, except when the CD first loads select “Install
Ubuntu”. This will boot into Ubuntu and launch the installer. It is the
authors recommendation that this only be done on a machine which has
no valuable data on, preferably a machine without any operating system
installed. It is possible to “dual boot” a computer such that multiple operating
systems are installed, a menu is displayed at boot and the required operating
system can be selected. Dual booting is not covered in this document.

A.2.4 Built-In Help

This userguide is also on the CD along with example signalling principles
that are explained in the thesis. The userguide can be located at

/usr/share/verifier/userguide.pdf

and the examples are located

/usr/share/verifier/examples/

Within this directory are 6 *.gen files. Each of these filese contains one
signalling principle decribed by the file name.

A.3 Software Architecture

The process of general proving safety conditions has been split into four parts,
conversion of the general safety conditions into grounded safety conditions
and three phases, 1, 2 and 3, that control the verification process.

90 A.3. Software Architecture

Phase 1 - Clause Set Generation Translates the grounded safety condi-
tion groups into clause sets that describe the problem.

Phase 2 - Proving The clause sets are entered into a proof engine, the
results are documented.

Phase 3 - Documentation All the documentation is gathered and con-
catenated into a single document.

General safety conditons are generated using a program called general.
The following sections describe the the architecture of the four parts and the
whole system.

A.3.1 Top Level

General Safety
Conditions

General Formula

Topology Model

Rail Verifier

Counter Example
Document

*.cond files

Figure A.2: Top Level Dataflow

A. Userguide 91

A.3.2 General Formula

General Safety
Conditions

General Formula

Topology Model

Group Safety
Conditon File

(*.cond)

Figure A.3: General Formula Architecture

A.3.2.1 Programs

Program Description

general
Runs the General Formula program with-
out a graphical user interface.

generalgui

Runs the General Formula program with a
graphical user interface. Useful for devel-
opment of formulas.

Table A.2: General Formula programs

A.3.2.2 Files

Along with the files listed in Table A.3, there is a directory located at:

/usr/share/generalformula/java/

which contains all the Java classes and Java sources (in case modifications
are required). These classes are executed by running the programs in Table
A.2.

92 A.3. Software Architecture

File Description

model.pl

A topology model of the station to be ver-
ified written in Prolog2. The file should be
located in /usr/share/generalformula/

directory.

gnuprolog.jar

An open source Java/Prolog library li-
cenced under LGPL3. Should be located in
/usr/share/generalformula/ directory.

Table A.3: General Formula files

A.3.2.3 Usage

Only usage of phase1 is covered here. The other programs are not intended
for use by the end user, they are used internally by other programs and
scripts.

A.3.3 Rail Verifier

Rail Verifier componet is a “meta process”, meaning it acts like a single
program but consists of other programs, in this case Phase 1, Phase 2 and
Phase 3. These phases are described in subsequent sections. See Fig. A.4 for
the architecture of Rail Verifier.

2http://www.gprolog.org/
3http://www.gnu.org/copyleft/lgpl.html

A. Userguide 93

Group Safety
Condition Files

(*.cond)

Phase 1

Ladder

Phase 2

Phase 3

Counter Example
Document

Phase 2 is executed once for

each group condition file en-

tered during Phase 1.

Figure A.4: Rail Verifier Architecture

A.3.4 Phase 1

Requires a directory with group safety condition files4 in. For each of these
files set up a directory structure (environment). Then populate this environ-
ment with the generated clause sets.

This phase can take a long time, for each safety condition a wait of a
couple minutes can be expected.

See Fig. A.5.

4*.cond

94 A.3. Software Architecture

Directory with
*.cond files

*.ins file

Generate Clause
Set

Initialise
Environment

Directory with
clause sets

(environment)

For each cond file

environment

Figure A.5: Phase 1 Architecture

A.3.4.1 Programs

Program Description

phase1
Main script that should be executed, con-
trols Phase 1.

clausegen
Takes a group safety condition and gener-
ates all the associated clause sets.

setup-env Sets up a directory structure/environment.

Table A.4: Phase 1 programs

A.3.4.2 Files

File Description

master.mak

Makefile, not used in the phase but re-
quired when initialising the environment as
links are made to this file. The file should
be located in /usr/share/verifier/ di-
rectory.

Table A.5: Phase 1 files

A.3.4.3 Usage

Only usage of phase1 is covered here. The other programs are not intended
for use by the end user, they are used internally by other programs and

A. Userguide 95

scripts.

Help generated by phase1:

Usage: phase1 GroupSafetyConditionDirectory EnvironmentPath [GCSFile]

GroupSafetyConditionDirectory - Directory with *cond files

EnvironmentPath - Directory to contain the outputs, i.e. the generated

clause sets.

GCSFile - Can be omitted if there is a ladder file located:

/usr/share/verifier/EPP0M700.INS

Otherwise it should be a path to a ladder in the

GCSSv3 format.

Environment:

To specify where to find clausegen set CLAUSEGEN_PATH env var.

To specify where to find setup-env set SETUPENV_PATH env var.

To specify where to find GCSFile set GCSFILE_PATH env var.

Example Supposing ~/saftyconds/ contains *.cond files and the gener-
ated clause sets should be placed under ~/clausesets/ then the following
command can be executed at a terminal:

> phase1 ~/saftyconds/ ~/clausesets/

Phase 1 takes a long time, be prepared to wait also depending on the
number of safety conditions Phase 1 can consume large quantities of hard
disk drive space. It has been witnessed consuming over half a gigabyte.

A.3.5 Phase 2

Takes an environment path populated with clause sets, attempts to sat-
isfy the clause sets, in cases where clause sets are satisfiable, document the
counter example.

Phase 2 requires lots of helper programs and source files for producing
the documentation.

The makefile that is linked in Phase 1 is the main script for Phase 2 but
is triggered by phase2 script.

See Fig. A.5.

96 A.3. Software Architecture

Directory with
0-* files

(environment)

OKSolver

Clean Up
Restore Literal

Names

Construct
Pre/Post State

TeX Files

Produce
Counter Ex.

Doc.

Counter Example
DVI file

Source Files:
stationmap.pstex

stationmap.pstex t

template.tex

ifxdefs.tex

comments

for each clause set

no counter example found counter example found

Pre Post

Figure A.6: Phase 2 Architecture

A. Userguide 97

A.3.5.1 Programs

Program Description

phase2
Main script that should be executed, trig-
gers the makefile.

oksolver

OKSolver, proof engine currently being
utilised for verification. There are also nu-
merous other versions of OKSolver in the
/usr/bin/ directory, only versions which
contain osa5 in there name are useful for
this phase.

oksolver.tested

Wrapper script for oksolver that makes
its return value conform to standard return
values. i.e. return 0 when clause set is
satisfiable, >0 otherwise.

hex2ascii

Processes the output from oksolver, con-
verts literals from hex strings into ASCII
strings; buildtexdefs and texlink pro-
cess the output of hex2ascii.

buildtexdefs

Requires an output from hex2ascii, pro-
duces a tex file which contains lots of
macros for representing the states of vari-
ables and timers. Only needs to executed
once for each model, does not contain any
state information from the counter exam-
ple. The output of this program is dumped
to the terminal, it should be redirected to
a file called ifxdefs.tex.

texlink

Complement to buildtexdefs, takes a
counter example processed by hex2ascii

and produces a tex file which encodes the
state of the counter example in the form of
def macros.

Table A.6: Phase 2 programs

A.3.5.2 Files

All the files in this section should be located in the /usr/share/verifier/

directory. In most cases the files can be moved assuming the correct envi-

5Output Satisfying Assignment

98 A.3. Software Architecture

ronment variable is configured.

File Description

stationmap.pstex

A postscript file with a small diagram of
the station; used for showing counter ex-
amples. Generated by Xfig.

stationmap.pstex t

A tex file showing where to overlay text
onto the postscript file above. Generated
by Xfig.

template.tex
A tex file with the basic structure for the
counter examples.

titletemplate.tex
A tex file template of the title page for each
safety condition group.

ifxdefs.tex

Pre generated for the station, each new
ladder will require this to be regenerated
via buildtexdefs.

Table A.7: Phase 2 files

A.3.5.3 Usage

Usage of phase2 is covered here. The other programs are not intended for
use by the end user, they are used internally by other programs and scripts.

Help generated by phase2:

Usage: phase2 EnvironmentPath

EnvironmentPath - Directory that contains the output from

phase1, typically a directory with a

subdirectory for each safety condition group.

Environment:"

none, see the master.mak for more information about this phase,

this file should be linked in each of the sub-dirs and

located at /usr/share/verifier/

Example Supposing ~/clausesets/ contains the output from Phase 1,
the following command can be executed at a terminal:

> phase2 ~/clausesets/

A. Userguide 99

Phase 2 does not typically take a long time. Although a lot of text is
displayed on the console screen during processing due to the documenta-
tion generation. Often errors will be displayed during this phase, these are
produced no counter example is found. These errors can be safely ignored.

A.3.6 Phase 3

Phase 3 is the final phase, all the documentation produced in Phase 2 is col-
lected and front sheets are produced for the various safety condition groups.
The result is a pdf file containing all the counter examples.

In comparison to Phase 1 and Phase 2, Phase 3 is a much simpler phase,
it consists of a single script and only processes documentation. See Fig. A.7.

Directory with
DVI files

(environment)

Concatenate
DVI’s

PDF Conversion

stationmap.pstex

Final PDF
Document

Figure A.7: Phase 3 Architecture

A.3.6.1 Programs

Program Description

phase3
Main script that should be executed, con-
trols the concatenation process.

Table A.8: Phase 3 programs

100 A.4. Usage

A.3.6.2 Files

File Description

stationmap.pstex

A postscript file with a small dia-
gram of the station; used for show-
ing counter examples. Generated by
Xfig. This file is required to convert
the DVI into a PDF. Should be located in
/usr/share/verifier/

Table A.9: Phase 3 files

A.3.6.3 Usage

Usage of phase3 is covered here. The help generated by phase3:

Usage: phase3 EnvironmentPath

EnvironmentPath - Directory that contains the output from

phase2, typically a directory with a

subdirectory for each safety condition group.

There should also be *dvi’s generated by

phase2 for this phase to succeed.

Example Supposing ~/clausesets/ contains the output from Phase 2,
the following command can be executed at a terminal:

> phase3 ~/clausesets/

After executing there should be a PDF file located in ~/clausesets/ces.pdf.

A.4 Usage

A.4.1 File Formats

There are different formats for the system, the most important being the
general safety condition files. Each file should contain exactly one general
formula. Other formats include the safety condition files and outputs from
the solver. The topology model6 is discussed in Sect. A.4.1.4.

6See http://www.gprolog.org/manual/gprolog.html for comprehensive usage of this
file.

A. Userguide 101

A.4.1.1 General Safety Condition

General safety condition file format is essentially a formula that relies upon
definitions in the topology model.

A formula can be defined using Extended BackusNaur Form (EBNF).
Defining the atomic parts of the grammar as follows,

literal ::= " ([A..Z]|[a..z]|[0..9]|[./\()_-])* "

identifier ::= ([A..Z]|[a..z])+

and ::= AND

or ::= OR

not ::= NOT

equiv ::= EQUALS

imply ::= IMPLIES

all ::= ALL

some ::= SOME

lparen ::= (

rparen ::=)

comma ::= ,

type ::= Signal | TrackSegment | Route | Point

| CombinedPoint | Releasable

The difference between a literal and a identifier is simple, literal’s
require that they are encapsulated by quotation marks, can contain symbols
and white space. The identifier is a restricted version that does not re-
quire quotation marks and can only range over standard English alphabetic
characters.

The main body of the EBNF follows, it has been organised in the form for
LL(k) parsers. Most notable consideration for LL is that the grammar is not
left recursive, i.e. recursion should happen on the right most non terminal.

formula ::= <universalformula>

universalformula ::= <all> <literal> : <type> <universalformula>

| <existentialformula>

existentialformula ::= <some> <literal> : <type> <universalformula>

| <andexpression>

andexpression ::= <orexpression> [<and> <andexpression>]

102 A.4. Usage

orexpression ::= <impexpression> [<or> <orexpression>]

impexpression ::= <eqexpression> [<imply> <impexpression>]

eqexpression ::= <negateexpression> [<equiv> <eqexpression>]

negateexpression ::= <not> <atomicexpression>

| <atomicexpression>

atomicexpression ::= <literal>

| <predicate>

| <bracketedformula>

predicate ::= <identifier> <lparen> <variablelist> <rparen>

variablelist ::= <variable> [<comma> <variablelist>]

variable ::= <literal> | <identifier>

bracketedformula ::= <lparen> <formula> <rparen>

Examples Some example strings that would be accepted by this grammar
along with there meanings follow.

• "MAINT"

The mnemonic "MAINT" is always high in the ladder.

• "PHASE1" AND "PHASE2"

The system is always in phase 1 and phase 2, obviously should not be
the case.

• ALL cpt : CombinedPoint

(NOT normal(cpt)) OR (NOT reverse(cpt))

All points in the railyard can never be driven normal and reverse. This
principle can be written equivalently (which might be more intuitive) as

ALL cpt : CombinedPoint

NOT (normal(cpt) AND reverse(cpt))

• ALL rta : Route

A. Userguide 103

ALL rtb : Route

ALL ts : TrackSegment

NOT equal(rta,rtb)

IMPLIES

(

(part_of(ts,rta) AND part_of(ts,rtb))

IMPLIES

NOT (routeset(rta) AND routeset(rtb))

)

Conflicting routes can not be set. Intuitively, this formula has the
meaning that all routes that share a track segment can never be set
simultaneously.

• ALL rt : Route

ALL cpt : CombinedPoint

point_part_of(cpt,rt)

IMPLIES

(

(routeset(rt) AND NOT released(cpt))

IMPLIES

(

(

pointnormal(cpt,rt)

IMPLIES

(normal(cpt) AND NOT reverse(cpt))

)

AND

(

pointreverse(cpt,rt)

IMPLIES

(NOT normal(cpt) AND reverse(cpt))

)

)

)

If a route is set, then for all points in the route which are not released,
must always be normal or reverse as the route demands. This final
example looks complicated but demonstrates the expressive power of
the proof system. The reader is advised to study this condition example
to understand how and why it works.

104 A.4. Usage

If an incorrect string is entered into the program an error will be produced.
The common errors include:

• Existence – The predicate indicated can not be reduced to a literal or
a constant Boolean value.

• Parse – The string entered has not been accepted by the parser, possi-
bly a misspelled keyword or incorrect bracketing is responsible.

All the errors can not be listed as not all errors can be predicted. I.e. out of
memory error. It is possible that the safety condition entered here will intro-
duce new mnemonics causing counter examples to be identified erroneously.
For example, suppose the following string is entered:

ALL pt : Point (NOT normal(pt)) OR (NOT reverse(pt))

This is wrong as pt is quantified over the type Points whereas
CombinedPoints would be the correct type. Instead of producing two safety
conditions in the example station for the combined points cpt1 and cpt2
the program will produce four safety conditions for the points pt1, . . ., pt4.
Then when reducing the predicates normal/1 and reverse/1 the mnemonics
pt1.NL, . . ., pt4.NL and pt1.RL, . . ., pt4.RL will be produced erroneously.
The correct mnemonics should be cpt1.NL, cpt1.RL, cpt2.NL and cpt2.RL.
If this error is made, the program will not give any warnings.

The predicates normal and reverse in the previous example are defined
in the Java source file StationPredicateResolver.java. These predicates;
among others enforce the stations naming conventions, it was not deemed
necessary to define a new file format for these conventions as the program is
currently limited to only the station.

Table A.10 lists all currently implemented predicates in the above men-
tioned source file:

Predicate Description

id(o)

Used for debugging, returns the value
passed in. i.e. id(o)=o Will most likely
not be of use for actual safety conditions.

occupied(ts)

Indicates that the track segment ts is oc-
cupied, appends .T onto the end of ts. i.e.
occupied(ts)=ts.T

normal(o)

Normal Latch, can be used for points and
other track side equipment, appends .NL

onto the end of o. i.e. normal(o)=o.NL

Continued on next page

A. Userguide 105

Table A.10 – continued from previous page

Predicate Description

reverse(o)

Reverse Latch, can be used for points and
other track side equipment, appends .RL

onto the end of o. i.e. reverse(o)=o.RL

released(o)

Indicates that o has been released locally,
appends .REL onto the end of o. i.e.
released(o)=o.REL

freenormal(o)

Free to go normal latch, can be used for
points and other track side equipment. Ap-
pends .NWZ onto the end of o.

freereverse(o)

Free to go reverse latch, can be used for
points and other track side equipment. Ap-
pends .RWZ onto the end of o.

routeset(rt)
Indicates that the route rt is set, appends
.RU onto the end of rt.

custom(lt,suffix)

This predicate allows for custom
mnemonics to be generated by ap-
pending suffix to lt. This predicate
can define the above predicates. i.e.
custom(lt,suffix)=ltsuffix. lt and
suffix can be either a literal or a variable.

Table A.10: The stations Predicates

A.4.1.2 Safety Condition

The cond files store grounded safety conditions, ideally each cond file stores
a group of related safety conditions. Each safety condition is stored along
side a comment that is used for documentation purposes, the generated cond

files use this comment space for displaying the formula that is being proved.
The file consists of many records, where the each record resembles a safety

condition. A record is of the form:

[name]

#

comment

#

condition

106 A.4. Usage

where the comment and its encapsulating hash signs are optional. name is the
name of the safety condition, this is used when the clause sets are generated
to name the file.

The condition is a simple propositional formula consisting of the base
conjunction, disjunction, negation, implication and equivalence, see Table
A.11 for the syntax of these operations. The literals in the formula must be
encapsulated by quotations marks, this is to allow them to consist of exotic
symbols. The characters that can be used for the literals are any printable
characters that do not include the quotation mark.

Operation How to Write

conjunction &

disjunction |

negation ~

implication ->

equivalence <->

Table A.11: Syntax of Operations in cond files

Examples The following are examples of records in a cond file:

[condition1]

#

this is a comment for condition 1

#

"a" -> (~"b" | ("c" & "b"))

This condition is called condition1, has a comment and a condition that
has the semantics of a implies that b is false or c and b are true.

[condition2]

"START" <-> ~"START"

Simple condition that is always false, specifies that START must be true and
false simultaneously.

[condition3]

#

The condition to prove is

\[

pt.locked \rightarrow \neg pt.cangoleft

\]

A. Userguide 107

with the meaning: if point is locked, then it is not free

to go left

#

"pt.locked" -> ~"pt.cangoleft"

The comment in this condition demonstrates the use of LATEX code in the
comments. The line ‘pt.locked \rightarrow \neg pt.cangoleft’ in the
comment will produce, if counter example is identified in the documentation:

pt.locked→ ¬pt.cangoleft

There is no limit on the complexity of the formulas that can be entered.
Selecting the correct literal names is important. If names are used that do
not exist in the ladder then they will be created during the verification stage.
This results in typing errors leading to false results from the verification.

Typically the literals that should be used exist in the ladder postfixed
by 0 or 1. The number represents the version the variable. Each time a
variable is modified then its number is version number is incremented. Some
input variables do not have a 1 version as they are not modified during the
ladder cycle, all outputs and latches are recomputed every cycle so have a 1

version as well as a 0 version.

A.4.1.3 Solver Output

There are two outputs from the solver, the raw version is encoded by convert-
ing all the literals into hex encodings of the ascii values. This is because the
literals used in the ladders contain symbols that are not supported. The raw
output is passed through hex2ascii to restore the literal names. Typically
the renamed versions of the outputs are postfixed by .namesrestored.

The actual format of the file is as follows, lines beginning with c are
comments. All the literals used in the clause set are listed in the file, those
that were found satisfied for the counterexample are printed normally those
that were falsified are prefixed with a -, minus sign.

A.4.1.4 Topology Model

The topology model of the railway yard is written in a programming language
called Prolog, this section is a basic tutorial of Prolog necessary to write a
topology model.

There are three basic statements used to write programs, facts, rules and
queries. Facts are the basic building blocks of all programs, an example of a
fact is

108 A.4. Usage

person(george).

which asserts that george is a person, and

sister(julie,george).

which asserts that julie is the sister of george. Facts are used to assert
information about objects and relationships between these objects. In the
context of the topology model, facts are used to define the names of railway
yard entities, the types of these entities and relations ships between these
entities. Facts are the most important part of the topology model.

Facts can effectively can build up a simple database structure, a database
table person about people can be constructed in prolog by

person(george,12,male).

person(julie,14,female).

where each entry in the table has three pieces of information, a name, age,
and gender, in that order. From this table it can be seen that julie is 14.
An alternative representation of the same information can be achieved as
follows

person(george).

person(julie).

age(george,12).

age(julie,14).

gender(george,male).

gender(julie,female).

where the person predicate acts as a primary key in the table and age

and gender are other columns relating an attribute to a given primary key
entry. The second representation is preferred as it allows for only relevant
information to be gathered and the table is much easier to modify.

Queries can be asked of these databases, typically a query results in a
truth value. It could be asked if george is a person, in the first database
representation this would be asked as (when entered into the GNU Prolog
interpreter)

| ?- person(george,_,_).

yes

A. Userguide 109

where the underscores represent values which are undefined. The result is
yes, meaning that the query is a logical conclusion of the facts already as-
serted. Similarly for the second representation the query would be phrased
as

| ?- person(george).

yes

Queries can also be used to ask general questions, such as who are peo-
ple and what are there ages? This would be phased as follows for the first
database representation

| ?- person(P,A,_).

A = 14

P = julie ? ;

A = 12

P = george

yes

where P and A are variables which have two sets of assignments (solutions)
such that the query entered is satisfied. These assignments are computed
by prolog and displayed. The second database representation uses multiple
predicates, thus the query must use the relevant ones, the query can be
phrased as

| ?- person(P), age(P,A).

A = 14

P = julie ? ;

A = 12

P = george

yes

where P and A are as before. The query can be interpreted as P is a person and
P has age A. The comma in the query is interpreted as a logical conjunction
and the conjuncts are evaluated from left to right.

110 A.4. Usage

These queries can be made up from conjunctions using a comma and
disjunctions using the | symbol, also braces are allowed. Supposing the
following facts are also entered into the database

person(alice). age(alice,13). gender(alice,female).

person(matt). age(matt,16). gender(matt,male).

It is possible to ask interesting questions of the database such as list all
females and males of the age 12 or under.

| ?- person(P), (gender(P,female); (gender(P,male),age(P,A),A=<12)).

P = alice ? ;

P = julie ? ;

A = 12

P = george

yes

Rules are used to specify general relations between objects, typically rules
“wrap” queries. Rules are used in the context of the topology model to dis-
satain relations between entities automatically, i.e. which position a point
should be in for a given route. A rule has the syntax of a fact, with the
exceptions variables can be used as operands and all rules have a body con-
sisting of a query. The query above can be translated into a rule called
womanandchildren as

womanandchildren(P) :- person(P),

(

gender(P,female);

(gender(P,male),age(P,A),A=<12)

).

This rule behaves as multiple facts, when the rule is queried the following is
observed:

| ?- womanandchildren(P).

P = alice ? ;

P = julie ? ;

A. Userguide 111

P = george

yes

The information in this section should be enough to understand sub-
sequent sections on the structure of the topology model file. Sterling and
Shapiro have written a good book explaining Prolog in much greater depths
called The Art of Prolog.

A.4.1.5 External Formats

There are a range of external formats used by the program, the most im-
portant being GNU Prolog as discussed in the previous section. The docu-
mentation is built using Latex which uses tex files. The tex format is very
powerful, originally developed for type setting mathematical equations. A
good resource explaining the format can be found at:

http://www.tug.org/texlive/doc.html

and

http://www.latex-project.org

A.4.2 Proof Cycle

A typical proof cycle consists of entering a general formula to produce a
*.cond file, many of these files can be produced and placed into a folder.
The path of this folder will be passed to the railverifier program along
with a folder to hold the temporary files and generated counter example
documentation.

Example Supposing the directory ~/conditions/ contains *.cond files,
the following command can be executed:

$ railverifier ~/conditions/ ~/environment/

The directory ~/environment/ will contain all a sub directory for each
*.cond file in ~/conditions/. Each of these sub directories will contain gen-
erated clauses sets and other files used for the post processing of the counter
examples. If counter examples are found, then a file called ces.dvi will exist
in the sub directories. During phase 3 all of these ces.dvi files are gathered
together and concatenated into a file called ~/environment/ces.pdf.

112 A.5. Produced Counterexamples

A.5 Produced Counterexamples

Each counterexample consists of two sections and an optional comment about
the example which shows the actual formula that has been disproved. Firstly,
a simple line diagram of the station which shows which track circuits are
occupied and the aspects of the signals7 and secondly the last section shows
various mnemonics8 from the ladder and there logical states.

The name of the counterexample can be appended by “noinitial” to
indicate that this is an arbitrary cycle through the Westrace as opposed to
the initial cycle.

A.5.1 Comment

The comment is an optional section, it is only added if there is a comment for
the current counterexample. Typically the comment will show the condition
that was violated in propositional logic. The syntax used for the logic is as
follows:

Operation Symbol

And ∧
Or ∨

Negation ¬
Implication →

A.5.2 Pictorial of Track Circuits

Track segments are shown as ‘H’ like objects with a number written above
or below them depending whether the track segment is on the top or bottom
line. If a train is on the track segment then this is shown by writing an X
over the track segment.

Signals can show red, or green but typically show red when a counterex-
ample occurs. The colour is drawn onto the diagram a coloured circle on the
appropriate signal. The red aspect is shown closest to the vertical line at one
end of the signal and the green at the opposite end.

The direction of the points as at the end of execution is found by querying
the NWC and RWC latches and drawing a small arrow appropriately next to the
point. If neither NWC or RWC are high, then a question mark is shown instead.

7Signal A8250 and A8251 do not have their aspects represented in the diagram.
8Variables

A. Userguide 113

Figure A.8: Basic layout of the station, with all text removed.

A.5.3 Railway Yard States

All the mnemonics listed in the last section have two values associated with
them, pre and post states. The first value is the value before the ladder is
executed and after the reading of inputs, the second value is after the ladder
has been executed. i.e given a variable x with the states high/low it translates
to x being high before execution and low after execution.

The variables are split up into related groups, routes, points, signals,
phases and special.

A.5.3.1 Timers

Each timer has two mnemonics/variables associated with it, namely, trigger
and output. These are 3 valid states associated with each timer, off, timing
and elapsed. Off is when trigger is low, timing is when trigger is high and
output is low, elapsed is when both the trigger and output are high.

A.6 Expanding

A.6.1 Other Interlockings

Expansion of the software for different interlockings can be achieved. Cur-
rently, the major limitation of the software is within the ins file parser, the
parser has only been matured to the extent where it can parse the stations
ins file.

When translating from general signalling principles into specific safety
conditions, resolving predicates into actual mnemonics from the ladder will

114 A.6. Expanding

cause problems as currently only the stations naming convention is sup-
ported.

A.6.1.1 Parser

The parser was written using two complementing tools for the Haskell pro-
gramming language. Alex, which splits the input text into tokens (lexical
analyser) and Happy which is a parser generator that uses a input syntax
similar to Yacc for C. Happy is a LALR parser generator.

The Alex and Happy source files can be located in the GcssParser sub-
directory for the GCSS parser and ConditionParser subdirectory for the
*.cond file parser. Both of these directories are located within the main
Haskell source directory. The Alex source files have a *.x extension and
Happy source files have a *.y extension.

A.6.1.2 Predicate Naming

Ideally a further level of abstraction is required to allow for an arbitrary
signalling principle to be converted into specific safety conditions for an ar-
bitrary interlocking.

The inclusion of the custom/2 predicate allows for a simple hack but is not
ideal as each signalling principle will have to be manually edited when being
applied to a new railyard. This is to reflect different naming conventions.

Currently, there is a Java source file which defines the predicates called
StationPredicateResolver.java. The purpose of this file is to resolve
specified predicates into mnemonics, in the case predicates are not specified
within this file the topology model is queried.

Topology model querying is managed by
BasicPredicateResolver.java. To expand the system for another
interlocking, use this class as a base class, examine the structure of
StationPredicateResolver.java for more insight on how to do this. Also,
modify Builder.java in the build() method. Locate the following line

builder.visitors.Compiler c =

new builder.visitors.Compiler(q,new StationPredicateResolver(r));

Replace StationPredicateResolver with the new predicate resolver
class name.

A.6.1.3 Counter Examples

The figure used for the stations track plan will also have to modified to reflect
the railyard being verified.

A. Userguide 115

The picture was created using xfig, and exported using the “Combined
PS/LaTeX (Both Parts)” option. This will generate two files, one will be a
post script file of the actual image without any text and the other will be
a latex file containing the text to be placed over the image. This allows for
latex to process the text before it is shown allowing for the actual status of
the track circuits and signals to be drawn on top of the image.

For the text to be processed a static latex file containing macro definitions
is constructed for each different station. This file is built using buildtexdefs.

buildtexdefs reads the output from OKSolver and produces for each
mnemonic two macros, one for each pre and post states of the mnemonics.
These macros produce textual representations for the state of the mnemonics.
This step only needs to be done once for each different interlocking being
verified as mnemonics do not change.

The actual counter example is then passed through texlink which con-
structs a latex file containing definitions for mnemonics which are high. These
definitions are used by the latex file produced by buildtexdefs to show the
state of the mnemonics.

A.6.2 Different Proof Formulæ

To change the actual proof formulæ generated by the program is not partic-
ularly hard as Haskell is used but should be done with caution. A mistake
in the proof formulæ can invalidate verification.

The file Safety.hs has a function appendsafetyconds which is respon-
sible for constructing the proof formulæ. It has two cases, one for the base
case and one for the inductive step.

The safety condition data type takes a number and returns a formula,
this was originally intended to allow for an arbitrary number of iterations of
the ladder to be executed. Then the safety condition would have the correct
mnemonics after for the final iteration of the ladder. This is also the case
for the invariants data type but this functionality has not been enabled for a
long time within the code so will need a careful analysis before being used.

Bibliography

[Abr96] J.R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[Alo06] F.A. Aloul. Search techniques for SAT-based Boolean optimiza-
tion. Journal of the Franklin Institute, 343(4-5):436–447, 2006.

[BBFM99] P. Behm, P. Benoit, A. Faivre, and J.M. Meynadier. Météor:
A Successful Application of B in a Large Project. Proc. FM-
99-World Conference on Formal Methods in the Development of
Computing Systems, pages 369–387, 1999.

[BBV95] T. Basten, R. Bol, and M. Voorhoeve. Simulating and Analyzing
Railway Interlockings in ExSpect. 1995.

[Bjø04] D. Bjørner. TRain: The Railway Domain. In Building the
Information Society, volume 156/2004 of IFIP International
Federation for Information Processing, pages 607–611. Springer
Boston, 2004.

[Bus94] S.R. Buss. On Herbrands Theorem. Lecture Notes in Computer
Science, 960:195–209, 1994.

[Coo71] S.A. Cook. The Complexity of Theorem-Proving Procedures.
Proceedings of the third annual ACM symposium on Theory of
computing, pages 151–158, 1971.

[Cri87] A.H. Cribbens. Solid-state interlocking(SSI): an integrated elec-
tronic signalling system for mainline railways. IEE Proceedings
B. Electric Power Applications, 134:148–58, 1987.

116

BIBLIOGRAPHY 117

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program
for Theorem-Proving. Communications of the ACM, 5(7):394–
397, 1962.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quan-
tification Theory. Journal of the ACM (JACM), 7(3):201–215,
1960.

[EF99] L.H. Eriksson and M. Fahlén. An Interlocking Specification Lan-
guage. ASPECT IRSE, 99, 1999.

[Eri97a] L.H. Eriksson. Formal Verification of Railway Interlockings.
Swedish National Rail Administration Technical Report, 4, 1997.

[Eri97b] L.H. Eriksson. Formalising Railway Interlocking Requirements.
Swedish National Rail Administration Technical Report, 3, 1997.

[FGHvV98] W.J. Fokkink, J.F. Groote, M. Hollenberg, and B. van Vlijmen.
LARIS 1.0: LAnguage for Railway Interlocking Specification.
Report, CWI, Amsterdam, 1998.

[FHG+98] W.J. Fokkink, P.R. Hollingshead, J.F. Groote, S.P. Luttik, and
J.J. van Wamel. Verification of interlockings: from control tables
to ladder logic diagrams. Proceedings 3rd Workshop on Formal
Methods for Industrial Critical Systems (FMICS’98), pages 171–
185, 1998.

[FM07] Z. Fu and S. Malik. Extracting logic circuit structure from con-
junctive normal form descriptions. In Proceedings of Interna-
tional Conference on VLSI Design, January 2007.

[GD98] S.G. Govindaraju and D.L. Dill. Verification by approximate
forward and backward reachability. Proceedings of the 1998
IEEE/ACM international conference on Computer-aided design,
pages 366–370, 1998.

[GK05] N. Galesi and O. Kullmann. Polynomial time SAT decision,
hypergraph transversals and the hermitian rank. The Seventh
International Conference on Theory and Applications of Satis-
fiability Testing, pages 76–85, 2005.

[GOMS04] E. Gregoire, R. Ostrowski, B. Mazure, and L. Sais. Automatic
extraction of functional dependencies. Proc. SAT, 2004.

118 BIBLIOGRAPHY

[Han94] K.M. Hansen. Formalising Railway Interlocking Systems. Nordic
Seminar on Dependable Computing Systems, pages 83–94, 1994.

[Her71] J. Herbrand. Logical Writings. Springer, 1971.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[Kin94] T. King. Formalising British Rails Signalling Rules. FME ’94:
Industrial Benefit of Formal Methods, 873:45–54, 1994.

[KR01] D. Kerr and T. Rowbotham. Introduction to Railway Signalling.
Institution of Railway Signal Engineers, 2001.

[Kul08] O. Kullmann. Present and future of practical SAT solving. Tech-
nical Report CSR 8-2008, Swansea University, 2008.

[Lea03] M. Leach. RAILWAY Control Systems. Institution of Railway
Signal Engineers, 2nd edition, 2003.

[Mil78] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[Mon92] M. Monigel. Formal representation of track topologies by double
vertex graphs. Proceedings of Railcomp 92 held in Washington
DC, 2:359–370, 1992.

[Noc02] O.S. Nock. Railway Signalling. Institution of Railway Signal
Engineers, 2nd edition, 2002.

[PV04] G. Pan and M.Y. Vardi. Search vs. symbolic techniques in satisfi-
ability solving. Proceedings of the Seventh International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT
2004), 2004.

[ROTS04] W. Reif, F. Ortmeier, A Thums, and G. Schellhorn. Integrated
Formal Methods for Safety Analysis of Train Systems. In Build-
ing the Information Society, volume 156/2004 of IFIP Inter-
national Federation for Information Processing, pages 637–642.
Springer Boston, 2004.

[Sab04] D. Sabatier. Reusing Formal Models. In Building the Informa-
tion Society, volume 156/2004 of IFIP International Federation
for Information Processing, pages 613–619. Springer Boston,
2004.

BIBLIOGRAPHY 119

[She04] D. Sheridan. The optimality of a fast CNF conversion and its
use with SAT. The 7th International Conference on Theory and
Applications of Satisfiability Testing, 2004.

[Tse68] G.S. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constructive Mathematics and Mathemati-
cal Logic, 2:115–125, 1968.

[vD04] D. van Dalen. Logic and Structure. Springer, 2004.

[Vel04] M.N. Velev. Efficient translation of Boolean formulas to CNF in
formal verification of microprocessors. Proceedings of the 2004
conference on Asia South Pacific design automation: electronic
design and solution fair 2004-Volume 00, pages 310–315, 2004.

[Wes06] Westinghouse Rail Systems Australia, 179-185 Normanby Rd,
South Melbourne, Victoria 3205, Australia. WESTRACE Ap-
plication Manual, 9.0 edition, 2006.

