W N+

Interactive Proofs in
Dependent Type Theory

Anton Setzer
(Joint work with Peter Hancock)

Definition of the IO Monad in type theory.
Run, redirection and equality.
Well-founded version.

State-dependent 1IO.



1. Definition of the 10 Monad
In Type Theory

Direction in Functional Programming

Design of programming languages based on
dependent types.

Theoretical Problems:

- Equality. Hard.

- Practical structuring of programs.
x Local variables.
x Record types.
Unproblematic.

- Polymorphism, subtyping.

- Input/output.

Main models for input/output:
- Streams.
Timing between input/output depends
on evaluation strategy.
Only fixed finite number of IO-devices.
- The IO-monad.



Monad

A monad is a tripel (M,n,*), where

- M . Set — Set,

-n:(A:Set,a: A) - M(A),

-x:(A:Set,B:Set,p: M(A),q: A— M(B)),
— M(B),

with abbreviations
na = ng = n(A4,a),
p*xq:=pxapq:=*(A,B,p,q),

s.t. for A,B,C :Set,a: A,p: M(A),
qg.:A— M(B),r: B— M(C):

- Na * ¢ = q(a).

- p* ()N =p.

- (pxq) xr =px*(x)(g(z) *T).



IO-Monad

IO-Monad = monad (I0,n,*) with interpreta-
tion:

- IO(A) = set of interactive programs which,

if terminating, returns an element a : A.
- ng = program with no interaction, returns a.
- x — composition of programs.

Additional operations added like
input(d, A) : IO(A)
input from device d an element a: A
and return a.
output(d,A) : A - 10(1)
for a : A output a on device d
and return <> : 1.

IO-Monad in Haskell:
Small part of the program interactive.
Large part purely functional.



Problems of the 1I0-Monad:

- x cannot be a constructor.
- Equalities can hold only extensionally.



The IO-tree

A world w is a pair (C,R) s.t.
- C : Set (Commands).
- R: C — Set (responses to a command).

Assume w = (C, R) a world.

IO (A) or shorter IO(A) is the set of

(possibly non-wellfounded) trees with

- leaves in A.

- nodes marked with elements of C.

- nodes marked with ¢ have branching degree
R(c).



A Set
IO (A) : Set

a:A
leaf(a) : IO (A)

c:C p: R(c) = 1I0w(A)
do(c,p) : IO (A)

Note: 10, (A) now parametrized w.r.t. w.



New function execute:

Status:
- Like function “normalize’ .

- No construction inside type theory.
Let wg be a fixed world (real commands).

execute takes an element p : IO,(A) and does
the following:
- It reduces p to canonical form.
- If p = leaf(a) it terminates and returns a.
- If p = do(c,q), then it

- carries out command c;

- interprets the result as an element

r: R(c);
- then continues with ¢(r).

Essentially normalization p but with interaction
with the real world.



Definition of n, x

ne = leaf(a).
leaf(a) * ¢ = q(a).
do(c, p) x ¢ = do(c, (z)(p(z) * q)).

For well-founded trees monad laws provable
w.r.t. extensional equality.

Additional function carryout:
carryout : (c¢: C) - IO(R(¢)).
carryout(c) = do(ec, (z)leaf(x)).



2. Run, Redirect, Equality
2.1. Run

Problem: Interactive programs should not ter-
minate after finite amount of time.
Run-construction:

Works only for trees which are not leaves.

A : Set a 10T (A4)
IOT(A) : Set a” : IO(A)
c:.C p: R(c) - 10(A)

doT(c,p) : IOT(A)
do™ (c,p)” = do(c,p)

10



Assume A, B : Set.

b: B qg: B—10T(A+ B)
run(b,q) : IO(A)

Auxiliary function run’ needed

p:10(A+ B) g: B—>10T(A+ B)
run’(p, q) : IO(A)

run(b, g) = run’(leaf(b), q)
run’(leaf(i(a)), q¢) = leaf(a)
run’(leaf(j (b)), q) = run’(q(d)~, q)
run’(do(e, p), q) = do(c, (z)run’(p(z),q))

Remark We can define run s.t.
run(d, q) : IOT(B).

11



2.2. Redirect

Assume

-w=(C,R), w' = (C' R are worlds.
- A Set,

- p 10w (A).

- q: (c: C) =IO} (R(c)).

Define redirect(p, q) : IO,/ A:

redirect(leaf(a), q) = leaf(a).
redirect(do(e,p),q) = q(c) *(x)redirect(p(x), q).

12



2.3. Equality

Equality corresponding to extensional equality

on non-wellfounded trees:
Bisimulation:

p:IO(A) qg: 1I0(A)
Ea(p, g) : Set
p:IO(A) qg:1I0O(A) n . N

Eqd'(n,p,q) : Set

Ea(p,q) = Vn : N.EQd'(n,p,q).

Ed' (s, leaf(a), do(e, p))
= Ed'(g(,),do(c, p), leaf(a)) = L

Eq’(0, leaf(a),leaf(a’)) =1(A4,a,a’).
Eq’(0, do(c,p),do(c,p")) =1(C,¢,c).

Ead'(S(n),leaf(a),leaf(a’)) =1(A4,a,d).
Eqd'(S(n),do(c, p),do(d,p')) =

>q:1(C,c,d).Vr: R(c).Eq(n,p(r),p'(---

13



e Eq seems to be the natural extension of ex-
tensional equality to non-well-founded trees
(but then I has to be replaced by exten-
sional equality).

e Monad laws w.r.t. EqQ are provable.

e Two programs are equal w.r.t. Eq, if their
IO-behaviour is identical.
= Extensionally, for every IO-behaviour there
IS exactly one program.
= [IO-tree = suitable model of IO.

14



Problem: non-normalizing

Let A= C = N, R(c) arbiterary.
Assume f: N — N.
p:= (n)doT (f(n), (z)leaf(n+1)) : N —» IOT(A).

run(0, p)

run’(p(0)~, p)
do(f(0), (z)run’(leaf(1),p))

do(f(0), (z)run’(p(1)~,p))
dO(f(O) (z)do(f(1), (y)run’(leaf(2), (2)p)))

dO(f(O) (z)do(f(1), (y)do(f(2),(2)---)))

Consequence: with intensional equality type-
checking undecidable.

HHH

15



Two ways to remedy this:

1) Consider a restriction of the above s.t.

e Non-well-founded objects are only reduced
to canonical form.

e No intensional equality on non-well-founded
objects.

e Develop suitable elimination rules.

Difficult, but challenging.

2) Represent non-wellfounded trees by well-
founded ones.

16



3. Well-founded version

Add run as a constructor.

Problem: run refers to IO(A + B).
Therefore run needs to be defined simultane-
ously for all sets.

Restrict the above to a universe.

Assume

U:Set, T:U — Set.

F:U > U — Set, T(A+B) = T(A) + T(B).

Assume w = (C, R) is a world.

For A: U let A:= T(A) similarly for B, C.

17



AU AU

IO (A) : Set IO (A) : Set
D IO+(1§)
p~ :1I0(A)
a:A
leaf(a) : IO(A)
c:C p: R(c) = I0(A)

do(H)(c, p) : IO(H)(A)
dot(¢,p)~ = do(e, p)
B:U b: B p: B —101T(A%+B)
run{t) (B, b, p) : IO(H) (A)

runt(B,b,p)~ = run(B, b, p).

18



Let IOWH(+)(A4) be the set IO(1)(A) as defined
in this section.

Let IONOWI(+)(A4) be IO(H)(A) as defined be-
fore.

Define emb&t) : IOWH(H)(A) — 10O (+)(4):
emb(leaf(a)) = leaf(a).
emb(H) (do(H) (¢, p)) = dolH)(c, (x)emb(p(x))).

emb(H) (run(+)(B,b,p)) =
runtH)(B,b, (z)emb ™. _(p(2)))

Now 7, *, redirect, Eq on IONP"WI(A) can be
mimiced by corresponding operations on IOVw"f(A).

19



execute on IOWf

Define
decompose : IOWf(4) —

A+ 3c: C.(R(c) = IOWT(A))
which corresponds to the decomposition of an
element in IOM"™T(A4) into the arguments of

its constructor.
execute(p) does now the following:

- If decompose(p) = i(a), then terminate
with result a.

- If decompose(p) = j(<c,¢>), then carry out
command ¢, get response r and continue

with ¢(r).

20



Result:

e All derivable terms are strongly normaliz-
ing.

e T herefore in the beginning and after ev-
ery IO-command execute will terminate ei-
ther completely or carry out the next I0O-
command.

e However, execute might carry out infinitely
many IO-commands.

e Notion of “strongly-normalizing IO-programs’.

21



4. State-dependent 10O

For simplicity we will work with non-well-founded
trees.

Now let set of commands be influenced by
commands, e.g.

- open a new window.

- switch on printer.

A world is now a quadrupel (S,C, R,ns) s.t.
- S : Set (set of states).
- C .S — Set (set of commands).
- R:(s:85,C(s)) — Set (set of responses).
-ns:(s:8,c:C(s),r: R(c,s)) = S

(next state).

Let w = (S,C, R,ns) be a world.

22



OP . § — Set s: S
tree(OP, s) : Set

Assume OP : S — Set.

s:S p: OP(s)
leaf(p) : tree(OP, s)

s. S
c:C(s)
p:(r: R(s,c) — tree(OP,ns(s,c,r)))
do(e,p) : tree(OP, s)

IP : S — Set OP : S — Set
IO(IP,OP) : Set

IO(IP,OP) = Ns : S.(IP(s) — tree(OP,s)).

23



We can now define:
nip - IO(IP,IP).

*IP,OPy,0P; -
IO(IP,0OPy) — I0(OPy,0P;1) - 1I0OUP,0OPy).

ru nOPO,Opl :
IO(OPy, (s)(OFP(s)+0P1(s))) = IO0(OFy, OP1).

24



Redirection
Define IO{Ul'(IP, OP) as before.

Assume
-w=(5,C,R,ns), w' = (5, C" R ,ns") are worlds.
- Rel : S — S’ — Set,
- IP,OP . § — Set,
-p:(s:8,¢:C(s))

— 105, ((s")Rel(s, s'),

(s)<r : R(s,c).Rel(ns(s,c,r),s'))
Define
redirect(Rel, IP,OP,p) :
10, (IP,OP) —
I0,,/((s)Xs : S.(Rel(s,s") N IP(s)),
(s")Xs: S.(Rel(s,s") NOP(s))).

25



execute

Let wg = (Sp, Co, Rg,nsg) be a standard world,
so - S be a state the system is always in
(state of unknowing).

Assume p : treey,(OP, sg).

execute applied to p normalizes p by carrying
out commands as before.

26



