
Extraction of Programs for Exact

Real Number Computation

Using Agda

Chi Ming Chuang

Department of Computer Science

Swansea University

Submitted to Swansea University in fulfilment of

the requirements for the Degree of

Doctor of Philosophy

2011

2

Abstract

This thesis contains the to our knowledge first research project to ex-

tract in the theorem prover Agda programs from proofs involving pos-

tulated axioms. Our method doesn’t require to write a Meta program

for extracting programs from proofs. It shows as well the correctness

of the machinery.

This method has been applied to the extraction of programs about

real number computation. The method has been used for showing that

the signed digit approximable real numbers are closed under addition,

multiplication, and contain the rational numbers. Therefore we obtain

in Agda a provably correct program which executes the corresponding

operations on signed digit streams.

The first part of the thesis introduces axioms about real numbers

using postulated data types and functions in Agda without giving

any computational rules. Then we investigate some properties of real

numbers constructed by Cauchy sequences: we introduce the set of

real numbers which are limits of Cauchy sequences of rational num-

bers (Cauchy Reals) and show that they are closed under addition

and multiplication. We also prove that Cauchy Reals are Cauchy

complete.

Furthermore, we introduce the real numbers in the interval [-1,1],

which have a binary signed digit representation, i.e. r = 0.d0d1d2 . . .,

where di ∈ {−1, 0, 1}. This set of real numbers is given as a codata

type (SDR). We determine for rational numbers in the interval [−1, 1]

their SDR and show that SDRs are closed under the average function

and the multiplication function. Besides, a finding digit function is

defined which determines the first n digits of a stream of signed digits.

In the second part of the thesis, a theorem is given which shows the

correctness of our method. It shows that under certain conditions our

method always normalises and doesn’t make use of the axioms. The

conditions mainly guarantee that a postulated function or axiom has

as result type only a postulated type, so the reduction of elements

of algebraic data types to head normal form will not refer to these

postulates.

Because of our theorem the finding digit function applied to a real

number r s.t. SDR r holds normalises to [d0, d1, . . . , dn−1] for the first

n digit d0d1 . . . dn−1 of r. Therefore, we can compute the SDR of

rational numbers and from SDRs of real numbers the SDR of their

average and product.

Declaration

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1

This thesis is the result of my own investigations, except where otherwise stated.

Where correction services have been used, the extent and nature of the correction

is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibli-

ography is appended.

Signed .. (candidate)

Date ..

Statement 2

I hereby give my consent for my thesis, if accepted, to be available for photocopy-

ing and for inter-library loan, and for the title and summary to be made available

to outside organisations.

Signed .. (candidate)

Date ..

iii

Contents

Contents iv

1 Introduction 1

1.1 Program Extraction . 2

1.2 Main Result of Thesis: Internalisation of Program Extraction into

Agda together with Correctness Proof 5

1.3 The Structure of the Thesis . 6

1.4 Related Work . 7

1.5 More Details on Interval Arithmetic and Program Extraction . . . 11

1.6 Talk, Publication . 15

2 Introduction to Agda 16

2.1 The Language of Agda . 16

2.1.1 Basic Principles . 17

2.1.2 Postulated Types and Terms 17

2.1.3 Dependent Functions . 18

2.1.4 Data type and Pattern Matching 19

2.1.5 Inductive and Coinductive Data type 21

2.1.6 Equality . 23

2.1.7 Let, Where-expressions and Mutual Definitions 24

2.1.8 BUILTIN and Primitive 25

2.1.9 Modules . 27

2.1.10 Compiled Version of Agda 29

iv

CONTENTS

3 Real Numbers and Their Axiomatisation 31

3.1 Natural Numbers, Integers, and Rational Numbers 32

3.2 Real Numbers . 33

3.2.1 Dedekind Cuts . 34

3.2.2 Cauchy Sequences . 36

4 Coalgebras and Coinduction 41

4.1 Initial Algebras and Final Coalgebras 43

4.2 Coalgebras and Codata in Agda 50

4.3 Least and Greatest Fixed Points in Set Theory 55

5 Cauchy Reals in Agda 58

5.1 Axioms . 58

5.2 Q′ Closure Under Addition . 66

5.3 Q′ Closure Under Multiplication 67

5.4 Q′ is Cauchy-complete . 71

6 Signed Digit Representation of Real Numbers in Classical Math-

ematics 74

6.1 Signed Digit Representation . 75

6.2 The signed Digit Representations of Real Numbers -1, 0 and 1 . . 83

6.3 The signed Digit Representations of Rational Numbers 85

6.4 Average . 85

6.4.1 Function avaux . 86

6.4.2 Function av . 87

6.5 Multiplication . 88

6.5.1 Function mpaux . 89

6.5.2 Function addR . 92

6.5.3 Function mp . 95

7 Signed Digit Representation of Real Numbers in Agda 96

7.1 SDR . 96

7.2 SDR as Codata Type ∼R . 102

7.2.1 Proof of ∼R (− r1), ∼R r0, ∼R r1 103

v

CONTENTS

7.2.2 The Function transfer∼R 107

7.2.3 The Function ∼RembedQ 108

7.2.4 Examples of Function ∼RembedQ 112

7.3 ∼R Is Closed Under the Average Function av 113

7.3.1 ∼R Is Closed Under the Function avaux 114

7.3.2 ∼R Closure Under av . 120

7.3.3 Examples of the Average Function 121

7.4 ∼R Is Closed Under the Multiplication Function mp 121

7.4.1 ∼R Is Closed Under the mpaux Function 124

7.4.2 ∼R Is Closed Under the addR Function 130

7.4.3 ∼R Is Closed Under the Function scalen 132

7.4.4 ∼R Closure Under mp . 134

7.4.5 Examples of the Multiplication Function 135

7.5 Defining ∼R Using the New Representation of ∼R 135

7.6 Computing the Extracted Program 136

7.6.1 Testing . 141

8 Extraction of Programs from Proofs in Agda 143

8.1 Program Extraction . 143

8.2 Main Theorem: The Correctness of Program Extraction 144

8.2.1 Mathematical Preliminaries on Multisets 145

8.2.2 Agda Normalises Elements of Algebraic Data Types to Nor-

mal Form . 151

8.2.2.1 Global Assumption - Restrictions on Agda Code 152

8.2.2.2 Pattern Matching Can Be Restricted to Simple

Patterns . 163

8.2.2.3 Proof That Agda Normalises Elements of Alge-

braic Data Types to Head Normal Form 179

8.2.2.4 Extensions of this Theorem 183

9 Conclusion 186

9.1 Achievements . 186

9.1.1 Our Program Extraction Method 188

vi

CONTENTS

9.1.2 Correctness Theorem . 189

9.2 Future Work . 189

9.3 Possible Simplification . 191

Appendix A 193

Bibliography 196

vii

Acknowledgements

I would like to thank my supervisors, Dr Anton Setzer and Dr Ul-

rich Berger for their guidance, supervision and academic advice of

this research project, and their support with patience and knowledge

throughout my thesis.

I am also grateful to my family, Chua’s family, Molly and Charles for

their fully support and caring along the years in Swansea. Thanks to

the Lord.

Chapter 1

Introduction

In real number computation the most common approach is to use floating point

numbers which have limited approximations (which are in fact certain rational

numbers) and calculate the accumulation of the rounding errors. For instance,

if one calculates the product c of two approximated floating point numbers a, b

then one obtains | c − a ∗ b |< ǫ for some error margin ǫ. Then one calculates

all the errors accumulated in the calculation and concludes what the overall er-

ror is. Such calculations are quite complicated and have usually to be done by

hand. Moreover, errors might have occurred during the calculation (people make

mistakes) which might cause serious consequences [Krä98]. Therefore, different

approaches have been proposed such as interval arithmetic (see Section 1.5) and

exact real arithmetic [YD94, PEE97].

Exact Real Number Computation. We will concentrate in this thesis on the

exact real number computation. In exact real arithmetic real numbers are treated

as infinite objects instead of finite objects. Since real numbers are infinite objects

an arbitrarily good approximation of each real number can be given. Compu-

tational functions over real numbers request sufficiently good approximations of

inputs to be able to yield the desired accuracy of outputs, i.e. these functions

need to be continuous. For instance, if computing the real number c = a∗ b, then

c is an algorithm (or a program) which is able to compute c arbitrary precisely by

requesting sufficiently precise approximations of a and b. So if we can get a and

b arbitrary precisely, then we are able to do the same for c. In contrast with the

1

Chapter 1. Introduction

floating point approach exact real arithmetic gives no errors and there is no need

for calculating the error. On the other hand this approach is computationally

much more expensive.

1.1 Program Extraction

The problem is that algorithms for exact real computation are more complicated.

How do we know that the results we have computed are correct? How do we obtain

such algorithms? The problem of program correctness applies to other programs

as well, e.g. critical systems. There are several approaches for developing correct

programs:

• Proving correctness by hand which is the most common way of writing

programs. (The problem is that errors occur and this is not suitable for

verifying larger programs or systems)

• Proving with some machine support, e.g. like most specification languages,

without theorem proving. Although less errors occur and the user is forced

to obey a certain syntax, theorem proving still needs to be done by hand.

• Interactive theorem proving, e.g. Coq [Coq09], Isabelle [Isa09]. Everything,

which can be proved by hand, should be possible to be proved in such

systems and proofs are fully checked by the system, therefore the correctness

is guaranteed (provided the theorem prover is correct). However, it usually

takes substantially longer than proving theorems by hand and for most

mathematical proofs this is still infeasible.

• Automated theorem Proving, which usually is faster than interactive the-

orem proving. There are limits on what can be done. Most infinitary

problems cannot be proved automatically.

When using interactive theorem proving there are two ways of obtaining a correct

program:

• Write a program and then verify its correctness. The problem is that when

the program changes, the correctness often has to be redone again.

2

Chapter 1. Introduction

• Write a proof and extract a program from it.

We will follow the last approach.

Why is program extraction interesting? Apart from obtaining verified pro-

grams, one could rediscover existing algorithms in an unexpected way and dis-

cover new algorithms.

One example is done by Berger [Ber05a], he considers the function which

reverses a list
reverse : List → List

reverse [] = []

reverse (a : l) = (reverse l) ++ [a]

This is inefficient since in each step it needs to append [a] to (reverse l) which is

linear in length of l. We need to do this length of l times (l = list to be reversed).

So in total O(n2) steps are required if n = length (l). Berger was able to obtain

the (previously known) optimised version which is linear in l:

reverse l = reverseaux l []

The idea is that reverseaux l l′ = (reverse l) ++ l′, reverseaux is defined as

follows
reverseaux : List → List → List

reverseaux [] l = l

reverseaux (a : l) l′ = reverseaux l (a : l′)

Berger obtained this efficient algorithm from a classical proof using a refinement

of the Friedman-Draglin A-translation by program extraction [BSB02]. Berger

found as well a novel efficient higher types version for computing the Fibonacci

numbers by using program extraction (details can be found in Section 1.5).

Another example is extraction of algorithms for normalisation. Normalisation

means you have a rewriting system and show ∀s∃t.s −→∗ t∧NF(t) where NF(t)

means t is in normal form. From this proof one could obtain an algorithm which

computes for s its normal form. An inefficient algorithm for normalising λ-terms

is to normalise a term step by step which creates lots of unnecessary work e.g. in

3

Chapter 1. Introduction

case of the simple λ-calculus

(λx.f x x) ((λxy.x) x)

−→ f ((λxy.x) x) ((λxy.x) x)

−→ f (λy.x) ((λxy.x) x)

−→ f (λy.x) (λy.x)

So (λxy.x) x is evaluated twice. By contrast, in an efficient implementation it is

evaluated only once. Berger [Ber93] was able to obtain such efficient algorithm

for Gödel’s system T. This was extended to system F by Matthias Eberl [Ebe02].

Our goal is to extract good algorithms for exact real number computation.

So in our work we might obtain better or unexpected algorithms and a proof of

correctness. We do everything inside Agda [Nor09]. One should note that at

present we are not able to see the resulting algorithm, so we don’t know what

the extracted algorithm is. We will mention in future work an approach to make

algorithms visible inside Agda.

The usual approach in program extraction is to take the formal proof and write

a Meta program which from the proof obtains the program. For instance, assume

a formal proof of ∀x∃y.ϕ(x, y) where ϕ(x, y) is a property which expresses some

specification for any natural numbers x, y. For a natural number n we obtain a

proof of ∃yϕ(n, y) e.g. for n = 17 we obtain a proof of ∃yϕ(17, y). This proof

need not be in normal form, for instance it might end in

B → ∃yϕ(17, y) B

∃yϕ(17, y)

From a non-normal proof we cannot determine the instance y needed. Using

normalisation or cut eliminations we obtain a normal form or cut-free proof (de-

pending on the system) and the proof in the example will for instance be as

follows:
ϕ(17, 6)

∃yϕ(17, y)

Then we obtain the desired result as 6. In real situations it is much more com-

plicated. This requires a Meta program which takes a proof p : ∀x∃y.ϕ(x, y) and

4

Chapter 1. Introduction

extracts a program from p which computes y from x. In our work we take an

approach to program extraction which doesn’t require a Meta program: we con-

struct a proof b : B inside Agda and evaluate it by normalisation. This is possible

since there is no difference between proofs and programs in Agda and Agda has

builtin the axiom of choice. So from a proof p : ∀x : A.∃y : B.ϕ(x, y) we can

define inside type theory the function f : A → B s.t. ∀x : A.ϕ(x, f x) holds. In

fact , f = λx.π0(p x) and λ.π1(p x) is a proof of ∀x : A.ϕ(x, f x). So f can be

evaluated inside Agda. For instance, if A = B = N we can apply f to a natural

number n and evaluate f n in Agda. One goal of this thesis is to show that f n

evaluates to a natural number under certain conditions.

1.2 Main Result of Thesis: Internalisation of

Program Extraction into Agda together with

Correctness Proof

We carry out the to our knowledge first approach of extracting programs from

proofs involving postulated axioms in Agda and show the correctness of the ma-

chinery. Here, postulated axioms are constants with no reduction rules.

Agda [Nor09] is an interactive theorem prover based on dependent type the-

ory which has the advantage of using a dependent type system: the proof of

correctness can be written in the same language as the program. So a proof of

a property of a function is based on the actual implementation internally, proofs

and programs in Agda are really the same. Moreover, Agda has a novel approach,

it doesn’t force the user to prove given goals using logical rules. It is like func-

tional programming and allows programmers to use their programming skills for

proving theorems.

Agda is also a paradigm for programming with dependent types which can

be used for developing correct programs and writing more generic programs. It

provides a better type system than standard programming languages based on

simple types. For instance, to define a matrix multiplication, we can take the

function which takes three natural number n, m and k, an n ×m-matrix and an

5

Chapter 1. Introduction

m×k-matrix, and has as result an n×k-matrix. This is in standard programming

language based on simple types usually defined as a function taking matrices

of arbitrary dimensions which returns a matrix of appropriate dimensions and

checks the correctness of the dimensions at run-time, so errors are not detected

at compile time. Let (Mat n m) be the type of n × m-matrices in Agda. In

Agda the matrix multiplication can get the correct function type (n m k : N) →
Mat n m → Mat m k → Mat n k. So, that the dimensions are correct is checked

at compiled time. .

Unlike other theorem provers Agda doesn’t require a Meta program for pro-

gram extraction, which generates programs outside the system. In Coq [Coq09],

program extraction requires a Meta program that extracts the computational

parts from the proof and generates an ML [ML190] or Haskell [Has] program.

Furthermore, Agda allows us to encode infinite objects inhabiting the coinduc-

tive data type of streams. Therefore, we can represent real numbers as potentially

infinite sequences.

In this thesis we explore Agda in the presence of postulated axioms: we in-

troduce the real numbers (by using postulated data types and functions in Agda

without giving any computational rules) in the interval [-1,1], which have a binary

signed digit representation [BH08]. Since we axiomatise real numbers using pos-

tulated axioms, program extraction becomes more complicated. The extracted

function might make use of the axioms which might prevent normalisation to its

head normal form. We provide a correctness theorem which guarantees that un-

der certain conditions the extracted function always normalises to head normal

form.

1.3 The Structure of the Thesis

In Chapter 2 we give an introduction to the features of the language Agda,

which have been used in this thesis. In Chapter 3 we present an overview over

the literature of Cauchy sequences, and show how to construct the real numbers

by Cauchy sequences. In Chapter 4 we present the background on coinductive

data types (codata) based on the use of F-coalgebras.

6

Chapter 1. Introduction

In Chapter 5 we will introduce the axioms of the real numbers by using

postulated data types and functions. Then we will investigate some properties of

real numbers constructed by Cauchy sequences: we will prove that the Cauchy

reals (which are the real numbers which are limits of Cauchy sequences of rational

numbers) are closed under addition and multiplication and show that the Cauchy

reals are Cauchy complete.

In Chapter 6 and 7 we will introduce the real numbers in the interval [-1,1],

which have a binary signed digit stream representation (SDR) in classical mathe-

matics (Chapter 6) and in Agda (Chapter 7) , i.e. are of the form 0.d0d1d2 · · ·
where di ∈ {−1, 0, 1}, as a codata type. We will show that the real numbers with

SDR are Cauchy reals and the signed digit approximable real numbers are closed

under average, multiplication, and contain the rational numbers in the interval

[-1,1]. (The signed digit representation of irrational numbers e.g.
√

2 are left for

future work). Furthermore, we will define a function toList which for s : SDR,

n : N returns the list of the first n digits of s.

In Chapter 8 we give the details of our program extraction method. This

chapter will also provide a correctness theorem of our method showing that under

certain conditions (toList s n) will always normalise to a list of signed digits and

therefore won’t make use of the axioms. The conditions will mainly guarantee

that a postulated function or theorem has as result type only a postulated type,

so the computation of elements of algebraic data types to head normal form will

not refer to these postulates. Therefore, (toList s n) returns a list of n digits.

Use of mathematics. In Chapters 3 (excluding 3.1), 4.3, 6 and 8 we work in

classical mathematics. Proofs in Chapters 3.1, 4.1, 4.2, 5 and 7 are carried out

in type theory using in most cases (not in 4.1 and 4.2) the theorem prover Agda.

1.4 Related Work

To our knowledge the use of programs which make explicit use of postulates as

axioms is new. After some extensive research we couldn’t detect any articles which

deal directly with program extraction into Agda. However extensive research has

7

Chapter 1. Introduction

been done on the development of programs in Agda.

Nuo [Nuo10] defines integers, rational numbers, real number, complex num-

bers and proves the basic properties of them as the tools for theorem proving.

He also investigates the construction of real numbers based on Bishops real num-

ber system and implementation of real numbers in Coq and LEGO. Mu, Ko and

Jansson [MKJ09] have developed a library called AoPA (Algebra of Program-

ming in Agda) which allows to encode relational derivations in Agda by stepwise

refinement. They also have shown how to translate Haskell programs using the

monads into Agda, and carried out some case studies in verification of proper-

ties of Haskell programs in Agda [MKJ08]. Alonzo and Agate [Ben07, OTK09]

are two compilers. They allow to translate Agda into fast executable programs.

(Agda terms can be evaluated but Agda is slow - using this compilation we get

relatively efficient programs from Agda). Alonzo is now integrated into the Agda

framework.

Theoretical models of higher type real number computation. Marcial-

Romero and Escardo [MRE07] present the description and semantics of RealPCF

which is an extension of PCF by a real number type and operations on real

numbers. The semantics is based on domain theory. PCF was introduced by

Milner and Plotkin. It is a mathematical model of a higher-order functional

programming language. The most important paper on PCF is [Plo77]. In this

paper Plotkin proves completeness and adequacy results for extensions of PCF

by parallel operators (parallel if) w.r.t. a domain semantics.

General approaches to real number computation. Edalat and Heck-

mann [EH02] give a detailed presentation of the LFT (Linear Fractional Trans-

formation) approach to exact real number computation. An LFT is a function of

the form f(x) = (ax + b)/(cx + d) where a, b, c, d are rational numbers. It can

be represented by the matrix (

a b

c d

)

Composition of LFTs can be done by matrix multiplication. An LFT represen-

tation of a real number is an infinite composition of LFTs. Special cases of LFTs

8

Chapter 1. Introduction

are:
f(x) = (x + d)/2, where d is in {−1, 0, 1}.

This yields the signed digit representation

f(x) = 1/(x + n), where n ∈ N

This yields continued fraction representations.

Konecny [Kon04] proves that linear affine function (functions of the form

f(x1, . . . , xn) = a1 ∗ x + . . . + an ∗ xn + b

where ai, b are rational numbers) are the only real functions that can be imple-

mented as finite automata (i.e. with finite memory).

Blanck [Bla05] introduces a fast C implementation of high iterations of real

functions of the form f : [0, 1] → [0, 1], f(x) = ax(1 − x) where a is a rational

number. Blank presents a detailed efficiency analysis and provided informal cor-

rectness proofs. Plume implements real arithmetic in Haskell w.r.t. the signed

digit representation. Plume’s implementation is available on website [Plu]. It

also contains the iterated functions studied by Blanck [Bla05].

Implementation of real number computation by coinduction using

Coq and other theorem provers. Hancock and Setzer introduce the principle

of guarded induction and weakly final coalgebras in dependent type theory. This

work is based on their study of interactive programs in dependent type theory,

which is a special case of a coalgebra [HS04, HS05, HS99, HS00a, HS00b]. The

book [BC04] by Bertot and Castran, which is a thorough textbook on the the-

orem prover Coq, contains in Chapter 1.3 a long and detailed introduction into

using coalgebras in Coq. Bertot [Ber05b] contains a general introduction to coin-

duction in Coq with applications to exact real number computation. Geuvers,

Niqui, Spitters and Wiedijk develop constructive analysis and exact real number

computation in Coq. Mainly foundational aspects are addressed in [HGW07].

Ciaffaglione and Gianantonio [CG06] show the verification of exact real number

algorithms in Coq w.r.t. to the signed digit representation. Bertot [Ber07] extends

Ciaffaglione/Gianantonio’s work using infinite streams of digits implemented as

a co-inductive type in Coq. Berger and Hou [BH08] also extend Ciaffaglione/-

9

Chapter 1. Introduction

Gianantonio’s work, but use a different notion of coinductive proof: whereas in

Coq coinductive proofs are infinite guarded expressions, they work with finite

proofs that use axioms expressing that a coinductive predicate is a greatest fixed

point of some monotone operator. Addition and multiplication are treated in their

article [BH08]. Niqui [Niq08] discusses coinductive formal reasoning in exact real

number computation.

Program extraction in general. Kreisel [Kre59] introduces modified real-

isability which is the basis for many approaches to program extraction. Troelstra

[Tro73] contains a very detailed account of realisability and a summary of the

research that has been done. Tatsuta [Tat98] seems to be the first who did pro-

gram extraction for coinductive definitions. He uses a version of q-realisability.

It contains only very simple applications (e.g. pointwised inversion of an infi-

nite bit stream). The article by Benl, Berger, Schwichtenberg, Seisenberger and

Zuber [BBS+98] contains an explanation how to carry out program extraction

in Minlog. In [Ber93] Berger shows that a normalisation program can be ex-

tracted from Tait’s strong normalisation proof for the simply typed lambda cal-

culus and that the extracted program is normalisation-by-evaluation. The paper

also introduces non-computational quantifiers that yield simpler extracted pro-

grams. Normalisation-by-evaluation has also been extracted formally in Coq

(Letouzey), Isabelle (Berghofer) and Minlog (Schwichtenberg/ Berger), see the

joint paper [BBLS06]. Berger, Schwichtenberg and Buchholz develop in [BSB02]

the theory and application of program extraction from classical, i.e. noncon-

structive proofs using a refined version of the Friedman/Dragalin A-translation.

Matthias Eberl [Ebe02] extends the work by Berger [Ber93] in his PhD thesis and

obtained an efficient algorithm for normalisation for system F. Seisenberger has in

her PhD thesis [Sei03] (see as well articles [Sei02, Sei01, BS05]) used A-translation

in order to extract a program from the Nash-Williams proof of Higman’s lemma.

She [Sei08] has generalised the refined A-translation method for extracting pro-

grams from classical proofs to include choice principles such as classical dependent

choice.

Program extraction for exact real number computation. In Berger’s

recent papers [Ber09a, Ber09b] he gives detailed proofs of the correctness of real-

10

Chapter 1. Introduction

isability, i.e. Soundness Theorem, Adequacy Theorem for untyped realisers and

an introduction to realisability for exact real number computation with simple,

but detailed examples. Together with Seisenberger he extends this work to re-

alisability with typed realisers which correspond to lazy functional programming

language such as Haskell. They describe in detail how to extract a program for

the addition function for real numbers [BS10b, BS10a]. Schwichtenberg [Sch08]

extracts a program from a constructive version of the Inverse Function Theorem

in Minlog.

Alternative approaches to type theory: explicit mathematics and Frege

structures. An alternative approach to using type theory for formulating con-

structive mathematics is explicit mathematics, introduced by Feferman in [Fef75].

Kahle [Kah99] has studied Frege structures in partial applicative theories. This

approach allows to define a certain notion of a pointer, a concept closely related

to the concept of promises in Scheme. Promises are used to introduce streams in

functional programming languages with strictness.

1.5 More Details on Interval Arithmetic and Pro-

gram Extraction

Interval arithmetic is an approach to real number computation without round-

ing errors. In interval arithmetic [Kea96] real numbers are approximated by ra-

tional or floating point intervals e.g. π is approximated by [3.1415,3.1416].

If r is approximated by [a, b]

and s is approximated by [c, d]

then r + s is approximated by [a + c, b + d]

where in case of using floating point numbers one makes sure that a+c is rounded

down and b + d is rounded up. For instance, if we assume precision of decimal

numbers up to 10 digits (that is not what is happening on the computer which

11

Chapter 1. Introduction

uses binary numbers) then

0. 1000000005
︸ ︷︷ ︸

10 digits

+1.0 = 1. 1000000005
︸ ︷︷ ︸

10 digits

would be rounded up to

1. 100000001
︸ ︷︷ ︸

9 digits

and

0. 1000000014
︸ ︷︷ ︸

10 digits

+1.0 = 1. 1000000014
︸ ︷︷ ︸

10 digits

would be rounded down to

1. 100000001
︸ ︷︷ ︸

9 digits

but
[0. 1000000005
︸ ︷︷ ︸

10 digits

, 0. 1000000014
︸ ︷︷ ︸

10 digits

] + [1.0, 1.0]

= [1. 100000000
︸ ︷︷ ︸

9 digits

, 1. 100000002
︸ ︷︷ ︸

9 digits

]

where 1.1000000005 has been rounded down to 100000000 and 1.1000000014 has

been rounded up to 1.00000002. Then at the end one knows how precise the

result is so calculation of rounding error is not necessary. However, we don’t

get any information on how precisely we should have calculated the input and

intermediate values in order to obtain the desired precision. By contrast, exact

real arithmetic will automatically determine the precision of all inputs and inter-

mediate calculations in order to obtain the desired precision of the output. Since

we need to compute pairs of floating point numbers rather than single floating

point numbers, interval arithmetic takes twice as long (unless it is supported by

the machine) as simple floating point arithmetic which is slightly more expensive

but in many cases acceptable.

An example of using Berger’s Method of Program Extraction. Berger

[BSB02, Ber05a] found a novel efficient version of the Fibonacci function using

12

Chapter 1. Introduction

higher types for encoding Pairs by program extraction. The naive implementation

of the Fibonacci function is defined as follows:

fib : N → N

fib 0 = 1

fib 1 = 1

fib (n + 2) = fib n + fib (n + 1)

With this naive definition

fib 5 = fib 4 + fib 3

= (fib 3 + fib 2) + (fib 2 + fib 1)

= ((fib 2 + fib 1) + (fib 1 + fib 0) + ((fib 1 + fib 0) + 1)

= . . .

which requires O(2n) many steps. E.g. above fib 3 is calculated twice, fib 2 is

calculated three times and so on. In general the calculation of fib n requires

fib (k) many calculations of fib (n − k).

The efficient algorithm is to calculate g(n) :=< fib(n), fib(n + 1) >. Then

g(0) =< 1, 1 >

g(n + 1) =< fib(n + 1), fib(n + 2) >

=< fib(n + 1), fib(n) + fib(n + 1) >

=< b, a + b >

where < a, b >= g(n)

Note a = fib(n) and b = fib(n+1). g(n) is calculated in linear time and we obtain

fib(n) = π0(g n). This is not the optimal algorithm. There exists an algorithm

(which uses matrix multiplication and repeated squaring), which computes (fib n)

in O(log(n)) many steps.

Berger discovered a higher type version of the linear algorithm based on pair-

ing. Pairs can be encoded by higher types. The pair < n, m > is encoded as

π(n, m) := λf : N → N → N .f n m : (N → N → N) → N

13

Chapter 1. Introduction

We obtain projections by

π0(F) = F (λxy.x)

π1(F) = F (λxy.y)

and see immediately π0(π(n.m)) = n and π1(π(n.m)) = m. Now we apply this

to the function g above so we define g s.t.

g n = π (fib b, fib (n + 1)) : (N → N → N) → N

g : N → (N → N → N) → N

g 0 = π (fib0, fib1) = π 1 1 = λf.f 1 1

g (n + 1) = π(b, a + b)

where a = π0 (g n)

b = π1 (g n)

so

g (n + 1) = π (π1 (g n), π0 (g n) + π1 (g n))

= λf.f (π1 (g n)) (π0 (g n) + π1 (g n))

= λf.f (g n (λxy.y)) ((g n (λxy.x)) + (g n (λxy.y)))

Now we can define

fib n = π0 (g n) = g n (λxy.x)

Berger extracted essentially the above program from a classical proof using a re-

finement of the Friedman-Draglin A-translation. He took a proof of ∀n∃m.Fib(n, m)

14

Chapter 1. Introduction

where Fib (n, m) expresses m = fib(n), which is axiomatised as follows:

Fib(0, 1) because (fib(0) = 1)

Fib(1, 1) because (fib(1) = 1)

Fib(n, m) → Fib(n + 1, k) → Fib(n + 2, m + k)

(because if m = fib(n)

k = fib(n + 1)

then m + k = fib(n + 2))

Then he extracted an algorithm. Magically, the above mentioned algorithm came

out.

1.6 Talk, Publication

This research (especially Chapter 8, Program Extraction and Correctness) was

presented in an invited talk at a workshop on program extraction associated with

CSL 2010 and MFCS 2010 [Set10c] and we have been invited to submit an article

for the post-proceedings of that workshop.

15

Chapter 2

Introduction to Agda

In this thesis our work is carried out in the theorem prover Agda. Agda is based

on Martin-Löf’s intuitionistic type theory [ML84]. It is a descendant of Cayenne

[Aug98] and Alf [MN94]. The current version is Agda2 [Nor09] and the previous

version is Agda1 [Coq05]. Agda2 was implemented by Ulf Norell at Chalmers

University in Gothenburg and its syntax is distinct from Agda1. It is not only

a proof assistant but also a functional programming language with dependent

types [Nor08] and it is possible to compile Agda programs into Haskell [Has].

When it is used as a proof assistant terms are proofs. Agda2 looks more like

a programming language rather than a proof assistant, and it is similar to the

programming language Epigram [MM08]. Furthermore, its Emacs-based inter-

face and its module system allow users to construct extensive proofs/programs

interactively. Unlike other tactic-based theorem provers such as Coq it always

shows full proof terms. In this thesis we work in version 2.2.4 of Agda 2 and in

the following, when we mention Agda, we mean that version of Agda 2.

2.1 The Language of Agda

In this section we briefly introduce basic features of Agda used in this thesis and

introduce the syntax of Agda by using as examples Agda code from this thesis.

The full details of the language Agda can be found on the Agda Wiki [Nor09]

and in Ulf Norell’s PhD thesis [Nor07, Nor08] .

16

Chapter 2. Introduction to Agda

2.1.1 Basic Principles

In Agda types are for history reason denoted by Agda’s reserved key word Set.

So A : Set means A is a type, a : A means a is an element of type A. Agda follows

the propositions-as-types paradigm. Propositions and data types are both repre-

sented by elements of Set. For instance the decidable <-relation on N is Bool<n :

N → N → Bool, which via an operation Atom : Bool → Set (for the definition of

Bool<n and Atom see p.20) converts into x <n y := Atom (x Bool<n y) : Set.

An element of p : x <n y is a proof that x <n y holds. In case of R < is un-

decidable, we only define directly < : R → R → Set where underscore ” ” is

used to form mixfix symbols. The symbol denotes where the arguments are

placed. Therefore, the function < can be used as an infix operator writing

n < m instead of < n m.

Sets in Agda can be data types and formulas. There is no formal distinction

in Agda between the two. A formula A considered as true if there is an element

p : A of it. Then p is considered a proof of A.

2.1.2 Postulated Types and Terms

Agda allows users to postulate a type or a function by using Agda’s reserved key

word postulate. (In the following we use bold font to indicate Agda’s reserved

key words). This means that a constant of this type is introduced without any re-

duction rules. For instance, in this thesis the set of real numbers R with elements

0 and 1 are introduced as postulates as follows:

postulate R : Set

postulate r0 : R

postulate r1 : R

where r0 and r1 are constants denoting 0 and 1. The relations and operations

over R are as well introduced as postulated types and functions

17

Chapter 2. Introduction to Agda

postulate

== : R → R → Set {- Equal -}
< : R → R → Set {- Less -}
≤ : R → R → Set {- Less or equal -}
− : R → R {- Negation -}
: R → R → R {- Apartness -}
+ : R → R → R {- Addition -}
∗ : R → R → R {- Multiplication -}
| | : R → R {- Absolute value -}

One can declare the precedence and fixity of an operator by using Agda’s reserved

key words infix, infixl, and infixr, e.g.

infix 40 == ≤
infixl 60 +

infixl 70 ∗

The number denotes the priority. Here ∗ binds more than + which in turn

binds more than == , ≤ . + is left associative by Agda’s reserved key word

infxl (so a + b + c is parsed as (a + b) + c). infixr denotes right associative

operations, e.g. the cons operation on lists :: : A → List A → List A is denoted

as infixr :: and a :: b :: l is parsed as a :: (b :: l).

2.1.3 Dependent Functions

In Agda one can define functions which have result types depending on their

arguments. For instance, one can define

f : (r : R) → (Q : R → Set) → Set

f r Q = Q r

where f depends on r and Q. One also can write (r : R)(Q : R → Set) → Set

instead of (r : R) → (Q : R → Set) → Set. Similarly for (r : R) → (s : R) →
Set one can write (r s : R) → Set instead. Agda allows users to use implicit

18

Chapter 2. Introduction to Agda

arguments. An example would be ++ : {A : Set} → List A → List A → List A

which appends two lists. Now the argument A is omitted when using ++ , one

writes l ++ l′ or ++ l l′ instead of ++ A l l′. The hidden argument can be

made explicit by using { }. E.g. one writes ++ {A} l l′ if one wants to write

down the argument A explicitly.

Since the elements of dependent function types are lambda terms, one can

define f above instead as follows (”\” denotes ”λ”)

f : (r : R) → (Q : R → Set) → Set

f r = \Q → Q r

or
f : (r : R) → (Q : R → Set) → Set

f = \r → \Q → Q r

xf or
f : (r : R) → (Q : R → Set) → Set

f = \(r : R) → \(Q : R → Set) → Q r

An implicit argument can be abstracted explicitly by using the notation \{ } →,

e.g. ++ = \{A} → \ l l′ → One can easily define a function which is

identified with f by f ′′ = f but f and f ′′ will have the same implicit and explicit

arguments.

2.1.4 Data type and Pattern Matching

In general one can define an algebraic data type consisting of elements introduced

by constructors using Agda’s reserved key word data. For instance, in this thesis

we define a data type Digit in Agda as follows

data Digit : Set where

(d)0 : Digit

(d)1 : Digit

(d)−1 : Digit

19

Chapter 2. Introduction to Agda

This is the type of signed digits consisting of 0, 1,−1. Another example is the

data type ⊤ which is defined as follows

data ⊤ : Set where

triv : ⊤

where ⊤ is the true formula, which has a trivial proof triv : ⊤.

One can as well define an empty data type. For instance, ⊥ is defined as

follows

data ⊥ : Set where

where ⊥ is the false formula, which has no element. So ⊥ is the data type with

no constructor.

Furthermore, functions over algebraic data types can be defined by pattern

matching. For instance, a function embedding Digit into R is defined as follows

embedD : Digit → R

embedD (d)0 = r0

embedD (d)1 = r1

embedD (d)−1 = − r1

What will happen if we make pattern matching on ⊥? We will get an absurd

pattern (), i.e.

efq : {A : Set} → ⊥− > A

efq ()

The absurd pattern () indicates that there is no constructor of ⊥ so all cases are

covered. In Agda functions defined by pattern matching must cover all cases. If

there are missing cases the coverage checker of Agda will raise a error.

There is another situation where an absurd pattern () occurs, namely when

an argument of a function in one specific case has no valid constructor pattern.

We demonstrate this case but first we need to introduce the less than function

20

Chapter 2. Introduction to Agda

on natural numbers N (see next section for the definition of N in Agda)

Atom : Bool → Set

Atom true = ⊤
Atom false = ⊥
- - Atom converts a Boolean value into the formula expressing

- - that this Boolean value is true

Bool<n : N → N → Bool

n Bool<n 0 = false

0 Bool<n suc m = true

suc n Bool<n suc m = n Bool<n m

<n : (x y : N) → Set

x <n y = Atom (x Bool<n y)

Now we can define a function as follows

g : (p : 4 <n 3) → N

g ()

where p is a proof that 4 is less than 3 which doesn’t exist, since 4 <n 3 = ⊥.

Therefore, one can use the absurd pattern () to indicate that there is no proof

of 4 <n 3. Agda allows one to introduce pattern matching automatically. If one

does this on the argument p, Agda will show the absurd pattern.

Another special pattern apart from () is the dot pattern. Details of the dot

pattern can be found in next section.

2.1.5 Inductive and Coinductive Data type

Agda allows users to define inductive, coinductive and record data types. (We will

not make use of record types in this thesis and therefore won’t introduce them).

For instance, one can define the inductive data type of the natural numbers by

21

Chapter 2. Introduction to Agda

using data as follows

data N : Set where

zero : N

suc : N → N

where zero and suc are constructors of natural numbers. So N is the least set con-

taining zero which is closed under suc. Another example is the type of Booleans,

i.e.
data Bool : Set where

true : Bool

false : Bool

One can define recursive functions on algebraic data types. An example is the

function Bool<n above. The termination checker of Agda will guarantee that

all functions are terminating and therefore Agda is normalising.

Furthermore, one can introduce data type families in Agda. For instance, the

family of predicates over natural numbers n of expressing that n is even can be

introduced as follows

data IsEven : N → Set where

evenZ : IsEven zero

evenSS : (n : N) → IsEven n → IsEven (suc (suc n))

This is an indexed algebraic data type, where n is the index of IsEven n. When

one makes pattern matching on an argument which is an element of (IsEven n)

one gets the information about the index which indicates that n is either zero or

suc (suc n). For instance, the following function, which shows that the sum of

two even numbers is also even, can be defined as follows:

evenadd : (n m : N) → IsEven n → IsEven m → IsEven (n +n m)

evenadd n .zero en evenZ = en

evenadd n .(suc (suc m)) en (evenSS m em) =

evenSS (n +n m) (evenadd n m en em)

Here, .zero indicates that if the argument of (IsEven m) is evenZ then m must

be zero. Similarly, .(suc (suc m)) indicates that if the argument of (IsEven m)

22

Chapter 2. Introduction to Agda

is (evenSS m em) then m must be (suc (suc m)). So the dot patterns are not

actual patterns of IsEven but they determine the correct type of values for the

arguments of IsEven. The dot patterns are so called inaccessible patterns. In

order to distinguish the inaccessible patterns and the actual patterns of IsEven,

the inaccessible patterns are prefixed with a dot.

One can as well define coinductive or infinite data type in Agda by using

Agda’s reserved key word codata. For instance, the data type Stream can be

defined as follows:

codata Stream (A : Set) : Set where

:: : A → Stream A → Stream A

The intuition is that elements of Stream A are formed by infinitely many

applications of :: . So they have the form the form a1 :: a2 :: a: : For

example, one can now introduce

inc : N → Stream N

inc n = n :: inc (suc n)

The termination checker of Agda will check that guarded recursion is used, i.e.

the right hand side contains at least one constructor before making a recursive

call, and no function except for constructors is applied to a recursive call. More

details about the theory of codata types will be given in Section 4.2.

2.1.6 Equality

In type theory the two most important forms of equality are definitional and

propositional equality. Definitional equality of a : A and b : A means that the

judgement a = b : A is provable. We won’t elaborate this, see [ML84, NPS90] for

details. In Agda this judgement is implicitly used during type checking (e.g. if

type checking λx.x : B a → B b where B : A → Set, Agda checks that a = b : A).

a = b : A in Agda means that a and b have the same normal form up to α-

conversion.

23

Chapter 2. Introduction to Agda

Propositional equality is given by the data type

data == {A : Set} (a : A) : A → Set where

refl : a == a

That a : A and b : A are equal w.r.t. propositional equality means that a == b is

provable in type theory, i.e. there exist p : a == b.

2.1.7 Let, Where-expressions and Mutual Definitions

In Agda let and where-expressions are used for declaring local definitions. The

difference between them is that pattern matching or recursive functions are not

allowed in let-expressions. For example,

f : N

f =let n : N

n = 4

in n +n 5

reverse : A : Set → List A → List A

reverse A l = reverseaux l []

where

reverseaux : List A → List A → List A

reverseaux [] ys = ys

reverseaux (x :: xs) ys = reverseaux xs (x :: ys)

Both expressions can always be omitted by defining corresponding global defini-

tions.

One can use Agda’s reserved key word mutual to define two functions or data

types that depend to each other. For example, consider

24

Chapter 2. Introduction to Agda

mutual

data Even : Set where

Z : Even

S : Odd → Even

data Odd : Set where

S : Even → Odd

Here the data types Even and Odd refer to each other in their definition.

2.1.8 BUILTIN and Primitive

BUILTIN and primitive are Agda’s reserved key words for Agda built in types.

Some inductive data types are built into Agda. The natural number data type is

one of them, so in this case we are able to use the Agda built-in natural number

data type, if we add the following declaration after the definition of N

{−# BUILTIN NATURAL N #−}
{−# BUILTIN SUC suc #−}
{−# BUILTIN ZERO zero #−}

where NATURAL, SUC and ZERO are exactly the names of Agda built in

types for N, suc and zero respectively. This means that Agda will use internally

Haskell’s efficient native natural numbers rather than working with natural num-

bers build-in from suc and zero. After this definition we can write as well 356 : N

instead of

suc (suc (· · · (suc
︸ ︷︷ ︸

356

zero) · · ·)

which allow us as well to write 0 for the constructor zero : N even in patterns, and

Agda uses the built-in natural numbers used by the processor efficiently. Another

example of a BUILTIN type in Agda is List

25

Chapter 2. Introduction to Agda

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

{−# BUILTIN LIST List #−}
{−# BUILTIN NIL [] #−}
{−# BUILTIN CONS :: #−}

One can also use Agda built-in functions. For instance, the addition function for

natural numbers is defined by recursion as follows

+n : N → N → N

n +n 0 = n

n +n suc m = suc (n +n m)

{−# BUILTIN NATPLUS +n #−}

Once we add the BUILTIN declaration, Agda will treat +n as a built in func-

tion type which uses Haskell’s native operation + rather than Agda’s inefficient

+n . Agda will check when reaching the BUILTIN statement that the definition

of +n fulfils the equations of +n .

Another way to use Agda’s built-in type is by Agda’s reserved key word

primitive. For instance, primIntegerPlus is the addition function for BUILTIN

Integers defined by

primitive

primIntegerPlus : Int → Int → Int

Note that here Int is different to Z in this thesis (which doesn’t make use of

BUILTIN) since we use a different definition for Integer.

We use BUILTIN when we have an explicit definition and a directive which

says: if the term is closed then use the native definition. If the term is not

closed then use the explicit definition. For instance the addition function for

natural numbers above (2 +n suc x) computes using the explicit definition to

26

Chapter 2. Introduction to Agda

(suc (2 +n x)) and (2 +n 4) computes to 6 using the native implementation.

primitive is like a BUILTIN without a definition, so the definition is like a

postulate. In Agda we use primitive when one postulates an element of a

function type and states that if the element is closed, then a native definition is

executed. Otherwise it stays as a postulate. For instance, the addition function

for BUILTIN Integer above (primIntegerPlus (−2) 2) computes to 0 using the

native definition. On the other hand (primIntegerPlus (−2) x) evaluates to itself.

However, not many data types or functions are BUILTIN and primitive

in Agda, one can check the Agda standard library in the Agda wiki [Nor09] for

details.

2.1.9 Modules

In Agda each Agda file is demanded to be a single top-level module which contains

all the declarations in the file. These declarations can also in turn be modules (a

module can contain modules) by using Agda’s reserved key word module. For

instance, the Agda file Nat.agda which contains the definition of natural numbers

is declared by having at the top of the file

module Nat where

One can also define a module which is parametrised by arbitrary types in the same

way as data types can be parametrised. For instance, consider a parametrised

module A as follows:

27

Chapter 2. Introduction to Agda

module A (r : R)

(Q : R → Set)

where

q : Digit → R

q = embedD

one : N

one = 1

−− position 1 −−
p1 : (r : R) → (Q : R → Set) → Digit → R

p1 = A.q

At position 1 A.q has type of (r : R) → (Q : R → Set) → Digit → R and A.one

is has type (r : R) → (Q : R → Set) → N. One can give proof of p1 using

function q in the module A since looking at the function q in module A from

the outside, q takes the module parameters as additional arguments. Therefore,

q : (r : R) → (Q : R → Set) → Digit → R. Modules can also be opened by using

Agda’s reserved key word open. The functions inside the module become visible,

i.e.
open A

p2 : (r : R) → (Q : R → Set) → N

p2 = one

If one wants to export the contents of another module from the current module

one can use Agda’s reserved key word public, i.e.

open A public

Now we look at importing modules from other files. Using Agda’s reserved key

word import allows users to import modules (or files). However, it doesn’t open

the file automatically. One would need to open it if the definitions from that

imported module is going to be used. Instead of writing two statements one can

28

Chapter 2. Introduction to Agda

just use the short form open import. For instance, in the Agda file Nat.Agda

the two modules Bool and Logic are imported by the declaration

open import Bool

open import Logic using (flip; flip′)

Agda’s reserved key word using indicates that only functions flip and flip′ are

imported from the file Logic.Agda.

2.1.10 Compiled Version of Agda

Agda file can be compiled into Haskell in order to be executed more effectively

(due to lazy evaluation and omission of computations needed for type checking

only). One can import freely and has access to all Haskell data types and functions

using Agda’s reserved key words COMPILED DATA, COMPILED TYPE

and COMPILED.

COMPILED DATA is used for importing Haskell data types which requires

that both the data type and its constructors need to be matched, i.e.

data Unit : Set where

unit : Unit

{−# COMPILED DATA Unit () () #−}

where the first argument to COMPILED DATA is the name of the Agda data

type (Unit) and the second is the corresponding Haskell type () which has only

one constructor (), the third argument.

There are as well abstract Haskell types exported by some libraries, that

have no corresponding type definitions in Agda. One of these is the IO monad.

In order to import such a Haskell type one can use Agda’s reserved key word

COMPILED TYPE and the corresponding Agda type is simply postulated,

29

Chapter 2. Introduction to Agda

i.e
postulate

IO : Set → Set

{−# COMPILED TYPE IO IO #−}
COMPILED is used when one wants to import a Haskell function. Similarly,

the corresponding Agda type can be postulated in Agda, i.e.

postulate

String : Set

putStrLn : String → IO Unit

{−# COMPILED TYPE String String #−}
{−# COMPILED putStrLn putStrLn #−}

30

Chapter 3

Real Numbers and Their

Axiomatisation

If we want to prove theorems in formal systems we need a description of what

a correct proof is. Then we can derive proofs from the giving context by using

logical rules and logical axioms which deal with the logical connectives such as

∨,∧,→, ∀, ∃. Non-logical axioms are about content. A simple example would be

a statement such as ”John studies computer science”. For instance, by giving

two statements,”John studies computer science”,”John lives in Swansea” with a

logical connective ∧(means ”and”), we can form another statement ”John studies

computer science and John lives in Swansea” and using the ∧ - introduction rule

we can derive this statement from the two axioms given before. Formally,

”John studies computer science” ”John lives in Swansea”

”John studies computer science ∧ John lives in Swansea”
(∧ - introduction rule)

In order to carry out proofs of theorems based on numbers, we need to charac-

terise numbers and axiomatise them. In this chapter we will first look at the

axioms for natural numbers, integers and rational numbers, then we will investi-

gate axiomatisations of the real numbers. We will in this Chapter (except Section

3.1 when referring to Agda code) work in classical mathematics.

31

Chapter 3. Real Numbers and Their Axiomatisation

3.1 Natural Numbers, Integers, and Rational

Numbers

The statement ”John studies computer science” is an axiom in some specific

context. When we talk about natural numbers, we talk about a non-logical

object without context. There are different axiomatisations of natural numbers,

from which we can derive different statements. The same applies to logic (there

are different systems such as classical, intuitionistic or minimal logic which allow

to derive different statements). Natural numbers based on the Peano axioms are

a generally agreed axiomatisation of the natural numbers.The natural numbers

can be characterized by the Peano axioms for N, 0 and S ([Ebb91]):

• 0 ∈ N.

• if n ∈ N then S(n) ∈ N.

• if n ∈ N then S(n) 6= 0.

• if 0 ∈ E and if it always follows from n ∈ E that S(n) ∈ E then N ⊆ E.

• if m, n ∈ N then S(m) = S(n) implies that m = n.

In Agda, our data type of natural numbers is given as follows

data N : Set where

zero : N

suc : N → N

So N is the set containing an element zero and which is closed under suc. The

builtin recursion principle of Agda expresses that it is the least set with these

properties and using case distinction we can prove zero 6= suc n and suc n ==

suc m implies n == m .

Integers Z can be expressed as a pairs (s, n) s.t. s ∈ {+,−}(the sign) and

n ∈ N and such that if s = −n then n 6= 0 (in order to avoid two notations for

0). For instance, (+, 3) stands for +3, (−, 5) for −5. In our definition of integers,

instead of using natural numbers we introduce N+ (all natural numbers except

32

Chapter 3. Real Numbers and Their Axiomatisation

0) and represent integers as a union of three disjoint sets i.e. for N+ = N \ {0},
Z = −N+ ∪ {0} ∪ +N+. In Agda N+, which is defined as the image of the +1

function applied to N, and Z are defined as follows :

data N+ : Set where

+1 : N → N+

data Z : Set where

pos : N+ → Z

neg : N+ → Z

ẑero : Z

Rational numbers Q can be seen as the quotient a/b of two integers with the

denominator b not equal to zero. For two rationals a/b and a/b′, a/b = a′/b′ if

and only if a ∗ b′ = a′ ∗ b. Since a/b = −a/− b we can restrict b to be an element

of N+, and defined Q = {z/n | z ∈ Z, n ∈ N+}. In Agda, Q is defined as follows :

data Q : Set where

%′ : Z → N+ → Q

We can see that there exist surjections f : N → Z and f ′ : N → Q. So by using

natural numbers we can denote integers and rational numbers, there are finite

notations for integers and rationals. There is no surjection f : N → R, so not all

real numbers can be denoted finitely by natural numbers. We will not be able to

give notations for real numbers, the axiomatisations are more complicated.

3.2 Real Numbers

In decimal representation real numbers are usually written as an infinite string

of digits, in which a decimal numeral point is placed within. We can see it as an

infinite sequence of digits with one dot. For instance,
√

2 = 1.41421356237 . . . =

a0.a1a2a3a4a5 . . . where

a0 = 1, a1 = 4, a2 = 1, a3 = 4, a4 = 2, a5 = 1, a6 = 3, a7 = 5, . . .

33

Chapter 3. Real Numbers and Their Axiomatisation

However, there is not always a unique representation e.g. 1.0 = 0.99999999 . . .

(similar for binary representation). When the axiomatisation of the real numbers

is based on an idea of what the real numbers are, decimal (or binary) represen-

tation is not suitable, since it is a priori not clear that all reals numbers have

a decimal representation (see the discussion at the beginning of Chapter 6). In

fact constructively not all real numbers have a decimal representation. Instead

one axiomatises abstractly the concept of real numbers. Then one can investigate

using this axiomatisation whether each real number has a decimal representation

or not, and with classical logic this will be the case.

3.2.1 Dedekind Cuts

Now we briefly discuss Dedekind cuts following the book by Ebbinghaus [Ebb91].

The first idea for defining the real numbers using Dedekind cuts is that a real

number r is given by two nonempty sets of real numbers A, B such that A = {a ∈
R | a < r} and B = {a ∈ R | r ≥ a}. We cannot use this definition since we do

not know what r is and what all a ∈ R are. One step is to replace R by Q so we

get A = {a ∈ Q | a < r} and B = {b ∈ Q | r ≥ b}. We still don’t know what

r is. Instead we introduce axioms which characterise the sets of rationals which

are formed this way [Ebb91]:

• Neither A nor B are empty.

• Every rational number belongs to one of two sets A, B.

• every element of A is less than every element of B.

• A has no largest element.

These axioms define what a Dedekind cut is. Note: This is the classical notion of a

Dedekind cut. Constructively it is better not to assume that B is the complement

of A. Instead one says that B has no minimal element, and (A, B) is located,

i.e. for p, q ∈ Q s.t. p < q we have p ∈ A or q ∈ B. We will in this thesis only

consider classical Dedekind cuts.

A Dedekind cut is a pair (A, B) of sets of nonempty rationals such that the

above properties hold. Every Dedekind cut denotes a real number which is the

34

Chapter 3. Real Numbers and Their Axiomatisation

least real number not in A (so if it is a rational then it is in B). The cut number

dividing them is the corresponding real number which is the least upper bound

of A and also the greatest lower bound of B. The real numbers R can be defined

as the set of all Dedekind cuts of rationals. An example of a Dedekind cut for a

real number is
√

2 which is written as a pair (A, B) such that A = {a ∈ Q : a2 <

2 ∨ a ≤ 0} and B = {b ∈ Q : b2 ≥ 2 ∧ b > 0}.

Definition 3.2.1. 1. A Dedekind cut is a pair of nonempty subsets A, B of Q

such that:

• A ∪ B = Q.

• If a ∈ A and b ∈ B then a < b.

• A contains no largest element.

2. A real number is a Dedekind cut.

Since B is the complement of A, B is determined by A. So we can identify a

Dedekind cut with a set A s.t. (A, Q \ A) is a Dedekind cut. So by saying for a

Dedekind cut α that q ∈ α we mean that if α = (A, B) then q ∈ A. Instead of

writing (A, B) for a Dedekind cut, we write just A. (So for instance the Dedekind

cut {q | q < 0} denotes ({q | q < 0}, {q | q ≥ 0})).

We can show using classical logic that the following is equivalent for A ⊆ Q:

(i) (A, Q \ A) is a Dedekind cut

(ii) The following holds:

(1) A 6= ∅, A 6= Q.

(2) If a ∈ A, b ∈ Q, b < a, then b ∈ A.

(3) A has no largest element.

We call a set A fulfilling (ii) a Dedekind cut in the second sense. This equivalence

doesn’t hold constructively. If we define B := Q \ A then ∀q ∈ Q.q ∈ A ∨ q ∈ B

means ∀q ∈ Q.q ∈ A∨¬(q ∈ A) which is an instance of the principle of excluded

middle.

35

Chapter 3. Real Numbers and Their Axiomatisation

Definition 3.2.2. For two Dedekind cuts α, β ∈ R

1. 0 := {x | x < 0}. Then 0 < α means 0 ⊆ α ∧ 0 6= α.

2. α < β if and only if α ⊆ β ∧ α 6= β.

3. α + β := {x + y | x ∈ α, y ∈ β}.

4. α − β := {x − y | x ∈ α, y 6∈ β}.

5. −α := {−x | x > x′ 6∈ α}

6. α ∗ β :=

{x ∗ y | x ∈ α, x ≥ 0, y ∈ β} if α > 0 ∧ β > 0;

{x | x < 0} if α = 0 ∨ β = 0;

−((−α) ∗ β) if α < 0, β > 0;

−(α ∗ (−β)) if α > 0, β < 0;

(−α) ∗ (−β) if α < 0, β < 0;

where −((−α) ∗ β), −(α ∗ (−β)), (−α) ∗ (−β) are defined by the first case

and − is defined as before.

7. We define the embedding f : Q → R be f(q) = {q′ ∈ Q | q′ < q}, and

identify q with this Dedekind cut.

We can show: if α, β are Dedekind cuts in the second sense, so are α + β,

α − β, −α, α ∗ β.

3.2.2 Cauchy Sequences

The second axiomatisation of real numbers is based on Cauchy sequences. We

would like to construct real numbers by using sequences: a real number is given by

a sequence of real numbers converging to it. A sequence (an)n∈N of real numbers

converges to the number r if and only if for each real number ǫ > 0, there exists

N ∈ N such that whenever n ≥ N , |an − r| < ǫ. Now ǫ ∈ R can be replaced

by ǫ′ ∈ Q since for every real number ǫ > 0 there exists a rational ǫ′ > 0 s.t.

0 < ǫ′ < ǫ. Since we haven’t defined R yet, we replace it by: a real number is

given by a sequence of rationals which has this property. (We will afterwards

36

Chapter 3. Real Numbers and Their Axiomatisation

show that if real numbers are given by Cauchy sequences of rationals, all Cauchy

sequences of real numbers have a limit. (This is the proof that Q′′ ⊆ Q′, see

Chapter 5, Chauchy Reals).

We still have the problem that without having real numbers, we don’t know

what it means for a sequence to converge to a real number. Instead we inves-

tigate the property needed in order for a sequence to converge without having

its limit available. This notion is called Cauchy sequence. A Cauchy sequence

is a sequence whose elements all become arbitrarily close to one another eventu-

ally. More precisely, a Cauchy sequence is a sequence (an)n∈N s.t. for any positive

number ǫ > 0, there is an integer N such that for any n and m are larger then

N , the distance from an to am is always less than ǫ.

Definition 3.2.3. 1. A sequence (an)n∈N of real numbers converges to the

number r if and only if

∀ǫ ∈ Q.ǫ > 0 → ∃N ∈ N.∀n ≥ N.|an − r| < ǫ

2. A sequence (an)n∈N is called a Cauchy sequence (or Cauchy) if and only if

∀ǫ ∈ Q.ǫ > 0 → ∃N ∈ N.∀n, m ∈ N.∀n, m ≥ N.|an − am| < ǫ

3. The Cauchy reals are given as sequences (an)n∈N such that (an)n∈N is a

Cauchy sequence of rationals.

4. For two Cauchy real numbers (an)n∈N and (bn)n∈N, we define (an)n∈N is

equal to (bn)n∈N if and only if

∀ǫ ∈ Q.ǫ > 0 → ∃N ∈ N.∀n ≥ N.|an − bn| < ǫ

5. We define +,−, ∗ on the Cauchy reals and embedding of Q into the Cauchy

reals as follows:

• ((an)n∈N) + ((bn)n∈N) := (an + bn)n∈N.

• ((an)n∈N) − ((bn)n∈N) := (an − bn)n∈N.

37

Chapter 3. Real Numbers and Their Axiomatisation

• ((an)n∈N) ∗ ((bn)n∈N) := (an ∗ bn)n∈N.

• We define the embedding f : Q → R be f(q) = (q)n∈N, and identify q

with the Cauchy real f(q) = (q)n∈N.

6. We say a set A is Cauchy complete if every Cauchy sequence within A has

a limit within A itself.

Cauchy reals are (classically) isomorphic to the Dedekind reals. This equiv-

alence holds since both are Archimedean complete ordered field. We therefore

introduce the notions field, ordered field, complete ordered field and Archimedean

field in the following

Definition 3.2.4. 1. A field is a set ̥ together with operations

• + : ̥ → ̥ → ̥

• ∗ : ̥ → ̥ → ̥

• 0 : ̥

• 1 : ̥

• − : ̥ → ̥

• −1 : {f : ̥ | f 6= 0} → ̥

such that for all x, y, and z in ̥ the following axioms hold:

• 0 6= 1

• x + (y + z) = (x + y) + z and x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity)

• x + y = y + x and x ∗ y = y ∗ x (commutativity)

• x ∗ (y + z) = (x ∗ y) + (x ∗ z) (distributivity)

• x + 0 = x and x ∗ 1 = x (identity)

• x + (−x) = 0 (inverse for +)

• if x 6= 0 then x ∗ x−1 = 1 (inverse for ∗)

Definition 3.2.5. 1. A set ̥ is linearly ordered under ≤, where ≤ is a binary

relation on ̥, if for all x, y and z in ̥ the following statements hold:

38

Chapter 3. Real Numbers and Their Axiomatisation

(a) x ≤ y or y ≤ x (totality)

(b) if x ≤ y and y ≤ z then x ≤ z (transitivity)

(c) If x ≤ y and y ≤ x then x = y (antisymmetry)

2. A field (̥, +, ∗) with a linear order ≤ on ̥ is a linearly ordered field

(̥, +, ∗,≤) if the following holds:

• x ≤ y then z + x ≤ z + y.

• 0 ≤ x and 0 ≤ y then 0 ≤ x ∗ y.

Definition 3.2.6. A complete ordered field is a set (̥, +, ∗,≤) which satisfies

the following properties:

• (̥, +, ∗,≤) is a linearly ordered field.

• Completeness: every non-empty subset of ̥, bounded above, has a supre-

mum in ̥.

Definition 3.2.7. Let (̥, +, ∗,≤) be a complete ordered field. ̥ is Archimedean,

if for r, s ∈ ̥ s.t. r > 0 there is a natural number n such that

s < r + · · · + r
︸ ︷︷ ︸

n times

From the definition of Archimedean property we get the following property:

∀ǫ, r ∈ ̥.ǫ > 0 → ∃n ∈ N.r/f(n) < ǫ, where f(n) = 1 + · · · + 1
︸ ︷︷ ︸

n times

There is only one complete ordered Archimedean field up to isomorphism.

So far we have demonstrated two ways for constructing real numbers, Dedekind

cuts and Cauchy sequences. In the book [Ebb91]P.47 §5.2, for ordered fields it is

shown that the following statements are equivalent

• if (α, β) is a cut in ̥ (the definition of Dedekind cuts is satisfied when

elements of ̥ instead of rationals are taken) then β contains a minimum

element.

39

Chapter 3. Real Numbers and Their Axiomatisation

• the ordering on ̥ is Archimedean and every Cauchy sequence of elements

of ̥ converges in ̥.

[Ebb91]P.50 §5.3 contains a the proof that all Archimedean complete ordered

fields are isomorphic and the isomorphisms are unique. The Dedekind reals and

the Cauchy reals are both Archimedean complete ordered fields and therefore

they are isomorphic.

In the following, we will axiomatise in Chapter 5 the real numbers R in the

language of Agda and investigate some properties of the Cauchy reals. In Chap-

ter 6, we introduce binary signed digit real numbers presentations ∼R using a

coinductive definition in Agda.

40

Chapter 4

Coalgebras and Coinduction

This Chapter presents a background knowledge of coalgebras and coinduction.

The types ∼R and Stream in Chapter 7 will be defined as codata types which is

Agda’s version of coalgebras. In the following

• we introduce coalgebras as the dual of algebras (Section 4.1).

• we discuss the use of final and weakly final coalgebras as the dual of initial

algebras which represents to algebraic data type.

• we introduce codata types as a the notation for coalgebras in Agda (Section

4.2).

• we discuss how to model coalgebras set theoretically. (Section 4.3).

We develop the theory of coalgebras in the context of type theory. Here the

commutativity of a diagram such that

A
f

- B

C

f ′

?

g′
- D

g

?

is to be understood as

∀a : A.g (f a) == g′ (f ′ a)

41

Chapter 4. Coalgebras and Coinduction

or written in type theory

(a : A) → g (f a) == g′ (f ′ a)

is provable, where == is the standard propositional equality of type theory (see

Section 2.1.6).

Uniqueness of a function g : B → C s.t. some property holds is to be under-

stood as follows: If g, g′ are two functions with this property then (b : B) →
g b == g′ b is provable.

By F being an endofunctor (or briefly a functor) we mean that we have the

object part of Fobj s.t. Fobj : Set → Set (note that Set is the collection of small

types in type theory) and a morphism part Fmor : {A B : Set} → (A → B) →
(Fmor A → Fmor B) s.t. the functor laws follow pointwise e.g.

Fmor (f ◦ g) = (Fmor f) ◦ (Fmor g)

means

(a : A) → Fmor (f ◦ g) a = ((Fmor f) ◦ (Fmor g)) a

We write F instead of Fobj or Fmor. We usually define functors by giving their

object part, the morphism part is usually obvious.

Let 1 be the one element set containing element ∗. A+B is the disjoint union

of A and B with elements (inl a) for a : A and (inr b) for b : B.

Definition 4.0.8. Strictly positive functor are defined as follows:

(a) λX.X and λX.A where A is a set A not depending on X, are strictly posi-

tive.

(b) If A : Set and F, G are strictly positive. so are

λX.F(X) + G(X)

λX.F(X) × G(X)

λX.A → F(X)

42

Chapter 4. Coalgebras and Coinduction

We could develop this chapter as well in a general category-theoretic setting,

then Set above would be replaced by a category with suitable conditions (e.g.

we need the existence products, coproducts and a generalised version of equality

set). We won’t analyse this further.

In Section 4.3 we explore the relationship to set theory.

4.1 Initial Algebras and Final Coalgebras

In Computer Science initial algebras and final coalgebras provide the framework

for inductive and coinductive data structures respectively. Let F be an endofunc-

tor. An initial algebra is an initial object in the category of F-algebras and a final

coalgebra is a final object in the category of F-coalgebras, where F-(co)algebras

are defined below. In the category of ordered sets an initial object is a least

element, whereas a final object is a largest element. Therefore, one can con-

sider initial F-algebras as smallest F-algebras and final F-coalgebras as largest

F-coalgebras. The initiality of an initial F-algebra means there exists exactly

one morphism from it to any other F-algebra and the finality of a final coalgebra

means there exists exactly one morphism from any other F-coalgebra to it.

Definition 4.1.1. 1 An F-algebra is a pair (A, f) where A is a set and f : F(A)

→ A.

2 A morphism from an F-algebra (A, f) to an F-algebra (B, g) is a function

h : A → B s.t. the following diagram commutes

F(A)
f

- A

F(B)

F(h)

?

g
- B

h

?

3 A weakly initial F-algebra is an F-algebra (A, f) such that for any other F-

algebra (B, g), i.e. for any B : Set, g : F (B) → B, there exists a morphism

43

Chapter 4. Coalgebras and Coinduction

h : (A, f) → (B, g), i.e a function h : A → B such that the following

diagram commutes:

F(A)
f

- A

F(B)

F(h)

?

g
- B

h

?

4 An initial F-algebra is defined as a weakly initial F-algebra but the morphism

h given above which was supposed to exist is additionally assumed to be

unique.

The set of natural numbers with zero and successor is an initial algebra of the

functor 1 + where 1 is one element set. Let for a : X, g : X → X, [a, g] be

the function f : 1 + X → X s.t. f (inl (∗)) = a and f (inr (x)) = g (x). Then

we get [zero, suc] : 1 + N → N s.t. zero : N and suc : N → N. From the natural

numbers being an F-algebra we can derive the principle of iteration, recursion

and induction. We will in the following derive those principles for the natural

numbers. Note: The iteration, recursion and induction principles can be defined

for all other initial F-algebras for strictly positive F e.g. for List(A). We consider

here only the initial F-algebra for F as above, i.e. F (X) = 1 + X. The principle

of iteration is as follows: Assume a : X and f : X → X. Let f̃ : 1 + X → X, f̃

(inl ∗) = a and f̃ (inr x) = f x. Then by the initiality of N there exists exactly

one morphism h : N → X such that the following diagram commutes:

F(N) = 1 + N
[zero, suc]

- N

F(X) = 1 + X

1 + h

?

f̃
- X

h

?

44

Chapter 4. Coalgebras and Coinduction

Therefore, there exists exactly a function h : N → X s.t.

h (zero) = h ([zero, suc] (inl ∗)) = f̃ ((1 + h) (inl ∗))
= f̃ (inl ∗) = a

h (suc x) = h ([zero, suc] (inr x)) = f̃ ((1 + h) (inr x))

= f̃ (inr (h x)) = f (h x)

So, if X : Set, a : X and f : X → X then there exists a unique function h : N → X

s.t.

h (n) = fn(a) = f(f(f(f(. . . f
︸ ︷︷ ︸

n times

(a))))

The principle of recursion is obtained from iteration. The principle of recur-

sion is as follows: Assume a : X and f : N → X → X. Then there exists a

unique function g : N → X s.t. g 0 = a and g (n + 1) = f n (g n). It can be

derived from the principle of iteration as follows: Assume a, f as before. Let

X ′ := N × X, a′ :=< 0, a >: X ′ and f ′ : 1 + X ′ → X ′, f ′ (inl ∗) =< 0, a >,

f ′ (inr (< n, x >)) =< n + 1, f n x >. By iteration there exists a unique

morphism g̃ : N → X ′ such that

F(N) = 1 + N
[zero, suc]

- N

F(X ′) = 1 + X ′

1 + g̃

?

f ′
- X ′

g̃

?

45

Chapter 4. Coalgebras and Coinduction

Since X ′ := N × X, we get

F(N) = 1 + N
[zero, suc]

- N

F(X ′) = 1 + X ′

1 + g̃

?

f ′
- X ′

g̃

?

F(N) = 1 + N

1 + π0

? [zero, suc]
- N

π0

?

Both diagrams commute, the top one is by the definition of g̃ and the bottom

one is by the definition of f ′ namely

π0 (f ′ (inl ∗)) = π0 (< 0, a >) = 0

= [zero, suc] (inl ∗) = [zero, suc] ((1 + π0) (inl ∗))
π0 (f ′ (inr (n, x))) = π0 (< n + 1, f n x >) = n + 1

= [zero, suc] (inr n) = [zero, suc] ((1 + π0) (inr < n, x >)

π0◦ g̃ is an F-algebra morphism N → N. id is another F-algebra morphism

N → N. By uniqueness there exists only one such morphism. Therefore, π0◦
g̃= id. We get π0 (g̃ n) = n. Connect

F(N) = 1 + N
[zero, suc]

- N

F(X ′) = 1 + X ′

1 + g̃

?

f ′
- X ′

g̃

?

1 + X

1 + π1

?

X

π1

?

46

Chapter 4. Coalgebras and Coinduction

Let g n := π1 (g̃ n). Since π0 (g̃ n) = n we have g̃ n =< n, (g n) > and we get

g 0 = π1 (g̃ 0) = π1 (< 0, a >) = a

g (n + 1) = π1 (g̃ ([zero, suc] (inr n))) = π1 (f ′ ((1 + g̃) (inr n)))

= π1 (f ′ (inr (g̃ n))) = π1 (f ′ (inr (< n, g n >)))

= π1 (< n + 1, f n (g n)) >) = f n (g n)

The principle of induction is dependent recursion: if we have C : N → Set, f0 : C 0

and f1 : (n : N) → C n → C (suc n) then we get g : (n : N) → C n s.t. g 0 = f0,

g (suc n) = f1 n (g n). The induction principle is defined as follows:

C : N → Set

Base0 : C 0

StepS : (n : N) → C n → C (S n)

Ind(C, Step0, StepS) : (n : N) → C n

together with the following equalities

Ind(C, Step0, StepS) 0 = Base0

Ind(C, Step0, StepS) (S n) = StepS n (Ind(C, Step0, StepS) n)

The induction principle can be derived from N being an initial algebra as follows:

Let X ′ := (n : N) × (C n), f ′ : 1 + X ′ → X ′ s.t. f ′ (inl(∗)) =< 0, Base0 > and

f ′ (inr(< n, x >)) =< n + 1, StepS n x >. By N being an initial F-algebra there

exists a unique morphism g̃ : N → X ′ such that

F(N) = 1 + N
[zero, suc]

- N

F(X ′) = 1 + X ′

1 + g̃

?

f ′
- X ′

g̃

?

As for the derivation of the recursion principle above, it follows π0◦ g̃= id i.e.

π0 (g̃ n) = n. By the definition of X ′ we get g̃ n : X ′ := (n : N) × (C n) and

π1 (g̃ n) : C (π0 (g̃ n)) = C n. Therefore, g := π1 ◦ g̃ : (n : N) → C n and one

47

Chapter 4. Coalgebras and Coinduction

easily verifies that g 0 = Base0 and g (n + 1) = StepS n (g n). So the induction

principle can be derived from the principle of initial F-algebras.

On the other hand if we have an F-algebra together with the induction princi-

ple (without any uniqueness condition) then we get an initial F-algebra. Assume

an F-algebra (A,f) s.t. A : Set and f : F (A) → A. Then by the induction princi-

ple there exists a morphism g : N → A such that the following commutes:

F(N)
[zero, suc]

- N

F(A)

F(g)

?

f
- A

g

?

(g 0 = f (inl ∗), g (n+1) = f inr (g n)) The uniqueness of g follows by induction.

Assume g, g′ both make the diagram above commute, i.e. g 0 = f (inl ∗) and

g (n + 1) = f (inr (g n)), similar for g′. By induction we can define p : (n : N) →
g n ==A g′ n such that

p 0 = refl : g 0
︸︷︷︸

f (inl ∗)

==A g′ 0
︸︷︷︸

f (inl ∗)

p (n + 1) = lem n (p n) : g (n + 1)
︸ ︷︷ ︸

f (inr (g n))

==A g′ (n + 1)
︸ ︷︷ ︸

f (inr (g′ n))

where lem n (p n) proves from p n : g n ==A g′ n that f (inr (g n)) ==A

f (inr (g′ n)). Therefore, induction is equivalent to the principle of the initial

algebras.

(Weakly) final coalgebras are the dual of initial algebras (weakly final means

the finality without the uniqueness).

Definition 4.1.2. 1 An F-coalgebra is a pair (A, f) such that A : Set and

f : A → F(A).

2 A morphism from an F-coalgebra (A, f) to an F-coalgebra (B, g) is a func-

48

Chapter 4. Coalgebras and Coinduction

tion h : A → B s.t. the following diagram commutes

A
f

- F(A)

B

h

?

g
- F(B)

F(h)

?

3 A weakly final coalgebra is an F-coalgebra (A, f) where A is a set and

f : A → F(A) such that for all F-coalgebras (B, g), i.e. for any B : Set,

g : B → F(B), there exists a morphism h : (B, g) → (A, f) which is a

function h : B → A such that the following diagram commutes:

B
g

- F(B)

A

h

?

f
- F(A)

F(h)

?

4 A final F-coalgebra is defined as a weakly final coalgebra but the morphism

h given above is additionally assumed to be unique.

Let F be such that N is the initial F-algebra. The final F-coalgebra is a set N∞

(N∞ is called the set of co-natural numbers) together with a function elim : N∞ →
1+N∞ (N∞ is co-natural numbers) such that for any coalgebra (X, f), i.e. X : Set,

f : X → 1 + X, there exists a unique morphism h : (X, f) → (N∞, elim), i.e. a

function h : X → N∞ such that the following diagram commutes:

X
f

- F(X) = 1 + X

N∞

h

?

elim
- F(N∞) = 1 + N∞

1 + h

?

49

Chapter 4. Coalgebras and Coinduction

Let 0′ := inl ∗ and S′ x = inr x. So there exists a function h : X → N∞ s.t.

elim (h x) = 0′, if f x = 0′, and elim (h x) = S′ (h x′) if f x = S′ x′. So elim

defines for every n : N∞ whether n has the shape 0′ or S′ m for same m : N∞. A

discussion how to develop N∞ on Set theory can be found in Section 4.3.

4.2 Coalgebras and Codata in Agda

In Agda with final coalgebras equality becomes undecidable but with initial alge-

bras equality stays decidable. In a recent talk [Set10a] there was some discussion

about this namely that in type theory N is only the initial algebra w.r.t. the

extensional equality on the function space.

More precisely the situation is as follows: N is an initial algebra with the

decidable definitional equality on N and referring to the equality of functions in

the diagram of initial algebras as the extensional equality. So if f, f ′ : N −→ X

are two solutions of the diagram we get that for all n : N we have f n == f ′ n

w.r.t. propositional equality (see Section 2.1.6) but usually not f == f ′.

N∞ is a final coalgebra only if we instead of having the definitional equality on

it we have bisimulation as equality, which is undecidable. An example is as follow:

we define n∞ : N∞ s.t. elim n∞ = S′ n∞ and define for f : N → N, g : N → N∞

s.t. elim (g n) = 0′ if f n = 0, elim (g n) = S′ (g (n + 1)) if f n > 0. Then (g 0)

is bisimilar to n∞ if and only if f n > 0 for all n, which is undecidable.

So, whereas N is the initial algebra taking as equality on N the definitional

one and only on the arrows in the diagram extensional equality, N∞ is the final

coalgeba only if we take an undecidable equality on N∞, which means by enforcing

special equality on N∞.

Agda uses initial algebras and only weakly final coalgebras. (Weakly final

coalgebras are the dual of a weakly initial algebra which is an initial algebra

without uniqueness). We can define N∞ by using ”codata” as a data type of

50

Chapter 4. Coalgebras and Coinduction

infinite objects as follows

codata N∞ : Set where

0∞ : N∞

S∞ : N∞ → N∞

which stands for the weakly final coalgebra (N∞, elim) s.t. elim : N∞ → 0′ +

S′ (N∞), i.e. elim n = 0′ or elim n = S′ n. Here, 0′ + S′ (N∞) stands for some set

X such that in Agda

data X : Set where

0′ : X

S′ : N∞ → X

which is the labelled disjoint union. For N∞ we have the new diagram as follows

X
f

- 0′ + S′ (X)

N∞

h

?

elim
- 0′ + S′ (N∞)

0′ + S′ (h)

?

Furthermore, the codata definition of N∞ means that one defines 0∞ : N∞ s.t.

elim 0∞ = 0′ and S∞ : N∞ → N∞ s.t. elim (S∞ n) = S′ n. So after applying

elim every co-natural numbers is either 0′ or S′ n. The principle of coiteration

essentially means guarded recursion, see [HS05]. Assume f : X → 1+X as above,

the commuting diagram shows that if f x = 0′ then

elim (h x) = (0′ + S′ h) (f x) = (0′ + S′ h) (0′) = 0′

If f x = S′ (x′) for some x′ : X then

elim (h x) = (0′ + S′ h) (f x) = (0′ + S′ h) (S′ (x′)) = S′ (h x′)

51

Chapter 4. Coalgebras and Coinduction

The principle of guarded recursion allows one to define h : X → N∞ such that

elim (h x) = 0′

or

elim (h x) = S′ (h x′)

We can generalise guarded recursion to the principle that we can define

h : X → N∞ s.t.

elim (h x) = 0′

or

elim (h x) = S′ (S∞ k (h x′))

for some k : N and x′ : X or

elim (h x) = S′ (S∞ k (0∞))

In Agda one writes for this h : X → N∞ such that

h x = 0∞

or for some k : N and x′ : X

h x = S∞ (S∞ k (h x′))

or

h x = S∞ (S∞ k (0∞))

However, if N∞ is only a weakly final coalgebra then there can be many n′ : N∞

s.t. elim n′ = S′ n for some n : N∞. So if elim (h x) = S′ (S∞ k (h x′) for some

k : N, x′ : X it doesn’t mean that h x = S∞ (S∞ k (h x′)). In a previous version

of Agda, which we think had a better representation of weakly final coalgebras

in dependent type theory, one wrote a ∼ b for elim a = elim b. Then h x ∼
S∞ (S∞ k (h x′) means the same as elim (h x) = S′ (S∞ k (h x′) and one can omit

52

Chapter 4. Coalgebras and Coinduction

occurrences of S′: h x ∼ S∞ (S∞ k (h x′) means

elim (h x) = elim (S∞ (S∞ k (h x′)) = S′ (S∞ k (h x′)

So for instance,

f : N → N∞

f 0 ∼ 0∞

f (S n) ∼ S∞ (f (S n))

means
f : N → N∞

elim (f 0) = 0′

elim (f (S n)) = S′ (f (S n))

One can define h : 1 → N∞ s.t. h (∗) ∼ S∞ (h (∗)) which means if one make case

distinction on h (∗) then it has the shape S∞(h (∗)). One can apply elim several

times and find out

h (∗) is of the shape : S∞

where n is of the shape : S∞ n′

where n′ is of the shape : S∞ n′′

...

but each unpacking requires to apply elim so we don’t have

h (∗) = S∞ (S∞ (S∞ (S∞ (· · ·))))

which would violate normalisation. h (∗) ∼ S∞ (h (∗)) which means

elim (h (∗)) = S′ (h (∗))

” ∼ ” was replaced by ” = ” in Agda version 2.2.4 (which is used in this

thesis). Without ” ∼ ” we get h (∗) = S∞ (h ∗) = S∞ (S∞ (h ∗)) =

· · · = S∞ (S∞ (S∞ (S∞ (· · · . This destroys normalisation since h (∗) −→
S∞ (h (∗)) −→ S∞ (S∞ (h (∗))) −→ · · · . Therefore, if we take this = verbally,

Agda is non-normalising [Set09]. The solution is that = when used in guarded

53

Chapter 4. Coalgebras and Coinduction

recursion is not to be taken as definitional equality (and means essentially ∼).

A new approach to defining codata types is taken in the newest version of

Agda (which isn’t used in this thesis). In the Agda standard library version 0.3

which is tested with Agda version 2.2.6, ”codata” defines the symbol ”∞” in the

library file ”Coinduction.agda” as follows

codata ∞ (A : Set) : Set where

: A → ∞ A

♭ : ∀ {A : Set} → ∞ A → A

♭ (# a) = a

where ∞ A denotes arguments in a data type for which infinite recursion is

possible. Since ∞ A and A are different we need functions which covert between

them such that ♭ : ∞ A → A and # : A → ∞ A. So ♭ is the morphism in the

coalgebra and # a is an element of ∞ A such that ♭ (# a) = a.

The idea is that the user, instead of using the codata definition of N∞ earlier,

should define it as follows by importing the library file defining ”∞”:

open import Coinduction

data N∞ : Set where

0∞ : N∞

S∞ : (∞ N∞) → N∞

So one can write that
inf : N∞

inf = S∞ (# inf)

Since N∞ is defined by ”data”, one can define deep elimination on N∞. So one

can write an infinite element as long as the recursion is after #. However, the

definition of ∞, # : (x : A) → ∞ A means ∞ A is isomorphic to A. Then

the definition of N∞ is isomorphic to the definition of N (∞ (N∞) is essentially

the same as N∞.) This is not what is intended but that would be the formal

interpretation. What is intended is that the definition of N∞ is to be understood

54

Chapter 4. Coalgebras and Coinduction

as
mutual

data N∞ : Set where

0∞ : N∞

S∞ : (∞N∞) → N∞

codata ∞N∞ : Set where

: N∞ → ∞N∞

Details have been discussed in [Set10b, Set10a].

4.3 Least and Greatest Fixed Points in Set The-

ory

In this section we consider algebras and coalgebras in set theory.

The initial algebra and final coalgebras are the least and the largest fixed

points if the functor F is monotone. In case of strictly positive F, the least fixed

point of F is obtained by iteration of F, i.e. we take in case of N the union of

∅, F(∅)
︸︷︷︸

0+S(∅)={0}

, F(F(∅))
︸ ︷︷ ︸

0+S({0})

, F(F(F(∅)))
︸ ︷︷ ︸

0+S({0,S(0)})

, F4(∅), F5 . . .

and obtain N = {0, S(0), S(S(0), S(S(S(0))), . . .}. For strictly positive F the least

fixed point of F is obtained by

F∗ :=
⋃

α∈Ord

Fα(∅)

The closure principle expresses F(F∗) ⊆ F∗, i.e. 0 ∈ F∗ and if a ∈ F∗ then

S(a) ∈ F∗: 0 ∈ F1 ⊆ F∗ and if a ∈ F∗, then a ∈ Fn for some n and therefore

S n ∈ Fn+1 ⊂ F∗. It can be seen that F∗ is an F-algebra (F∗, [0, S]) such that

0 : F∗ and S : F∗ → F∗

1 + F∗ [0, S]
- F∗

55

Chapter 4. Coalgebras and Coinduction

Furthermore, F∗ is the least set closed under 0 and S, so if A is a set containing

0 and closed under S s.t. F(A) = A then F∗ ⊆ A.

Lemma 4.3.1. If N is an initial algebra in the category of sets then if for A : Set

and 0 + S(A) ⊆ A then N ⊆ A.

Proof. Let 0+S(A) ⊆ A. We define g : 0+S(A) → A s.t. g (x) := x. By N being

an initial algebra there is a unique function h : N → A such that

0 + S(N)
intro

- N

0 + S(A)

0 + S(h)

?

g
- A

h

?

As for the derivation of the iteration principle above, it follows

h (0) = h (intro (0)) = g (0) = 0

h (n + 1) = h (intro (S (n))) = g (S (h (n))) = S (h (n)) = h (n) + 1

and by induction of N for all n : N, h (n) = n. So h is inclusion.

One can show as well that inductively defined sets are initial algebras. Dually,

if we have a coinductive defined set A s.t. A ⊆ F(A) then if B ⊆ F(B) then B ⊆ A

such that

B - F(B)

A

incl

?

g
- F(A)

F(incl)

?

where incl : B → A is inclusion. Therefore, A is the greatest fixed point of F.

The construction of final coalgebras in set theory for strictly positive functors

is more complicated, it requires the construction of inverse limits, see for instance

56

Chapter 4. Coalgebras and Coinduction

the article by Barr [Bar93]. N∞ above can be defined in set theory by N∞ =

N ∪ {ω} together with

elim : N∞ → 1 + N∞

elim 0 = inl ∗
elim (n + 1) = inr n

elim ω = inr ω

We have shown that the induction and coinduction principles can be derived

from initial algebras and final coalgebra as the least and the greatest fixed points

of F in the category of sets.

Let us now work on a smaller category namely the category P(U) of subsets

of U . Note that the standard model of type theory interprets sets as subsets of

the set of terms, so as an element of P(Term). Let F be a monotone functor on

P(U) i.e. F : P(U) → P(U). The least fixed point of F can be defined as follows

(folklore, e.g. [Gor94]):

µ.X.F(X) := ∩{X | X ∈ P(U), F(X) ⊆ X}

ν.X.F(X) := ∪{X | X ∈ P(U), X ⊆ F(X)}

Then µ.X.F(X) is the least fixed point of F and ν.X.F(X) is the largest fixed

point of F.

57

Chapter 5

Cauchy Reals in Agda

In this Chapter we will show how to formalise the real numbers in Agda using

postulated axioms. Then we will investigate some properties of real numbers

constructed by Cauchy sequences: we will prove that the Cauchy reals (which

are the real numbers which are limits of Cauchy sequences of rational numbers)

are closed under addition and multiplication and show that the Cauchy reals are

Cauchy complete.

5.1 Axioms

We have already discussed (in Chapter 3) how to construct real numbers by

Cauchy sequences and we called them Cauchy reals. For carrying out our in-

vestigation on some properties of Cauchy reals and computation purposes, we

introduce two groups of axioms. In the first group we introduce the set of real

numbers R by axioms and in the second group we introduce the data type of the

subset of R of the rational numbers and what it means for real numbers r : R to

be Cauchy complete.

The basic notions of axiomatizations for real numbers are defined in the lan-

guage Agda as follows:

• a sort of real numbers R.

• constants 0, 1.

58

Chapter 5. Cauchy Reals in Agda

• relations : equal (==), less (<), less or equal (≤), and apartness (#).

• functions : addition (+), multiplication (∗), negation (−), absolute value

(| |), reciprocal (recip).

In the following we formalize our axiomatization in the language of Agda (see

below) which can be found in the Agda file Axioms.agda. Since we need to use

them as axioms and cannot prove them, we postulate them in Agda.

R : Set
r0 : R

r1 : R

== : R → R → Set {- Equal -}
< : R → R → Set {- Less -}
≤ : R → R → Set {- Less or equal -}
− : R → R {- Negation -}
: R → R → Set {- Apartness -}
+ : R → R → R {- Addition -}
∗ : R → R → R {- Multiplication -}
| | : R → R {- Absolute value -}
recip : (r : R) → r0 # r → R {- Reciprocal -}

Since we have addition and negation we define subtraction by r−s = r+(−s).

Real numbers 2, 3, 4, 5, 6 are defined inductively e.g. r2 = r1+ r1, r3 = r2+ r1, r4 =
r3+r1, . . . , r6 = r5+r1. The negative real numbers −1,−2,−3,−5,−6 are defined

as negated positive real numbers e.g. −r1,−r2,−r3, . . . etc.

{- Axioms for 0, 1 -}
0<1 : r0 < r1

{- Axioms for Negation -}
−0 : − r0 == r0

−−x=x : (r : R) → −(−r) == r

−R<0 : (r : R) → r0 < r → −r < r0

59

Chapter 5. Cauchy Reals in Agda

{- Axioms for == -}
refl== : (r : R) → r == r

symm== : (r s : R) → r == s → s == r

trans== : (r s t : R) → r == s → s == t → r == t

{- Axioms for | | -}
abs0 : |r 0 |==r 0

0≤|x| : (r : R) → r0 ≤| r |
| − x|=|x| : (r : R) →| −r |==| r |
|xy|=|x||y| : (r s : R) →| r ∗ s |==| r | ∗ | s |
r∈[−n, n]→|r|≤n : (r s : R) → −s ≤ r ∧ r ≤ s →| r |≤ s

{- Axioms for Apartness -}
#less : (r s : R) → r < s → r # s

#symm : (r s : R) → r # s → s # r

0#sr : (r s : R) → r0 # r → r0 # s → r0 # r ∗ s

{- Axioms for <,≤ -}
trans≤ : (r s t : R) → r ≤ s → s ≤ t → r ≤ t

a≤b< : (r s : R) → r < s → r ≤ s

a≤b= : (r s : R) → r == s → r ≤ s

a≤b→b<c→a<c : (r s t : R) → r ≤ s → s < t → r < t

a<b→b≤c→a<c : (r s t : R) → r < s → s ≤ t → r < t

{- Axioms for + -}
axiom+0 : (r : R) → r + r0 == r

symm+ : (r s : R) → r + s == s + r

assoc+ : (r s t : R) → r + (s + t) == (r + s) + t

minus+ : (r s : R) → −(r + s) == (−r) + (−s)

axiomx−x : (r : R) → r + (−r) == r0

60

Chapter 5. Cauchy Reals in Agda

{- Axioms for ∗ -}
axiom∗0 : (r : R) → r ∗ r0 == r0

axiom∗1 : (r : R) → r ∗ r1 == r

a∗−b=−ab : (r s : R) → r ∗ (−s) == −(r ∗ s)

symm∗ : (r s : R) → r ∗ s == s ∗ r

assoc∗ : (r s t : R) → r ∗ (s ∗ t) == (r ∗ s) ∗ t

distri∗ : (r s t : R) → r ∗ (s + t) == r ∗ s + r ∗ t

{- Axioms for recip -}
0<recip : (r : R) → r0 < r → (p : r0 # r) → r0 < recip r p

recip<0 : (r : R) → r < r0 → (p : r0 # r) → recip r p < r0

aa−1=1 : (r : R) → (p : r0 # r) → (r ∗ (recip r p)) == r1

x<y→1/y<1/x : (r s : R) → (p : r0 # r) → (p′ : r0 # s) → r < s

→ (recip s p′) < (recip r p)

recipxy=recipx∗recipy: (r s : R) → (prs : r0 # r ∗ s)

→ (p : r0 # r) → (p′ : r0 # s)

→ recip (r ∗ s) prs == recip r p ∗ recip s p′

recip== : (r s : R) → (p : r0 # r) → (p′ : r0 # s)

→ r == s

→ recip r p == recip s p′

Note that: if we had ∀x ∈ R.x > 0 ∨ x = 0 ∨ x < 0 then the axiom aa−1=1

would imply 0<recip, recip<0, x<y→1/y<1/x. Axiom recip== is provable, as

follows: if a = r, a′ = s, r = s, b = recip r p, b′ = recip s p′, we get by aa−1=1,

a ∗ b = 1, a′ ∗ b′ = 1, therefore

b = b ∗ 1 = b ∗ (a′ ∗ b′) = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = 1 ∗ b′ = b′

Similarly axiom recipxy=recipx∗recipy is provable.

The reciprocal is only defined for real numbers which are not 0. In order

to define the reciprocal of real numbers we need the apartness relation. The

apartness relation denotes that two real numbers are strictly not equal which

61

Chapter 5. Cauchy Reals in Agda

means of two real numbers either one is larger or less than another. So the

intended meaning of r # s is (r < s) ∨ (s < r) although we only axiomatize

(r < s ∨ s < r) → r # s since the other direction would be an axiom which has

as conclusion an algebraic data type (see Chapter 8). Axiom ¬(r # r) is missing

(it is not provable since we could model R by the one element set: constants,

functions return the only element of R and ==, <,≤ as always true). We don’t

add it since it has the form r # r → ⊥ which has as conclusion an algebraic data

type (see below). So r # s doesn’t imply ¬(r == s). ¬(r == s) doesn’t imply

r # s, we might know ¬(r == s) but neither r < s nor s < r. With axiom

¬(r # r) we had that r # s → ¬(r == s) (since if r # s and r == s we get

r # r, a contradiction). So with this axiom, r # s is stronger than ¬(r == s).

We need an axiom or lemma stating that recip r p == recip r p′ for

(p p′ : r0 # r): there could be different proofs (p p′ : r0 # r) and therefore recip r p

and recip r p′ would not be definitionally equal but we expect recip r p ==

recip r p′ to be equal (see axiom recip ==).

{- Axioms for <,≤ with + -}
axiom<+ : (r s t : R) → r < s → r + t < s + t

axiom≤+ : (r s t : R) → r ≤ s → r + t ≤ s + t

{- Axioms for <,≤ with ∗ -}
axiom<∗ : (r s t : R) → r < s → r0 < t → r ∗ t < s ∗ t

c≤0→a≤b→ac≤bc: (r s t : R) → r0 ≤ t → r ≤ s → r ∗ t ≤ s ∗ t

{- Transfer -}
transfer== : (P : R → Set) → (r s : R) → r == s

→ P r → P s

{- Triangle inequality -}
triangle : (r s t : R) →| r − s |≤| r − t | + | t − s |

Note that transfer== violates our conditions (see Chapter 8). We will use it

62

Chapter 5. Cauchy Reals in Agda

only if (P s) is an equality on postulate type. Then it fulfils our condition. More

precisely we could define for each allowed instance used one constant which has

as result type equality or postulate data type. Since this can easily be done, it is

okay to introduce and use this constant axiom transfer== using these restrictions.

Another group of axioms and definitions consists of limitpoint and convergence

axioms and the introduction of the data type Q ⊆ R to be the set of real num-

bers which are rational numbers. Note that we have defined Q before. Q was

introduced for computational reasons. We could define an isomorphism between

Q and {r : R | Q (r)}, provided we have the axiom ¬ (r0 # r0)

{- data type Q -}
data Q : R → Set where

close0 : Q r0

close1 : Q r1

close− : (r : R) → Q r → Q (−r)

close+ : (r s : R) → Q r → Q s → Q (r + s)

close∗ : (r s : R) → Q r → Q s → Q (r ∗ s)

closerecip : (r : R) → (p : r0 # r) → Q r

→ Q (recip r p)

Note that we don’t extract programs in this part. Therefore, it is not a

problem that Q is not a restricted indexed inductive definition, see Chapter 8.

If one would like to work with program extraction one could use the following

alternative definition of Q

embedN→R : N → R

embedN→R n = . . .

Instead of showing full code we write . . . which can be found in our Agda code.

63

Chapter 5. Cauchy Reals in Agda

embedN+→R : N+ → R

embedN+→R n = . . .

embedQ→R : Q → R

embedQ→R (x %′ y) = embedZ→R x ∗ recip (embedN+→R y) (#less . . .)

and define

Q r := (q : Q) × (embedQ→R q == r)

and work with this data type. We discovered this problem at a late stage and

leave it for future work.

The limitpoint function states that each Cauchy sequence has a limit in R.

The convergence function axiomatises that all Cauchy sequences converge in R.

Both functions together can be regarded as the completeness axiom which states

that R is Cauchy complete. They are defined as follows

{- Exponential functions of R -}
exp : (r : R) → (r0 # r) → Z → R

exp x p (pos (0 +1)) = x

exp x p (pos (suc n +1)) = exp x p ((pos (n +1)) ∗ x

exp x p (neg (0 +1)) = recip x p

exp x p (neg (suc n +1)) = exp x p ((neg (n +1)) ∗
recip x p

exp x p ẑero = r1

2ˆ : Z → R {- 2ˆ n = 2n -}
2ˆ n = exp r2 p n - - where p : r0#r2

64

Chapter 5. Cauchy Reals in Agda

limitpoint : (f : N+ → R)

→ (p : (n m N : N+)

→ n ≥+ N

→ m ≥+ N

→ | f n − f m | < 2ˆ (neg N))

→ R

convergence : (f : N+ → R)

→ (p : (n m N : N+)

→ n ≥+ N

→ m ≥+ N

→ | f n − f m | < 2ˆ (neg N))

→ (k : N+)

→ | f k − limitpoint f p | ≤ 2ˆ (neg k))

Function limitpoint determines the real number which is the limit of a Cauchy

sequence. Function convergence states that the Cauchy sequence converges to

this limit point.

We introduce two more data types: the set of real numbers Q′, which are

limits of elements in Q (these are the Cauchy reals), and the set of real numbers

Q′′ which are limits of elements in Q′. They are defined as follows:

data Q′ (r : R) : Set where

Q′intro : (f : N+ → R)

→ (Pf : (n : N+) → Q (f n))

→ (p : (n : N+)

→ (| x − f n |) < 2ˆ (neg n))

→ Q′ x

65

Chapter 5. Cauchy Reals in Agda

data Q′′ (r : R) : Set where

Q′′intro : (f : N+ → R)

→ (Pf : (n : N+) → Q′ (f n))

→ (p : (n : N+)

→ (| x − f n |) < 2ˆ (neg n))

→ Q′′ x

In the following, we will show that Q′ is closed under +, ∗ and Q′′ is also a

subset of Q′, which means that Q′ is Cauchy complete since Q′′ is the set of limits

of Cauchy sequences in Q′ which are in R, and R is Cauchy complete. So every

Cauchy sequence in Q′ has a limit in Q′.

5.2 Q′ Closure Under Addition

Let (an)n∈N, (bn)n∈N be two sequences of rational numbers converging to r, s.

Then (an + bn)n∈N converges to r + s: This is shown as follows: Since (an)n∈N

converges to r we have ∀ǫ > 0.∃N1 ∈ N.∀n ∈ N.n ≥ N1 → |an − r| < ǫ/2. Since

(bn)n∈N converges to s, we have ∀ǫ > 0.∃N2 ∈ N.∀n ∈ N.n ≥ N2 → |bn−s| < ǫ/2.

Let ǫ > 0, N1, N2 are chosen as before, N = max{N1, N2}. Then for n ≥ N

we have | (an + bn) − (r + s) |≤| an − r | + | bn − s |< ǫ/2 + ǫ/2 = ǫ. So

((an)n∈N) + ((bn)n∈N) converges to r + s. In our formulation of Q′ converging

sequences have a fixed convergence rate, so instead of

∀ǫ > 0.∃N : N.∀n, m ≥ N. | an − am |< ǫ

we have

∀n, m ≥ N. | an − am |< 2−N

Therefore, we need to switch from (an + bn)n∈N to (an+1 + bn+1)n∈N in order to

obtain a sequence which is in accordance with our fixed convergence rate. The

proof in Agda is as follows (see the Agda file CauchyRealsAddition.agda):

66

Chapter 5. Cauchy Reals in Agda

|a + b|<2−n : (r s r′ s′ : R) → (n : N+)

→| r − r′ |< 2ˆ(neg (n + r1))

→| s − s′ |< 2ˆ(neg (n + r1))

→| (r + s) − (r′ + s′) |< 2ˆ(neg n)

|a + b|<2−n r s r′ s′ n p p′ = . . .

Q′close+ : (r s : R) → Q′ r → Q′ s → Q′ (r + s)

Q′close+r s (Q′intro f Pf p) (Q′intro f ′ Pf ′ p′) =

Q′intro {r + s}
(\n → f (n ++ +1) + f ′ (n ++ +1))

(\n → close+ (f (n ++ +1)) (f ′ (n ++ +1))

(Pf (n ++ +1)) (Pf ′ (n ++ +1)))

(\n → |a + b|<2−n r s (f (n ++ +1)) (f ′ (n ++ +1)) n

(p (n ++ +1)) (p′ (n ++ +1)))

The proof shows us that the sequence (f (n ++ +1)+f ′ (n ++ +1)) converges

to (r + s). close+ . . . proves that the sequence is in Q and |a + b|<2−n . . . shows

that | (f (r + s)) − (f (n ++ +1) + f ′ (n ++ +1)) |< 2−n. So it converges to

(r + s).

5.3 Q′ Closure Under Multiplication

Now we show that Q′ is closed under multiplication. If ((an)n∈N) converges to

a real number r and ((bn)n∈N) converges to a real number s then ((an)n∈N) ∗
((bn)n∈N) converges to (r∗s) for two Cauchy sequences of rational numbers (an)n∈N

and (bn)n∈N. First we use the fact that Q is Archimedean therefore all Cauchy

sequences in Q are bounded, so there are K1, K2 ∈ N > 1 such that for all

n ∈ N, | an |≤ K1 and | s |≤ K2. The existence of K1 follows in case of a fixed

convergence rate because | an − a1 |< 2−1 for n ≥ 1 and by the Archimedean

axiom | a1 |≤ b for some b ∈ N therefore for K1 := b + 1 we have

| an |≤| an − a1 | + | a1 |≤ 2−1 + b ≤ b + 1 = K1

67

Chapter 5. Cauchy Reals in Agda

Without a fixed convergence rate we have an N s.t. ∀n ≥ N. | an − aN |< 1. We

have by the Archimedean axiom | aN |≤ L for some L ∈ N and | ai |≤ Li for

i < N . Then for all n ∈ N | an |≤ K1 := max{L1, . . . , Ln+1,, L + 1}; for i < N

| ai |≤ Li ≤ K1, for i ≥ N | ai ≤| ai − aN | + | aN |< 1 + L ≤ K1.

Let (an)n∈N converge to r, therefore ∀ǫ > 0.∃N1 ∈ N.∀n ∈ N.n ≥ N1 →
|an − r| < ǫ/(2K2). (bn)n∈N convergest to s, therefore ∀ǫ > 0.∃N2 ∈ N.∀n ∈
N.n ≥ N2 → |bn − s| < ǫ/(2K1). Let N = max{N1, N2}. Then for n ≥ N we

have | anbn − rs |=| an(bn − s) + s(an − r) |≤| an || bn − s | + | s || an − r |<
K1(ǫ/(2K1)) + K2(ǫ/2K2) = ǫ.

The proof in Agda is as follows (again the proof needs to be adapted since

we are dealing with sequences with fixed convergence rate; see the Agda file

CauchyRealsMultiplication.agda)

The proof will show us that the sequence (f (n ++ m) ∗ f ′ (n ++ m))

converges to (r ∗ s). The function Q′close∗ . . . will prove that the sequence is in

Q and Q′r∗s<2−n . . . show that | r ∗ s − f (n ++ m) ∗ f ′ (n ++ m) |< 2−n.

Therefore, it will converge to (r ∗ s).

module closeQ∗ (r s : R)

(f : (n : N+) → R)

(Pf : (n : N+) → Q (f n))

(p : (n : N+) → (| (r − f n) |) < 2ˆ(neg n))

(f ′ : (n : N+) → R)

(Pf ′ : (n : N+) → Q (f ′ n))

(p′ : (n : N+) → (| (s − f ′ n) |) < 2ˆ(neg n))

(k l : N)

(f1≤k : | f +1 |≤ embedN→R k)

(f ′1≤l : | f ′ +1 |≤ embedN→R l)

(m : N+)

(1+l+2+k≤2ˆm : r1 + (embedN→R l)

+r2 + (embedN→R k) ≤ 2ˆ (pos m))

where

68

Chapter 5. Cauchy Reals in Agda

Q′r∗s<2−n : (n : N+)

→ | r ∗ s − f (n ++ m) ∗ f ′ (n ++ m) |< 2ˆ (neg n)

Q′r∗s<2−n n = . . .

Q′r∗s : Q′ (r ∗ s)

Q′r∗s = (Q′intro {r ∗ s})
(\n → f (n ++ m) ∗ f ′ (n ++ m))

(\n → close∗ (f (n ++ m)) (f ′ (n ++ m))

(pf (n ++ m)) (pf ′ (n ++ m)))

(\n → Q′r∗s<2−n n)

where the proof Q′r∗s<2−n n = . . . is obtained from

| r ∗ s − f (n ++ m) ∗ f ′ (n ++ m) | =

| s ∗ (r − f (n ++ m)) + f (n ++ m) ∗ (s − f ′ (n ++ m)) | ≤
| s ∗ (r − f (n ++ m)) | + | f (n ++ m) ∗ (s − f ′ (n ++ m)) | =

| s |
︸︷︷︸

≤1=l

∗ | (r − f (n ++ m)) |
︸ ︷︷ ︸

<2−(n+m)

+ | f (n ++ m) |
︸ ︷︷ ︸

<2+k

∗ | (s − f ′ (n ++ m))
︸ ︷︷ ︸

<2−(n+m)

|

︸ ︷︷ ︸

<2−(n+m)∗(1 + l + 2 + k
︸ ︷︷ ︸

≤2m

)=2−n

< 2ˆ (neg n)

where | s |≤ 1 = l follows from

| s |≤| s − f ′ 1 | + | f ′ 1 |≤ 20 + 1 = 1 + l

| f (n + m) |< 2 + k follows from

| f (n + m) | ≤ | f (n + m) − r | + | r | ≤ 2−(n+m) + k ≤ 1 + k < 2 + k

Q→Q : (r : R) → Q r → Q

Q→Q r p = { } − − l e f t f o r fu tur e work , s e e below

|Z|→N : Z → N

|Z|→N ((pos (y +1)) = suc y

|Z|→N ((neg (y +1)) = suc y

69

Chapter 5. Cauchy Reals in Agda

|Z|→N ẑero = 0

archimedesaux : (q : Q) → N

archimedesaux (y %′ y′) = |Z|→N y

archimedes1 : (r : R) → Q r → N

archimedes1 r Qr = archimedesaux (Q→Q r Qr)

archimedes2 : (r : R) → (p : Q r)

→| embedQ→R (Q→Q r p) |≤ embedN→R (archimedes1 r p)

archimedes2 r p = . . .

where the embed function Q→Q is left for future work. We could give an

embed function Q→Q if we added the axiom ¬(r0 # r0) as we have mentioned in

page:63.

Now we give the proof that Q′ is closed under ∗. It mainly uses the proof

Q′r∗s of closeQ∗ which shows that (f (n + 1) ∗ g (n + 1))n∈N+ converge to r + s,

if (f n)n∈N+ converges to r and (g n)n∈N+ converges to s.

open closeQ∗

Q′close∗ : (r s : R) → Q′ r → Q′ s → Q′ (r ∗ s)

Q′close∗ r s (Q′intro f Pf p) (Q′intro f ′ Pf ′ p′) = closeQ∗.Q′r∗
r s f Pf p r f ′ Pf ′ p′ k l f1≤k f ′1≤l m 1+l+2+k≤2ˆm

where

k : N

k = archimedes1 (f +1) (Pf +1)

l : N

l = archimedes1 (f ′ +1) (Pf ′ +1)

f1≤k : (| f +1 |

70

Chapter 5. Cauchy Reals in Agda

≤ embedN→R (archimedesaux (Q→Q (f +1) (Pf +1)))

f1≤k = . . .

f ′1≤l : (| f ′ +1 |
≤ embedN→R (archimedesaux (Q→Q (f ′ +1) (Pf ′ +1)))

f ′1≤l = . . .

2ˆN→N+ : N → N+

2ˆN→N+n = . . .

m : N+

m = 2ˆN→N+ l ++ +1 ++ 2ˆN→N+ k ++ +2

1+l+2+k≤2ˆm : r1 + (embedN→R l)

+r2 + (embedN→R k) ≤ 2ˆ (pos m)

1+l+2+k≤2ˆm = . . .

5.4 Q′ is Cauchy-complete

We have defined {r : R | Q r} to be the real numbers which are rational numbers

and {r : R | Q′ r} to be the real numbers which are limits of Cauchy sequences

of rational numbers. So we get Q ⊆ Q′. Then Q′′ are the real numbers which are

limits of Cauchy sequences of elements in Q′. A limit of a Cauchy sequence in Q

is a limit of a Cauchy sequence in Q′, therefore Q ⊆ Q′ ⊆ Q′′. We show Q′′ ⊆ Q′.

First we prove that Q ⊆ Q′ and Q′ ⊂ Q′′. This is essentially done by taking as

sequence to converge to a the sequence (an)n∈N+ . The proof that these sequences

are in Q, Q′ respectively is trivial (a is in Q or Q′) and that they converge is

trivial since the sequence elements are identical to the limit.

The proof in Agda is as follows (see the Agda file CauchyRealsComplete-

ness.agda)

|x−x|<2ˆ : (r : R) → (n : N+) →| r − r |< 2ˆ (neg n)

|x−x|<2ˆ x n = . . .

71

Chapter 5. Cauchy Reals in Agda

Q→Q′ : (r : R) → Q r → Q′ r

Q→Q′ x qx = (Q′intro {x}) (\ → x) (\ → qx) (\n → |x−x|<2ˆ x n)

Q′→Q′′ : (r : R) → Q′ r → Q′′ r

Q′→Q′′ x q′x = Q′′intro (\n → x) (\n → q′x) (\n → |x−x|<2ˆ x n)

Q→Q′′ : (r : R) → Q r → Q′′ r

Q′→Q′′ x qx = Q′→Q′′ x (Q→Q′ x qx)

where Q→Q′ shows that Q ⊆ Q′. Q′→Q′′ has shown us that Q′ ⊆ Q′′. Therefore,

Q ⊆ Q′ ⊆ Q′′ by Q→Q′′.

In order to prove Q′′ ⊆ Q, we first extract from proof of p : Q′ r its Cauchy

sequence (Q′tof r p), a proof (Q′toPf r p) that it is in Q and a proof (Q′toPf r p)

that the Cauchy sequence converges .

Q′tof : (r : R) → Q′ r → N+ → R

Q′tof x (Q′intro f Pf p) n = f n

Q′toPf : (r : R) → (qr : Q′ r) → (n : N+) → Q (Q′tof qr n))

Q′toPf x (Q′intro f Pf p) n = Pf n

Q′top : (r : R) → (qr : Q′ r) → (n : N+)

→ (| (r − Q′tof r qr n) |) < (2ˆ (neg n))

Q′top x (Q′intro f Pf p) n = p n

Now we show Q′′ ⊆ Q′. Let r : R, p : Q′′ r and the Cauchy sequence contained

in p be (g n)n∈N+ , (g n = Q′tof r p n). g n ∈ Q′ so there is a Cauchy sequence

(Q′tof (g n) . . .)n∈N+ which converges to r. Let the n th element of the Cauchy

sequence be f n = Q′tof (g n) n. We show (f (n + 1))n∈N+ converges to r:

| f (n+1)−r |≤| f (n+1)−g (n+1) | + | g (n+1)−r |< 2−(n+1)+2−(n+1) = 2−n

(This argument will be given in Q′′→Q′aux5 below). The formal proof in Agda

is as follows:

72

Chapter 5. Cauchy Reals in Agda

− −Q′′→Q′aux1 r p is the sequence (f (n + 1))n∈N+ just given

Q′′→Q′aux1 : (r : R) → Q′′ r → N+ → R

Q′′→Q′aux1 x (Q′′intro f Pf p) n = Q′tof (f (n ++ +1))

(Pf (n ++ +1)) (n ++ +1)

− −proof that the sequence is in Q

Q′′→Q′aux2 : (r : R) → (qr : Q′′ r) → (n : N+) → Q (Q′′→Q′aux1 r qr n))

Q′′→Q′aux2 x (Q′′intro f Pf p) n = Q′toPf (f (n ++ +1))

(Pf (n ++ +1)) (n ++ +1)

− −proof that the sequence comverges

Q′′→Q′aux5 : (r : R) → (qr : Q′′ r) → (n : N+)

→ (| (r − Q′′→Q′aux1 r qr n) |) < (2ˆ (neg n))

Q′′→Q′aux5 x qx n = . . .

− −Proof of Q′′→Q′

Q′′→Q′ : (r : R) → Q′′ r → Q′ r

Q′′→Q′ x qx = Q′intro {x} (Q′′→Q′aux1 x qx) (Q′′→Q′aux2 x qx)

(Q′′→Q′aux5 x qx)

Q→Q′ shows that Q′′ ⊆ Q′. By Q′ ⊆ Q′′ and Q′′ ⊆ Q′ we get that Q′′ is equal

to Q′. Since the limits of Cauchy sequences of elements of Q′ are in Q′ itself, Q′

is Cauchy complete. Therefore, every Cauchy sequences in Q′ has a limit in Q′,

Q′ is Cauchy complete.

73

Chapter 6

Signed Digit Representation of

Real Numbers in Classical

Mathematics

In this chapter we work in classical set theory. In the previous Chapter 2.2 we

mentioned that not all real numbers have a decimal representation. We cannot

prove constructively that every Cauchy sequence converges to a number which

has a decimal representation. Here is an example, considering a Cauchy real

(an)n∈N starting with :

a0 = 0

a1 = 0.9

a2 = 0.99

a3 = 0.999

a4 = 0.9999

a5 = 0.99999

a6 = 0.999998

and assume | an − ak |< 2 ∗ 10−n for k ≥ n. If a6 = 0.999998, then we know

the first two digits should have been 0.9. However, if a6 = 1.000001 then the first

two digits would have been 1.0. What does this tell us? As long as we have a

sequence containing 0.99 · · ·9 above, we cannot decide the first digit of the limit.

The underlying reason for this is that for r, s ∈ R s.t. r < s∨ r ≥ s we cannot

74

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

decide whether r < s or r ≥ s. This is because if r is approximated by something

which is equal to s then we cannot decide whether eventually r < s or eventually

s ≤ r. r might eventually become equal to s or larger than s or less then s. It is

undecidable where r will be (this applies to r ≤ s ∨ r ≥ s as well). Nevertheless,

for any ǫ > 0 we can decide r < s + ǫ ∨ r ≥ s − ǫ (just approximate r and s up

to ǫ/3).

For a real number r we know if its decimal representation starts with 1.0 then

r ≥ 1.0. If it starts with 0.9 · · ·9d where d ∈ {0, 1, . . . , 8} then r < 1.0. Since we

cannot decide r ≥ 1.0 or r < 1.0, for a real number we cannot determinate its

decimal representation. The same applies to binary representation.

This chapter is based on the work of Berger, Seisenberger and Hou [BS10b,

BS10a, BH08] but the representation has changed.

6.1 Signed Digit Representation

The idea to overcome this is by introducing binary representation of real numbers

0, 1 with one extra digit −1.

A sequence of such digits is called a signed digit stream i.e.

s = {(d0, d1, d2, · · ·) | ∀n ∈ N.dn ∈ Digit} ∈ Stream

We write (d0, d1, d2, · · ·) for the stream of digits d0 : d1 : d2 : · · · and if s =

(d0, d1, d2, · · ·) then d : s = (d, d0, d1, d2, · · ·).

With the signed digits 1,0,-1 for r ∈ R and r ∈ [−1, 1], if we know that

0 ≤ r ≤ 1, then we can set the first digit to 1,

−1/2 ≤ r ≤ 1/2, then we can set the first digit to 0,

−1 ≤ r ≤ 0, then we can set the first digit to − 1.

So intuitively this case distinction can be decided eventually. A real number

75

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

0.d0d1d2 · · · stands for the number

∞∑

i=0

di ∗ 2−(i+1)

If the first digit is 1 the maximum number we can represent is 0.1111111 · · · which

is

2−1 +
∞∑

i=1

1 ∗ 2−i = 1

and the minimum number we can represent is 0.1 − 1 − 1 − 1 − 1 · · · which is

2−1 +
∞∑

i=2

(−1) ∗ 2−i = 0

In general intuitively all numbers in the interval [0, 1] can be represented by a

signed digit number starting with digit 1. A similar calculation gives that if the

first digit is 0 we get numbers in the interval

[0 ∗ 2−1 +
∞∑

i=2

(−1) ∗ 2−i, 0 ∗ 2−1 +
∞∑

i=2

1 ∗ 2−i] = [−1/2, 1/2]

If the first digit is −1 we get numbers in the interval [−1, 0].

A real number r has signed digit representations 0.a0a1a2a3 . . . where ai ∈
Digit if and only if

r =

∞∑

i=0

di ∗ 2−(i+1)

It follows that if r has a signed digit representation then r∈[−1, 1] because

−1 =

∞∑

i=0

((−1) ∗ 2−(i+1) ≤
∞∑

i=0

di ∗ 2−(i+1) = r ≤
∞∑

i=0

(−1 ∗ 2−(i+1) = 1

We see that r has signed digit representations 0.a0a1a2a3 . . . if and only if r∈[−1, 1]

and r = (a0 + y)/2 for some y s.t. y has signed digit representations 0.a1a2a3 . . .

(choose y =
∑∞

i=0 di+1 ∗ 2−(i+1)). Let ∼R+ be the set ∼R+ of pairs (r, s) s.t. r has

signed digit representation s. So (r, s) are in the relation if and only if r∈[−1, 1]

76

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

and (2r − head(s), tail(s)) are in this relation, or:

So (r, s) ∈ ∼R+ if and only if r∈[−1, 1] and (2r − head(s), tail(s)) ∈ ∼R+.

This definition reads as the fixed point equation

∼R+ = {(r, s) ∈ [−1, 1] × Stream(Digit) | (2r − head(s), tail(s)) ∈ ∼R+}

There are many solutions for this equation. The largest fixed solution for this

equation is ∼R+ as defined in the following:

Definition 6.1.1. (a) The set of pairs (r, s) of a real number r with an signed

digit stream s is defined as

∼R+ = ∪{A ⊆ [−1, 1] × Stream(Digit) |
∀(r, s) ∈ A.(2r − head(s), tail(s)) ∈ A}

(b) We introduce a notion ∼ as follows

r ∼ 0.a0a1a2a3 · · · ⇔ (r, (a0, a1, a2, a3, . . .)) ∈ ∼R+

The problem is that to one real number correspond many streams. We see

now that ∼R is usually the set of real numbers with signed digit representations:

Theorem 6.1.2.

(r, (a0, a1, a2, a3, . . .)) ∈ ∼R+ ⇔ r =

∞∑

i=0

ai ∗ 2−(i+1)

Proof. of “⇒”: Let (r, s) ∈ A, where A as in the definition of ∼R+ and s =

(a0, a1, a2, a3, . . .). Define (rn, sn) ∈ A inductively by (r0, s0) = (r, s), (rn+1, sn+1) =

(2rn − head(sn), tail(sn)). Then we have sn = (an, an+1, an+2, . . .), (rn, sn) ∈ A,

rn∈[−1, 1], rn+1 = 2rn − head(sn) = 2rn − an and rn = (rn+1 + an)/2. We show

for all n

r =
n−1∑

i=0

ai ∗ 2−(i+1) + 2−n ∗ rn

by induction on n: Case n = 0: is trivial (r = r0). Induction step n → n + 1: by

77

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

IH
r =

∑n−1
i=0 ai ∗ 2−(i+1) + 2−n ∗ rn

=
∑n−1

i=0 ai ∗ 2−(i+1) + 2−n ∗ (rn+1/2 + an/2)

=
∑n

i=0 ai ∗ 2−(i+1) + 2−(n+1) ∗ rn+1

We have

| r −
n−1∑

i=0

ai ∗ 2−(i+1) |=| 2−n ∗ rn |

and therefore by | rn |≤ 1

n−1∑

i=0

ai ∗ 2−(i+1) → r (n → ∞)

Therefore,

r =

∞∑

i=0

ai ∗ 2−(i+1)

Proof of “⇐”: Let

r =
∞∑

i=0

ai ∗ 2−(i+1)

Let rn ∈ R be defined by r0 = r, rn+1 = 2rn − an. We show

rn =

∞∑

i=0

ai+n ∗ 2−(i+1)∈[−1, 1]

by induction on n: Case n = 0 is trivial. Induction step n → n + 1:

rn+1 = 2 ∗∑∞
i=0 ai+n ∗ 2−(i+1) − an

=
∑∞

i=0 ai+n ∗ 2−i − an

=
∑∞

i=1 ai+n ∗ 2−i

=
∑∞

i=0 ai+n+1 ∗ 2−(i+1)

Let sn = (an, an+1, an+2, . . .). Then (rn+1, sn+1) = (2rn − head(sn), tail(sn)),

A = {(rn, sn) | n ∈ N} ⊆ ∼R+, (r, s) ∈ ∼R+.

78

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Definition 6.1.3. We define

∼R = {r ∈ R | ∃s ∈ Stream(Digit).(r, s) ∈ ∼R+}

In next Chapter we will introduce ∼R in Agda as a codata type.

We prove the principle of guarded recursion for ∼R+:

Theorem 6.1.4. (Guarded recursion for ∼R+) Assume A is a Set, next :

A → A and

f : A → [−1, 1] × Stream(Digit)

s.t. for a ∈ A, if f(a) = (r, s) then f(next(a)) = (2r − head(s), tail(s)). Then

∀a ∈ A.f(a) ∈ ∼R+.

Proof. Let B = {f(a) | a ∈ A}. We have B ⊆ [−1, 1] × Stream(Digit). For all

(r, s) ∈ B, (r, s) = f(a) for some a therefore (2r−head(s), tail(s)) = f(next(a)) ∈
B. Therefore, B ⊆ ∼R+. So for a ∈ A we have f(a) ∈ B ⊆ ∼R+.

Theorem 6.1.5. (Special case of Theorem 6.1.4) Assume

A ⊆ [−1, 1] × Stream(Digit)

s.t. ∀(r, s) ∈ A.(2r − head(s), tail(s)) ∈ A. Then A ⊆ ∼R+.

Proof. Take in Theorem 6.1.4 f(a) = a and next(r, s) = (2r − head(s), tail(s)).

Theorem 6.1.6. (Special case of Theorem 6.1.4) Assume I is a set, and

assume for i ∈ I that ri ∈ [−1, 1] and si ∈ Stream(Digit) s.t.

∀i ∈ I.∃j ∈ I.(rj = 2ri − head(si) ∧ sj = tail(si))

Then ∀i ∈ I.(ri, si) ∈ ∼R+.

Proof. Let in Theorem 6.1.4 A = I and define next : A → A, as follows: if f(i) =

(ri, si), choose j s.t. rj = 2ri − head(si) and sj = tail(sj). Then next(i) = j.

(Here we use axiom of choice.)

79

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Theorem 6.1.7. (Guarded recursion for ∼R) If A is a Set, next : A → A, f :

A → [−1, 1] and d : A → Digit s.t. for a ∈ A we have f(next(a)) = 2∗f(a)−d(a).

Let
s : A → Stream(Digit)

s(a) = (d(a), d(next(a)), d(next2(a), . . .))

Then ∀a ∈ A.(f(a), s(a)) ∈ ∼R+ and therefore ∀a ∈ A.f(a) ∈ ∼R.

Proof. Let f ′ : A → [−1, 1]×Stream(Digit), f ′(a) = (f(a), s(a)). Then if f ′(a)) =

(r, s) then f ′(next(a)) = (2r − head(s), tail(s)). So by Theorem 6.1.4, f ′(a) ∈
∼R+, therefore (f(a), s(a)) ∈ ∼R+, f(a) ∈ ∼R.

Theorem 6.1.8. (Special case of Theorem 6.1.7) Let A ⊆ [−1, 1], d : A →
Digit s.t. ∀r ∈ A.2r − d(r) ∈ A. Then A ⊆ ∼R.

Proof. Let in Theorem 6.1.7 f(r) = r and next(r) = 2 ∗ r − d(r).

Theorem 6.1.9. (Special case of Theorem 6.1.8) Let A ⊆ [−1, 1] s.t. ∀r ∈
A.∃d ∈ Digit.2r − d ∈ A. Then A ⊆ ∼R.

Proof. Using Axiom of choice define d : A → Digit s.t. ∀r ∈ A.2r − d(r) ∈ A.

Then the conclusion follows by Theorem 6.1.8.

Lemma 6.1.10. If (r, s) ∈ ∼R+ then (2r − head(s), tail(s)) ∈ ∼R+ and 2r −
head(s) ∈ ∼R.

Proof. (r, s) ∈ A for some A as in the definition 6.1.1 (a) of ∼R+. Therefore

(2 ∗ r − head(s), tail(s)) ∈ A ⊆ ∼R+.

The following Theorem 6.1.11 shows that under certain conditions a function

f defined by guarded recursion has a computational meaning i.e. we can compute

from input data the stream for the output of f .

By computational data types we mean finitely representable types such as

finite types, N, Z, Q for which there is a notion of computation defined on them.

Theorem 6.1.11. (Computational guarded recursion) Assume k ∈ N, B1, · · · , Bk

are computational data types. Let

f : [−1, 1]n × B1 × · · · × Bk → [−1, 1]

80

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Assume we can compute from

s1, . . . , sn ∈ Stream(Digit),

b1 ∈ B1, . . . , bk ∈ Bk

a digit

d̂(s1, . . . , sn, b1, . . . , bk) ∈ Digit

streams

ŝi(s1, . . . , sn, b1, . . . , bk) ∈ Stream(Digit)

and

b̂i(s1, . . . , sn, b1, . . . , bk) ∈ Bi

such that

∀ r1, · · · , rn ∈ [−1, 1].

∀ s1, . . . , sn ∈ Stream(Digit).

∀ b1 ∈ B1, . . . , bk ∈ Bk.(r1, s1), . . . , (rn, sn) ∈ ∼R+

→ ∃r′1, · · · , r′n ∈ R.

2 ∗ f(r1, . . . , rn, b1, · · · , bk) − d̂(s1, . . . , sn, b1, · · · , bk)

= f(r′1, . . . , r
′
n,

b̂1(s1, . . . , sn, b1, · · · , bk), · · · , b̂k(s1, . . . , sn, b1, · · · , bk))

∧(r′1, ŝ1(s1, . . . , sn, b1, . . . , bk)), . . . , (r
′
n, ŝn(s1, . . . , sn, b1, . . . , bk)) ∈ ∼R+

Then we can compute from (s1, . . . , sn, b1, · · · , bk) a stream

ŝ(s1, . . . , sn, b1, . . . , bk) ∈ Stream(Digit)

s.t.

∀ r1, · · · , rn ∈ [−1, 1].

s1, . . . , sn ∈ Stream(Digit).

b1 ∈ B1, . . . , bk ∈ Bk.

(r1, s1), . . . , (rn, sn) ∈ ∼R+

→ (f(r1, . . . , rn, b1, · · · , bk), ŝ(s1, . . . , sn, b1, · · · , bk)) ∈ ∼R+

81

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Proof. Compute

ŝ(s1, . . . , sn, b1, · · · , bk) = d̂(s1, . . . , sn, b1, · · · , bk)

: ŝ(ŝ1(s1, . . . , sn, b1, · · · , bk),

ŝ2(s1, . . . , sn, b1, · · · , bk),
...,

ŝn(s1, . . . , sn, b1, · · · , bk),

b̂1(s1, . . . , sn, b1, · · · , bk),
...,

b̂k(s1, . . . , sn, b1, · · · , bk))

This obviously computes a stream. We show the assertion using ŝ in Theorem

6.1.4. Let

A = {(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk) | (r1, s1), . . . , (rn, sn) ∈ ∼R+

∧b1 ∈ B1 ∧ · · · ∧ Bk ∈ Bk}

We define

g : A → [−1, 1] × Stream(Digit)

g(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk) =

(f(r1, . . . , rn, b1, · · · , bk), ŝ(s1, . . . , sn, b1, · · · , bk))

next : A → A

next(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk) =

(r′1, · · · , r′n, ŝ1(s1, . . . , sn, b1, · · · , bk),
...

ŝn(s1, . . . , sn, b1, · · · , bk),

b̂1(s1, . . . , sn, b1, · · · , bk),
...

b̂k(s1, . . . , sn, b1, · · · , bk))

82

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

where r′1, · · · , r′n are s.t.

2 ∗ f(r1, . . . , rn, b1, · · · , bk) − d̂(s1, . . . , sn, b1, · · · , bk)

= f(r′1, . . . , r
′
n, b̂1(s1, . . . , sn, b1, · · · , bk),

...

b̂k(s1, . . . , sn, b1, · · · , bk))

and (r′i, ŝi(s1, . . . , sn, b1, · · · , bk)) ∈ ∼R+.

If g(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk) = (r, s)

then next(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk) = (r′1, . . . , r
′
n, s

′
1, . . . , s

′
n, b

′
1, · · · , b′k)

where
s′i = ŝi(s1, . . . , sn, b1, · · · , bk)

b′i = b̂i(s1, . . . , sn, b1, · · · , bk)

r = f(r1, . . . , rn, b1, · · · , bk)

head(s) = d̂(s1, . . . , sn, b1, · · · , bk)

2r − head(s) = f(r′1, . . . , r
′
n, b

′
1, · · · , b′k)

tail(s) = ŝ(s′1, . . . , s
′
n, b′1, · · · , b′k)

So

(2r − head(s), tail(s)) = g(next(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk))

Therefore, by Theorem 6.1.4 g(r1, . . . , rn, s1, . . . , sn, b1, · · · , bk) ∈ ∼R+.

6.2 The signed Digit Representations of Real

Numbers -1, 0 and 1

We determine the signed digit representation of real number 1. If the first digit

is

0, then 2 ∗ 1 − 0 = 2 6∈ [−1, 1],

1, then 2 ∗ 1 − 1 = 1 ∈ [−1, 1],

−1, then 2 ∗ 1 − (−1) = 3 6∈ [−1, 1].

So the only choice for the first digit is 1. We note that 2 ∗ 1 − 1 = 1. We

show 1 ∼ 0.11111 · · · by using Theorem 6.1.6. Take I = {0}, r0 = 1 and

83

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

s0 = (1, 1, 1, 1, . . .). We have 2r0 − head(s0) = r0, tail(s0) = s0. Therefore

(1, (1, 1, 1, · · ·)) ∈ ∼R+, 1 ∼ 0.11111 · · · .

Similarly for r = −1 if the first digit is

0, then 2 ∗ (−1) − 0 = −2 6∈ [−1, 1],

1, then 2 ∗ (−1) − 1 = −3 6∈ [−1, 1],

−1, then 2 ∗ (−1) − (−1) = −1 ∈ [−1, 1].

So the only choice for the first digit is −1. We note that 2 ∗ (−1) − (−1) = −1.

By the same argument as before we get −1 ∼ 0.(−1)(−1)(−1)(−1)(−1) · · · .

Now for r = 0 if the first digit is

0, then 2 ∗ 0 − 0 = 0 ∈ [−1, 1],

1, then 2 ∗ 0 − 1 = −1 ∈ [−1, 1],

−1, then 2 ∗ 0 − (−1) = 1 ∈ [−1, 1].

That shows that we can choose the first digit starting with 0, 1 and −1 respec-

tively. Starting with first digit 0 we get 2 ∗ 0 − 0 = 0. As before 0 ∼ 0.000

Next, we choose the first digit to be 1. We show 0 ∼ 0.1(−1)(−1)(−1) · · · by

using Theorem 6.1.6: let I = {0, 1},

r0 = 0, s0 = (1,−1,−1,−1, · · ·)
r1 = −1, s1 = (−1,−1,−1, · · ·)

Then 2r0 − head(s0) = r1, tail(s0) = s1, 2r1 − head(s1) = r1 and tail(s1) = s1.

Therefore (r0, s0) = (0, (1,−1,−1, · · ·)) ∈ ∼R+, 0 ∼ 0.1(−1)(−1) · · · . Finally

we choose as first digit to be −1. We show 0 ∼ 0.(−1)111 · · · by Theorem 6.1.6

I = {0, 1},
r0 = 0, s0 = (−1, 1, 1, 1, · · ·)
r1 = 1, s1 = (1, 1, 1, · · ·)

As before we get (0, (−1, 1, 1, 1, · · ·)) ∈ ∼R+, 0 ∼ 0.(−1)111 · · · .

84

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

6.3 The signed Digit Representations of Ratio-

nal Numbers

We embed the rational numbers in [−1, 1] into ∼R, i.e. we show ∀q ∈ Q ∩
[−1, 1].q ∈ ∼R. For q ∈ Q ∩ [−1, 1] we can choose the first digit to be

−1, if q ∈ [−1, 0] — 2 ∗ q − (−1) ∈ [−1, 1],

0, if q ∈ [−1/2, 1/2] — 2 ∗ q − 0 ∈ [−1, 1],

1, if q ∈ [0, 1] — 2 ∗ q − 1 ∈ [−1, 1].

Then by guarded recursion we can determine the second digit and so on.

So as choice for the first digit of q we can choose any d : Q ∩ [−1, 1] → Digit

s.t.

d(q) = −1, if q ∈ [−1,−1/2[

d(q) ∈ {−1, 0}, if q ∈ [−1/2, 0[

d(q) ∈ {−1, 0, 1}, if q = 0

d(q) ∈ {0, 1}, if q ∈]0, 1/2]

d(q) = 1, if q ∈]1/2, 1]

Then ∀q ∈ Q ∩ [−1, 1].2q − d(q) ∈ [−1, 1]. One choice is

d(q) =

{

−1, if q ∈ [−1, 0[

1, if q ∈ [0, 1].

Then by Theorem 6.1.8 we get A := Q ∩ [−1, 1] ⊆ ∼R. By Theorem 6.1.11 with

n = 0, k = 1, B1 = Q∩ [−1, 1], d̂(q) = d(q), b̂1(q) = 2q − d(q), we can compute for

q ∈ Q ∩ [−1, 1] a stream s s.t. (q, s) ∈ ∼R+.

6.4 Average

We are going to define an average function av : R × R → R and show av(∼R ×
∼R) ⊆ ∼R. We cannot apply guarded recursion directly in order to show av(∼R×
∼R) ⊆ ∼R. Instead we introduce a function avaux : R × R × Digit2 → R where

Digit2 = {−2,−1, 0, 1, 2} which can be defined by guarded recursion and show

85

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

avaux(∼R × ∼R × Digit2) ⊆ ∼R. In Section 6.4.2 we will use function avaux in

order to show av(∼R × ∼R) ⊆ ∼R.

6.4.1 Function avaux

The closure of ∼R under av is shown using avaux

avaux : R × R × Digit2 → R

avaux(a, b, i) = (a + b + i)/4

where Digit2 = {−2,−1, 0, 1, 2}, avaux([−1, 1] × [−1, 1] × Digit2) ⊆ [−1, 1]. We

show ∼R+ is closed under avaux:

Lemma 6.4.1. For any a, b ∈ ∼R, i ∈ Digit2 we have avaux(a, b, i) ∈ ∼R.

Furthermore, if (a, sa), (b, sb) ∈ ∼R+ we can compute from sa, b, sb, i a stream s

s.t. (avaux(a, b, i), s) ∈ ∼R+.

Proof. We use Theorem 6.1.7 (guarded recursion for ∼R). Let

A = {(a, sa, b, sb, i) | (a, sa), (b, sb) ∈ ∼R+, i ∈ Digit2}

f : A → [−1, 1] s.t. f(a, sa, b, sb, i) = avaux(a, b, i).

We need to determine functions d : A → Digit and next : A → A s.t. for

x ∈ A we have f(next(x)) = 2 ∗ f(x) − d(x). Then for (a, sa), (b, sb) ∈ ∼R+,

i ∈ Digit2 avaux(a, b, i) = f(a, sa, b, sb, i) ∈ ∼R.

Let for (a, sa, b, sb, i) ∈ A,

a0 = head(sa), a′ = 2a − a0

b0 = head(sb), b′ = 2b − b0

Then by

(a, sa) ∈ ∼R+, we get (a′, tail(sa)) ∈ ∼R+

86

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Similarly (b′, tail(sb)) ∈ ∼R+. Assume d′ ∈ Digit. We have

2 ∗ avaux (a, b, i) − d′ = 2 ∗
a′+a0

2
+

b′+b0
2

+i

4
− d′

= a′+b′+(a0+b0+2i−4d′)
4

= a′+b′+(j−4d′)
4

= a′+b′+i′

4

= avaux(a′, b′, i′)

where j = a0 + b0 + 2i and i′ = j − 4d′. If we have chosen d′ s.t. i′ ∈ Digit2 then

we can choose d(a, sa, b, sb, i) = d′, next(a, sa, b, sb, i) = (a′, tail(sa), b′, tail(sb), i′)

since
f(next(a, sa, b, sb, i)) = f(a′, tail(sa), b′, tail(sb), i′)

= avaux(a′, b′, i′)

= 2 ∗ avaux(a, b, i) − d′

= 2 ∗ f(a, sa, b, sb, i) − d(a, sa, b, sb, i)

The calculation of d′ is as follows: we have j∈[−6, 6] since a0, b0 ∈ {−1, 0, 1}
and i ∈ {−2,−1, 0, 1, 2}. Let d′ be chosen as

d′ =

0, if − 2 ≤ j ≤ 2;

1, if j > 2;

−1, if j < −2

Then i′ = j − 4d′ ∈ [−2, 2].

From sa, sb, i we can compute d′, tail(sa), tail(sb), i′ and have (a′, tail(sa)),

(b′, tail(sb)) ∈ ∼R+. Therefore by Theorem 6.1.11 we can compute the stream s

for avaux(a, b, i) from sa, sb, i.

6.4.2 Function av

Using avaux we will show av(∼R×∼R) ⊆ ∼R: let a, b ∈ ∼R and (a, a0 : sa), (b, b0 :

sb) ∈ ∼R+. Let a′ = 2a−a0, b′ = 2b− b0. Then (a′, sa), (b′, sb) ∈ ∼R+, a′, b′ ∈ ∼R.

We have

a =
a′ + a0

2
b =

b′ + b0

2

87

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Let i = a0 + b0. Then, by Lemma 6.4.1

av(a, b) = a+b
2

=
a′+a0

2
+

b′+b0
2

2
= a′+a0+b′+b0

4
= a′+b′+(a0+b0)

4

= avaux (a′, b′, i) ∈ ∼R

This gives as well a way to compute from sa, sb, i a stream for avaux(a′, b′, i).

Theorem 6.4.2. For any a, b ∈ ∼R we have av(a, b) ∈ ∼R. Furthermore if

(a, sa), (b, sb) ∈ ∼R+ we can compute from sa, sb a stream s s.t. (av(a, b), s) ∈
∼R+.

Proof. Let a, b ∈ ∼R, so (a, sa), (b, sb) ∈ ∼R+ for some sa and sb

a0 = head(sa), a′ = 2a − a0, then (a′, tail(sa)) ∈ ∼R+

b0 = head(sb), b′ = 2b − b0, then (b′, tail(sb)) ∈ ∼R+

Let i = a0 + b0. Then

av(a, b) = a+b
2

=
a′+a0

2
+

b′+b0
2

2
= a′+a0+b′+b0

4
= a′+b′+(a0+b0)

4

= avaux (a′, b′, i)

Therefore, av(a, b) = avaux(a′, b′, i) ∈ ∼R by Lemma 6.4.1.

From sa, sb we can compute a0, a
′, b0, b

′, tail(sa), tail(sb) and have (a′, tail(sa)),

(b′, tail(sb)) ∈ ∼R+. Therefore, we can by Theorem 6.1.11 compute the stream s

for av(a, b).

6.5 Multiplication

We define a multiplication function mp : R × R → R, mp(a, b) = a ∗ b. We show

mp(∼R × ∼R) ⊆ ∼R. In order to show this we introduce function

mpaux : R × R × R × Digit2 → R

mpaux(a, b, c, i) = (a ∗ b + c + i)/4

88

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

We show

mpaux(∼R × ∼R × ∼R × Digit2) ⊆ ∼R

Therefore for a, b, c ∈ ∼R, i ∈ Digit2, r ∈ [−1, 1]

r = mpaux(a, b, c, i) =
a ∗ b + c + i

4
∈ ∼R

Let a, b ∈ ∼R. Then mp(a, b) = 4 ∗mpaux(a, b, 0, 0). Let r = mpaux(a, b, 0, 0). If

we have

∀r ∈ ∼R.4r∈[−1, 1] → 4r ∈ ∼R

then we get mp(∼R × ∼R) ⊆ ∼R. So in order to show mp(∼R × ∼R) ⊆ ∼R,

we need to show mpaux(∼R × ∼R × ∼R × Digit2) ⊆ ∼R (Section 6.5.1) and

∀r ∈ ∼R.4r∈[−1, 1] → 4r ∈ ∼R (Section 6.5.3).

6.5.1 Function mpaux

Let
mpaux : R × R × R × Digit2 → R

mpaux(a, b, c, i) = (a ∗ b + c + i)/4

Note mpaux([−1, 1]3 × Digit2) ⊆ [−1, 1].

Lemma 6.5.1. For any a, b, c ∈ ∼R, i ∈ Digit2 we have mpaux(a, b, c, i) ∈ ∼R.

Furthermore, if (a, sa), (b, sb), (c, sc) ∈ ∼R+ we can compute from sa, sb, sc, i a

stream s s.t. (mpaux(a, b, c, i), s) ∈ ∼R+.

Proof. We use Theorem 6.1.7 (guarded recursion for ∼R). Let

A = {(a, sa, b, sb, c, sc, i) | (a, sa), (b, sb)(c, sc) ∈ ∼R+, i ∈ Digit2}

f : [−1, 1] → R s.t. f(a, sa, b, sb, c, sc, i)) = mpaux(a, b, c, i).

We need to determine functions d : A → Digit and next : A → A s.t. for

x ∈ A we have f(next(x)) = 2∗f(x)−d(x). Then for (a, sa), (b, sb), (c, sc) ∈ ∼R+,

i ∈ Digit2, mpaux(a, b, c, i) = f(a, sa, b, sb, c, sc, i) ∈ ∼R.

89

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Let (a, sa, b, sb, c, sc, i) ∈ A,

a0 = head(sa), a′ = 2a − a0

c0 = head(sc), c′ = 2c − c0

Then by

(a, sa) ∈ ∼R+, we get (a′, tail(sa)) ∈ ∼R+

Similarly (c′, tail(sc)) ∈ ∼R+. Assume d′ ∈ Digit. Then

2 ∗ mpaux (a, b, c, i) − d′ = 2 ∗
a′+a0

2
∗b+

c′+c0
2

+i

4
− d′

= (a′+a0)∗b+c′+c0+2i−4d′

4

= a′∗b+(a0∗b+c′+i)+c0+i−4d′

4

= a′∗b+4e+c0+i−4d′

4

where

e =
a0 ∗ b + c′ + i

4

Below we will show a0 ∗ b ∈ ∼R (Lemma 6.5.2). Let

e =
a0 ∗ b + c′ + i

4
= avaux(a0 ∗ b, c′, i) ∈ ∼R

Therefore, by Lemma 6.4.1 (e, se) ∈ ∼R+ for some se. Note we can compute se

from sa, sb, sc, i. Let

e0 = head(se), e′ = 2e − e0, then (e′, tail(se)) ∈ ∼R+

e1 = head(tail(se)), e′′ = 2e′ − e1, then (e′′, tail2(se)) ∈ ∼R+

So we have

e =
e′ + e0

2
=

e′′+e1

2
+ e0

2
=

2e0 + e1 + e′′

4

a0 ∗ b + c′ + i = 4e = 2e0 + e1 + e′′

90

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Then
2 ∗ mpaux (a, b, c, i) − d′ = a′∗b+4e+c0+i−4d′

4

= a′∗b+2e0+e1+e′′+c0+i−4d′

4

= a′∗b+e′′+2e0+e1+c0+i−4d′

4

= a′∗b+e′′+j−4d′

4

= a′∗b+e′′+i′

4

= mpaux(a′, b, e′′, i′)

where j = 2e0 + e1 + c0 + i and i′ = j − 4d′. If we have chosen d′ s.t. i′ ∈ Digit2

then we can choose above, d(a, sa, b, sb, c, sc, i) = d′, next(a, sa, b, sb, c, sc, i) =

(a′, tail(sa), b, sb, e′′, tail2(se), i′) since

f(next(a, sa, b, sc, c, sc, i)) = f(a′, tail(sa), b, sb, e′′, tail2(se), i′)

= mpaux(a′, b, e′′, i′)

= 2 ∗ mpaux(a, b, c, i) − d′

= 2 ∗ f(a, sa, b, sb, c, sc, i) − d(a, sa, b, sb, c, sc, i)

The calculation of d′ is as follows: we have j∈[−6, 6] since e0, e1, c0 ∈ {−1, 0, 1}
and i ∈ {−2,−1, 0, 1, 2}. Therefore, let d′ be chosen as

d′ =

0, if − 2 ≤ j ≤ 2;

1, if j > 2;

−1, if j < −2

Then i′ = j − 4d′ ∈ [−2, 2].

From sa, sb, sc, sc, i we can compute the first digit d′, a′, e, e′′, tail(sa), tail2(se),

i′, once we have shown Lemma 6.5.2 (see below), and have (a′, tail(sa)), (e, se),

(e′′, tail2(se)) ∈ ∼R+. Therefore, we can by Theorem 6.1.11 compute the stream

s for mpaux(a, b, c, i).

Lemma 6.5.2. For d ∈ Digit, b ∈ ∼R we have d ∗ b ∈ ∼R. Furthermore, if

(b, sb) ∈ ∼R+ we can compute from d and sb a stream for d ∗ b.

Proof. Let b ∈ Digit, A = {d ∗ b | b ∈ ∼R}, A ⊆ [−1, 1] since ∼R ⊆ [−1, 1]. If

91

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

b ∈ ∼R, (b, sb) ∈ ∼R+ then

2 ∗ (d ∗ b) − d ∗ head(sb) = d ∗ (2b − head(sb)) ∈ A

since (2b− head(sb)) ∈ ∼R. By Lemma 6.1.9 A ⊆ ∼R and by Theorem 6.1.11 we

can compute a stream s for d ∗ b from d and a stream for b.

As indicated at the beginning of Section 6.5 the second step for showing closure

of ∼R under multiplication is to show that for r ∈ ∼R ∩ [−1/4, 1/4] we have 4r

∈ ∼R. This will be shown using the function addR.

6.5.2 Function addR

Let
addR : Q × R → R

addR(u, a) = u + a

Lemma 6.5.3. For any u ∈ Q, a ∈ ∼R such that u + a∈[−1, 1] we have

addR(u, a) ∈ ∼R. Furthermore, if (a, sa) ∈ ∼R+ we can compute from u, sa a

stream s s.t. (addR(u, a), s) ∈ ∼R+.

Proof. We use Theorem 6.1.7 (guarded recursion for ∼R). Let

A = {(u, a, sa) | u ∈ Q, (a, sa) ∈ ∼R+, u + a∈[−1, 1]}

f : A → R s.t. f(u, a, sa) = mpaux(u, a).

We need to determine functions d : A → Digit and next : A → A s.t. for

x ∈ A we have f(next(x)) = 2 ∗ f(x) − d(x). Then for u ∈ Q, (a, sa) ∈ ∼R+ s.t.

u + a ∈ [−1, 1] we have addR(u, a) = f(u, a, sa) ∈ ∼R.

Let (u, a, sa) ∈ A,

a0 = head(sa), a′ = 2a − a0, then (a′, tail(sa)) ∈ ∼R+

a1 = head(tail(sa)), a′′ = 2a′ − a1, then (a′′, tail2(sa)) ∈ ∼R+

Then

a =
a0 + a′

2
a′ =

a1 + a′′

2

92

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

Assume d′ ∈ Digit. We have

2 ∗ addR(u, a) − d′ = 2 ∗ (u + a0+a′

2
) − d′

= 2u + a0 + a′ − d′

= 2u + a0 − d′ + a′

= addR(2u + a0 − d′, a′)

With next(u, a, sa) = (2u + a0 − d′, a′, tail(sa)) this is an instance of guarded

recursion (Theorem 6.1.7) provided

2(u + a) − d′ ∈[−1, 1]

So we need to compute d′ such that this relation holds.

Note that a ∈ R so we cannot directly compute d′. We need to carry out some

calculation first. We have

2(u + a) − d′ = 2(u + a0/2 + a1/4) + 2(a − a0/2 − a1/4) − d′ !∈ [−1, 1]

Let q = (u + a0/2 + a1/4), b = (a− a0/2− a1/4). So we need to determine d′ s.t.

2q + 2b − d′ ∈ [−1, 1]. We know

4b = 4 ∗ (a − a0/2 − a1/4) = a′′ ∈ [−1, 1]

so b ∈ [−1/4, 1/4]. Furthermore, 2(q+b) = 2(u+a) ∈ [−2, 2] since u+a ∈ [−1, 1]

we have q ∈ Q, so we can compare computationally q with other elements of Q.

If q ≥ 1/4 and d′ = 1 then

2q
︸︷︷︸

≥1/2

+ 2b
︸︷︷︸

≥−1/2
︸ ︷︷ ︸

≥0

− d′
︸︷︷︸

1

≥ −1

and

2(q + b)
︸ ︷︷ ︸

≤2

− d′
︸︷︷︸

1

≤ 1

93

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

If q ∈ [−1/4, 1/4] and d′ = 0 then

2q
︸︷︷︸

∈[−1/2,1/2]

+ 2b
︸︷︷︸

∈[−1/2,1/2]

− d′
︸︷︷︸

0

≥ ∈[−1, 1]

If q ≤ −1/4 and d′ = −1 then

2q
︸︷︷︸

≤−1/2

+ 2b
︸︷︷︸

≤1/2
︸ ︷︷ ︸

≤0

− d′
︸︷︷︸

−1

≤ 1

and

2(q + b)
︸ ︷︷ ︸

≥−2

− d′
︸︷︷︸

−1

≥ −1

So if we choose

d′ =

−1, if q < −1/4;

0, if − 1/4 ≤ q ≤ 1/4;

1, if 1/4 < q

then 2(u + a) − d′ ∈ [−1, 1].

If we choose d(u, a, sa) = d′, next(u, a, sa) = (2u + a0 − d′, a′, tail(sa)) then we

get next(u, a, sa) ∈ A,

f(next(u, a, sa)) = f(2u + a0 − d′, a′, tail(sa))

= addR(2u + a0 − d′, a′)

= 2 ∗ addR(u, a) − d′

= 2 ∗ f(u, a, sa) − d(u, a, sa)

and by the Theorem 6.1.7 the assertion follows.

From sa we can compute d′, 2u + a0− d′ and have (a′, tail(sa)) ∈ ∼R+. There-

fore, we can by Theorem 6.1.11 compute the stream s for addR(u, a, sa) from u

and a stream for sa.

94

Chapter 6. Signed Digit Representation of Real Numbers in Classical
Mathematics

6.5.3 Function mp

Lemma 6.5.4. For any r ∈ ∼R s.t. 4r ∈ [−1, 1] we have 4r ∈ ∼R. Furthermore,

if (r, sr) ∈ ∼R+ we can compute from sr a stream s s.t. (4r, s) ∈ ∼R+.

Proof. Let r ∈ ∼R, so (r, sr) ∈ ∼R+ for some sr

r0 = head(sr), r′ = 2r − r0, then (r′, tail(sr)) ∈ ∼R+

r1 = head(tail(sr)), r′′ = 2r′ − r1, then (r′′, tail2(sr)) ∈ ∼R+

Therefore,

r =
r0+

r1+r′′

2

2
= 2r0+r1+r′′

4

2r0 + r1 + r′′ = 4r ∈ [−1, 1]

Therefore, 4r = addR(2r0 + r1, r
′′) ∈ ∼R by Lemma 6.5.3.

From sr we can compute r0, r1, tail2(sr) and have (r′′, tail2(sr)) ∈ ∼R+. There-

fore, we can by Theorem 6.1.11 compute computationally the stream s for 4r.

Theorem 6.5.5. For a, b ∈ ∼R we have a∗b ∈ ∼R. Furthermore, if (a, sa), (b, sb) ∈
∼R+ we can compute from sa, sb a stream s s.t. (mp(a, b), s) ∈ ∼R+.

Proof.

mp(a, b) = a ∗ b = 4 ∗ a ∗ b + 0 + 0

4
= 4 ∗ mpaux(a, b, 0, 0) ∈ ∼R

by Lemma 6.5.1 and 6.5.4 since a∗b ∈ [−1, 1]. Furthermore, by the same lammata

we can compute a stream for a ∗ b.

95

Chapter 7

Signed Digit Representation of

Real Numbers in Agda

7.1 SDR

The signed digits consist of 0, 1,−1 and are defined in Agda as follows

data Digit : Set where

(d)0 : Digit

(d)1 : Digit

(d)−1 : Digit

The infinite sequences, i.e. streams of digits are described as follows

a = {a0 : a1 : a2 : · · · | ∀n ∈ N.an ∈ Digit} : Stream

We can define Stream in Agda by the codata type

codata Stream (A : Set) : Set where

:: : A → Stream A → Stream A

96

Chapter 7. Signed Digit Representation of Real Numbers in Agda

We want to extract functions

average : Stream Digit → Stream Digit → Stream Digit

multi : Stream Digit → Stream Digit → Stream Digit

such that if r : R has a signed digit representation 0.a0a1a2 · · · given by a stream

a and s : R has a signed digit representation 0.b0b1b2 · · · given by a stream b,

then r ∗ s : R or ((r + s)/2) : R respectively have a signed digit representation

0.c0c1c2 · · · given by a stream c = multi a b or c = average a b, respectively. For

this purpose we introduce in Agda the set of ∼R of real numbers having signed

digit representation, which corresponds to the mathematical definition of ∼R in

Section 6.1; see also Subsection 7.2 below for the definition in Agda. We prove

in Agda the Theorems corresponding to Theorem 6.4.3 and 6.5.5

∼Raverage : (r s : R) → ∼R r → ∼R s → ∼R ((r ∗ s)/2)

∼Rmulti : (r s : R) → ∼R r → ∼R s → ∼R (r ∗ s)

and we define functions ∼RtoStream,which define for r s.t. ∼R r holds the stream

contained in it (StreamtoReal, Streamto∼R is the inverse). We define

∼RtoStream : (r : R) → ∼R r → Stream Digit

StreamtoReal : Stream Digit → R

Streamto∼R : (s : Stream Digit) → ∼R (StreamtoReal s)

such that for every s : Stream Digit, and real number r such that there exists

p : ∼R r we have StreamtoReal (∼RtoStream r p) == r (using postulate) and we

could prove (left for future work)

∼RtoStream (StreamtoReal s) (Streamto∼R s) ≈ s

where ≈ is bisimilarity. We don’t define the notion of bisimilarity since it is not

relevant for the rest of this thesis. We say s represents r if for some p : ∼R r we

97

Chapter 7. Signed Digit Representation of Real Numbers in Agda

have ∼RtoStream r p = s. Then we define

multi : Stream Digit → Stream Digit → Stream Digit

multi s s′ = ∼RtoStream (StreamtoReal s ∗ StreamtoReal s′)

(∼Rmulti

(StreamtoReal s)

(StreamtoReal s′)

(Streamto∼R s)

(Streamto∼R s′))

We know that multi is correct, namely if s represents r and s′ represents r′

then (multi s s′) represents r ∗ r′. The same can be done for average s s′.

Furthermore, for some r, r′ : R p : ∼R r and p′ : ∼R r′ we can compute the signed

digits representing r ∗ r′, (r + r′)/2, respectively as

∼RtoStream (∼Rmulti r r′ p p′)

or
∼RtoStream (∼Raverage r r′ p p′)

∼R stream is not printable (because it is infinite) so we finitize it and compute

list representations of the first n digits. We define

StreamToListn : {A : Set} → Stream A → (n : N) → List A

such that StreamToListn l n are the first n elements of l. For instance,

StreamToListn(∼RtoStream (embedQ→R q29/39) ∼Rq29/39) (5 +1)

computes the list of the first 6 digits of 29/39 where q29/39 is the rational number

29/39, ∼Rq29/39 is the proof of signed digits representing 29/39 (see next section)

and (5 +1) is natural number 6 (+1 : N → N+ is the constructor of the nonzero

natural numbers N+). Since 29/39 ∼ 0.101111 . . . it returns, as expected it

98

Chapter 7. Signed Digit Representation of Real Numbers in Agda

returns the list

(d)1 :: ((d)0 :: ((d)1 :: ((d)1 :: ((d)1 :: ((d)1 :: [])))))

We can define the above in Agda as follows

headS : {A : Set} → Stream A → A

headS (y :: y′) = y

tailS : {A : Set} → Stream A → Stream A

tailS (y :: y′) = y′

We use N+ instead of N. toList s n gives the list of first n digits of s.

toList : {A : Set} → Stream A → N+ → List A

toList (y :: l) (zero +1) = y :: []

toList (y :: l) (suc y1 +1) = y :: toList l (y1 +1)

We convert now streams of digits into a real number. This is done by taking

for a stream (0.a0 · · ·an−1)n∈N+ which is a Cauchy sequence. By completeness of

the real number it has a limit point r. Let g [a0, · · · , an−1] be the rational number

0.a0 · · ·an−1. Then g (y :: y′) =
y

1
+g y′

2
: Q.

g : List Digit → Q

g [] = i0 %′ +1

g (y :: y′) = ((embedD→Z y %′ +1) +Q g y′) /Q (i+2 %′ +1)

h s is the Cauchy sequence (an)n∈N+ where an = 0.s0 · · · sn−1 if s = s0 :: s1 ::

s2 :: · · · . We don’t prove that (h l n)n∈N+ is Cauchy but postulate it. Note: we

axiomatize formulas and equations with no computational content even though

they would require real proofs.

h : Stream Digit → N+ → R

h l = \n → embedQ→R (g (toList l n))

postulate

axiomS : (l : Stream Digit)

→ (n m N : N+)

99

Chapter 7. Signed Digit Representation of Real Numbers in Agda

→ n ≥+ N

→ m ≥+ N

→ | h l n − h l m | < 2ˆ (neg N)

We obtain the real number represented by a stream s0 :: s1 :: s2 :: · · · as the

limit of the Cauchy sequence (an)n∈N as above, which we obtain by the complete-

ness of R. Note the completeness of R is represented by the axioms limitpoint

and convergence.

StreamtoReal : Stream Digit → R

StreamtoReal = \l → limitpoint (h l) (axiomS l)

converge function shows that (h l m)m∈N+converges to its limit point

converg : (l : Stream Digit)

→ (m k : N+)

→ m ≥+ k

→ | h l m − limitpoint (h l) (axiomS l) | < 2ˆ (neg k)

converg l = convergence (h l) (axiomS l)

Streamto∼R : (l : Stream Digit) → (r : R) → r == StreamtoReal l → ∼R r

Streamto∼R l r p = cons (headS l) r w q

where

postulate

w1 : r2 ∗ r − embedD (headS l) == StreamtoReal (tailS l)

Note that w1 above would really need a proof, since it has no computational

content we postulate it.

pl : − r1 ≤ r −− easy

pr : r ≤ r1 −− easy

q : r ∈[−1, 1]

q = and pl pr

100

Chapter 7. Signed Digit Representation of Real Numbers in Agda

w : ∼R (r2 ∗ r − embedD (headS l))

w = Streamto∼R (tailS l) (r2 ∗ r − embedD (headS l)) w1

Here for w1, pl and pr we use p : r == StreamtoReal l therefore r ∈[−1, 1] and
r2 ∗ r − embedD (headS l) == StreamtoReal (tailS l).

∼RtoStream : (r : R) → ∼R r → Stream Digit
∼RtoStream r (cons d .r y y′) = d :: ∼RtoStream (r2 ∗ r − embedD d) y

We give the operation which from two streams computes the stream repre-

senting its product. It uses ∼mp which is given in Section 7.4.4

multi : Stream Digit → Stream Digit → Stream Digit

multi l s = ∼RtoStream (StreamtoReal l ∗ StreamtoReal s)

(∼mp (StreamtoReal l)

(StreamtoReal s)

(StreamtoReal l ∗ StreamtoReal s)

(Streamto∼R l (StreamtoReal l) (refl== (StreamtoReal l)))

(Streamto∼R s (StreamtoReal s) (refl== (StreamtoReal s)))

(refl== (StreamtoReal l ∗ StreamtoReal s)))

Similary average computes from two streams computes the stream representing

its average. It uses ∼av which is given in Section 7.3

average : Stream Digit → Stream Digit → Stream Digit

average l s = ∼RtoStream ((StreamtoReal l + StreamtoReal s) ∗ r1/2)

(∼av (StreamtoReal l)

(StreamtoReal s)

((StreamtoReal l + StreamtoReal s) ∗ r1/2)

(Streamto∼R l (StreamtoReal l) (refl== (StreamtoReal l)))

(Streamto∼R s (StreamtoReal s) (refl== (StreamtoReal s)))

(refl== (StreamtoReal l + StreamtoReal s) ∗ r1/2)

postulate

axiomS= : (r : R) → (p : ∼R r) → StreamtoReal (∼RtoStream r p) == r

We postulate that if we form from r : R s.t. ∼R holds a stream and convert it

back into a real number, we obtain r. Note that: we add an axiom axiomS=

101

Chapter 7. Signed Digit Representation of Real Numbers in Agda

which has no computational content. This axiom would require a complicated

proof but is as an axiom acceptable, i.e. fulfils our conditions. This was not done

because of lack of time. It’s easy to prove informally that this axiom holds. With

this axiom we get

StreamtoReal (multi s, s′) = StreamtoReal s ∗ StreamtoReal s′

7.2 SDR as Codata Type ∼R

We have seen in Section 6.1 that a real number r has a signed digit representation

(SDR). In this chapter ∼R will denote the Agda representation of real number

with SDR.∼R is defined in Agda as follows

embedD : Digit → R

embedD (d)0 = r0

embedD (d)1 = r1

embedD (d)−1 = − r1

∈[−1, 1] : R → Set

∈[−1, 1] = −r1 ≤ r ∧ r ≤ r1

codata ∼R : R → Set where

cons : (d : Digit)(r : R)

→ ∼R (r2 ∗ r − embedD d)

→ r ∈[−1, 1]

→ ∼R r

∼R is the largest set such that for all r ∈ ∼R we have r ∈ [−1, 1] and there exists

a (first) digit a0 s.t. 2r − a0 ∈ ∼R. So ∼R is just the representation of ∼Rmath (

in this Chapter we write ∼Rmath for ∼R as in the Definition 6.1.3) in Agda.

102

Chapter 7. Signed Digit Representation of Real Numbers in Agda

∼R contains a stream if p : ∼R r then p has the form

p = cons d0 r0 p0 q0

= cons (d0 r0 (cons d1 r1 (cons d2 r2 (cons · · ·) p2 q2) p1 q1) p0 q0)

where

di are digits

r = r0

r1 = 2r0 − d0

r2 = 2r1 − d1

...

qi : ri ∈ [−1, 1]

It contains the stream d0d1d2d3 · · · which we obtain by defining

∼RtoStream r (cons d .r p q) = d :: ∼RtoStream (r2 ∗ r − embedD d) p

which is an element of Stream by coinduction. p : ∼R r is a proof that r has a

signed digit representation and we call it a proof that p has an SDR. We introduce

a notation ∼ as follows

r ∼ 0.a0a1a2a3 · · ·

if and only if there exists p : ∼R r such that the digit stream contained in p is

a0 :: a1 :: a2 :: a3 :: · · ·

7.2.1 Proof of ∼R (− r1), ∼R r0, ∼R r1

We will define ∼R0 : ∼R r0, ∼R1 : r1 and ∼R−1 : ∼R (− r1). We start proving
∼R r1 and ∼R (− r1) first. We have seen in Section 6.2 that 1 ∼ 0.11111 · · · . We

define ∼R1 in Agda as follows

∼R1 : ∼R r1
∼R1 = ∼R1aux r1 (refl== r1)

where

p1 : (r : R) → r == r1 → r2 ∗ r − embedD (d)1 == r1

p1 r p = . . .

103

Chapter 7. Signed Digit Representation of Real Numbers in Agda

p2 : (r : R) → r == r1 → r ∈[−1, 1]

p2 r p = . . .

∼R1aux : (r : R) → r == r1 → ∼R r
∼R1aux r p = cons (d)1 r (∼R1aux (r2 ∗ r − embedD (d)1) (p1 r p))

(p2 r p)

(again, instead of showing full code here we use . . . to denote the rest of code)

which is a proof of signed digit stream of real number 1. It shows that ∼R r1

holds. For technical reasons we define ∼R1aux as a transfer∼R lemma which

states that ∀r : R.r == r1 → ∼R r1 holds, since otherwise guarded recursion

doesn’t hold. The reason is that we define ∼R1aux corecursively and refer to a

proof that ∼R1aux (r2 ∗ r− embedD (d)1) p holds which we get from the fact that

p : r2 ∗ r − embedD (d)1 == r1. A naive definition of ∼R r1 would be

∼R1′ : ∼R r1
∼R1′ = cons (d)1

r1 p p2

where

p1 : r1 == r2 ∗ r1 − embedD (d)1

p1 = . . .

p2 : r1 ∈[−1, 1]

p2 = . . .

p : ∼R (r2 ∗ r1 − embedD (d)1)

p = transfer== (\z → ∼R z) r1 (r2 ∗ r1 − embedD (d)1) p1 ∼R1′

Here, the use of transfer== shows that p : ∼R r1 and q : (r2∗r1−embedD (d)1) ==
r1 implies p : ∼R (r2 ∗ r1 − embedD (d)1). This is not an example of guarded re-

cursion since we apply an elimination rule (namely transfer) to the corecursive

call. Instead, we define a lemma which has as result the result of the transfer==

function applied to a proof of ∼R 1′, i.e.

∼R1aux : (r : R) → r == r1 → ∼R r

104

Chapter 7. Signed Digit Representation of Real Numbers in Agda

Now we can refer on the recursive call to

r2 ∗ r − embedD (d)1

and a proof that, if r == r1, then r2 ∗ r − embedD (d)1 == r1. Then we get
∼R1 = ∼R1aux r1 (refl==r1).

In Section 6.2 we have seen −1 ∼ 0.(−1)(−1)(−1)(−1)(−1) · · · . We define
∼R−1 in Agda as follows

∼R−1 : ∼R (− r1)
∼R1 = ∼R−1aux (− r1) (refl== (− r1))

where

p1 : (r : R) → r == − r1 → r2 ∗ r − embedD (d)−1 == − r1

p1 r p = . . .

p2 : (r : R) → r == − r1 → r ∈[−1, 1]

p2 r p = . . .

∼R−1aux : (r : R) → r == − r1 → ∼R r
∼R−1aux r p = cons (d)−1 r (∼R1aux (r2 ∗ r − embedD (d)−1) (p1 r p))

(p2 r p)

Here, ∼R−1aux is defined as the transferred ∼R (−1) lemma again.

We have seen in Section 6.2 that there are at least 3 signed digit representa-

tions of 0 (in fact there are more), namely 0 ∼ 0.00000 · · · , 0 ∼ 0.1(−1)(−1)(−1) · · ·
and 0 ∼ 0.(−1)111 · · · . We first define ∼R0 : ∼R r0, which starts with first digit

0 (we get 0 ∼ 0.00000 · · ·) as follows

∼R0 : ∼R r0
∼R0 = ∼R0aux r0 (refl==r0)

where

p1 : ((r : R)) → r == r0 → r2 ∗ r − embedD (d)0 == r0

p1 r p = . . .

p2 : (r : R) → r == r0 → r ∈[−1, 1]

105

Chapter 7. Signed Digit Representation of Real Numbers in Agda

p2 r p = . . .

∼R0aux : (r : R) → r == r0 → ∼R r
∼R0aux r p = cons (d)0 r (∼R1aux (r2 ∗ x − embedD(d)0) (p1 r p))

(p2 r p)

Next, we define ∼R01 : ∼R r0 which starts with first digit 1, (note that 2*0-

1=-1 so we get 0 ∼ 0.1a0a1a2 · · · . In fact ai = −1 so 0 ∼ 0.1(−1)(−1) · · ·) as

follows. We will use the proof ∼R−1 : ∼R (− r1) to show ∼R (r2 ∗ r0 − r1)

∼R01 : ∼R r0
∼R01 = cons (d)1 p (p2 r0 (refl==r0))

where

p1 : ((r : R)) → r == r0 → r2 ∗ r − embedD (d)1 == − r1

p1 r p = . . .

p2 : (r : R) → r == r0 → r ∈[−1, 1]

p2 r p = . . .

p : ∼R (r2 ∗ r0 − r1)

p = transfer∼R (− r1) ∼R−1 (r2 ∗ r0 − r1) (p1 r0 (refl==r0))

where we use the lemma transfer∼R which is defined in next section.

We define ∼R0−1 : ∼R r0 which starts with first digit −1 (we get 0 ∼ 0.(−1)a0a1a2 · · ·
where 1 ∼ 0.a0a1 · · · , so 0 ∼ 0.(−1)111 · · ·) as follows. We will use the proof
∼R−1 : ∼R (− r1) to show ∼R (r2 ∗ r0 − (− r1))

∼R0−1 : ∼R r0
∼R0−1 = cons (d)−1 p (p2 r0 (refl==r0))

where

p1 : ((r : R)) → r == r0 → r2 ∗ r − embedD (d)−1 == r1

p1 r p = . . .

p2 : (r : R) → r == r0 → r ∈[−1, 1]

p2 r p = . . .

106

Chapter 7. Signed Digit Representation of Real Numbers in Agda

p : ∼R (r2 ∗ r0 − (− r1))

p = transfer∼R r1 ∼R1 (r2 ∗ r0 − (− r1)) (p1 r0 (refl==r0))

7.2.2 The Function transfer∼R

We need to define transfer∼R which proves that if ∼R r, r == s then we get ∼R s,

since we cannot just use the function transfer== by case distinction on s == r

since this would violate our restrictions on the Agda code (see Chapter 5 where

one of the conditions is that conditions on equalities need to have as result types

equalities or postulated types). In fact, if we simply use the function transfer==

to get ∼R s, the extracted program doesn’t normalise. First we need to define a

extraction function ∼R′aux which states that if we have a proof of ∼R r, then we

get its first digit d and a proof of ∼R (r2 ∗ r − embedD d). We define first the

product of a set A and a set B depending on A together with projections πl and

πr. Now ∼R′aux is defined as follows

data ×(d) (A : Set)(B : A → Set) : Set where

π : (a : A) → B a → A ×(d) B

πl : {A : Set}{B : A → Set} → A ×(d) B → A

πl (π (d) y) = (d)

πr : {A : Set}{B : A → Set} → (x : A ×(d) B) → B (πl x)

πr (π (d) y) = y

∼R′aux : (r : R) → ∼R r → Digit ×(d) (\d → ∼R (r2 ∗ r − embedD d))
∼R′aux r (cons d .r y y′) = π d y

∼R′aux r p = π d y where d is the head of the steam contained in p and y is

a proof of ∼R (r2 ∗ r − embedD d). Then, if we have ∼R r, we can retrieve head

and tail of ∼R r by the functions head and tail which are defined as follows

107

Chapter 7. Signed Digit Representation of Real Numbers in Agda

head : (r : R) → ∼R r → Digit

head r Rr = πl (∼R′aux r Rr)

tail : (r : R) → ∼R r → R

tail r Rr = r2 ∗ r − embedD (head r Rr)

∼tail : (r : R) → (Rr : ∼R r) → ∼R (tail r Rr)
∼tail r Rr = πr (∼R′aux r Rr)

Here, tail r p is the real number r2 ∗ r − embedD (head r p) and ∼tail r p is the

proof of ∼R (tail r p), i.e. a proof of ∼R (r2 ∗ r − embedD (head r p)).

Now we can define the function transfer∼R as follows by guarded recursion

on ∼R r

transfer∼R : (r : R) → ∼R r → (s : R) → s == r → ∼R s

transfer∼R r Rr s p = cons δ s ∼Rs′ pp

where

δ : Digit

δ = head r Rr

pp : s ∈[−1, 1]

pp = . . .

p2 : r2 ∗ s − embedD δ == r2 ∗ r − embedD δ

p2 = . . .

∼Rs′ : ∼R (r2 ∗ s − embedD δ)
∼Rs′ = transfer∼R (tail r Rr) (∼tail r Rr) (r2 ∗ s − embedD δ) p2

7.2.3 The Function ∼RembedQ

(This section corresponds to Section 6.3.)

We have shown how to define ∼R r0,∼R r1 and ∼R (− r1). Now we prove

108

Chapter 7. Signed Digit Representation of Real Numbers in Agda

∼R r for all rational numbers in the interval [-1,1]. This is done by the function
∼RembedQ.

Before we introduce the ∼RembedQ function we introduce a function 2q−d

∈[−1, 1]−Prod which determines for q : Q s.t. q ∈[−1, 1] a pair (π δ p) s.t. δ :

Digit and p : 2q − δ ∈[−1, 1]. The function 2q−d∈[−1, 1]−Prod determines for

the embedding of the rational number q into R which is in the interval [-1,1] a

digit d such that 2q − d ∈[−1, 1]. In Section 6.3 we have seen that we can choose

as first digit

−1, if q ∈ [−1, 0]

0, if q ∈ [−1/2, 1/2]

1, if q ∈ [0, 1]

and get then 2q−d ∈[−1, 1]. The function 2q−d∈[−1, 1]−Prod is defined in Agda

as follows

embedD→Z : Digit → Z

embedD→Z (d)0 = i0

embedD→Z (d)1 = i+1

embedD→Z (d)−1 = i−1

q∈[−1, 0]∨q∈[−1/2, 1/2]∨q∈[0, 1] function will check whether q ≥ 0 or q < 0 :

if q ≥ 0 it will return a proof of embedQ→R q ∈ [0, 1] ,

if q < 0 it will return a proof of embedQ→R q ∈ [−1, 0] .

q∈[−1, 0]∨q∈[−1/2, 1/2]∨q∈[0, 1] : (q : Q)

→ embedQ→R q∈[−1, 1]

→ (embedQ→R q∈[−1, 0] ∨
embedQ→R q∈[−1/2, 1/2]) ∨
embedQ→R q∈[0, 1]

q∈[−1, 0]∨q∈[−1/2, 1/2]∨q∈[0, 1] q p = . . .

Note that case q∈[−1/2, 1/2] is not chosen. (In order to determine

functions which might behave better this choice could be modified)

109

Chapter 7. Signed Digit Representation of Real Numbers in Agda

2q−d∈[−1, 1]−Prod : (q : Q)

→ embedQ→R q ∈[−1, 1]

→ Digit × (d)(\d
→ (r2 ∗ embedQ→R q − embedD d) ∈[−1, 1])

2q−d∈[−1, 1]−Prod q p = aux q (q∈[−1, 0]∨q∈[−1/2, 1/2]∨q∈[0, 1] q p)

where

aux : (q : Q)

→ (embedQ→R q∈[−1, 0] ∨
embedQ→R q∈[−1/2, 1/2]) ∨
embedQ→R q∈[0, 1]

→ Digit × (d)(\d
→ (r2 ∗ embedQ→R q − embedD d) ∈[−1, 1])

aux q (inl (inl ll)) = π (d)−1 (and v10 v11)

where

v10 : − r1 ≤ (r2embedQ→R q − embedD (d)−1)

v10 = . . .

v11 : (r2embedQ→R q − embedD (d)−1) ≤ r1

v11 = . . .

aux q (inl (inr lr)) = π (d)0 (and v12 v13)

where

v12 : − r1 ≤ (r2embedQ→R q − embedD (d)0)

v12 = . . .

v13 : (r2embedQ→R q − embedD (d)0) ≤ r1

v13 = . . .

aux q (inr rr) = π (d)1 (and v14 v15)

where

v14 : − r1 ≤ (r2embedQ→R q − embedD (d)1)

v14 = . . .

v15 : (r2embedQ→R q − embedD (d)1) ≤ r1

110

Chapter 7. Signed Digit Representation of Real Numbers in Agda

v15 = . . .

Now we can define the embedding ∼RembedQ of Q ∩ [−1, 1] into ∼R in Agda

as follows

∼RembedQ : (q : Q)

→ (r : R)

→ embedQ→R q ∈[−1, 1]

→ r == embedQ→R q

→ ∼R r
∼RembedQ q r p p′ = cons δ r 1h pr

where

δ : Digit

δ = πl (2q−d∈[−1, 1]−Prod q p)

pr : r ∈[−1, 1]

pr = . . .

p2 : embedQ→R (pos +2 %′ +1 ∗Q q −Q embedD→Z δ %′ +1)

∈[−1, 1]

p2 = . . .

w3 : r2 ∗ r − embedD δ ==

embedQ→R (pos +2 %′ +1 ∗Q q −Q embedD→Z δ %′ +1)

w3 = . . .

1h : ∼R (r2 ∗ r − embedD δ)

1h = ∼RembedQ (pos +2 %′ +1 ∗Q q −Q embedD→Z δ %′ +1)

(r2 ∗ r − embedD δ) p2 w3

where pr is the proof r is in the interval [-1,1] which follows from r == embedQ→R q

and embedQ→R q ∈[−1, 1]. We can get p2 by πr (2q−d∈[−1, 1] −Prod q p)

which shows that 2q − δ ∈[−1, 1]. w3 is just equational reasoning.

111

Chapter 7. Signed Digit Representation of Real Numbers in Agda

7.2.4 Examples of Function ∼RembedQ

With the embedding function ∼RembedQ we can define

∼Rq1/2 : ∼R (embedQ→R q1/2)

where q1/2 is the rational number 1/2 and

∼Rq2/3 : ∼R (embedQ→R q2/3)

where q2/3 is the rational number 2/3 and

∼Rq−2/3 : ∼R (embedQ→R q−2/3)

where q−2/3 is the rational number −2/3, such that

q1/2 : Q

q1/2 = i+1 %′ +2

∼Rq1/2 : ∼R (embedQ→R q1/2)
∼Rq1/2 = ∼RembedQ (q1/2) (r1 ∗ r1/2) w (refl== (r1 ∗ r1/2))

where

w : r1 ∗ r1/2 ∈[−1, 1]

w = . . .

We have ∼R (embedQ→R q1/2) but for ∼R (r1/2) we need to adopt ∼Rq1/2

and apply the transfer∼R function in order to prove that r1∗ r1/2 == r1/2. Then

we get ∼R1/2 : ∼R (r1/2) as follows

r1/2 : R

r1/2 = 2ˆ (neg +1)

∼R1/2 : ∼R (r1/2)
∼R1/2 = transfer∼R (r1 ∗ r1/2) ∼Rq1/2 r1/2 p

where

p : r1/2 == r1 ∗ r1/2

p = symm== (r1 ∗ r1/2) r1/2

112

Chapter 7. Signed Digit Representation of Real Numbers in Agda

(trans== (r1 ∗ r1/2) (r1/2 ∗ r1) r1/2

(symm∗ r1 r1/2) (axiom∗1 r1/2))

Similarly we get q2/3 : Q, ∼Rq2/3 : ∼R(embedQ→R q2/3) and q−2/3 : Q,
∼Rq−2/3 : ∼R(embedQ→R q−2/3) and obtain ∼R1/3 : ∼R (r1/3) and ∼R−1/3 :
∼R (− r1/3).

We have demonstrated how to define ∼R r for r being the embedding of

q : Q into R and r ∈[−1, 1]. In the next section we are going to define operators

f : R → R → R, where f is the average and multiplication functions, and give

proofs that for r s : R s.t. ∼R r, ∼R s we get ∼R (f r s).

7.3 ∼R Is Closed Under the Average Function

av

(This section corresponds to Section 6.4.)

Ideally we would like to show ∼R is closed under addition, i.e. if ∼R r and
∼R s then ∼R (r + s). However, this is only possible if r + s is in the interval

[−1, 1]. So instead, we define closure of ∼R under the average function

av : R → R → R

av r s = (r + s) ∗ r1/2

and note that the interval [-1,1] is closed under av. So we prove for p : ∼R r,

q : ∼R s
∼av r s p q : ∼R (av r s)

As usual in order to deal with the problem of equality result type we define:

∼av : (r s t : R) → ∼R r → ∼R s → t == (r + s) ∗ r1/2 → ∼R t

We will introduce the function avaux : R → R → i ∈ {−2,−1, 0, 1, 2} → R such

that

avaux r′ s′ i =
r′ + s′ + i

4

113

Chapter 7. Signed Digit Representation of Real Numbers in Agda

We introduce a new data type Digit2 for i such that i : Digit2 as follows

data Digit2 : Set where

(d)20 : Digit2

(d)21 : Digit2

(d)22 : Digit2

(d)2−1 : Digit2

(d)2−2 : Digit2

So, if we have

∼avaux : (r′ s′ : R) → ∼R r′ → ∼R s′ → (i : Digit2) → ∼R (avaux r′ s′ i)

for some r′, s′, p′, q′, i then, as in Section 6.4, we can define ∼av r s p q =
∼avaux r′ s′ p′ q′ i. ∼avaux can be defined by applying the same technique

(guarded recursion) as when defining transfer∼R.

7.3.1 ∼R Is Closed Under the Function avaux

(This section corresponds to Section 6.4.1)

We want to compute avaux r s i = (r + s + i)/4 and its digit stream for some

a, b : R, p : ∼R a and q : ∼R b. We introduce the function avaux for computing

(a + b + i)/4 as follows

embedD2 : Digit2 → R

embedD2 (d)20 = r0

embedD2 (d)21 = r1

embedD2 (d)2−1 = − r1

embedD2 (d)22 = r2

embedD2 (d)2−2 = − r2

avaux : R → R → Digit2 → R

avaux r s i = (r + s + (embedD2 i)) ∗ r1/4

avaux∈[−1, 1] : (r s : R)(i : Digit2)

114

Chapter 7. Signed Digit Representation of Real Numbers in Agda

→ r ∈[−1, 1]

→ s ∈[−1, 1]

→ (embedD2 i) ∈[−2, 2]

→ (avaux r s i) ∈[−1, 1]

avaux∈[−1, 1] r s i (and rl rr) (and sl sr) (and il ir) = and v v′

where

v : − r1 ≤ avaux r s i

v = . . .

v′ : avaux r s i ≤ r1

v′ = . . .

Clearly i is in the interval [−2, 2] and we know that a, b are in the interval [−1, 1].

Therefore, (avaux a b i) is in the interval [−1, 1] so we get for r′ = (avaux a b i)

a proof q : r′ ∈[−1, 1]. Our next goal is to prove that ∼R is closed under the

avaux function i.e. to find the first digit f and a proof p : ∼R (2r′ − f) s.t. for

r′ = avaux a b i we have

cons f r′ p q : ∼R r′

In Section 6.4.1 we denoted the first digit by d′. We use here f instead in order

to be in accordance with our Agda code written. We give the following proof:

∼avaux : (r s r′ : R)(i : Digit2) → ∼R r → ∼R s → r′ == avaux r s i → ∼R r′

∼avaux r s r′ i (cons d .r Rr pr) (cons e .s Rs ps) p = cons f r′ 1h p′

where 1h is a proof of ∼R (2r′ − f) and p′ is a proof of r′ ∈[−1, 1]. So we want to

show that avaux a b i = (f + c)/2 s.t. c is of the form avaux (· · ·). Then we can

define ∼avaux by guarded recursion. In Section 6.4.1 we have seen the following:

If a0, b0, are the first digits of a, b

a0 = head(sa), a′ = 2a − a0

b0 = head(sb), b′ = 2b − b0

115

Chapter 7. Signed Digit Representation of Real Numbers in Agda

and j = a0 + b0 + 2i,

f =

0, if − 2 ≤ j ≤ 2;

1, if j > 2;

−1, if j < −2

Then i′ = j − 4f ∈ [−2, 2] and 2 ∗ avaux (a, b, i)− f = avaux(a′, b′, i′). This proof

is represented in Agda as follows

embedD2→Z : Digit2 → Z

embedD2→Z (d)20 = i0

embedD2→Z (d)21 = i+1

embedD2→Z (d)22 = i+2

embedD2→Z (d)2−1 = i−1

embedD2→Z (d)2−2 = i−2

embedN+→R : N+ → R

embedN+→R (0 +1) = r1

embedN+→R (suc y +1) = embedN+→R (y +1) + r1

embedZ→R : Z → R

embedZ→R (pos y) = embedN+→R y

embedZ→R (neg y) = − (embedN+→R y)

embedZ→R ẑero = r0

computej : (d e : Digit)(i : Digit2) → Z

computej d e i = (i+2) ∗i embedD2→Z i +i embedD→Z d +i embedD→Z e

correctnessj : (d e : Digit)

→ (i : Digit2)

→ (embedZ→R (computej d e i)) ∈[−6, 6]

correctnessj d e i = and v v′

where

v : − r6 ≤ embedZ→R (computej d e i)

116

Chapter 7. Signed Digit Representation of Real Numbers in Agda

v = . . .

v′ : embedZ→R (computej d e i) ≤ r6

v′ = . . .

The function (computej d e i) computes the integer 2i + d + e and

(correctnessj d e i) is a proof that (computej d e i) is in the interval [−6, 6].

Note that: j needs to be an element of Z instead of R, otherwise we cannot prove

its properties.

computef−aux : (j : Z)

→ ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j)

→ Digit

computef−aux j (inl (inl ll)) = (d)−1

computef−aux j (inl (inr rr)) = (d)0

computef−aux j (inr r) = (d)1

j<−n∨j∈[−n, n]∨n<j : (j n : Z)

→ ((embedZ→R j) < − (embedZ→R n)

∨ (− (embedZ→R n) ≤ (embedZ→R j)

∧ (embedZ→R j) ≤ (embedZ→R n)))

∨ ((embedZ→R n) < (embedZ→R j)

j<−n∨j∈[−n, n]∨n<j j n = . . .

computef : (d e : Digit)(i : Digit2) → Digit

computef d e i = computef−aux

(computej d e i)

(j<−n∨j∈[−n, n]∨n<j (computej d e i) i+2)

(computef d e i) computes a digit which is the first digit f such that if

(computej d e i) is less than −r2 then f = 1. If (computej d e i) is in the interval

[−2, 2] then f = 0. Otherwise, f = 1. Since we have i′ = j − 4f∈[−2, 2] we

obtain i′ : Digit.

z∈[−2, 2]→D2 : (z : Z) → embedZ→R z∈[−2, 2] → Digit2

117

Chapter 7. Signed Digit Representation of Real Numbers in Agda

z∈[−2, 2]→D2 (pos ((0 +1))) p = (d)21

z∈[−2, 2]→D2 (pos ((1 +1))) p = (d)22

z∈[−2, 2]→D2 ẑero p = (d)20

z∈[−2, 2]→D2 (neg ((0 +1))) p = (d)2−1

z∈[−2, 2]→D2 (neg ((1 +1))) p = (d)2−2

z∈[−2, 2]→D2 p = (d)20

computei′−aux′ : (j : Z)

→ (embedZ→R j ∈[−6, 6])

→ ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j)

→ Z

computei′−aux′ j p p′ = j −i i+4 ∗i embedD→Z (computef−aux j p′)

correctnesscomputei′−aux′ : (j : Z)

→ (embedZ→R j ∈[−6, 6])

→ (q : ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j))

→ (embedZ→R (computei′−aux′ j p q)) ∈[−2, 2]

correctnesscomputei′−aux′ j (and pl pr) (inl (inl ll)) = and w1 v1

where

w1 : − r2 ≤ embedZ→R (j +i i+4)

w1 = . . .

v1 : embedZ→R (j +i i+4) ≤ r2

v1 = . . .

correctnesscomputei′−aux′ j (and pl pr) (inl (inr (lrl lrr))) = and w v

where

w : − r2 ≤ embedZ→R (j +i i0)

w = . . .

v : embedZ→R (j +i i0) ≤ r2

v = . . .

118

Chapter 7. Signed Digit Representation of Real Numbers in Agda

correctnesscomputei′−aux′ j (and pl pr) (inl (inr r) = and w v

where

w : − r2 ≤ embedZ→R (j +i i−4)

w = . . .

v : embedZ→R (j +i i−4) ≤ r2

v = . . .

(computei′−aux′ j p p′) is defined as j − 4f and (correctnesscomputei′−aux′

j p p′) is a proof that (computei′−aux′ j p p′) is in the interval [−2, 2].

computei′−aux : (j : Z)

→ (embedZ→R j ∈[−6, 6])

→ ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j)

→ Digit2

computei′−aux j p p′ = z∈[−2, 2]→D2 (computei′−aux′ j p p′)

(correctnesscomputei′−aux′ j p p′)

computei′ : (d e : Digit)(i : Digit2) → Digit2

computei′ d e i = computei′−aux

(computej d e i)

(correctnessj d e i)

(j<−n∨j∈[−n, n]∨n<j (computej d e i) i+2)

(computei′ d e i) computes i′ which is a type of Digit2. It computes j = 2i+d+e

and finds a digit f s.t. i′ = j − 4f which is in the interval [−2, 2].

Now we introduce the ∼avaux function. One can define it in Agda as follows

∼avaux : (r s r′ : R)(i : Digit2) → ∼R r → ∼R s → r′ == avaux r s i → ∼R r′

∼avaux r s r′ i (cons d .r Rr pr) (cons e .s Rs ps) p = cons f r′ 1h p′

where

f : Digit

f = computef d e i

i′ : Digit2

119

Chapter 7. Signed Digit Representation of Real Numbers in Agda

i′ = computei′ d e i

q : (r2 ∗ r′ − embedD f) ==

avaux (r2 ∗ r − embedD d) (r2 ∗ s − embedD e) i′

q = . . .

p′ : r′ ∈[−1, 1]

p′ = . . .

1h : ∼R (r2 ∗ r′ − embedD f)

1h = ∼avaux (r2 ∗ r − embedD d) (r2 ∗ s − embedD e)

(r2 ∗ r′ − embedD f) i′ Rr Rs q

7.3.2 ∼R Closure Under av

(This section corresponds to Section 6.4.2)

Now we prove that ∼R is closed under the average function. If we have ∼R r,
∼R s for r and s : R, then we prove ∼R (av r s) such that

∼av : (r, s, r′ : R) → ∼R r → ∼R s → r′ == av r s → ∼R r′

∼av r s r′ (cons d .r Rr′ pr) (cons e .s Rs′ ps) p = w

where

g : R

g = avaux (r2 ∗ r − embedD d) (r2 ∗ s − embedD e) (d +(d) e)

w2 : r′ == g

w2 = . . .

w : ∼R r′

w = ∼avaux (r2 ∗ r − embedD d) (r2 ∗ s − embedD e) r′ (d +(d) e)

Rr′ Rs′ w2

where w2 is obtained by using equality reasoning. We know that ∼R is closed

under avaux, i,e. ∼avaux a b t i · · · : ∼R (avaux a b i). The ∼av function shows

120

Chapter 7. Signed Digit Representation of Real Numbers in Agda

us that for a b r′ : R, p : r′ = av a b, and

w2 : r′ == avaux (2a′ − a0) (2b′ − b0) (a0 + b0)

∼avaux (2a′ − a0) (2b′ − b0) t (a0 + b0) · · · : ∼R ((2a′−a0)+(2b′−b0)+(a0+b0)
4

)

such that

av a b = r′ = avaux (2a′ − a0) (2b′ − b0) (a0 + b0)

∼av a b · · · = ∼avaux (2a′ − a0) (2b′ − b0) t (a0 + b0) · · · : ∼R (av a b) =
∼R (avaux (2a′ − a0) (2b′ − b0) (a0 + b0))

7.3.3 Examples of the Average Function

Here are some examples of the average function:

av1+1 : ∼R ((r1 + r1) ∗ r1/2)

av1+1 = ∼av r1 r1 ((r1 + r1) ∗ r1/2) ∼R1 ∼R1 (refl== ((r1 + r1) ∗ r1/2))

av1+1 is a proof of ∼R ((r1+r1)∗r1/2) which is the average of r1 and r1. Similarly,

we obtain

av1−1 : ∼R ((r1 − r1) ∗ r1/2)

and

avq1/3+q1/3 : ∼R ((embedQ→R q1/3 + embedQ→R q1/3) ∗ r1/2)

7.4 ∼R Is Closed Under the Multiplication Func-

tion mp

(This section corresponds to Section 6.5)

We want to show that if ∼R a and ∼R b then ∼R (a ∗ b). Let mp a b = a ∗ b,

121

Chapter 7. Signed Digit Representation of Real Numbers in Agda

i.e.
mp : R → R → R

mp a b = a ∗ b

As usual, we will show that ∼R is closed under mp. In order to deal with the

problem of equality, we define:

∼mp : (a b s : R) → (Ra : ∼R a) → (Rb : ∼R b) → s == mp a b → ∼R s

We will introduce the function mpaux : R → R → R → Digit2 → R such that

mpaux a b q i =
a ∗ b + q + i

4

and show

∼R a → ∼R b → ∼R q → (i : Digit2) → ∼R (mpaux a b q i)

This can be done by guarded recursion (whereas we don’t know how to define

closure of ∼R under ∗ by direct guarded recursion). Then we get

mp a b = a ∗ b = 4 ∗ a ∗ b + 0 + 0

4
= 4 ∗ (mpaux a b 0 0)

Let s = a ∗ b and r′ = mpaux a b 0 0 then we get

s = mp a b = 4 ∗ r′

Furthermore, r′ ∈ [−1/4, 1/4]. Therefore we show

∼R r′ → r′ ∈ [−1/4, 1/4] → ∼R (4 ∗ r′)

In order to show this we define two functions appr2, tail2 and show that

4 ∗ r′ = appr2 r′ Rr′ + tail2 r′ Rr′

where Rr′ is of type ∼R r′. Here appr2 r′ Rr′ : Q is the number formed by

the first two digits of r′, tail2 r′ Rr′ is the number formed by the remaining

122

Chapter 7. Signed Digit Representation of Real Numbers in Agda

digits. So if r′ ∼ 0.e0e1e2 . . . (remember this means that the signed digit stream

is e0 :: e1 : e2 :: . . .) then appr2 r′ Rr′ = 2e0 + e1, tail2 r′ Rr′ ∼ 0.e2e3 Then

4 ∗ r′ == appr2 r′ Rr′ +tail2 r′ Rr′ and since we know already Rr′ : ∼R r′ we can

show ∼tail2 r′ Rr′ : ∼R (tail2 r′ Rr′).

We show for u ∈ Q, a : R s.t. ∼R a holds that if u+a ∈[−1, 1] then ∼R (u+a)

holds and therefore by taking u = appr2 r′ Rr′, a = tail2 r′ Rr′ and 4 ∗ r′ = u + a

we get ∼R (u + a). So if we have r′ s.t ∼R r′ and 22 ∗ r′∈[−1, 1] then we can get
∼R (22 ∗ r′).

More generally we introduce two functions: the first function addR u a = u+a

such that
addR : Q → R → R

addR u a = embedQ→R u + a

We show that if u : Q, r : R, p : ∼R r and u + r ∈[−1, 1] then ∼R (addR u r)

holds, i.e. ∼addR u r p q · · · : ∼R (addR u r) where q : u + r ∈[−1, 1].

We will more generally instead of showing closure of ∼R under multiplication

by 4 show closure under multiplication by 2n, and define a function scalen n r′ =

2n ∗ r′ as follows
embedN→Z : N → Z

embedN→Z zero = ẑero

embedN→Z (suc y) = pos (y +1)

scalen : N → R → R

scalen n r = 2ˆ (embedN→Z n) ∗ r

And we show that if ∼R r, r ∈ [−2−n, 2−n] then ∼R (scalen n r) holds i.e. define
∼scalen n r · · · : ∼R (scalen n r). Once we have defined ∼scalen and ∼addR, we

get for

r′ = mpaux a b 0 0 =
a ∗ b + 0 + 0

4

123

Chapter 7. Signed Digit Representation of Real Numbers in Agda

that
a ∗ b = mp a b

= scale2 r′

= addR (appr2 r′ Rr′) (tail2 r′ Rr′)

∼mp a b · · · = ∼scale2 r′ · · ·
= ∼addR (appr2 r′ Rr′) (tail2 Rr′) p q · · ·
: ∼R (mp a b)

= ∼R (scale2 r′)

= ∼R (addR (appr2 r′ Rr′) (tail2 r′ Rr′))

= ∼R (a ∗ b)

have and proved ∼R (a ∗ b).

In the following sections, we firstly show that ∼R is closed under the mpaux

function. Secondly, we show ∼R is closed under the scalen function. Thirdly, we

show ∼R is closed under addR function. Finally, we show ∼R is closed under the

mp function followed by some examples of the multiplication function.

7.4.1 ∼R Is Closed Under the mpaux Function

(This section corresponds to Section 6.5.1.)

In Section 6.5.1 we have seen the following: Let a0, c0 be the first digits of a, c,

a′ = 2a−a0, c′ = 2c−c0 and e = avaux(a0∗b, c′, i). Let e0, e1 be the first two digits

of e, e′ = 2e−e0, e′′ = 2e−e1. Then 2∗mpaux(a, b, c, i)−d′ = mpaux(a′, b, e′′, i′).

Let j = 2e0 + e1 + c0 + i and i′ = j − 4d′. If we choose

d′ =

0, if − 2 ≤ j ≤ 2;

1, if j > 2;

−1, if j < −2

then i′ ∈ [−2, 2]. In order to be in accordance with our Agda code we write δ for

d′. We first show closure of ∼R under multiplication by a digit (Lemma 6.5.2).

We introduce a function multiplying by a digit midig r i = i ∗ r together with

124

Chapter 7. Signed Digit Representation of Real Numbers in Agda

a proof
∼midig r i · · · : ∼R (midig r i)

holds, where i : Digit. One can define this in Agda as follows

midig : R → Digit → R

midig r i = embedD i ∗ r

∼midigaux : (r s : R) → (i : Digit) → ∼R r → s == midig r i → ∼R s
∼midigaux r s i (cons d .r Rr′ pr) p = cons (i ∗(d) d) s ∼Rs′ w

where

w : s ∈[−1, 1]

w = . . .

w1 : r2 ∗ s − embedD(i ∗(d) d) == embedD i ∗ (r2 ∗ r − (embedD d))

w1 = . . .

∼Rs′ : ∼R (r2 ∗ s − embedD(i ∗(d) d))
∼Rs′ = ∼midigaux (r2 ∗ r − embedD d)

(r2 ∗ s − embedD(i ∗(d) d)) i Rr′ w1

∼midig : (r : R)(i : Digit) → ∼R r → ∼R (midig r i)
∼midig r i Rr = ∼midigaux r (embedD i ∗ r) i Rr (refl== (embedD i ∗ r))

which allows us to compute a digit stream of a digit times a real number.

Now we show closure of ∼R under the mpaux function (Lemma 6.5.1). We

define function in Agda as follows

mpaux : (r p q : R) → (i : Digit2) → R

mpaux r p q i = (r ∗ p + q + embedD2 i) ∗ r1/4

mpaux∈[−1, 1] : (r p q : R)(i : Digit2)

→ r ∈[−1, 1]

→ p ∈[−1, 1]

→ q ∈[−1, 1]

125

Chapter 7. Signed Digit Representation of Real Numbers in Agda

→ (embedD2 i) ∈[−2, 2]

→ (mpaux r p q i) ∈[−1, 1]

mpaux∈[−1, 1] r p q i r′ p′ q′ i′ = and v2 v1

where

v2 : − r1 ≤ mpaux r p q i

v2 = . . .

v2 : mpaux r p q i ≤ r1

v1 = . . .

where the mpaux∈[−1, 1] function guarantees that mpaux r p q i is in the interval

[−1, 1] if r, p , q ∈[−1, 1] and i ∈[−2, 2].

mpcomputej : (e0 e1 c0 : Digit)(i : Digit2) → Z

mpcomputej e0 e1 c0 i = (i+2) ∗i embedD→Z e0

+iembedD→Z e1 +i embedD→Z c0 +i embedD2→Z i

mpcorrectnessj : (e0 e1 c0 : Digit)

→ (i : Digit2)

→ (embedZ→R (mpcomputej e0 e1 c0 i)) ∈[−6, 6]

mpcorrectnessj e0 e1 c0 i = and v v′

where

v : − r6 ≤ embedZ→R (mpcomputej e0 e1 c0 i)

v = . . .

v′ : embedZ→R (mpcomputej e0 e1 c0 i) ≤ r6

v′ = . . .

We are able to compute j = 2e0 + e1 + c0 + i as (mpcorrectnessj e0 e1 c0 i) and

shows that (mpcomputej e0 e1 c0 i) is in the interval [−6, 6].

computeδ−aux : (j : Z)

→ ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j)

→ Digit

computeδ−aux j (inl (inl ll)) = (d)−1

126

Chapter 7. Signed Digit Representation of Real Numbers in Agda

computeδ−aux j (inl (inr rr)) = (d)0

computeδ−aux j (inr r) = (d)1

computeδ : (e0 e1 c0 : Digit)(i : Digit2) → Digit

computeδ d e f i = computeδ−aux

(mpcomputej d e f i)

(j<−n∨j∈[−n, n]∨n<j (mpcomputej d e f i) i+2)

(computeδ e0 e1 c0 i) computes a digit which is the first digit δ. If (mpcomputej

d e f i) is less than −r2 then δ = 1. If (mpcomputej d e f i) is in the interval

[−2, 2] then δ = 0. Otherwise, δ = 1. Since we have j and δ we can compute i′

for i′ = j − 4δ.

mpcomputei′−aux′ : (j : Z)

→ (embedZ→R j ∈[−6, 6])

→ ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j)

→ Z

mpcomputei′−aux′ j p p′ = j −i i+4 ∗i embedD→Z (computeδ−aux j p′)

mpcorrectnesscomputei′−aux′ : (j : Z)

→ (embedZ→R j ∈[−6, 6])

→ (q : ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j))

→ (embedZ→R (mpcomputei′−aux′ j p q)) ∈[−2, 2]

mpcorrectnesscomputei′−aux′ j (and pl pr) (inl (inl ll)) = and w1 v1

where

w1 : − r2 ≤ embedZ→R (j +i i+4)

w1 = . . .

v1 : embedZ→R (j +i i+4) ≤ r2

v1 = . . .

mpcorrectnesscomputei′−aux′ j (and pl pr) (inl (inr (lrl lrr))) = and w v

where

127

Chapter 7. Signed Digit Representation of Real Numbers in Agda

w : − r2 ≤ embedZ→R (j +i i0)

w = . . .

v : embedZ→R (j +i i0) ≤ r2

v = . . .

mpcorrectnesscomputei′−aux′ j (and pl pr) (inl (inr r) = and w v

where

w : − r2 ≤ embedZ→R (j +i i−4)

w = . . .

v : embedZ→R (j +i i−4) ≤ r2

v = . . .

(mpcomputei′−aux′ j p p′) is defined as j − 4f and

(mpcorrectnesscomputei′−aux′ j p p′) shows that (mpcomputei′−aux′ j p p′) is

in interval [−2, 2].

mpcomputei′−aux : (j : Z)

→ (embedZ→R j ∈[−6, 6])

→ ((embedZ→R j) < − r2 ∨ (embedZ→R j) ∈[−2, 2])

∨ r2 < (embedZ→R j)

→ Digit2

computei′−aux j p p′ = z∈[−2, 2]→D2 (mpcomputei′−aux′ j p p′)

(mpcorrectnesscomputei′−aux′ j p p′)

mpcomputei′ : (e0 e1 c0 : Digit)(i : Digit2) → Digit2

computei′ d e f i = mpcomputei′−aux

(mpcomputej d e f i)

(mpcorrectnessj d e f i)

(j<−n∨j∈[−n, n]∨n<j (mpcomputej d e f i) i+2)

(mpcomputei′ d′ e′ i) computes i′ which is a type of Digit2. It computes

j = 2e0 + e1 + c0 + i and finds a digit δ with a proof that i′ = j − 4δ is in the

interval [−2, 2].

∼mpaux : (r p q r′ : R) → (i : Digit2) → ∼R r → ∼R p → ∼R q

128

Chapter 7. Signed Digit Representation of Real Numbers in Agda

→ r′ == (mpaux r p q i)

→ ∼R r′

∼mpaux (cons a0 .r Rr′ pr) (cons b0 .p Rp′ pp) (cons c0 .q Rq′ pq) p= =

cons δ r′ 1H p=′

where

e : R

e = avaux (embedD a0 ∗ p) (r2 ∗ q − embedD c0) i

∼Re : ∼R e
∼Re = ∼avaux (embedD a0 ∗ p) (r2 ∗ q − embedD c0) e i

(∼midig p a0 (cons b0 p Rp′ pp)) Rq′ (refl== e)

e0 : Digit

e0 = head e ∼Re

e′ : R

e′ = tailn 1 e ∼Re

∼Re′ : ∼R e′

∼Re′ = ∼tailn 1 e ∼Re

e1 : Digit

e1 = head e′ ∼Re′

e′′ : R

e′′ = tailn 2 e ∼Re

∼Re′′ : ∼R e′′

∼Re′′ = ∼tailn 2 e ∼Re

δ : Digit

δ = computeδ e0 e1 c0 i

129

Chapter 7. Signed Digit Representation of Real Numbers in Agda

i′ : Digit2

i′ = mpcomputei′ e0 e1 c0 i

p=′ : r′ ∈[−1, 1]

p=′ = . . .

qq : (r2 ∗ r′ − embedDlδ) == mpaux(r2 ∗ r − embedD a0) p e′′ ′i′

qq = . . .

1H : ∼R (r2 ∗ r′ − embedD δ)

1H = ∼mpaux (r2 ∗ r − embedD a0) p e′′ (r2 ∗ r′ − embedD δ) ′i′

Rr′ (cons b0 p Rp′ pp) ∼Re′′ qq

So far we are able to compute r′ = (a ∗ b + q + i)/4 and its digit stream ∼R r′

by functions mpaux, ∼mpaux. Next we are going to introduce functions ∼addR

and ∼scalen.

7.4.2 ∼R Is Closed Under the addR Function

(This section corresponds to Section 6.5.2.)

Now we show that ∼R is closed under the function addR. If u : Q, a : R,
∼R a holds, addR u a = u + a and u + a ∈[−1, 1] then ∼R (addR u a) holds.

We introduce the function ∼addR u a p p′ · · · : ∼R (addR u a) where p : ∼R a,

p′ : u + a ∈[−1, 1] such that

∼addR : (u : Q) → (a : R) → ∼R a → (u + a) ∈[−1, 1] → ∼R (addR u a)

In Section 6.5.2 we have seen the following: Let a ∈ ∼R, uinQ and u + a ∈
[−1, 1]. Let a0, a1 be the first two digits of a, a′ = 2a − a0, a′′ = 2a′ − a1. Then

2 ∗ addR(u, a) − d′ = addR(u′, r) where u′ = 2u + a0 − d′, r = a′ and with

130

Chapter 7. Signed Digit Representation of Real Numbers in Agda

q = (u + a0/2 + a1/4) we have

d′ =

−1, if q < −1/4;

0, if − 1/4 ≤ q ≤ 1/4;

1, if 1/4 < q

Then we get that with this choice of d′ that u′ + r ∈ [−1, 1]. In order to be in

accordance with our Agda code we write δ instead of d′.

We can now introduce the ∼addR function in Agda as follows

cases3 : (q : Q) → (embedQ→R q) < −r1/4 ∨−r1/4 ≤ (embedQ→R q)

→ (embedQ→R q) ≤ r1/4 ∨ r1/4 < (embedQ→R q) → Digit

cases3 q (inl y) p′ = (d)−1

cases3 q (inr y) (inl y′) = (d)0

cases3 q (inr y) (inr y′) = (d)1

∼addR : (u : Q) → (r s : R) → ∼R r → embedQ→R u + r ∈[−1, 1]

→ s == addR u r → ∼R s
∼addR u r s Rr p p′ = cons δ s ∼Rs′ v4

where

a0 : Digit

a0 = head r Rr

a1 : Digit

a1 = head (tail r Rr) (∼tail r Rr)

q : Q

q = u +Q (embedD→Z a0) %′ +2 +Q (embedD→Z a1) %′ +4

δ : Digit

δ = cases3 q (q<−1/4∨−1/4≤q′ q) (q≤1/4∨1/4<q′ q)

r′ : R

131

Chapter 7. Signed Digit Representation of Real Numbers in Agda

r′ = tail r Rr

u′ : Q

u′ = (pos +2 %′ +1) ∗Q u +Q (embedD→Z a0 %′ +1)

−Q (embedD→Z δ %′ +1)

v1 : (embedQ→R u′) + r′ ∈[−1, 1]

v1 = . . .

w1 : r2 ∗ sembedD δ == (embedQ→R u′) + r′

w1 = . . .

∼Rs′ : ∼R (r2 ∗ sembedD δ)
∼Rs′ = ∼addR u′ r′ (r2 ∗ sembedD δ) (∼tail r Rr) v1 w1

v4 : s ∈[−1, 1]

v4 . . .

So in this section we have shown that ∼R is closed under the addR function, i.e. if

(q : Q), (a : R), ∼R a and (u + a) ∈[−1, 1] then ∼R (addR u a).

7.4.3 ∼R Is Closed Under the Function scalen

We remember scalen n r = 2n ∗ r and we want to show that

∼scalen n r · · · : ∼R (scalen n r)

Before we introduce ∼scalen function, we first introduce the functions apprn and

tailn. Note that for r : R, r ∼ 0.a0a1a2 . . . (in Agda we write apprn n for apprn

and tailn n for tailn)

scalen r = 2n ∗ r ∼ a0a1 · · ·an−1
︸ ︷︷ ︸

apprn r

. l
︸︷︷︸

tailn r

132

Chapter 7. Signed Digit Representation of Real Numbers in Agda

where apprn r = 2n−1a0 +2n−2a1 + · · ·+ an−1 , l = tailn (r). The functions apprn

and tailn are defined as follows

mutual

tailn : (n : N) → (r : R) → ∼R r → R

tailn 0 r Rr = r

tailn (suc n) r Rr = tail (tailn n r Rr) (∼tailn n r Rr)

∼tailn : (n : N) → (r : R) → ∼R r → ∼R (tailn n r Rr)
∼tailn 0 r Rr = Rr
∼tailn (suc n) r Rr = ∼tail (tailn n r Rr) (∼tailn n r Rr)

apprn : (n : N) → (r : R) → ∼R r → Z

apprn 0 r Rr = ẑero

apprn (suc n) r Rr = i+2 ∗i apprn n r Rr+i

embedD→Z (head (tailn n r Rr) (∼tailn n r Rr))

Now we can introduce the ∼scalen function in Agda as follows

∼scalen : (n : N) → (r s : R) → (Rr : ∼R r)

→ scalen n r ∈[−1, 1]

→ s == scalen n r

→ ∼R s
∼scalen n r s Rr p p′ = addR (apprn n r Rr %′ +1) (tailn n r Rr) s

(∼tailn n r Rr) w p′′

where

p′′ : s == embedQ→R (apprn n r Rr %′ +1) + tailn n r Rr

p′′ = . . .

w : embedQ→R (apprn n r Rr %′ +1) + tailn n r Rr ∈[−1, 1]

w = . . .

So in this section we have shown that if (r : R) , (∼R r) holds and scalen n r

∈[−1, 1] then ∼scalen n r · · · : ∼R (scalen n r). Let u = appr2 r Rr and

133

Chapter 7. Signed Digit Representation of Real Numbers in Agda

a = tail2 r Rr. Then we get

scale2 r = addR u a = 22 ∗ r

∼scale2 r · · · = ∼addR u a · · · : ∼R (22 ∗ r)

7.4.4 ∼R Closure Under mp

(This section corresponds to Section 6.5.3.)

The multiplication function mp is defined in Agda as follows

∼mp : (a b s : R) → (Ra : ∼R a) → (Rb : ∼R b) → s == a ∗ b → ∼R s
∼mp a b s Ra Rb ps = scalen 2 r′ s Rr′ v p3

where

r′ : R

r′ = mpaux a b r0 (d)20

Rr′ : ∼R r′

Rr′ = ∼mpaux a b r0 r′ (d)20 Ra Rb ∼R0 (refl== r′)

p3 : s == scalen 2 r′

p3 = . . .

v : scalen 2 r′ ∈[−1, 1]

v = . . .

where p3 is obtained using equality reasoning and v is a proof that (scalen 2 r′)

is in the interval [-1,1]. We know that ∼R is closed under mpaux, i.e.

∼mpaux a b q r′ i · · · : ∼R (mpaux a b q i)

∼R is closed under scalen, i.e.

∼scalen n r′ · · · : ∼R (scalen n r′)

holds.

134

Chapter 7. Signed Digit Representation of Real Numbers in Agda

∼mp function shows us that if a b s : R, s = a ∗ b, ∼R a, ∼R b, then we get
∼R s

a ∗ b = mp a b

= scale2 (mpaux a b 0 0)

= s

∼mp a b · · · = ∼scale2 r′ · · ·
: ∼R (a ∗ b)

= ∼R (mp a b)

= ∼R (scale2 (mpaux a b 0 0))

= ∼R s

7.4.5 Examples of the Multiplication Function

Here are some examples of the multiplication function:

mp1∗1 : ∼R (r1 ∗ r1)

mp1∗1 = ∼mp r1 r1 (r1 ∗ r1) ∼R1 ∼R1 (refl== (r1 ∗ r1))

mp1∗1 is the proof that signed digits of the multiplication of real numbers 1

and 1. Similarly, we get

mp0∗0 : ∼R (r0 ∗ r0)

and

mpq1/4∗1/3 : ∼R (embedQ→R q1/4 ∗ embedQ→R q1/3)

7.5 Defining ∼R Using the New Representation

of ∼R

Above we have introduced ∼R using a slightly older version of Agda, which had

codata type. In the current version 2.2.6, the syntax has changed. There codata

type are introduced using the keyword data, and coalgebraic arguments of the

constructor are indicated by applying the construction ∞ to it. We give now the

definition of ∼R using this new syntax.

135

Chapter 7. Signed Digit Representation of Real Numbers in Agda

Stream, ∼R and ∼RtoStream in the current Agda version 2.2.6 with the stan-

dard library 0.3 using the new version of representing coalgebras in Agda discussed

in Section 4.2 are defined as follows: we first import the library file Coinduc-

tion.agda.

open import Coinduction

data Stream (A : Set) : Set where

:: : A → ∞ (Stream A) → Stream A

data ∼R : R → Set where

cons : (d : Digit)(r : R)

→ ∞ (∼R (r2 ∗ r − embedD d))

→ r ∈[−1, 1]

→ ∼R r

∼RtoStream : (r : R) → ∼R r → Stream Digit
∼RtoStream r (cons d .r p q) = d :: (# (∼RtoStream (r2 ∗ r − embedD d) (♭ p)))

7.6 Computing the Extracted Program

Instead of defining the function ∼RtoStream : (r : R) → ∼R r → Stream Digit

we define a ”find digit” function fd with the result type String which allows us to

show the first n digits in the form 0.d0d1d2 · · · , e.g. ”0.01(−1)01”. In Agda one

can define String as follows

136

Chapter 7. Signed Digit Representation of Real Numbers in Agda

postulate String : Set

{−# COMPILED TYPE String String #−}
{−# BUILTIN STRING String #−}

primitive

primStringAppend : String → String → String

- - function appending two strings

++ : String → String → String

++ = primStringAppend

Unfortunately in Agda String is not defined as a BUILTIN but a primitive

type. That’s why it looks like a postulate type but it could be replaced by

String = List Char and Agda behaves as if we had String = List Char, and as

if primStringAppend and ++ were defined in the standard way. Furthermore,

the Haskell String type is imported for the compiled version of Agda. We also

define an append function ++ which allows us to join two strings by adopting

Agda native function primStringAppend.

The fd function is defined in Agda as follows

fdaux : (n : N) → (r : R) → ∼R r → String

fdaux 0 r Rr = ””

fdaux (suc n′) r (cons (d)0 .r y y′) = ”0” ++ fdaux n′ (r2 ∗ r − embedD (d)0) y

fdaux (suc n′) r (cons (d)1 .r y y′) = ”1” ++ fdaux n′ (r2 ∗ r − embedD (d)1) y

fdaux (suc n′) r (cons (d)−1 .r y y′) = ”(−1)” ++

fdaux n′ (r2 ∗ r − embedD (d)−1) y

fd : (n : N) → (r : R) → ∼R r → String

fd n r Rr = ”0.” ++ fdaux n r Rr

With the fd function we are able to show the signed digit streams of a real

number r s.t. ∼R r. For instance, to show 100 digits of

137

Chapter 7. Signed Digit Representation of Real Numbers in Agda

1. ∼R (− r1), we can write fd 100 (− r1) (∼R−1) for the real number -1.

2. ∼R (embedQ→R q2/3), we can write fd 100 (embedQ→R q2/3) (∼Rq2/3)

the for real number 2/3.

3. ∼R ((r1 + r1) ∗ r1/2), we can write fd 100 ((r1 + r1) ∗ r1/2) av1+1 for the

average of two real numbers 1 and 1.

4. ∼R ((r1 ∗ r1)), we can write fd 100 (r1 ∗ r1) mp1∗1 for the multiplication of

two real numbers 1 and 1.

In order to show digits on the screen,we use the complied version of Agda.

It requires to import Haskell data types Unit, List, IO, and the Haskell function

putStrLn. One can write them in Agda as follows

data Unit : Set where

unit : Unit

{−# COMPILED TYPE Unit () () #−}

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

{−# COMPILED TYPE List [] [] (:) #−}
{−# BUILTIN LIST List #−}
{−# BUILTIN NIL [] #−}
{−# BUILTIN CONS :: #−}

postulate

IO : Set → Set

putStrLn : String → IO Unit

{−# COMPILED TYPE IO IO #−}
{−# COMPILED putStrLn putStrLn #−}

138

Chapter 7. Signed Digit Representation of Real Numbers in Agda

To Show 50 digits of real number 1∗ 1 on the screen, one can write it in Agda

as follows
fd mp1∗1 : String

fd mp1∗1 = fd 100 (r1 ∗ r1) mp1∗1

main : IO Unit

main = putStrLn fd mp1∗1
Then we compile the Agda file and execute it. We obtain

It took 0.85 sec to compute the digits.

Another example shows 1000 digits of the real number

2
3
− 1

2
∗ 1

3

on the screen, first we define the average of 2/3 and -1

avq2/3−1 : ∼R ((embedQ→R q2/3 − r1) ∗ r1/2)

avq2/3−1 = ∼av (embedQ→R q2/3) (−r1) ((embedQ→R q2/3 − r1) ∗ r1/2)
∼Rq2/3 (refl== ((embedQ→R q2/3 − r1) ∗ r1/2))

Then we define the multiplication of av (2/3,−1) and 1/3

mp avq2/3−1∗q1/3 : ∼R ((embedQ→R q2/3 − r1) ∗ r1/2) ∗ embedQ→R q1/3)

139

Chapter 7. Signed Digit Representation of Real Numbers in Agda

avq2/3−1 = ∼mp ((embedQ→R q2/3 − r1) ∗ r1/2)

(embedQ→R q1/3)

((embedQ→R q2/3 − r1) ∗ r1/2) ∗ embedQ→R q1/3)

avq2/3−1 ∼Rq1/3

(refl== ((embedQ→R q2/3 − r1) ∗ r1/2) ∗ embedQ→R q1/3)

fd mp avq2/3−1∗q1/3 : String

fd mp avq2/3−1∗q1/3 = fd 1000

((embedQ→R q2/3 − r1) ∗ r1/2) ∗ embedQ→R q1/3)

mp avq2/3−1∗q1/3

main : IO Unit

main = putStrLn fd mp avq2/3−1∗q1/3

Then we compile the Agda file and execute it. We obtain

It took 4.98 sec to compute the digits.

140

Chapter 7. Signed Digit Representation of Real Numbers in Agda

7.6.1 Testing

For some real numbers r e.g. r = 123/456 which is in the interval [-1,1] we prove

that it has signed digits representation, i.e. p : ∼R (123/456) holds. If our axioms

are correct then (∼RtoStream r p) holds. This means there exists signed digits

stream representation such that r ∼ d0d1d2d3 . . . (or d0 :: d1 :: d2 :: d3 :: . . .)

r =
d0 + r1

2
, r1 =

d1 + r2

2
, r2 =

d2 + r3

2
, · · ·

and ri ∈[−1, 1], di ∈ {−1, 0, 1}. We check this for some examples and see that

this result is correct. We have checked it for the following numbers (1/3), (2/3),

(3/4), (-1/6), (5/12), (7/24) up to 10 digits.

Why did we have to test this and not rely on the fact that our program is

provably correct? That is because of the validation problem.

The possible validation problems could be:

• Have we translated the question, e.g. ”what is SDR of 123/456” correctly

into a question in Agda ?”

• Is p : ∼R (123/456) really a proof that 123/456 has a SDR ?

• Is the list of digits we obtained from p really the sequence of digits contained

in p ?

• And do we interpret the answer of Agda correctly ?

We know that p is a proof subject to postulated axioms which relied on the

correctness of Agda (which is not fully proved: the theory of Agda might have

mistakes, there is no formal proof, and in the implementation of Agda there

might exist bugs). Despite these weaknesses, this proof is highly trustworthy so

we assume that this proof is correct.

Validation is different. If we write a program and prove its correctness we can

formally verify only that this program is correct against a specification. That

the specification guarantees that the requirements are fulfilled is the validation

problem which cannot be proved formally but only be investigated by hand, and

141

Chapter 7. Signed Digit Representation of Real Numbers in Agda

checked by testing. That is why testing it is still necessary (apart from the fact

that we are interested in how long the computation takes).

142

Chapter 8

Extraction of Programs from

Proofs in Agda

8.1 Program Extraction

The normal method of program extraction is to prove some properties s.t. p : B in

some calculation externally and then to extract the program from this proof using

some external tools. The extracted program is outside the proof system. Our

method is done instead completely internally. We construct a proof b : B inside

Agda and compute by normalisation. This is possible since there is no difference

between proofs and programs in Agda. From a proof of ∀x : A.∃y : B.ϕ(x, y) we

can define inside type theory the function f : A → B s.t. ∀x : A.ϕ(x, f x) holds.

We introduced the notion of approximatable real numbers ∼R which are in the

interval [-1,1] and have a signed digit representation, i.e r ∼ 0.a0a1a2 . . . where

ai ∈ {−1, 0, 1}. Then we defined a function ∼RtoList which returns the list of

the first n digits from a proof of p : ∼R r, e.g.

∼RtoList 7 r p = 0 :: −1 :: 0 :: 1 :: −1 :: −1 :: 0

means that from p we obtained r ∼ 0.0(−1)01(−1)(−1)0a7a8a9 . . . for some

a7a8a9 Instead of List we even got a String representation, e.g.

fd 7 r p = ”0.0(−1)01(−1)(−1)0”

143

Chapter 8. Extraction of Programs from Proofs in Agda

We have proved that ∼R is closed under the average function av and the multipli-

cation function mp for r s : R. So ∼av r s : ∼R ((r+s)/2) and ∼mp r s : ∼R (r∗s).
So (fd n ((r + s)/2) (∼av r s)) determines the first n digits of (r + s)/2 and

(fd n (r ∗ s) (∼mp r s)) determines the first n digits of r ∗ s. Therefore, (r + s)/2

and r ∗ s have signed digit approximations.

We have axioms which are postulates, which might prevent normalisation. In

this chapter, we are going to prove a theorem that under certain conditions the

postulated functions are not used when normalising elements of algebraic data

types. The idea is that postulates only allow to derive postulated types and

therefore do not influence algebraic data types. This proof contains a reduction

of definitions by pattern matching to simple pattern matching. Because of our

theorem elements of algebraic data types normalise to head normal form even in

the presence of postulated axioms. (fd 7 r p) returns an actual concrete result

which is correct.

In this Chapter we use classic logic.

8.2 Main Theorem: The Correctness of Pro-

gram Extraction

In our proof we are going to reduce deep pattern matching to simple pattern

matching. Deep pattern matching means for instance,

f : N → N

f 0 = 2

f (suc 0) = 5

f (suc (suc x)) = 8

where (suc 0) and (suc (suc x)) are deep patterns. Simple pattern matching only

allows to define
f : N → N

f 0 = 3

f (suc x) = 4

144

Chapter 8. Extraction of Programs from Proofs in Agda

We will show that Agda code with deep pattern matching can be represented by

simple pattern matching. This will be done in several steps. In order to prove

termination of these steps we will use the multiset ordering. Therefore in the

following we are going to develop the theory of multisets.

8.2.1 Mathematical Preliminaries on Multisets

In this section we review the well-known theory of multisets or bags (we use both

words for the same concept). This will include a proof of the well-foundedness

of bags (Lemma 8.2.11 (b)). We have derived the proof ourselves, although it is

likely that this proof can be found in the literature. It is different from the proof

found in [BN98], Theorem 2.2.5, p. 23.

Definition 8.2.1. Let (A,≺) be a set with a binary relation ≺ on it. A is well-

founded if only if there exists no infinitely descending sequence a0 ≻ a1 ≻ a2 ≻ · · ·
in A. It is well-ordered if it is well-founded and linearly ordered.

We introduce bags which are as sets but an element can occur more than once,

so the multiplicity counts. Bags can be given by a function which determines the

multiplicity of each element. We get the following definition:

Definition 8.2.2. Let A be a Set. The set of bags Bag(A) of A is defined as the

set of functions B : A → N. We define

• for a bag B and a ∈ A, multiplicityB(a) := B(a) ∈ N.

• If a ∈ A, B ∈ Bag(A) then a ∈ B if only if multiplicityB(a) > 0.

If B ∈ Bag(A) then B is considered as a collection of elements in B where

each element can occur more than once. B(a) denotes, how often an element

occurs in the bag f . So the bag with two occurrences of 1 and one occurrence of

2 is given as B : {1, 2} → N, B(1) = 2 and B(2) = 1.

A bag B ∈ Bag(A) is finite if {a ∈ A | multiplicityB(a) > 0} is finite. We

write {|a1, . . . , an|} for finite bags, which has elements a1, . . . , an and where the

multiplicity of ai is the number of occurrences of ai in a1, . . . , an. For example,

the finite bag A := {|1, 2, 1|} ∈ Bag(N) is the bag having elements 1,2 and

145

Chapter 8. Extraction of Programs from Proofs in Agda

multiplicityA(1) = 2, multiplicityA(2) = 1. One easily sees that every finite bag

can be written as {|x1, . . . , xn|}.

Definition 8.2.3. 1. For B, C ∈ Bag(A) let B ⊎ C ∈ Bag(A) be defined by

multiplicityB⊎C(a) := multiplicityB(a) + multiplicityC(a).

2. For B, C ∈ Bag(A) let B ∩ C ∈ Bag(A) be defined by

multiplicityB∩C(a) := min{multiplicityB(a), multiplicityC(a)}.

3. For B, C ∈ Bag(A) let

B ⊆ C ⇔ ∀a ∈ A.multiplicityB(a) ≤ multiplicityC(a).

4. For B, C ∈ Bag(A) s.t. B ⊆ C, we define C \ B ∈ Bag(A) by

multiplicityC\B(a) := multiplicityC(a) − multiplicityB(a).

Lemma 8.2.4. Assume B, C ∈ Bag(A).

1. B ∩ C ⊆ B ⊆ B ⊎ C.

2. If B ⊆ C then C = (C \ B) ⊎ B.

Proof. (a) easy. (b) multiplicity(C\B)⊎B(a) =

((multiplicityC(a)) − multiplicityB(a)) + multiplicityB(a) = multiplicityC(a)

since multiplicityB(a) ≤ multiplicityC(a) by B ⊆ C.

Lemma 8.2.5. Let (A,≺) be finite, transitive and anti-reflexive. Assume P ⊆ A.

If there exists a ∈ A s.t. P (a) holds then there exists a maximum element a ∈ A

s.t. P (a) holds (so we get P (a) ∧ ∀a′ ∈ A.a′ ≻ a.¬P (a′)).

Proof. Assume there exists no maximum element s.t. a ∈ A. Let a1 ∈ A s.t.

P (a1) holds. So there exists an a2 ∈ A, a1 ≺ a2 s.t. P (a2) holds. Then there

exists an a3 ∈ A, a2 ≺ a3 s.t. P (a3) holds and so on. So we get a1 ≺ a2 ≺ a3 ≺ · · · .
Since A is finite there exists an ai ∈ A and an aj ∈ A for i, j ∈ N s.t. i < j

and ai = aj but then we have ai ≺ aj = ai by transitivity. Therefore, we get a

contradiction by anti-reflexivity.

146

Chapter 8. Extraction of Programs from Proofs in Agda

Remark 8.2.6. By Lemma 8.2.5 it follows that every finite irreflexive, transi-

tive order is well-founded. Since (A,≺) has this properties, (A,≻) has the same

properties and by lemma 8.2.5 every nonempty finite set has a maximum element

w.r.t. ≻ which is minimal w.r.t. ≺.

Definition 8.2.7. 1. Bagfin(A) := {X ∈ Bag(A) | {a ∈ A | a ∈ X} is finite},
the set of finite bags in Bag(A).

2. Assume ≺ be a binary relation on A written infix. Then we define the

relation ≺bag on Bag(A) by

B ≺bag C ⇔ C 6⊆ B∧
∃X, Y, Y ′.B = X ⊎ Y ∧ C = X ⊎ Y ′ ∧ ∀y ∈ Y.∃y′ ∈ Y ′.y ≺ y′

Remark 8.2.8. Assume ≺ is transitive and anti-reflexive on A. If for B, C ∈
Bagfin(A) we have

C 6⊆ B ∧ ∃X, Y, Y ′.B = X ⊎ Y ∧ C = X ⊎ Y ′∧
∀y ∈ Y ((∃y′ ∈ Y ′.y ≺ y′) ∨ multiplicityY (y) < multiplicityY ′(y))

then B ≺bag C

Proof. of Remark: Let U := Y ∩ Y ′. By Lemma 8.2.4 we have B = X ⊎ Y =

X ⊎ (Y \ U) ⊎ U = (X ⊎ U) ⊎ (Y \ U), similarly C = (X ⊎ U) ⊎ (Y ′ \ U). We

show ∀y ∈ Y \U.∃y′ ∈ Y ′ \U.y ≺ y′, which implies B ≺bag C. Assume y ∈ Y \U

such that there exists no y′ ∈ Y ′ \ U s.t. y ≺ y′. Let y be maximal, i.e. let y s.t.

∀y0 ≻ y the property holds. This exists because of B being finite and Lemma

8.2.5.

Case 1: There exists y′ ∈ Y ′ s.t. y ≺ y′. Let y′ ∈ Y ′ be maximal s.t.y ≺ y′.

Subcase 1.1: y′ ∈ U . Then y′ ∈ Y . Either y′ ≺ y′′ for some y′′ ∈ Y ′

or multiplicityY (y′) < multiplicityY ′(y′). In the first case there exists y′′ ∈ Y ′

s.t. y′ ≺ y′′. But then y ≺ y′′ ∈ Y ′ and y′ ≺ y′′, so y′ was not maximal, a

contradiction.

147

Chapter 8. Extraction of Programs from Proofs in Agda

In the second case multiplicityY (y′) < multiplicityY ′(y′). Since

multiplicityU(y′) = multiplicityY ∩Y ′(y′) = multiplicityY (y′),

multiplicityY ′\U(y′) = multiplicityY ′(y) − multiplicityU(y′)

= multiplicityY ′(y′) − multiplicityY (y′) > 0

Therefore, y ≺ y′ ∈ Y ′ \ U , a contradiction.

Subcase 1.2: y′ 6∈ U . Then y ≺ y′ ∈ Y ′ \ U . So there exists y′ ∈ (Y ′ \ U) s.t.

y ≺ y′, a contradiction.

Case 2: y ∈ Y and multiplicityY (y) < multiplicityY ′(y). Since U := Y ∩
Y ′, multiplicityU(y) = multiplicityY ∩Y ′(y) = multiplicityY (y). Therefore,

multiplicityY \U(y) = 0 and y 6∈ Y \ U , a contradiction.

Definition 8.2.9. Let (A,≺), (B,≺′) be orderings.

1. (A × B,≺lex) is the ordering given by

• Elements are pairs (a, b) for a ∈ A, b ∈ B.

• (a, b) ≺lex (a′, b′) ⇔ a ≺ a′ ∨ (a = a′ ∧ b ≺ b′) (lexicographic ordering).

2. (Aweakdec,≺lex) is given by

• Elements are weakly descending finite sequences, i.e. finite sequences

(a0, . . . , an−1) s.t. a0 � a1 � · · · � an−1.

• (a0, . . . , an−1) ≺lex (b0, . . . , bm−1) iff

– Either there exists an i < min{n, m}, s.t. ∀j < i.aj = bj and

ai ≺ bi.

– Or n < m and ∀i < n.ai = bi.

3. Assume (A,≺) is linearly ordered. The bag ordering on A is Abag, where

Abag = (Bagfin(A),≺bag).

Lemma 8.2.10. Let (A,≺) be a linearly ordered set, X, X ′ ∈ Afin
bag, X =

{|x0, . . . , xn|}, X ′ = {|x′
0, . . . , x

′
m|}. Let l, l′ be the result of reordering the lists

[x0, . . . , xn] and [x′
0, . . . , x

′
m] such that x0 � x1 � · · · � xn, x′

0 � x′
1 � · · · � x′

m.

Then X ≺bag X ′ ⇔ l ≺lex l′.

148

Chapter 8. Extraction of Programs from Proofs in Agda

Proof. of “⇒”: Let X = Y ⊎ Z, X ′ = Y ⊎ Z ′ s.t. ∀z ∈ Z∃z′ ∈ Z ′.z ≺ z′. Since

X ′ 6⊆ X we have Z 6= ∅ or Z ′ 6= ∅. If Z 6= ∅, there exists z ∈ Z, z ≺ z′ for some

z′ ∈ Z ′, so in all cases Z ′ 6= ∅.
We introduce the notion of occurrence in Y : let xi ∈ X. By xi being an occur-

rence in Y (written as xi∈̃Y) we mean that it is one of the first multiplicityY (xi)

ones, otherwise an occurrence in Z (written as xi∈̃Z similarly for occurrences of

x′ ∈ X ′ in Y or Z ′). Let after ordering X = [x1, . . . , xn], X ′ = [x′
1, . . . , x

′
m].

Case Z = ∅: Let z′ be the maximum element of Z ′, x′
i be the first occurrence

of z′ in Z ′. For j < i, xj is an occurrence in Y , therefore xj = x′
j. xi is an

occurrence in Y , so xi = x′
i′ for some i′ > i, xi = x′

i′ ≺ x′
i. Therefore, l ≺lex l′.

Case Z 6= ∅: Let z be the maximum element of Z and z′ be the maximum

element of Z ′. Then z ≺ z′. Let xi be the first occurrence of z in Z (xi could be

both an element of Y and Z) and x′
j be the first occurrence of z′ in Z ′ (so there

are exactly multiplicityY (z′) many occurrence of z′ before). Let Y1 := {|xk | k <

i|}, Y ′
1 := {|x′

k | k < j|} ⊂ Y . For u ≻ z′ � z we have that u 6∈ Z ⊎ Z ′, since u

is bigger than the greatest element in Z and Z ′. Therefore, multiplicityX(u) =

multiplicityY (u) = multiplicityX′(u). Before x′
j occur multiplicityY (z′) many

occurrence of z′ which occur as well in X. So we get that xk = x′
k for k < j.

Case 1: xj∈̃Z. Then xj � xi = z. xj was the largest element of Z, so xj = z.

We have the largest element in Z is less than the largest element in Z ′ therefore

xj = z ≺ z′ = x′
j , l ≺lex l′.

Case 2: xj
˜6∈Z. Then xj∈̃Y . xj 6= x′

j because x′
j is the first occurrence

of z′, which is ˜6∈Y , whereas xj is an occurrence in Y . Since, xj∈̃Y , xj = x′
l

for some l > j, xj = x′
l � x′

j , xj 6= x′
j, therefore xj ≺ x′

j . So xk = x′
k for

k < j, xj ≺ x′
j , l ≺lex l′.

Proof of “⇐”: Assume X = {|x1, . . . , xn|}, X ′ = {|x′
1, . . . , x

′
m|}, x1 � · · · �

xn, x′
1 � . . . � x′

m. Assume (x1, . . . , xn) ≺lex (x′
1, . . . , x

′
m).

Case 1: n < m and xi = x′
i for i = 1, . . . , n. Let U := {|x1, . . . , xn|}, Y :=

∅, Y ′ := {|x′
n+1, . . . , xm|}. Then X = U ⊎Y, X ′ = U ⊎Y ′ and ∀y ∈ Y.∃y′ ∈ Y ′.y ≺

y′. Furthermore, X ′ 6⊆ X.

Case 2: There exists i < n, m, xj = x′
j for j < i, and xi ≺ x′

i. Let U :=

{|x1, . . . , xi−1|}, Y := {|xi, . . . , xn|}, Y ′ := {|x′
i, . . . , x

′
m|}. Then X = U ⊎ Y, X ′ =

U ⊎ Y ′ and if y ∈ Y then y � xi ≺ x′
i ∈ Y ′. Furthermore, xi ∈ Y, xi 6∈ Y ′ so

149

Chapter 8. Extraction of Programs from Proofs in Agda

Y ′ 6⊆ Y, X ′ 6⊆ X.

Lemma 8.2.11. 1. If (A,≺) and (B,≺′) are well-founded, so are (A×B,≺lex)

and (Aweakdec,≺lex).

2. If (A,≺) is well-founded so is (Bagfin(A),≺bag).

Proof. (Note: (A,≺) is anti-reflexive because well-founded).

1. Proof of (A × B,≺lex) is well-founded. Assume (A,≺), (B,≺′) are well-

founded. Assume there exists an infinitely descending sequence in (A ×
B,≺lex), i.e. there exists a function f : N → (A × B). s.t. ∀n ∈ N.f (n +

1) ≺lex f (n). Let f (n + 1) = (an+1, bn+1), f (n) = (an, bn) and (an+1, bn+1)

≺lex (an, bn), which means (an+1 ≺ an)∨(an+1 = an∧bn+1 ≺′ bn). So we have

a1 � a2 � a3 � · · · . Since ¬(∃f ′ : N → A.∀n ∈ N.f ′ (n+1) ≺ f ′ (n)), there

exists an n s.t. an = an+1 = an+2 = · · · . Therefore, bn ≻ bn+1 ≻ bn+2 ≻ · · · .
However, there exists no infinite descending sequence in (B,≺′), so we get

a contradiction.

Proof of (Aweakdec,≺lex) is well-founded. Assume (A,≺) is well-founded. We

have Aweakdec := {(a0, a1, a2, · · ·) | a0 � a1 � a2 � · · · }. We assume that

there is an infinite descending sequence. s.t. a0 ≻lex a1 ≻lex a2 ≻lex · · · .
Let

a0 = (a0
1, a

0
2, · · · , a0

l0
)

a1 = (a1
1, a

1
2, · · · , a1

l1
)

a2 = (a2
1, a

2
2, · · · , a2

l2
)

a3 = (a3
1, a

3
2, · · · , a3

l3
)

· · ·

Since (A,≺) is well founded and a0
1, a

1
1, a

2
1, · · · ∈ A, there exists an n1 s.t.

an1
1 = an1+1

1 = an1+2
1 = · · · . We have an1+k

2 always exists. (If an1+k had

length 1 then an1+k = (a1
n1

). Then an1+k+1 cannot be smaller so an1+k
2

always exists.) Therefore, an1
2 � an1+1

2 � an1+2
2 � · · · . Again, because

(A,≺) is well-founded there exists an n2 ≥ n1 s.t. an2
2 = an2+1

2 = an2+2
2 =

· · · . As before an2+k
3 must exist. Therefore, an2

3 � an2+1
3 � an2+2

3 � · · · .
Continuing this process we obtain natural number n1 ≤ n2 ≤ n3 ≤ · · ·

150

Chapter 8. Extraction of Programs from Proofs in Agda

s.t. ai
ni

= ai
ni+1 = ai

ni+2 = · · · (Note that ak
i ≥ ak

i+1 since ai ∈ Aweakdec)

Therefore, we have an1
1 = an1+1

1 = an1+2
1 = · · · = an2

1 � an2
2 = · · · � · · · �

ank

k = · · · = a
nk+1

k � a
nk+1

k+1 = · · · , where ani
= (ani

1 , ani

2 , ani

3 , · · ·) ∈ Aweakdec.

Therefore, we obtain an1
1 � an2

2 � an3
3 � · · · , for ani

j ∈ A. Because there

is no infinite descending sequence in A s.t. an1
1 ≻ an2

2 ≻ an3
3 ≻ · · · , there

exists a k s.t. an1
1 � an2

2 � an3
3 � · · · � ank

k = a
nk+1

k+1 = · · · . Therefore, for nk

the sequences have the form

al = (an1
1 , an2

2 , an3
3 , . . . , ank

k , . . . , ank

k
︸ ︷︷ ︸

m0

)

So there exists m0 s.t. ∀l ≥ nk.al = bm0 where

bm1 = (an1
1 , an2

2 , an3
3 , . . . , ank

k , ank

k , . . . , ank

k
︸ ︷︷ ︸

m1

)

We have bm0 ≻lex bm1 if only if m0 > m1. Therefore, by al = bm0 ≻lex bm1 =

· · · ≻lex · · · there exists an infinite descending sequence m0 > m1 > · · ·
where mi ∈ N, so we get a contradiction.

2. Assume (A,≺) is well-ordered. Then we get (Aweakdec,≺lex) is well-founded.

By Lemma 8.2.10, so is (Bagfin(A),≺bag): assume X1 ≻bag X2 ≻bag X3 ≻bag

· · · was an infinitely descending sequence in the multiset ordering. Af-

ter reordering of each X1, X2, X3 . . ., we obtain weakly descending lists:

l1, l2, l3 . . . s.t. l1 ≻lex l2 ≻lex l3 Since, (Aweakdec,≺lex) is well-founded,

we get a contradiction.

8.2.2 Agda Normalises Elements of Algebraic Data Types

to Normal Form

We want to show that the normal form of every term which is an algebraic data

type starts with a constructor. This won’t hold for arbitrary Agda code. A trivial

example is as follows: assume postulate n : N then n is a closed term in normal

form of type N which does not start with a constructor. We will assume some

151

Chapter 8. Extraction of Programs from Proofs in Agda

conditions on the Adaga code, which hold for our Agda code after some minor

modifications. The Agda code written by us can be transformed so that it fulfils

the restrictions.

8.2.2.1 Global Assumption - Restrictions on Agda Code

We will impose some restrictions on Agda and have Agda code accepted by Agda

and generate from it other Agda code which has simple pattern matching. We

refer to Agda code which is

• accepted by Agda

• in which no extra switches have been set (see below)

• where some other restrictions (imposed by us and checked by hand) are

made

as checked Agda code and to code generated from it as generated Agda code. By

Agda code we mean checked or generated Agda code.

By the extra switches we mean: normally in Agda we are allowed have lines

{−# OPTIONS –no-termination-check #−}
{−# OPTIONS –no-coverage-check #−}
{−# OPTIONS –no-positivity-check #−}

After these lines the termination, coverage and positivity checkers are switched

off. So by checked Agda code we mean it does not contain such kind of lines.

We make in the following assumptions about checked and generated Agda

code:

Assumption 8.2.12. (a) We assume checked Agda code is strongly normalis-

ing (guaranteed by Agda’s termination checker).

(b) We assume both checked and generated Agda code are confluent (guaranteed

by the general setting of Agda).

Assumption 8.2.13. We assume in the following the Agda code:

152

Chapter 8. Extraction of Programs from Proofs in Agda

(a) No record types are used.

(b) No use of let- and where- expressions.

This assumption is just for simplicity. let, where− expression can always be

omitted by defining corresponding global definitions. For example, if we have a

function f defined as follows :

f : A → B → C

f a b = t

where

e : E

e = s

g : F

g = s′

it could be replaced by

mutual

e : A → B → E

e a b = s

g : A → B → F

g a b = s′[e := e a b]

f : A → B → C

f a b = t[e := e a b, g := g a b]

We have to rename the functions if ”e” and ”g” are used before.

Remark: Because of Assumption 8.2.13 we know that the set of terms on

Agda can be defined inductively as follows :

• Constants (which include function symbols, constructors) are terms.

• Variables are terms.

• If s, t are terms, then s t is a term.

153

Chapter 8. Extraction of Programs from Proofs in Agda

• If s is a term and x is a variable, then λx.s is a term.

Definition 8.2.14. In the following by an algebraic data type we mean types

declared as

data A (a1 : A1) · · · (an : An) : Set where

C1 : (x1 : B1
1) → · · · → (xn1 : B1

n1
) → A a1 · · · an

· · ·
Ck : (xk : Bk

1) → · · · → (xnk
: Bk

nk
) → A a1 · · · an

The result type of each constructor is A a1 · · · an where a1 · · · an are parameters.

Remark: A a1 · · · an is the least set closed under C1, · · · , Ck. The elements of

A a1 · · · an are Ci ai
1 · · · ai

ni
for ai

j : Bi
j[x1 := ai

1, · · · , xjy
:= ai

jy
]. Ci a1 · · · ani

=

Cj b1 · · · bnj
if only and if i = j and ai = bj . Bi

j does not depend on A or Bi
j is

of the form (x1 : D1) → . . . → (xk : Dk) → A a1 · · · an.

Remark: (Note that a1 · · · an are just parameters, and Ci do not refer to

A b1 · · · bn for b1 6= a1 or . . . or bn 6= an). The canonical identity type (see

section 2.1.6) is not an algebraic data type in the above sense. We will treat the

canonical identity type as a special type. Furthermore, self-defined equalities can

be different. For instance, we will define an equality on N as follows :

data Bool : Set where

true : Bool

false : Bool

data ⊤ : Set where

triv : ⊤

data ⊥ : Set where

154

Chapter 8. Extraction of Programs from Proofs in Agda

Eq : N → N → Set

Eq zero zero = ⊤
Eq zero (suc y) = ⊥
Eq (suc x) zero = ⊥
Eq (suc x) (suc y) = Eq x y

As indicated in Section 2.1.4 ⊤ is the true formula (having a proof triv) and ⊥
is the false formula (having no proof). Then Eq n m is an algebraic data type.

Remark: In Definition 8.2.14 we don’t allow mutual induction definitions.

For instance, the following is not allowed:

mutual

data Even : Set where

Z : Even

S : Odd → Even

data Odd : Set where

S : Even → Odd

neither do we allow indexed inductive definitions. For instance,

data A : B → Set where

C1 : (x : D) → A t
...

Ck : · · ·

where D is different from B won’t occur in our Agda code. Note the difference to

parametrised inductive definition. (Indexed inductive definitions do occur, which

we discovered close to the submission date of this thesis. See a remark at the end

of this section where we discuss how this problem could be fixed.)

Assumption 8.2.15. We assume that postulated functions in checked and gen-

erated Agda code have as result type equalities, postulated types or Set.

155

Chapter 8. Extraction of Programs from Proofs in Agda

(In case of axioms we refer the result type as conclusion) So we allow

postulate f : (x1 : A1) · · · (xn : An) → B

where B is an equality or a postulated type for all x1 : B1, . . . , xn : Bn.

This assumption is necessary. Assume we have a postulated function f defined

as follows :

postulate f : N → N

or

postulate n : N

Then (f zero) and n are normal forms but they do not start with a constructor.

Assumption 8.2.16. We assume functions defined by case distinction on equal-

ities in checked and generated Agda code have as result type only equalities, pos-

tulated types, or Set.

This assumption is necessary. If we have the function transfer with the fol-

lowing definition

data ∧ (A B : Set) : Set where

and : A → B → A ∧ B

A : N → Set

A = . . .

B : N → Set

B = . . .

P : N → Set

P n = A n ∧ B n

postulate q : zero == suc zero

p : P zero

156

Chapter 8. Extraction of Programs from Proofs in Agda

p = and

transfer : (n, m : N) → (n == m) → P n → P m

transfer .n n refl p = p

(transfer zero (suc zero) q p) is in normal form and is an element of A (suc zero)∧
B (suc zero) but it doesn’t start with a constructor.

Definition 8.2.17. By a proper function we mean a function with result data type

an algebraic data type. Improper functions are functions which have as result type

an equality or a postulate type.

Definition 8.2.18. 1. Patterns are defined inductively as follows:

• A variable is a pattern.

• The absurd pattern () is a pattern.

• If C is a constructor, t1, . . . , tn are patterns with different variables,

then C t1 · · · tn is a pattern.

2. A proper pattern is a pattern of the form C t1 · · · tn (i.e. not a variable or

()).

We sometimes need to refer to a pattern which is either a specific variable x

or (). We write x̂ for such a pattern.

We often deal with the situation where we have patterns which may or may

not contain the absurd pattern. In case no absurd pattern occurs in a pattern,

definition of a function for this pattern has the form f t1 · · · tn (e.g. if t1 = (),

f () t2 · · · tn). Otherwise it has the form f t1 · · · tn = s. We introduce in the

next definition an abbreviation f t1 · · · tn = ŝ for dealing with this.

Definition 8.2.19. Let A be some Agda code. Let f be a proper function symbol

of an algebraic data type

f : (x1 : B1) → · · · → (xn : Bn) → A

157

Chapter 8. Extraction of Programs from Proofs in Agda

defined by pattern matching. We write

f t1 · · · tm = ŝ

for a line of the pattern matching definition of f where

• there is no occurrence of absurd pattern () in t1 · · · tm and the line is f t1 · · · tm=

s. Or

• there is an occurrence of absurd pattern () in t1 · · · tm and the line is f t1 · · · tm

(i.e. = s is omitted).

Definition 8.2.20. 1. Let A be an Agda code and f be a proper function

symbol f : (x1 : B1) → (x2 : B2) → · · · → (xn : Bn) → A. We define the set

of matching trees for f which are finite finitely branching trees with nodes

labelled by possible patterns for a definition of a function of this type.

• The tree with only one root node labelled f x1 · · ·xn is a matching tree.

• Assume s is a matching tree for f . Let m be a leaf labelled by f t1 · · · tn.
Let y be a variable, which has type an algebraic data type with con-

structors C1 · · ·Cr where Ci has ni arguments and which occurs in

f t1 · · · tn. Let s′ be obtained by adding leaves to m with labels (f t1 · · · tn)

[y := Ci z1 · · · zni
] for new variables z1 · · · zni

for i = 1 · · · k. Then s′

is a matching tree for f .

2. f is coverage complete for A if there exists a matching tree such that each

leaf of the matching tree occurs as a line in the definition of f (subject

to renaming of variables and replacing variables, which are elements of an

empty data type by the absurd pattern ()).

3. A is coverage complete if for all proper functions f we have f is coverage

complete.

Note: In the above definition nothing was required for improper functions f .

In the following we will not change such functions, so coverage completeness in a

more general sense for those symbols (which we have not defined and would be

more complicated to define) will automatically be preserved.

158

Chapter 8. Extraction of Programs from Proofs in Agda

Assumption 8.2.21. Checked Agda code A is coverage complete (guaranteed by

Agda’s coverage checker).

In Agda it is possible to give two overlapping patterns. For instance we can

define

f : N → Bool

f zero = true

f x = false

Agda resolves this conflict by using the equations in order: Agda will evaluate

(f t) by reducing t first to head normal form. If t reduces to zero and therefore

(f t) matches the first equation, then (f t) evaluates to true. If t reduces to head

normal form starting with a different constructor, (f t) will not match the first

equation but the second, which will then be used, and (f t) reduces to false.

This causes problems since this means that the equations in the first version

cannot be treated as judgements of Agda in type theory, one needs a concept of

conditional judgements, which is conceptionally difficult, something of the form

”if x 6= zero then f x = false”. This causes in particular problems since we want

to add later additional equations to an expanded version of Agda, which create

additional judgements but no additional reductions. We can avoid the problem

of overlapping patterns by observing that in this example Agda behaves as if we

had the following definition

f : N → Bool

f zero = true

f (suc y) = false

Agda would use the same reduction method in case of the first and of the

second code.

Therefore our approach is to use this method systematically and resolve all

overlapping pattern matchings: If there is an equation, which overlaps with a

previous one, one investigates, which minimal expansion of the pattern matching

is necessary, so that the second equation excludes the case of the overlapping

pattern matching. This might have the effect of replacing an equation by several

159

Chapter 8. Extraction of Programs from Proofs in Agda

new ones. For instance if we have

data A : Set where

C1 : B → A

C2 : B′ → A

C3 : A → A

f : A → A → Set

f x (C3 (C1 y)) = t1

f x y = t2

then one resolves the overlapping of the second equation with the first one by

replacing the definition by the following:

f x (C3 (C1 y)) = t1

f x (C1 y) = t2[y := C1 y]

f x (C2 y) = t2[y := C2 y]

f x (C3 (C2 y)) = t2[y := C3 (C2 y)]

f x (C3 (C3 y)) = t2[y := C3 (C3 y)]

When checking the Agda code of this thesis used for program extraction we didn’t

detect any over lapping patterns, but might have overlooked some. We assume

that such a case could be resolved by using this technique. Since we discovered

this problem at a very late stage we are not proving a general theorem how to

resolve it in general. We assume that all overlapping patterns have been resolved

and make the following assumption:

Assumption 8.2.22. We assume that in checked and generated Agda code, when

defining functions by pattern matching all patterns are disjoint, e.g. it is never

the case that there are terms t1, . . . , tn (possibly containing free variables) such

that (f t1 · · · tn) matches two different patterns

f s1 · · · sn = t

f s′1 · · · s′n = t′

160

Chapter 8. Extraction of Programs from Proofs in Agda

Therefore the order of equations doesn’t matter.

In Agda we can define sets by case distinction

Atom : Bool → Set

Atom true = ⊤
Atom false = ⊥

If we allowed arbitrary equations we could define for an algebraic data type A

and a postulated type B

C : Bool → Set

C true = A

C false = B

postulate p : B

If we had an inconsistency in the Agda code, this might allow us to prove true =

false : Bool. Then A = C true = C false = B and therefore p : A, which doesn’t

reduce to head normal form.

Furthermore, in the same situation we would get ⊤ = Atom true = Atom false =

⊥, so triv : ⊥. If we define

f : ⊥ → N

f ()

then f triv doesn’t reduce to head normal form.

Therefore, we need to make sure that:

• Agda doesn’t prove that two different algebraic data types are the same: If

we had for instance ⊤ = ⊥ : Set then we would get triv : ⊥. If we then

define g : ⊥ → N by the empty pattern matching g (), then g triv would

be an element of the algebraic data type N which doesn’t reduce to head

normal form.

• Agda doesn’t prove that an algebraic data type A and a postulated type or

equation B are the same. Otherwise we could postulate p : B, and would

get p : A, p doesn’t reduce to head normal form.

161

Chapter 8. Extraction of Programs from Proofs in Agda

• Agda doesn’t equate two different constructor patterns. Otherwise we

would obtain overlapping constructor patterns.

• Agda doesn’t prove that t : A for an algebraic data type A where t starts

with a constructor which is not a constructor of A. If we had for instance an

algebraic data type A : Set with only constructor C : A, defined f : A → N

by f C = zero. If we had C′ : A for some different constructor, then (f C′)

wouldn’t be an element of N which doesn’t reduce to head normal form,

All these assumptions hold in the Agda code of this thesis used for program

extraction: Agda checks whether two types and terms are the same, by reducing

them to constructor normal form. A postulated set or algebraic data type only

reduces to itself, so two different algebraic data types will never be the same,

neither will be an algebraic and a non-algebraic data type. Furthermore type

checking equalities will never equate different constructors, and will not show

that an element of an algebraic data type has a different constructor.

We make those assumptions explicit, since we will later expand our Agda code

by additional equations, and we need to make sure that we never obtain Agda

code which violates those assumptions.

Definition 8.2.23. (Consistency of Agda) Let A be Agda code. A is consis-

tent if it fulfils the following conditions:

(a) We assume that if A proves A = B : Set, where both A and B are algebraic

data types, postulated types or dependent function types, then if one is an

algebraic data type, the other is the algebraic data type given by the same

definition; if one is a postulated type or equality, the other is as well a

postulated type or equality; if one is of the form (x1 : A1) → B1, the other

is modulo α-conversion of the form (x1 : A′
1) → B′

1, and we have A1 = A′
1

and for x1 : A1 that B1 = B′
1.

(b) We assume that A proves C t1 · · · tn : B for an algebraic data type for a

constructor C and terms ti (depending on a context Γ), then C is a con-

structor of B, and, if it has type (x1 : B1) → · · · (xn : Bn) → B, then

ti : Bi[x1 := t1, . . . , xi−1 := ti−1].

162

Chapter 8. Extraction of Programs from Proofs in Agda

(c) We assume that if A doesn’t prove C t1 · · · tn = C′ t′1 · · · t′k : A for different

constructors C, C′ and terms ti (depending on a context Γ), and if it proves

C t1 · · · tn = C t′1 · · · t′n : A, then it proves that the arguments are equal

elements of the corresponding types.

Assumption 8.2.24. We assume that checked Agda code is consistent.

8.2.2.2 Pattern Matching Can Be Restricted to Simple Patterns

Pattern matching can be very complicated if a function does pattern matching on

several arguments which might be even deeper nested. For instance, the proof of

transitivity on natural number is defined as follows (note == is not the canonical

equality but a special equality defined for natural number which is an algebraic

data type)

transitive : (n m l : N) → n == m → m == l → n == l

transitive zero zero zero p p′ = p

transitive zero zero (S l) p ()

transitive zero (S m) l () p′

transitive (S n) zero l () p′

transitive (S n) (S m) zero p ()

transitive (S n) (S m) (S l) p p′ = transitive n m l p p′

We will show in the following that any Agda code can be replaced by Agda code

which uses only simple pattern matching on one argument which is not the empty

type. Therefore, we introduce the notion of simple pattern matching, which is

pattern matching only on one type argument each time and without any nested

patterns.

There is one problem, namely that we sometimes loose definitional equalities.

For instance, the Agda code A

f : N → N → N

f x 0 = 0

f 0 (suc y) = suc y

f (suc x) (suc y) = suc (suc y)

163

Chapter 8. Extraction of Programs from Proofs in Agda

will be replaced by Agda code A′ (note that 0 can be used for the constructor

zero even in patterns)

f : N → N → N

f 0 0 = 0

f (suc x) 0 = 0

f 0 (suc y) = suc y

f (suc x) (suc y) = suc (suc y)

which in a third step will be replaced by Agda code A′′

mutual

f : N → N → N

f 0 x = e x

f (suc x) y = e′ x y

e : N → N

e 0 = 0

e (suc y) = suc y

e′ : N → N → N

e′ x 0 = 0

e′ x (suc y) = suc (suc y)

In A we have f x 0 = 0 but in A′ we don’t have this. This causes problems since

the language changes. In A we have

λBλnλx.x : (B : N → Set) → (n : N) → B (f n 0)
︸ ︷︷ ︸

=0

→ B 0

but this term doesn’t have this type in A
′, since (f n 0) and 0 are not definitionally

equal (see Section 2.1.6). We note that this is only a problem for type checking.

We will show later that if in A′′ a term, which is an element of algebraic data

types, reduces to head normal form, then the same applies to the same term in A.

So if we can prove that Agda terms with simple pattern matching for reductions

164

Chapter 8. Extraction of Programs from Proofs in Agda

have the property that every element of an algebraic data type reduces to head

normal form, the same applies to A provided all elements of algebraic data types

in A are elements of the same algebraic data types in A′′. In order to obtain the

latter property we need to extend A′′ by additional equalities (in the example

f x 0 = 0) which are not used for normalisation but only for type checking.

Definition 8.2.25. Extended Agda code is Agda code plus some additional def-

initional equalities. These definitional equalities are used for type checking only.

When computing the normal form of a term only the original rules are used.

An example would be

f : N → N → N

f 0 0 = 0

f (suc x) 0 = 0

f 0 (suc y) = suc 0

f (suc x) (suc y) = suc (suc 0)

extended by

f x 0 = 0

This means that in type checking we add the axiom

x : N =⇒ f x 0 = 0 : N

However, we don’t have the reduction rule

f x 0 −→ 0

In the following all Agda code will be extended Agda code unless specified differ-

ently. We write Agda code for extended Agda code and non-extended Agda code

for orignal Agda code.

Definition 8.2.26. 1. An Agda code has simple pattern matching, if, when-

ever pattern matching for a function f on a directly non-empty algebraic

data type occurs, then this function does pattern matching only on one ar-

165

Chapter 8. Extraction of Programs from Proofs in Agda

gument, and the pattern is non nested. So the pattern is

f : (x1 : B1) → (x2 : B2) → · · · → (xn : Bn) → A

f x̂1 · · · x̂i−1 (C1 ŷ1
1 · · · ŷ1

l1
) x̂i+1 · · · x̂m = t̂1

· · ·
f x̂1 · · · x̂i−1 (Ck ŷk

1 · · · ŷk
lk
) x̂i+1 · · · x̂m = t̂k

And we require that in column i there is no occurrence of pattern x consisting

of a variable, so we won’t have f x̂1 · · · x̂i−1 xi x̂i+1 · · · x̂m = t̂. (Additional

equalities added are not considered here, they can be arbitrary.)

2. Agda code has the head normal form property, if every closed normal term

which is an element of an algebraic data type starts with a constructor.

3. A
′ extends A if all judgements derivable in A are derivable in A

′ as well.

4. Assume Agda code A′ extends A. A′ induces the head normal form property

on A if whenever B is an algebraic data type, A proves t : B and t has in A′

a normal form starting with a constructor then t has in A a normal form

starting with the same constructor.

Remark: If 3 and 4 hold, A, A
′ are normalising, A

′ has the head normal

form property, so does A. In order to prove this assume A proves t : B where B

is an algebraic data type. Then A′ proves as well t : B. A′ has the head normal

form property, therefore t starts with a constructor in A. But then by 4 t has in

A a normal form starting with the same constructor.

We are going to transform Agda code without simple pattern matching into

one with simple pattern matching. This is done in several steps from Agda code

A0 to A1 to . . . to An in such way that Ai+1 induces head normal form property

on Ai. Therefore, An induces it on A0.

166

Chapter 8. Extraction of Programs from Proofs in Agda

We give an example of the transformation for the subtraction function for

natural numbers in A:

− : N → N → N

m − zero = m

zero − (suc n) = zero

(suc m) − (suc n) = m − n

In A1 we first make sure that all lines make case distinction on the first argument:

− : N → N → N

zero − zero = zero

(suc m) − zero = suc m

zero − (suc n) = zero

(suc m) − (suc n) = m − n

In A2 we reorder lines:

− : N → N → N

zero − zero = zero

zero − (suc n) = zero

(suc m) − zero = suc m

(suc m) − (suc n) = m − n

In A3 − function only makes simple pattern matching on the first argument

and delegates the cases to new functions e and f :

mutual

− : N → N → N

zero − n = e n

(suc m) − n = f m n

167

Chapter 8. Extraction of Programs from Proofs in Agda

e : N → N

e zero = zero

e (suc n) = zero

f : N → N → N

f m zero = suc m

f m (suc n) = m − n

Definition 8.2.27. Let A, A′ be two Agda codes. We define properties (Subset),

(HNF), (m), (c), (n) and (cons) between A, A′ as follows:

(Subset) A′ extends A.

(HNF) A′ induces the head normal form property on A.

(c) If A is coverage complete, so is A′ (we don’t take into account extra equali-

ties).

(n) If A is strongly normalising, so is A
′ (we don’t take into account extra equal-

ities).

(cons) If A is consistent, so is A′.

Theorem 8.2.28. Assume Agda code A. Then we can define Agda code A′has

the same algebraic data types, postulated functions and types, the same function

symbols (with different pattern matching rules) and some additional ones defined

by pattern matching on algebraic data types, such that the following holds:

• A and A′ fulfil (Subset), (HNF), (c), (n) and (cons).

• A′ has simple pattern matching.

The proof of Theorem 8.2.28 will be given in the following.

Definition 8.2.29. For a pattern t we define its length |t| ∈ N as follows :

• |x| := |()| := 0.

• |C t1 · · · tn| := 1 + |t1| + · · · + |tn|.

168

Chapter 8. Extraction of Programs from Proofs in Agda

Definition 8.2.30. Let A be some Agda code. Let f be a proper function symbol

defined by pattern matching on an algebraic data type with definition

f : (x1 : B1) → · · · → (xn : Bn) → A

f t11 · · · t1m = ŝ1

· · ·
f tk1 · · · tkm = ŝk

and some additional equalities (which don’t count towards the measure). We

define the following measure

mA(f) :=

{

0 the pattern matching for f is simple
∑

i,j | tij | otherwise

Definition 8.2.31. Assume some Agda code A. We define its measure m(A) as

{|mA(f) | f function symbol is defined by pattern matching in A|}

Note that {|a1, . . . , an|} was our notation for bags.

Remark 8.2.32. If f is defined by pattern matching then this pattern matching

is simple if and only if mA(f) = 0.

Lemma 8.2.33. Assume A has no simple pattern matching. Then there exists

an Agda code A′ such that the following holds

1. A and A′ fulfil (Subset), (HNF), (c), (n) and (cons).

2. m(A′) ≺bag m(A), where ≺bag is the ordering on bags.

We will transform the Agda code from A to A′ on steps. First, several steps 1

are carried out followed by one instance of step 2. So the transformation is going

from A = A0 to A1 to A2 to · · · to An which is A
′. When carrying out step 1 or

step 2 we will refer to A as the Agda code before the transformation (ie. A = Ai)

and A′ for the Agda code after the transformation (ie. A′ = Ai+1).

In step 1 (see below) we assume A and define A′ s.t. properties (Subset),

(HNF), (c), (n) and (cons) hold. In step 2 (see below) we assume A to which

169

Chapter 8. Extraction of Programs from Proofs in Agda

step 1 cannot be applied anymore and define A′ s.t. properties (Subset), (HNF),

(c), (n) and (cons) hold. Finally we show m(An) ≺bag m(A0). Note that because

Ai, Ai+1 fulfil (Subset), (HNF), (c), (n) and (cons) for all i, so do A = A0 and

A′ = An.

Proof of Lemma 8.2.33 and therefore of Theorem 8.2.28: Let f be a

proper function symbol defined by a non simple pattern matching on an algebraic

data type. Let f be defined by

f : (x1 : B1) → · · · → (xn : Bn) → A

f t11 · · · t1m = ŝ1

· · ·
f tk1 · · · tkm = ŝk

Let i be minimal such that there exists tji for some j, which is a proper pattern,

tji = C s1 · · · sk. So tji′ are improper patterns for i′ < i. W.l.o.g. j = 1. By

renaming improper patterns we can assume that for each i′ < i, tji′ are improper

pattern x̂j
i′ such that if x̂j

i′ and x̂j′

i′ are variables they are the same variable xi′ (as

on the type of f). If x̂j
i′ = y and x̂j′

i′ = z then y = z. So the definition of f is

f : (x1 : B1) → · · · → (xn : Bn) → A

f x̂1
1 · · · x̂1

i−1 t1i · · · t1m = ŝ1

· · ·
f x̂k

1 · · · x̂k
i−1 tki · · · tkm = ŝk

We will carry the transformation out in two steps. Firstly, if we have a variable

pattern in column i, then we carry out step 1 (see below) several times until all

patterns in column i start with a constructor (we must have a pattern which starts

with a constructor). This transformation will take place finitely many times since

such variable patterns in column i are limited and no new lines having a variable

in column i will be introduced in step 1. Then we will carry out step 2. As said

before, in intermediate steps (Subset), (HNF), (c), (n) and (cons) are guaranteed.

And we will see that if A
′ is the Agda code after step 1 and step 2 have been

carried out, then m(A′) < m(A).

170

Chapter 8. Extraction of Programs from Proofs in Agda

Step 1: There is a j s.t. tji = x̂ is an improper pattern. There exists

an i s.t. tji = C s1 · · · sk. We renumber the rows in the pattern, so that t1i = x,

t2i = C s1 · · · sk. Bi cannot depend properly on variables which are instantiated by

(), therefore Bi[x1 := x̂1
1, · · · , xi−1 := x̂1

i−1] is the same as Bi[x1 := x̂2
1, · · · , xi−1 :=

x̂2
i−1]. Bi[x1 := x̂2

1, · · · , xi−1 := x̂2
i−1] is a directly non-empty algebraic data type

because t2i starts with a constructor. Therefore, Bi[x1 := x̂1
1, · · · , xi−1 := x̂1

i−1] is

a directly non-empty algebraic data type and tji = x. Let Bi have constructors

with arguments (C1 y1
1 · · · y1

l1
), . . . , (Cr yr

1 · · · yr
lr
), where the variables don’t occur

in any of the patterns, and w.l.o.g. C1 = C. So in code A the definition of f is

f : (x1 : B1) → · · · → (xn : Bn) → A

f x̂1
1 · · · x̂1

i−1 x t1i+1 · · · t1m = ŝ1

f x̂2
1 · · · x̂2

i−1 (C1 s1 · · · sk) t2i+1 · · · t2m = ŝ2

f x̂3
1 · · · x̂3

i−1 t3i t3i+1 · · · tkm = ŝ3

· · ·
f x̂k

1 · · · x̂k
i−1 tk1 tki+1 · · · tkm = ŝk

Replace this definition by

f : (x1 : B1) → · · · → (xn : Bn) → A

f x̂1
1 · · · x̂1

i−1 (C1 y1
1 · · · y1

l1
) t1i+1 · · · t1m = ŝ1[x := C1 y1

1 · · · y1
l1
]

· · ·
f x̂1

1 · · · x̂1
i−1 (Cr yr

1 · · · yr
lr
) t1i+1 · · · t1m = ŝ1[x := Cr yr

1 · · · yr
lr
]

f x̂2
1 · · · x̂2

i−1 (C1 s1 · · · sk) t2i+1 · · · t2m= ŝ2

f x̂3
1 · · · x̂3

i−1 t3i t3i+1 · · · t3m = ŝ3

· · ·
f x̂k

1 · · · x̂k
i−1 tk1 tki+1 · · · tkm = ŝk

If a line has more than one absurd pattern () then the later ones can be replaced

by variables.

If
f t1 · · · tk
f t′1 · · · t′k

171

Chapter 8. Extraction of Programs from Proofs in Agda

are identical except for having variables versus absurd pattern (), for instance,

the occurrence of a variable x in ti′ which occurs in t′i′ as (). Then we can delete

the second of the same lines.

We add all additional equalities added to f originally and

f x̂1
1 · · · x̂1

i−1 x t1i+1 · · · t1m = ŝ1

which is a line in the original code as an extra equality, provided we didn’t have

an absurd pattern (i.e. provided ŝ1 is a term). Note that this new equation was a

judgement in A because we have non-overlapping patterns. A′ fulfils Assumption

8.2.24 since all judgements provable in A′ are provable in A as well. It obviously

has no overlapping patterns.

For A and A′ as transformed in one step we have (Subset), (HNF),

(c), (n) and (cons). Proof for (Subset) is trivial since all equality rules in A

are equality rules in A
′. Proof for (HNF) Assume A

′ has the head normal form

property. If t is a term which is an element of a directly non-empty algebraic data

type in A′ s.t. t −→∗ C t1 · · · tk in A′ then all reductions in A′ are reductions in

A. Therefore, t −→∗ C t1 · · · tk in A as well with the same constructor.

Proof for (c) A matching tree for f in A′ is obtained from a matching tree

for A by adding to leaves with label f x1 · · ·xi−1 xi t′i+1 · · · t′m subnodes

f x1 · · ·xi−1 (C1 y1
1 · · · y1

l1
) t′i+1 · · · t′m

· · ·
f x1 · · ·xi−1 (Cr yr

1 · · · yr
lr
) t′i+1 · · · t′m

Proof for (n) Assume A is normalising which means there is no infinite

reduction sequences in A s.t. s1 −→ s2 −→ s3 −→ · · · . Then there is no infinite

reduction sequences in A
′ because all reductions in A

′ are reductions in A. Proof

for (cons) is trivial since A proves t = t′ : B if only and if A′ proves t = t′ : B.

Step 2 We assume all tji have the form C s1, . . . , sk. As before Bi must be a

directly non-empty algebraic data type for all x̂j
1, . . . , x̂

j
i−1. Let the constructors

of Bi(x1, . . . , xk) be (C1 y1
1 · · · y1

l1
), . . . , (Cr yr

1 · · · yr
lr
), where the variables don’t

172

Chapter 8. Extraction of Programs from Proofs in Agda

occur in any of the patterns, and we have

C1 : (y1
1 : D1

1) → · · · → (y1
l1

: D1
l1
) → B

· · ·
Cr : (yr

1 : Dr
1) → · · · → (yr

lr
: Dr

lr
) → B

After renumbering, we can assume that the first patterns refer to C1, then the

next ones to C2 etc. So by giving different names to the terms we have

f : (x1 : B1) → · · · → (xn : Bn) → A

f x̂1,1
1 · · · x̂1,1

i−1 (C1 s1,1
1 · · · s1,1

l1
) t1,1

i+1 · · · t1,1
m = ŝ1,1

· · ·
f x̂1,j1

1 · · · x̂1,j1
i−1 (C1 s1,j1

1 · · · s1,j1
l1

) t1,j1
i+1 · · · t1,j1

m = ŝ1,j1

f x̂2,1
1 · · · x̂2,1

i−1 (C2 s2,1
1 · · · s2,1

l2
) t2,1

i+1 · · · t2,1
m = ŝ2,1

· · ·
f x̂2,j2

1 · · · x̂2,j2
i−1 (C2 s2,j2

1 · · · s2,j2
l2

) t2,j2
i+1 · · · t2,j2

m = ŝ2,j2

· · ·
f x̂r,1

1 · · · x̂r,1
i−1 (Cr sr,1

1 · · · sr,1
lr

) tr,1i+1 · · · tr,1m = ŝr,1

· · ·
f x̂r,jr

1 · · · x̂r,jr

i−1 (Cr sr,jr

1 · · · sr,jr

lr
) tr,jr

i+1 · · · tr,jr
m = ŝr,jr

We have for all x1 · · ·xi−1 that (xi : Bi) × (xi+1 : Bi+1) × · · · × (xn : Bn) is

covered by

(C1 s1,1
1 · · · s1,1

l1
) t1,1

i+1 · · · t1,1
m

· · ·
(C1 s1,j1

1 · · · s1,j1
l1

) t1,j1
i+1 · · · t1,j1

m

(C2 s2,1
1 · · · s2,1

l2
) t2,1

i+1 · · · t2,1
m

· · ·
(Cr sr,1

1 · · · sr,1
lr

) tr,1i+1 · · · tr,1m

· · ·
(Cr sr,jr

1 · · · sr,jr

lr
) tr,jr

i+1 · · · tr,jr
m

We redefine A to obtain A′ by adding new function symbols g1, . . . , gr and

new rules for f as follows:

173

Chapter 8. Extraction of Programs from Proofs in Agda

mutual

f : (x1 : B1) → · · · → (xn : Bn) → A

f x1 · · ·xi−1 (C1 y1
1 · · · y1

l1
) xi+1 · · ·xm = g1 x1 · · ·xi−1 y1

1 · · · y1
l1

xi+1 · · ·xm

· · ·
f x1 · · ·xi−1 (Cr yr

1 · · · yr
lr
) xi+1 · · ·xm = gr x1 · · ·xi−1 yr

1 · · · yr
l1

xi+1 · · ·xm

g1 : (x1 : B1) → · · · → (xi−1 : Bi−1)

→ (y1
1 : D1

1) → · · · → (y1
l1

: D1
l1
)

→ (xi+1 : Bi+1[xi := C1 y1
1 · · · y1

l1
]) → · · · → (xn : Bn[xi := C1 y1

1 · · · y1
l1
])

→ A[xi := C1 y1
1 · · · y1

l1
]

g1 x̂1,1
1 · · · x̂1,1

i−1 s1,1
1 · · · s1,1

l1
t1,1
i+1 · · · t1,1

m = ŝ1,1

· · ·
g1 x̂1,j1

1 · · · x̂1,j1
i−1 s1,j1

1 · · · s1,j1
l1

t1,j1
i+1 · · · t1,j1

m = ŝ1,j1

gr : (x1 : B1) → · · · → (xi−1 : Bi−1)

→ (yr
1 : Dr

1) → · · · → (yr
lr

: Dr
l1
)

→ (xi+1 : Bi+1[xi := Cr yr
1 · · · yr

lr
]) → · · · → (xn : Bn[xi := Cr yr

1 · · · yr
lr
])

→ A[xi := Cr yr
1 · · · yr

lr
]

gr x̂r,1
1 . . . x̂r,1

i−1 sr,1
1 · · · sr,1

lr
tr,1i+1 · · · tr,1m = ŝr,1

· · ·
gr x̂r,jr

1 . . . x̂r,jr

i−1 sr,jr

1 · · · sr,jr

lr
tr,jr

i+1 · · · tr,jr
m = ŝr,jr

We take as extra equalities in A
′ all extra equalities in A. A

′ obviously has no

overlapping patterns. A′ fulfils Assumption 8.2.24: If A′ proves t = t′ : A, t : A,

A : Set or A = A′ : Set, then A proves the same judgements, if we replace every oc-

currence of (gi t1 · · · ti−1 s1 · · · sli ti+1 · · · tn) by (fi t1 · · · ti−1 (Ci s1 · · · sli) ti+1 · · · tn).

Therefore Assumption 8.2.24 for A′ follows from this assumption about A.

For A and A′ as transformed in step 2 we have (Subset), (c), (cons),

(n) and (HNF). (Subset) holds since all equalities in A are provable in A′

as well. Proof for (c) f is obviously coverage complete in A′. f was coverage

completed for A. We show gi′ is coverage complete. Let T be a matching tree for

174

Chapter 8. Extraction of Programs from Proofs in Agda

f . A matching tree for gi′ is obtained as follows : replace labels

f x1 · · ·xi−1 xi ti+1 · · · tm

by

f x1 · · ·xi−1 (Ci′ y1 · · · yr) ti+1 · · · tm

Then delete occurrences of nodes with label

f x1 · · ·xi−1 (Cj y′
1 · · · y′

r) ti+1 · · · tm

where i′ 6= j. If f x1 · · ·xi−1 (Ci′ y′
1 · · · y′

r) ti+1 · · · tm is now a subnode of

f x1 · · ·xi−1 (Ci′ y1 · · · yr) ti+1 · · · tm then we contract both nodes into one and

rename the variables y′
i in all subnodes to yi.

Finally we replace everywhere f x1 · · ·xi−1 (Ci′ s1 · · · sr) ti+1 · · · tm by

gi′ x1 · · ·xi−1 s1 · · · sr ti+1 · · · tm

Then we obtain a matching tree for gi′.

Proof for (cons) We check only one case, namely (c), A is consistent. As-

sume A′ proves C t1 · · · tn = C′ t′1 · · · t′k : A for constructors C, C′ and algebraic

data type A. By replacing in the derivation of this equation all terms

gi t1 · · · ti−1 s1 · · · sr ti+1 · · · tm

by

f t1 · · · ti−1 (Ci s1 · · · sr) ti+1 · · · tm

we get a derivation of

C t̂1 · · · t̂n = C′ t̂′1 · · · t̂′k : Â

in A. Therefore by A being consistent we get C = C′ and n = k, t̂1 = t̂1
′
, · · · , t̂n =

t̂k
′
. Hovever, in A we have ti = t̂i, t

′
i = t̂i

′
since ti, t̂i differ only in the contraction

of

gi t1 · · · ti−1 s1 · · · sr ti+1 · · · tm

175

Chapter 8. Extraction of Programs from Proofs in Agda

to

f t1 · · · ti−1 (Ci s1 · · · sr) ti+1 · · · tm

So t1 = t′1, · · · , tn = t′n.

Proof for (n) Assume there exists an infinite reduction sequence in A′,

r0 −→′ r1 −→′ r2 −→′ · · · . By replacing

gj t1 · · · ti−1 t′1 · · · t′lj ti+1 · · · tm

back to

f t1 · · · ti−1 (Cj t′1 · · · t′lj) ti+1 · · · tm

We get r′0
−→=r′1

−→=r′2
−→= · · · obtain terms r′i in A and obtain that all terms are terms

in A of the same type. If ri′ −→′ ri′+1 in A
′ because of the reduction s.t.

f t1 · · · ti−1 (Cj t′1 · · · t′lj) ti+1 · · · tm −→′ gj t1 · · · ti−1 t′1 · · · t′lj ti+1 · · · tm

then we have r′i′+1 = r′i′. If ri′ −→′ ri′+1 in A′ because of the reduction s.t.

gj t1 · · · ti−1 t′1 · · · t′lj ti+1 · · · tm −→′ sj,j′

then we have r′i′ −→ r′i′+1 because of the reduction s.t.

f t1 · · · ti−1 (Cj t′1 · · · t′lj) ti+1 · · · tm −→ sj,j′

If ri′ −→′ ri′+1 because of some other reduction then r′i′ −→ r′i′+1 because of the

same reduction.

If r′i′ = r′i′+1 in this reduction, one occurrence of f vanishes and no new f is

generated (on the right hand side of the reductions for f in A′, no f occurs) but

there are only finite f ’s. Hence, there is no infinite sequence of uninterrupted

equal(=) chain in A s.t. rj = rj+1 = rj+2 = · · · . Therefore, the reduction

sequence is r′1 = r′2 = · · · = ri′1
−→ ri′1+1 = · · · = ri′2

−→ ri′2+1 = · · · =

ri′3
−→ ri′3+1 = · · · . Then we obtain an infinite reduction sequence in A s.t.

r′i′1
−→ r′i′2

−→ r′i′3
−→ r′i′4

−→ · · · . However, A was assumed to be normalising,

we get a contradiction.

176

Chapter 8. Extraction of Programs from Proofs in Agda

Proof for (HNF) We know the initial A was normalising. Step 1 preserved

normalisation, so the Agda code in the begining of step 2 is normalising. A′

induces the head normal form property on the code A before carrying out step 2:

Assume A′ has this property. Let r be a closed term in A in normal form which

is an element of an algebraic data type. However, r might not be in normal form

in A′. Since A′ is normalising, r has a normal form r′ w.r.t. A′. We write −→
for reductions in A and −→′ for reductions in A′. Let the reduction chain from r

to r′ in A
′ be r = r0 −→′ r1 −→′ · · · −→′ rn = r′. Replace in ri′ each occurrence

of (gj t1 · · · ti−1 t′1 · · · t′lj ti+1 · · · tm) by (f t1 · · · ti−1 (Cj t′1 · · · t′lj) ti+1 · · · tm) and

obtain terms r′i′ . Now if a reduction rk −→′ rk+1 was a reduction using f , then

we have r′k = r′k+1. If it was a reduction using gj , then we have r′k −→ r′k+1. If it

was a reduction using some other symbols or rules, then we have r′k −→ r′k+1. So

we obtain r′0 −→∗ r′. But r = r0 = r′0 and r′n = rn = r′, so r −→∗ r′n in A. Since r

was in normal form in A we have r = r′n. Then r′n is obtained from rn by replacing

(gj t1 · · · ti−1 t′1 · · · t′lj ti+1 · · · tm) by (f t1 · · · ti−1 (Cj t′1 · · · t′lj) ti+1 · · · tm). Since

rn is in normal form in A′, it must start with constructor, therefore r = r′n as

well.

Proof that resulting code has smaller measure. Let A0 be the code

before steps 1 were carried out. We show that m(An) < m(A0): We have

• mAn(f) = 0 < mA0(f) since f has simple pattern.

• We show mAn(gk) < mA0(f): Consider a line of gk.

gk x̂k,1
1 · · · x̂k,1

i−1 sk,1
1 · · · sk,1

lk
tk,1
i+1 · · · tk,1

m = sk,1

This line originates from a line for f before step 2 which was

f x̂k,1
1 · · · x̂k,1

i−1 (Ck sk,1
1 · · · sk,1

lk
) tk,1

i+1 · · · tk,1
m = sk,1

Before step 1 in A0 this was either a line of the same form or we had sk,1
i = yi

and the line in A0 was

f x̂k,1
1 · · · x̂k,1

i−1 y tk,1
i+1 · · · tk,1

m = s′k,1

177

Chapter 8. Extraction of Programs from Proofs in Agda

Furthermore, no two lines in An originate from the same line in A0. We

have two cases:

– The line originates from

f x̂l
1 · · · x̂l

i−1 (Ck s1 · · · slk) tli+1 · · · tlm = sl

Then we have that the sum of the length of the patterns of this line

is one bigger than the sum of the lengths of the patterns in the corre-

sponding line in An(because of the occurrence of Ck).

– The line originates from

f x̂l
1 · · · x̂l

i−1 y tli+1 · · · tlm = sl

Then the new line is

gk x̂k,1
1 · · · x̂k,1

i−1 z1 · · · zl tk,1
i+1 · · · tk,1

m = s′k,1

Since variables have length 0, the length of the line in An is the same as

the length of the line in A0.

If there is at least one line for the first case, then the sum of the lengths of

the lines in An is less than the sum of lengths of lines in A0. If this is not the

case, then all lines originate from lines in A0 for which the i’s column had

a variable. However, there was at least one line in A0 which had a proper

pattern in column i (starting with a constructor Ck′ for k′ 6= k). This line

has length > 0, so the sum of the length of the lines in A0 is at least the

sum of the lengths of the lines in An plus the length of this line. So again

it is bigger. Hence, we obtain in all cases mAn(gk) < mA0(f).

• Therefore, m(An) is obtained from m(A0) by replacing mA0(f) by 0 and

several values mAn(gk) which are smaller. So m(An) < m(A).

178

Chapter 8. Extraction of Programs from Proofs in Agda

8.2.2.3 Proof That Agda Normalises Elements of Algebraic Data Types

to Head Normal Form

Lemma 8.2.34. If a is a term, then a can be written as a = s0 · · · sn, where s0

is not an application.

Proof. Induction on the length of terms in Agda. If a is not an application,

a = s0, n = 0. Otherwise, a = s t. By IH , s = s0 · · · sn where s0 is not an

application then a = s t = s0 · · · sn t.

Theorem 8.2.35. Let A be checked Agda code. Assume A proves a : A, where

a is a closed term in normal form and A is an algebraic data type, then a must

start with a constructor i.e. a = Ca1 . . . an, where C is a constructor and a1 . . . an

are terms.

Proof. Replacing A by checked Agda code we can by theorem 8.2.28 w.l.o.g.

assume that A has only simple pattern matching. Lemma 8.2.34 has shown us

a = s0 · · · sn, where s0 is not an application by induction on the length of a.

We know that s0 cannot be a variable, since a is a closed term. If s0 = λx.s

and n = 1, then a = λx.t which is not an element of an algebraic data type. If

s0 = λx.s and n ≥ 2, we would have a β- reduction. Therefore, s0 = f where f

is a defined function or s0 = C, a = C s1 · · · sn where C is a constructor.

Case 1: s0 = f, a = f s1 · · · sn

Let the type of f be

f : (a1 : A1) → . . . → (am : Am) → B

where B is not a function type. Note that by Assumption 8.2.24 m is unique. If

n < m then a = f s1 · · · sn : (an+1 : Bn[a1 := s1, . . . , an := sn]) → · · · → (am :

Bn[a1 := s1, . . . , an := sn]) → B[a1 := s1, . . . , an := sn] which is not an algebraic

data type. If n > m then a = f s1 · · · sm : Bn[a1 := s1, . . . , an := sn] which

cannot be applied to sm+1. So n = m, f : (a1 : A1) → . . . → (an : Am) → B.

179

Chapter 8. Extraction of Programs from Proofs in Agda

Subcase 1.1: f is a directly defined function. f is defined directly as

f : (a1 : A1) → . . . → (an : An) → B

f x1 · · · xm = t

where B is an algebraic data type and t is a term. f depends on variables

x1 · · ·xm.

It is impossible to have m > n, because in this case f x1 · · ·xn : B[a1 :=

x1, . . . , an := xn] which is an algebraic data type and not a function type, so

f x1 · · ·xn cannot to be applied to xn+1. Therefore, m ≤ n and a = f s1 · · · sn =

(f s1 · · · sm) sm+1 . . . sn → t[a1 := x1, . . . , am := xm] sm+1 . . . sn. So a has one

reduction, a is not in normal form, a contradiction.

Subcase 1.2: f is a postulated function. So we postulated f by having

postulate f : (a1 : A1) → · · · → (an : An) → B

where B is a postulated type or an equality.

Then a = f s1 · · · sn has a type B[a1 := s1, . . . , an := sn] which is a postulated

type or an equality and therefore by Assumption 8.2.24 not equal to an algebraic

data type.

Subcase 1.3: f is a function defined by pattern matching as follows

f : (a1 : A1) → . . . → (an : An) → B

f x̂1 · · · x̂k−1 (Ci ŷ1 · · · ŷl) x̂k+1 · · · x̂m = ŝ
...

where Ai and B are algebraic data types. W.l.o.g. m = n (otherwise, n-expand).

So by IH and Assumption 8.2.24 si must be of the form (Ci t1 · · · tl). As-

sume one of x̂i or ŷi is the absurd pattern () then sj or ti is an element of

a directly empty algebraic data type. It must start with a constructor of this

type (by Assumption 8.2.24) but the empty algebraic data type has no con-

structor, so this case does not occur. By Theorem 8.2.28, we can assume f is

defined by simple pattern matching. So f matches a pattern, therefore a =

f s1 · · · sk−1 (Ci t1 · · · tl) sk+1 · · · sn −→ s[x1 := s1, · · · , xk−1 := sk−1, y1 :=

180

Chapter 8. Extraction of Programs from Proofs in Agda

t1, · · · , yl := tl, xk+1 := sk+1, · · · , xn := sn] (note that the pattern is determined

uniquely by Assumption 8.2.24). So a has one reduction, a is not in normal form.

We get a contradiction.

Case 2: s0 = C, a = C s1 · · · sn Then a starts with a constructor C.

Corollary 8.2.36. If checked Agda code A proves that t : N then t reduces to a

natural number (zero or suc (suc (suc (· · · (suc zero))))). If t is an element of a

finite term then t reduces to a constructor.

Corollary 8.2.37. If checked Agda code A proves that t : List Digit then t reduces

to d0 :: d1 :: d2 :: d3 :: . . . :: dn :: [] where di =0 or -1 or 1. If A proves that

t : String then t reduces to ”a0 . . . an” where ai are characters.

Note that in the theorem above, the correctness of program extraction, doesn’t

cover indexed (co)inductive definitions. However, ∼R is a restricted indexed coin-

ductive definition. One way of avoiding this problem is to extend our theorem to

restricted indexed (co)inductive definition data type (see next section). An alter-

native would be to replace the data type ∼R by this new parametrised inductive

definition

data ∼R (r : R) : Set where

C : (∼r : N → R)

→ (∼d : N → Digit)

→ (p : (n : N) → ∼r n∈[−1, 1])

→ (q : (n : N) → ∼r (suc n) == r2 ∗ ∼r n − embedD (∼d n))

→ ∼r 0 == r

→ ∼R r

So ∼R r holds if there exists a sequence of digits ∼d n for (n : N), and of
∼r n∈[−1, 1] for (n : N) such that ∼r 0 = r and ∼r (n +1) = 2 ∗∼r n− ∼d n). So
∼d n are the digits and ∼r n are the real numbers occur in an proof of ∼R r using

181

Chapter 8. Extraction of Programs from Proofs in Agda

the original definition. This is just a way of writing the dependent product type

∼R r = (∼r : N → R)

×(∼d : N → Digit)

×(p : (n : N) → ∼r n∈[−1, 1])

×(q : (n : N) → ∼r (suc n) == r2 ∗ ∼r n − embedD (∼d n))

×∼r 0 == r

So if C ∼r ∼d p q l : ∼R r then r ∼ 0.(∼d 0)(∼d 1)(∼d 2)(∼d 3) We can now

replace proofs using the old definition of ∼R r by proofs using the new version.

As an example we prove ∼R r for all rational numbers r ∈ [−1, 1] by the function
∼RembedQ as follows

∼RembedQ : (q : Q) → (embed q ∈ [−1, 1]) → ∼R (embed q)
∼RembedQ q p = C ∼r ∼d p′ q′ (refl== (∼r 0))

where

mutual
∼d : N → Digit
∼d n = πl (2q−d∈[−1, 1]−Prod (∼q n) (p′ n))

∼q : N → Q
∼q 0 = q
∼q (suc n) = i+2 ∗Q ∼q n−Q embed(d)→Q (∼d n)

p′ : (n : N) → (∼r n) ∈ [−1, 1]

p′ n = . . .

∼r : N → R

∼r n = embed (∼q n)

q′ : (n : N) → (∼r′ (suc n)) == (r2 ∗ (∼r n) − embedD (∼d n))

q′ n = refl== (∼r (suc n))

182

Chapter 8. Extraction of Programs from Proofs in Agda

where the definition of 2q−d∈[−1, 1]−Prod can be found in Section 7.2.3.

8.2.2.4 Extensions of this Theorem

It seems our method works as well for restricted indexed inductive definitions

(data and codata types). In order to introduce this we introduce first generalised

indexed inductive definition:

A generalised indexed inductive definition allows us to define

data A : B → Set where

C1 : · · · → (x : A b2) → · · · → A b1

C2 : · · · → (x : A b4) → · · · → A b3

...

So the constructors have result types A applied to an arbitrary element of B and

might refer to other b : B. An example would be

data A : N → Set where

C1 : A 3
︸︷︷︸

index

C2 : (n : N) → A (n ∗ 2) → A (n + 17)

So the result type can have an arbitrary index and the arguments can have arbi-

trary different arguments. Case distinction doesn’t work on generalised indexed

inductive definition. If we have

f : A x → B

we don’t know whether C1 is an element of A x or not, so we don’t know the

constructors on which we make case distinction. On the other hand a restricted

indexed inductive definition is as follows

data A : N → Set where

C1 : (n : N) → A n

C2 : (n : N) → A (n + 17) → A n

183

Chapter 8. Extraction of Programs from Proofs in Agda

where the first argument in both constructors is an index and the result type is

A applied to this index. The second argument A (n+17) in C2 refers to different

A n. So the first argument of the constructor is a variable of the index type, the

result type is the type applied to this variable but we can refer to the type applied

to different indexes. If we have A t for some t we know which constructor occurs

and we can make a case distinction on it which is in Agda written as follows

f : A t → B

f (C1 .t) = . . .

f (C2 .t t′) = . . .

In order to reduce deep patterns by simple patterns the above could be replaced

by:

f : A t → B

f (C1 .t) = . . .

f (C2 .t y) = g2 y

g2 : A (t + 17) → B

g2 t′ = . . .

So the first argument of C1 stays in f and the other arguments are passed on to

the function g2. It seems our proof works as well for restricted indexed inductive

definition. Working out the details is left for future work.

A further extension would be to extend our theorem to codata types. Since

we need normalisation, we cannot use codata type verbally, instead we use the

coalgebraic definition, i.e. by defining

coalg A : Set where

elim : A → B

where B refers to A strictly positively. It seems that Theorem 8.2.35 can be

extended, however we need to prove simultaneously:

• if a : A, A is an algebraic data type, a closed and in normal form, then a

starts with a constructor.

184

Chapter 8. Extraction of Programs from Proofs in Agda

• if a : A, A is a coalgebraic type, a closed and in normal form, then elim a

has a reduction.

Finally we need to combine the two extensions in order to deal with ∼R,which

is in fact a restricted indexed coalgebraic data type, namely

codata ∼R : R → Set where

cons : (d : Digit)(r : R)

→ ∼R (r2 ∗ r − embedD d)

→ r ∈[−1, 1]

→ ∼R r

More precisely we need to exchange the first two arguments in the constructors

of ∼R in order to obtain a restricted indexed coinductive data type. This is no

problem since these arguments are independent of each other. We don’t adopt

this since we discovered this problem close to the submission date of this the-

sis. Neither do we adopt our proof to incorporate restricted indexed coinductive

definitions because of time constraints.

185

Chapter 9

Conclusion

9.1 Achievements

In this thesis we have extracted programs from proofs about real number compu-

tations in Agda. The main achievement of the thesis is to determine conditions

which guarantee normalisation of the given extracted functions and that we have

shown that under these conditions program extraction works. This included a

reduction of pattern matching to simple pattern matching which can be used for

other purposes as well and uses a sophisticated proof.

We began by formalising

• N (the natural numbers),

• N+ (natural numbers plus one),

• Z (the integers),

• Q (the rational numbers)

with operations. We axiomatized the real numbers R by using postulated data

types and functions. Then we have investigated some properties on real numbers

constructed by Cauchy sequences: we have introduced

• Q (the set rational numbers in R which are rational numbers).

186

Chapter 9. Conclusion

• the Cauchy reals Q′ (so {r : R | Q′ r} which are the real numbers which are

limits of Cauchy sequences of rational number).

• Q′′ (which are the real numbers which are limits of elements in Q′).

We gave proofs that

• Q′ is closed under addition and multiplication;

• Q′ is Cauchy complete, i.e. Q′′ ⊆ Q′. Therefore, every Cauchy sequence in

Q′ has a limit in Q′.

We introduced the real numbers which have binary signed digit stream repre-

sentation. Here, the signed digit stream d0 :: d1 :: d2 :: · · · (commonly written as

r ∼ 0.d0d1d2 · · ·) represents the number

∞∑

i=0

di ∗ 2−i+1

We showed that signed digit representable real numbers are Cauchy reals. In

order to work on computation of binary signed digit stream we introduced

• ∼R (which are the real numbers in the interval [-1,1] which have a signed

digit representation (SDR));

• transfer∼R function s.t transfer∼R : (r : R) → ∼R r → (s : R) → s == r →
∼R s (this overcomes our restriction that case distinctions on equalities need

to have result types equalities or postulated types);

• ∼RembedQ function (embedding of Q into SDR);

and we have given

• proofs that ∼R is closed under average and multiplication.

We also defined a function

fd : N → (r : R) → ∼R r → String

187

Chapter 9. Conclusion

such that (fd n r p) returns the first n digits of p. Then we compiled those proofs

into Haskell (we used the fact that Agda can be compiled into Haskell which can

be executed effectively due to lazy evaluation). Furthermore we gave a new proof

that forming the multiset ordering in finite bags preserves well-foundedness.

9.1.1 Our Program Extraction Method

We adopted the feature of proofs as programs inside Agda and provided a cor-

rectness of our method which is an innovative approach to program extraction.

Our method of program extraction in the thesis is as follows: the type of the

real numbers R which can be postulated without giving any computation rules

was introduced. The coinductive data type of the real numbers in [-1,1] which can

be approximated arbitrarily close by signed digit binary floating point numbers

0.a0a1 · · ·aN , where ai ∈ {−1, 0, 1} was introduced. The resulting data type is
∼R : R → Set. Then we proved theorems of the form

∀r1, . . . , rn : R.∼R r1 → · · · → ∼R rn → ∃r.ϕ(r1, . . . , rn, r) ∧ ∼R r

From an r : R s.t. (∼R r) holds we extracted a stream of signed digits representing

it. Furthermore, for every stream s is computed a real number r s.t. ∼R r holds.

Therefore we obtained in Agda from the theorem a function

f : Stream Digit → · · · → Stream Digit → Stream Digit

s.t. if s1, . . . , sn are the streams extracted from signed digits r1, . . . , rn, then the
∼R r given by the theorem extracts to stream s.

Using these functions we computed in Agda a stream s : Stream Digit rep-

resenting a real number which has a certain property. We defined a function

toListf : Stream Digit → N+ → List Digit s.t. (toList s n) returns the first n

digits of s. If our theorem (toList s n) normalises, we have computed its first n

digits. Note that s was referring to postulated data types and theorems used.

188

Chapter 9. Conclusion

9.1.2 Correctness Theorem

We proved a theorem showing that under certain conditions (toList s n) always

normalises to a list of signed digits and therefore doesn’t make use of the axioms.

The conditions mainly guarantee that a postulated function or theorem has as

result type only a postulated type, so the computation of elements of algebraic

data types to head normal form will not refer to these postulates. Therefore,

(toList s n) returns a list of n digits.

The method has been used for showing that the signed digit approximable real

numbers are closed under average, multiplication, and contain the rational num-

bers. Therefore, we obtain in Agda a provably correct program which executes

the corresponding operations on signed digit streams.

9.2 Future Work

The main tasks that were left for future work are:

1 Extension to irrational numbers such as π, e, or functions like sin, expo-

nential function as operations on SDR. Note that the operations discussed

in this thesis only generate rational numbers from rational numbers and

therefore don’t allow to generate the SDR of any irrational number. In a

paper Berger and Hou [BH08] have shown the real numbers (in the interval

[-1,1]) with SDR are closed under division and shown that in general the

real numbers with SDR are closed under all continuous functions provided

they stay in the interval [-1,1]. One next step would be to carry this out in

Agda.

2 Berger has considered other representations of real numbers. In the ap-

proach used in this thesis r ∼ 0.d0d1d2 . . . means

r = avd0 ◦ avd1 ◦ avd2 ◦ · · ·

where

avdi
=

di+avdi+1
◦avdi+2

◦···

2

189

Chapter 9. Conclusion

So signed digits correspond to representing real numbers as an infinite com-

position of functions av−1, av0 and av1. These functions av−1, av0, av1 can

be replaced by other functions, and the next step would be to explore such

representations in Agda.

3 Extend our method in Chapter 8 and work out the correctness in the pres-

ence of codata types and restricted indexed inductive and coinductive defi-

nitions. This is necessary since our method uses codata types and restricted

indexed inductive definitions.

Beside if one would like to work with program extraction on the proofs in

Chapter 5, one would redefine the data type Q as follows:

Q r := (q : Q) × (embedQ→R q == r)

and work with this data type. Then the embedding Q to Q is πl (p) for p : Q r.

This would overcome the problem (as we mentioned in Chapter 5.1) that the

axiom ¬ (r0 # r0) has computational content and is therefore not allowed. This

axiom is necessary for the embedding of the data type Q into Q used in the

thesis. Then we could extract programs from the proofs in Chapter 5 on Cauchy

sequences for addition and multiplication of Cauchy sequences. We could even

translate signed digit reals into elements of Q′ and vice versa (restricted to the

interval [-1,1]) and define other operations for defining and transforming Cauchy

sequences and therefore obtain from signed digits via their Cauchy sequences

signed digit representations of the result of these operations.

An alternative solution would be to introduce a second version of ⊥

postulate ⊥′ : Set

together with

postulate efq′ : (A : Set) → ⊥′ → A

which can be used only for A begin a postulated type or an equality. The above

would fulfil our conditions, provided efq′ is used only for postulated types and

190

Chapter 9. Conclusion

equalities. Now we introduce

postulate ¬0#0 : r0 #r0 → ⊥′

which is an axiom. In order to define

f : (r : R) → (p : Q r) → Q

f .(recip r p) (closerecip r n p) = {! !}

where p : r#r0, we can define it as 1/(f r p) if f r p 6= 0 and as 1/1 otherwise.

When showing that the embedding Q into R is the inverse of f , i.e.

lemmainverse : (r : R) → (p′ : Q r) → embedQ (f r p′) == r

we could in case r = (recip r′ p), p = closerecip r p′, f r p == r0 use the IH that

therefore r == r0. Since p : r # r0 we would get zero # zero, by (r0 #r0) → ⊥′

therefore a proof of ⊥′ from which using an allowed instance of efq′ we obtain

embedQ (f r p′) == r.

Alternative approaches to type theory: explicit mathematics and Frege

structures. It would be interesting to investigate the use of explicit mathemat-

ics [Fef75] and Frege structures [Kah99] in this context. One question would be

to find out whether the representation of streams in Frege structures could be

obtained by program extraction.

9.3 Possible Simplification

In this thesis we have proved most properties in Agda and therefore verified the

correctness using an interactive theorem prover. This is not strictly necessary for

program extraction, only for guaranteeing correctness. If we did it again, instead

we could only prove the theorems with computational content (which have as

result type an algebraic data type) and leave the rest as postulated axioms. In

191

Chapter 9. Conclusion

spite of the fact that we loose proofs, we would still know that the resulting

programs terminate by Theorem 8.2.34 as long as the postulated axioms are

correct. This has been tested in Appendix A.

192

Appendix A

This is an example of computing the first 1000 digits of 29/37 ∗ −29/3998. We

postulate functions which have as result type a type which has no computational

content i.e. <, ==, ≤. Since their result type is not an algebraic data type the

code fulfils our conditions. Firstly we define rational numbers 29/37, −29/3998,
∼R (29/37) and ∼R (−29/ 3998) as follow

q29/37 : Q

q29/37 = pos(28 +1) %′ (36 +1)

∼Rq29/37 : ∼R (embedQ→R q29/37)
∼Rq29/37 = ∼RembedQ (q29/37) (embedQ→R q29/37) w

(refl== (embedQ→R q29/37))

where

postulate l : − r1 ≤ embedQ→R q29/37

postulate r : embedQ→R q29/37 ≤ r1

w : embedQ→R q29/37 ∈[−1, 1]

w = and l r

q−29/3998 : Q

q−29/3998 = neg (28 +1) %′ (3997 +1)

∼Rq−29/3998 : ∼R (embedQ→R q−29/3998)
∼Rq−29/3998 = ∼RembedQ (q−29/3997) (embedQ→R q−29/3998) w

(refl== (embedQ→R q−29/3998))

193

Appendix A

where

postulate l : − r1 ≤ embedQ→R q−29/3998

postulate r : embedQ→R q−29/3998 ≤ r1

w : embedQ→R q − 29/3998 ∈[−1, 1]

w = and l r

We have rational numbers 29/37, 29/3998 and compute ∼R(29/37) and ∼R(29/3998).

We can compute ∼R (29/37 ∗ −29/3998) by using mp function:

mpq29/37∗q−29/3998 : ∼R (embedQ→R q29/37 ∗ embedQ→R q−29/3998)

mpq29/37∗q−29/3998 = ∼mp (embedQ→R q29/37)

(embedQ→R q−29/3998)

(embedQ→R q29/37 ∗ embedQ→R q−29/3998)
∼Rq29/37 ∼Rq−29/3998

(refl== (embedQ→R q29/37 ∗ embedQ→R q−29/3998))

We now can compute 1000 digits ∼R (29/37 ∗ −29/3998) using fd function:

fd mpq29/37∗q−29/3998 : String

fd mpq29/37∗q−29/3998 = fd 1000

(embedQ→R q29/37 ∗ embedQ→R q−29/3998)

(mpq29/37 ∗ q−29/3998)

main : IO Unit

main = putStrLn fd mpq29/37∗q−29/3998

Then we compile the Agda file and execute it and obtain

194

Appendix A

(it took 15.44 seconds to compute the digits)

195

Bibliography

[Aug98] L. Augustsson. Cayenne—a language with dependent types. In ICFP

’98: Proceedings of the third ACM SIGPLAN international conference

on Functional programming, pages 239–250, New York, NY, USA, 1998.

ACM.

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical

Computer Science, 114(2):299–315, 1993.

[BBLS06] U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program

extraction from normalization proofs. Studia Logica, 82:25–49, 2006.

[BBS+98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber.

Proof theory at work: Program development in the Minlog system. In

W. Bibel and P. Schmitt, editors, Automated Deduction – A Basis for

Applications, volume II of Applied Logic Series. Kluwer, 1998. Dordrecht

(1998) 41–71.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Texts

in Theoretical Computer Science. Springer Verlag, 2004.

[Ben07] M. Benke. Alonzo – a Compiler for Agda. In TYPES

2007, Conference of the Types Project, 2007. Available from

http://www.mimuw.edu.pl/∼ben/Papers/TYPES07-alonzo.pdf.

196

BIBLIOGRAPHY

[Ber93] U. Berger. Program extraction from normalization proofs. In M. Bezem

and J.F. Groote, editors, Typed Lambda Calculi and Applications, vol-

ume 664 of LNCS, pages 91–106. Springer Verlag, 1993.

[Ber05a] U. Berger. Uniform Heyting arithmetic. Annals Pure Applied Logic,

133:2005, 2005.

[Ber05b] Y. Bertot. Coinduction in Coq. In Lecture Notes of the TYPES Summer

School 2005, Sweden, Volume II, 2005.

[Ber07] Y. Bertot. Affine functions and series with co-inductive real numbers.

Mathematical. Structures in Comp. Sci., 17(1):37–63, 2007.

[Ber09a] U. Berger. From coinductive proofs to exact real arithmetic. In

E. Grädel and R. Kahle, editors, Computer Science Logic, volume 5771

of LNCS, pages 132–146. Springer Verlag, 2009.

[Ber09b] U. Berger. Realisability and adequacy for (Co)induction. In Andrej

Bauer, Peter Hertling, and Ker-I Ko, editors, 6th Int’l Conf. on Com-

putability and Complexity in Analysis, Dagstuhl, Germany, 2009. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[BH08] U. Berger and T. Hou. Coinduction for exact real number computation.

Theory of Computing Systems, 43:394–409, 2008.

[Bla05] J. Blanck. Efficient exact computation of iterated maps. Journal of Logic

and Algebraic Programming, 64:41–59, 2005.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge

University Press, 1998.

[BS05] U. Berger and M. Seisenberger. Applications of inductive definitions

and choice principles to program synthesis. In From Sets and Types to

Topology and Analysis. Towards practicable foundations for constructive

mathematics, volume 48 of Oxford Logic Guides, pages 137–148. Oxford

University Press, 2005.

197

BIBLIOGRAPHY

[BS10a] U. Berger and M. Seisenberger. Program Extraction via Typed Realis-

ability for Induction and Coinduction. In Ralf Schindler, editor, Ways

of Proof Theory, Ontos Series in Mathematical Logic, pages 153 – 178.

Ontos Verlag, 2010.

[BS10b] U. Berger and M. Seisenberger. Proofs, Programs, Processes. CiE 2010,

LNCS 6158, 2010.

[BSB02] U. Berger, H. Schwichtenberg, and W. Buchholz. Refined program ex-

traction from classical proofs. Annals of Pure and Applied Logic, 114:3–

25, 2002.

[CG06] A. Ciaffaglione and P. Gianantonio. A certified, corecursive implementa-

tion of exact real numbers. Theoretical Computer Science, 351(1):39–51,

2006.

[Coq05] C. Coquand. Agda version 1 offical web site.

http://unit.aist.go.jp/cvs/Agda/, 2005.

[Coq09] Coq Development Team. The Coq proof assistant.

http://coq.inria.fr/, 2009.

[Ebb91] H.-D. Ebbinghaus. Numbers. Number 123 in Graduate Texts in Mathe-

matics. Springer, 1991.

[Ebe02] M. Eberl. Normalization by Evaluation. PhD thesis, Mathematisches

Institut der Universität München, 2002.

[EH02] A. Edalat and R. Heckmann. Computing with real numbers - I. The LFT

Approach to Real Number Computation - II. A Domain Framework for

Computational Geometry. In Proc APPSEM Summer school in Portugal,

pages 193–267. Springer Verlag, 2002.

[Fef75] S. Feferman. A language and axioms for explicit mathematics. In John

Crossley, editor, Algebra and Logic. Proc. 1974, Monash Univ Australia,

volume 450 of Springer Lecture Notes in Mathematics, pages 87 – 139,

1975.

198

BIBLIOGRAPHY

[Gor94] A. Gordon. A tutorial on co-induction and functional programming. In

Glasgow functional programming workshop, pages 78–95. Springer, 1994.

[Has] Haskell wiki. http://www.haskell.org/haskellwiki/Haskell.

[HGW07] B. Spitters H. Geuvers, M. Niqui and F. Wiedijk. Constructive analy-

sis, types and exact real numbers. Mathematical Structures in Computer

Science, 17:3–36, 2007.

[HS99] P. Hancock and A. Setzer. The IO monad in dependent type the-

ory. In Electronic proceedings of the workshop on dependent types

in programming, Göteborg, 27-28 March 1999, 1999. Available

via http://www.md.chalmers.se/Cs/Research/Semantics/APPSEM/

dtp99.html.

[HS00a] P. Hancock and A. Setzer. Interactive programs in dependent type the-

ory. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic.

14th international workshop, CSL 2000, Springer Lecture Notes in Com-

puter Science, Vol. 1862, pages 317 – 331, 2000.

[HS00b] P. Hancock and A. Setzer. Specifying interactions with dependent

types. In Workshop on subtyping and dependent types in program-

ming, Portugal, 7 July 2000, 2000. Electronic proceedings, Available via

http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html.

[HS04] P. Hancock and A. Setzer. Interactive programs and weakly final

coalgebras (extended version). In T. Altenkirch, M. Hofmann, and

J. Hughes, editors, Dependently typed programming, number 04381

in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und

Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2004. Available

via http://drops.dagstuhl.de/opus/.

[HS05] P. Hancock and A. Setzer. Guarded induction and weakly final coal-

gebras in dependent type theory. In L. Crosilla and P. Schuster, edi-

tors, From Sets and Types to Topology and Analysis. Towards Practica-

ble Foundations for Constructive Mathematics, pages 115 – 134, Oxford,

2005. Clarendon Press.

199

BIBLIOGRAPHY

[Isa09] Isabelle community. Isabelle, 2009.

http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[Kah99] R. Kahle. Frege structures for partial applicative theories. Journal of

Logic and Computation, 9(5):683–700, 1999.

[Kea96] R. Kearfott. Interval computations: Introduction, uses, and resources.

Euromath Bulletin, 2:95–112, 1996.

[Kon04] M. Konečný. Real functions incrementally computable by finite au-

tomata. Theoretical Computer Science, 315(1):109–133, 2004.

[Krä98] W. Krämer. A priori worst case error bounds for floating-point compu-

tations. IEEE Trans. Comput., 47(7):750–756, 1998.

[Kre59] G. Kreisel. Interpretation of analysis by means of constructive function-

als of finite types. In A Heyting, editor, Constructivity in Mathematics,

pages 101–128. North Holland, Amsterdam, 1959.

[MKJ08] S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using

dependent types. In Philippe Audebaud and Christine Paulin-Mohring,

editors, Mathematics of Program Construction, volume 5133 of Lecture

Notes in Computer Science, pages 268–283. Springer Berlin / Heidelberg,

2008. 10.1007/978-3-540-70594-9 15.

[MKJ09] S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in agda:

Dependent types for relational program derivation. Journal of Functional

Programming, 19(05):545–579, 2009.

[ML190] The standard ML language. http://www.lfcs.inf.ed.ac.uk/software/ML/,

1990.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Notes by Giovanni Sambin of

a series of lectures given in Padua, June 1980. Number 1 in Studies in

Proof Theory. Bibliopolis, Naples, 1984.

[MM08] C. McBride and J. McKinna. Epigram Hompage. http://www.e-

pig.org/, 2008.

200

BIBLIOGRAPHY

[MN94] L. Magnusson and B. Nordström. The Alf proof editor and its proof

engine. In TYPES ’93: Proceedings of the international workshop on

Types for proofs and programs, pages 213–237, Secaucus, NJ, USA, 1994.

Springer-Verlag New York, Inc.

[MRE07] J. Raymundo M. Romero and M. Escardó. Semantics of a sequen-

tial language for exact real-number computation. Theoretical Computer

Science, 379(1-2):120–141, 2007.

[Niq08] M. Niqui. Coinductive formal reasoning in exact real arithmetic. Logical

Methods in Computer Science, 4(3:6):1–40, September 2008.

[Nor07] U. Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Department of Computer Science and Engineer-

ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,

September 2007.

[Nor08] U. Norell. Dependently typed programming in Agda. In Lecture Notes

from the Summer School in Advanced Functional Programming, 2008.

[Nor09] U. Norell. The Agda Wiki.

http://wiki.portal.chalmers.se/agda/agda.php, 2009.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-

Löf ’s Type Theory: An Introduction. Oxford University Press, 1990.

[Nuo10] L. Nuo. Representing numbers in Agda. Third Year Project,

Dept. of Computer Science, University of Nottingham. Available

from http://www.cs.nott.ac.uk/∼nzl/Home Page/Homepage.html, May

2010.

[OTK09] H. Ozaki, M. Takeyama, and Y. Kinoshita. Agate-an agda-to-haskell

compiler. Computer Software, 26(4):107–119, 2009.

[PEE97] P. Potts, A. Edalat, and M. Escardo. Semantics of exact real arithmetic.

In LICS ’97: Proceedings of the 12th Annual IEEE Symposium on Logic

in Computer Science, page 248, Washington, DC, USA, 1997. IEEE

Computer Society.

201

BIBLIOGRAPHY

[Plo77] G. Plotkin. LCF considered as a programming language. Theoretical

Computer Science, 5(3):225–255, 1977.

[Plu] D. Plume. A calculator for exact real number computation.

http://www.dcs.ed.ac.uk/home/mhe/plume/report.html.

[Sch08] H. Schwichtenberg. Realizability interpretation of proofs in constructive

analysis. Theor. Comp. Sys., 43(3):583–602, 2008.

[Sei01] M. Seisenberger. Kruskal’s tree theorem in a constructive theory of

inductive definitions. In P. Schuster, U. Berger, and H. Osswald, editors,

Reuniting the Antipodes - Constructive and Nonstandard Views of the

Continuum . Proceedings of a Symposion in San Servolo/Venice Italy

1999 May 17-22. Synthese Library 306, Kluwer Academic Publishers,

Dordrecht, 2001.

[Sei02] M. Seisenberger. An inductive version of Nash-Williams’ minimal-bad-

sequence argument for Higman’s lemma. In TYPES ’00: Selected papers

from the International Workshop on Types for Proofs and Programs,

pages 233–242, London, UK, 2002. Springer-Verlag.

[Sei03] M. Seisenberger. On the computational content of proofs. PhD thesis,

Ludwigs-Maximilians-Universität München, 2003.

[Sei08] M. Seisenberger. Programs from proofs using classical dependent choice.

Annals of Pure and Applied Logic, 153(1-3):97 – 110, 2008. Special Issue:

Classical Logic and Computation (2006).

[Set09] A. Setzer. Coalgebras and codata in Agda. Presentation at the 3rd

Wessex Theory Seminar, 2009.

[Set10a] A. Setzer. Coalgebras in dependent type theory. Talk given in the

workshop on Dependently Type Programming associated with LICS,

July 2010. http://sneezy.cs.nott.ac.uk/darcs/dtp10/.

[Set10b] A. Setzer. Coalgebras in dependent type theory – the saga continues.

Talk given at Agda Intensive Meeting Xii 2010, Nottingham, 1. - 7.

September 2010.

202

BIBLIOGRAPHY

[Set10c] A. Setzer. Extraction of programs from proofs about real numbers

in dependent type theory, joint work with Chi Ming Chuang, invited

talk. In Workshop on Program Extraction and Constructive Proofs,

Workshop in honour of Helmut Schwichtenberg, Satellite workshop of

CSL 2010 and MFCS 2010, Brno, August 21 2010. Slides Availabe at

http://www.cs.swan.ac.uk/∼csetzer/slides/index.html.

[Tat98] M. Tatsuta. Realizability of monotone coinductive definitions and its

application to program synthesis. In MPC ’98: Proceedings of the Math-

ematics of Program Construction, pages 338–364, London, UK, 1998.

Springer-Verlag.

[Tro73] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic

and analysis. In Lecture Notes in Mathematics, volume 344, 1973.

[YD94] C. Yap and T. Dubé. The exact computation paradigm. World Scientific

Press, 1994.

203

	Contents
	1 Introduction
	1.1 Program Extraction
	1.2 Main Result of Thesis: Internalisation of Program Extraction into Agda together with Correctness Proof
	1.3 The Structure of the Thesis
	1.4 Related Work
	1.5 More Details on Interval Arithmetic and Program Extraction
	1.6 Talk, Publication

	2 Introduction to Agda
	2.1 The Language of Agda
	2.1.1 Basic Principles
	2.1.2 Postulated Types and Terms
	2.1.3 Dependent Functions
	2.1.4 Data type and Pattern Matching
	2.1.5 Inductive and Coinductive Data type
	2.1.6 Equality
	2.1.7 Let, Where-expressions and Mutual Definitions
	2.1.8 BUILTIN and Primitive
	2.1.9 Modules
	2.1.10 Compiled Version of Agda

	3 Real Numbers and Their Axiomatisation
	3.1 Natural Numbers, Integers, and Rational Numbers
	3.2 Real Numbers
	3.2.1 Dedekind Cuts
	3.2.2 Cauchy Sequences

	4 Coalgebras and Coinduction
	4.1 Initial Algebras and Final Coalgebras
	4.2 Coalgebras and Codata in Agda
	4.3 Least and Greatest Fixed Points in Set Theory

	5 Cauchy Reals in Agda
	5.1 Axioms
	5.2 Q' Closure Under Addition
	5.3 Q' Closure Under Multiplication
	5.4 Q' is Cauchy-complete

	6 Signed Digit Representation of Real Numbers in Classical Mathematics
	6.1 Signed Digit Representation
	6.2 The signed Digit Representations of Real Numbers -1, 0 and 1
	6.3 The signed Digit Representations of Rational Numbers
	6.4 Average
	6.4.1 Function avaux
	6.4.2 Function av

	6.5 Multiplication
	6.5.1 Function mpaux
	6.5.2 Function addR
	6.5.3 Function mp

	7 Signed Digit Representation of Real Numbers in Agda
	7.1 SDR
	7.2 SDR as Codata Type R
	7.2.1 Proof of R(-r1),Rr0,Rr1
	7.2.2 The Function transferR
	7.2.3 The Function RembedQ
	7.2.4 Examples of Function RembedQ

	7.3 R Is Closed Under the Average Function av
	7.3.1 R Is Closed Under the Function avaux
	7.3.2 R Closure Under av
	7.3.3 Examples of the Average Function

	7.4 R Is Closed Under the Multiplication Function mp
	7.4.1 R Is Closed Under the mpaux Function
	7.4.2 R Is Closed Under the addR Function
	7.4.3 R Is Closed Under the Function scalen
	7.4.4 R Closure Under mp
	7.4.5 Examples of the Multiplication Function

	7.5 Defining R Using the New Representation of R
	7.6 Computing the Extracted Program
	7.6.1 Testing

	8 Extraction of Programs from Proofs in Agda
	8.1 Program Extraction
	8.2 Main Theorem: The Correctness of Program Extraction
	8.2.1 Mathematical Preliminaries on Multisets
	8.2.2 Agda Normalises Elements of Algebraic Data Types to Normal Form
	8.2.2.1 Global Assumption - Restrictions on Agda Code
	8.2.2.2 Pattern Matching Can Be Restricted to Simple Patterns
	8.2.2.3 Proof That Agda Normalises Elements of Algebraic Data Types to Head Normal Form
	8.2.2.4 Extensions of this Theorem

	9 Conclusion
	9.1 Achievements
	9.1.1 Our Program Extraction Method
	9.1.2 Correctness Theorem

	9.2 Future Work
	9.3 Possible Simplification

	Appendix A
	Bibliography

