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Abstract

We present a type theory TTM , extending Martin-Löf Type Theory by
adding one Mahlo universe V , a universe being the type theoretic analogue
of one recursive Mahlo ordinal. A model, formulated in a Kripke-Platek style
set theory KPM+, is given and we show that the proof theoretical strength
of TTM is ≤ |KPM+| = ψΩ1

(ΩM+ω). By [Se96a], this bound is sharp.

1 Introduction

M is recursive Mahlo, iff M is admissible and every M -recursive closed unbounded
subset of M contains an admissible ordinal. Equivalent to this is, that M is
admissible and for all ∆0 formulas φ(x, y, ~z), and all ~z ∈ LM such that ∀x ∈
LM .∃y ∈ LM .φ(x, y, ~z) there exists an admissible β ∈ LM , which is admissible
and ∀x ∈ Lβ∃y ∈ Lβ.φ(x, y, ~z). One can easily see, that M is recursive inaccessible
and that the β above can always be chosen to be recursive inaccessible.
Now one universe in Martin-Löf Type Theory is the least fixed point of an operator,
which includes in the presence of the W -type the step to the next admissible. Since,
using the W -type we can construct from the universe codes for a least universe, we
can regard the universe as the least fixed point. We can construct this therefore
precisely by iterating the operator up to the first recursive inaccessible. Proof theo-
retical analysis on the other hand shows, that we reach using universe and W -type
the first recursive inaccessible I in the sense that we can show transfinite induction
up to ψΩ1

(I) (in fact up to ψΩ1
(ΩI+ω), see [Se95] or [Se93] and the related results in

[GR94]). Therefore, universes in type theory correspond to recursive inaccessibles
in set theory.
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Further, the universe and its Tarski-operator T have to be defined simultaneously,
therefore the full universe is not only U , but Σx ∈ U.T (x) → U .

If we put this together, we get the following formulation: V is a Mahlo-universe
(together with Tarski-operator T ), if V is a universe, and for every function f :
(Σx ∈ V.T (x) → V ) → (Σx ∈ V.T (x) → V ) there exists an element uf : V , and
a decoding function sf : T (uf) → V , such that (with Uf := T (uf)) the following
properties hold:

• Uf is a sub-universe of V , i.e. it is closed under ordinary type constructions.
For instance, if a : Uf and x : T (sf(a)) ⇒ b : Uf then σfx ∈ a.b : Uf , and we
have sf(σfx ∈ a.b) = σV x ∈ sf(a).sf (b) : V , T (σV x ∈ a.b) = Σx ∈ T (a).T (b).

• There is the restriction of f to Uf : Resf : (Σx ∈ Uf .T (sf(x)) → Uf ) →
(Σx ∈ Uf .T (sf(x)) → Uf ) and with ιf : (Σx ∈ Uf .T (sf(x)) → Uf ) → (Σx ∈
V.T (x) → V ), ιf (p(r, t)) := p(sf(r), λx.sf(tx)) we have ιf ◦Resf = f ◦ ιf .

In order, to make this definition possible in Logical Frameworks, we have to split
the function f into two functions g : V → (T (x) → V ) → V and h : Πx : V.Πy :
(T (x) → V ).T (gxy) → V . Further we have to define first a type Ug,h inductively
and then define T (ug,h) := Ug,h. We give the resulting theory preliminarily the name
TTM , type theory with Mahlo universe.

In this article, we will present a model for this type theory which is an extension
of the model given in [Se93] and [Se96b]. This model will show, that the proof
theoretical strength of TTM is ≤ |KPM+| ≤ ψΩ1

ΩM+ω. In [Se96a] we show,
that this bound is in fact sharp by giving a series of well ordering proofs, showing
transfinite induction up to ψΩ1

(ΩM+n) for n ∈ ω. Therefore the resulting theory has
exactly the desired strength.

There is related work by E. Griffor and M. Rathjen on the Mahlo universe, which
treats other aspects of it. There will be probably soon a draft available.

The idea, to work with Σx ∈ U.T (x) → U instead of U goes back to E. Palmgren,
who told this to the author in the Oberwolfach Meeting in Mathematical Logic 1995.
E. Palmgren’s studies of the super universe [Pa91] was a first major step towards
the Mahlo universe.

2 The Type Theory with one Mahlo Universe

Definition 2.1 (a) We have the symbols of Martin-Löf Type Theory as in [Se93],
definition 2.1, with the following modifications: we remove the term-construc-
tors n, nk, +̃, π, σ, w, ĩ and the type constructor U ; we add the term-
constructors together with their arity nV (0), nk,V (0) (where k ∈ ω), +̃V

(2), πV (2), σV (2), wV (2), ĩV (3), n (2), nk (2) (where k ∈ ω), +̃ (4), π (4),
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σ (4), w (4), ĩ (5), u (2), s (3), Res0 (4), Res1 (5), and the type constructors
V (1), U (2).

(b) The b-objects are defined as in [Se93] definition 2.2 (a). We write +, +̃V infix
(that is (a+ b) for +(a, b)) r+̃f,gs for +̃fgrs, (x)t for λx.t, (x, y)t for (x)(y)t,
(x, y, z)t for (x)(y, z)t, nf,g for nfg, nk,f,g for nkfg, σf,g(r, s) for σ(f, g, r, s),

similarly for π, w, ĩ, Res0, Res1, u, s and if S ∈ {Σ, Π, W , σV , πV , wV ,
σf,g, πf,g, wf,g}, Sx ∈ s.t := S(s, (x)t). Further we write rs for Ap(r, s).
The conventions about omitting brackets, the definition of simultaneous substi-
tution (however we write t[x1 := s1, . . . , xn := sn] instead of t[x1/s1, . . . , xn/sn]
to avoid confusion) and α-conversion are as in [Se93], definition 2.2.

(c) The set of g-objects (for generalised objects) is inductively defined as: variables
x are g-terms; if n < k, n, k ∈ N, then nk is a g-term; if k ∈ N, then nk is
a g-term; if r, s, t, s0, t0 are g-terms, x, x′, y, z, u, u′, v, v′, v′′ ∈ V arML, f :=
(u, v)s0, g := (u′, v′, v′′)t0, then 0, r, n, Sr, λx.r, p(r, s), sup(r, s), i(r), j(r),
P (r, s, (x, y)t), Ap(r, s), p0(r), p1(r), R(r, (x, y, z)s), D(r, (x)s, (x′)t), πV x ∈
r.s, σV x ∈ r.s, wV x ∈ r.s, r+̃V s, ĩV (r, s, t), πf,gx ∈ r.s, σf,gx ∈ r.s, wf,gx ∈
r.s, r+̃f,gs, ĩf,g(r, s, t), Res0f,g(r, (x)s), Res1f,g(r, (x)s, t), sf,g(r), uf,g are g-
terms; if n ∈ N and r, s1, . . . , sn are g-terms, then Cn(r, s1, . . . , sn) is a g-term.
Let TermCl be the set of closed g-terms.

(d) The g-types are Nk (k ∈ ω), N , V and if A,B are g-types, x, y, z, u, v, u′ ∈
V arML, r, s, s0, t0 g-terms, f := (y, z)s0, g := (u, v, u′)t0, then Πx ∈ A.B,
Σx ∈ A.B, Wx ∈ A.B, A+B, I(A, r, s), T (r), Uf,g are g-types.

(e) The g-context-pieces, g-contexts, g-statements and s[~x := ~t] are defined as in
[Se93]. We treat here the usual statements A : type and s : A as abbreviations:
A : type :≡ A = A, s : A :≡ s = s : A

Definition 2.2 We define Type Theory with one Mahlo-universe TTM similarly as
the definition of MLe

1WT in [Se93] definition 2.5, inductively defining TTM ` Γ ⇒
Θ. We only remove all the rules for the Universe and replace them by the following
rules for the Mahlo-universe V :

Type introduction rules for V

(VI) V = V
r = r′ : V(TI)

T (r) = T (r′)

r = r′ : V x : T (r) ⇒ s = s′ : V
(πV )I

πV x ∈ r.s = πV x ∈ r
′.s′ : V
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r : V x : T (r) ⇒ s : V
((πV )=)

T (πV x ∈ r.s) = Πx ∈ T (r).T (s)

Similar rules for N , Nk, Σ, W , + and I

x : V, y : (T (x) → V ) ⇒ s0 = s′0 : V

x : V, y : (T (x) → V ), z : T (s0) ⇒ t0 = t′0 : V
(uI) u(x,y)s0,(x,y,z)t0 = u(x,y)s′

0
,(x,y,z)t′

0
: V

x : V, y : (T (x) → V ) ⇒ s0 : V x : V, y : (T (x) → V ), z : T (s0) ⇒ t0 : V
(u=)

T (u(x,y)s0,(x,y,z)t0) = U(x,y)s0,(x,y,z)t0

Rules for U

x : V, y : (T (x) → V ) ⇒ s0 = s′0 : V

x : V, y : (T (x) → V ), z : T (s0) ⇒ t0 = t′0 : V
(UT )

U(x,y)s0,(x,y,z)t0 = U(x,y)s′

0
,(x,y,z)t′

0

r = r′ : Uf,g x : V, y : (T (x) → V ) ⇒ s0 = s′0 : V

x : V, y : (T (x) → V ), z : T (s0) ⇒ t0 = t′0 : V
(sI)

s(x,y)s0,(x,y,z)t0(r) = s(x,y)s0,(x,y,z)t0(r
′) : V

Introduction-Rules for U

In the following in all of the introduction-rules we have additional assumptions (rules
with subscript I) x : V, y : (T (x) → V ) ⇒ s0 : V and x : V, y : (T (x) → V ), z :
T (s0) ⇒ t0 : V ;
and in all of the equality-rules (rules with subscript =) additional assumptions x :
V, y : (T (x) → V ) ⇒ s0 = s′0 : V and x : V, y : (T (x) → V ), z : T (s0) ⇒ t0 = t′0 : V .
Let f := (x, y)s0, f

′ := (x, y)s′0, g := (x, y, z)t0, g
′ := (x, y, z)t′0.

r = r′ : Uf,g u : T (sf,g(r)) ⇒ s = s′ : Uf,g
(Res0I)

Res0f,g(r, (u)s) = Res0f ′,g′(r′, (u)s′) : Uf,g

r : Uf,g u : T (sf,g(r)) ⇒ s : Uf,g
(Res0=)

sf,g(Res0f,g(r, (u)s)) = s0[x := sf,g(r), y := λu.sf,g(s)] : V

u : T (sf,g(r)) ⇒ s = s′ : Uf,g t = t′ : T (sf,g(Res0f,g(r, (x)s)))

r = r′ : Uf,g
(Res1I)

Res1f,g(r, (u)s, t) = Res1f ′,g′(r′, (u)s′, t′) : Uf,g
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r : Uf,g u : T (sf,g(r)) ⇒ s : Uf,g t : T (sf,g(Res0f,g(r, (u)s)))
(Res1=)

sf,g(Res1f,g(r, (u)s, t)) = t0[x := sf,g(r), y := λu.sf,g(s), z := t] : V

r = r′ : Uf,g x : T (sf,g(r)) ⇒ s = s′ : Uf,g
(πf,g)I

πf,gx ∈ r.s = πf ′,g′x ∈ r′.s′ : Uf,g

r : Uf,g x : T (sf,g(r)) ⇒ s : Uf,g
(πf,g)=

sf,g(πf,gx ∈ r.s) = πV x ∈ sf,g(r).sf,g(s) : V

Similar rules for N , Nk, Σ, W , + and I

3 Definition of KPM+

Definition 3.1 (a) The language of KPM+ is defined as the language of KPi+

in [Se93] but by adding one constant adm (the Mahlo admissible). We will use
all the abbreviations of [Se93].

(b) The axiom schemes for KPM+ are defined as for KPi+ in [Se93] (in the
extended language) except that we replace the axiom schemes (+n) by the fol-
lowing:

(Mahlo)adM ∀~z ∈ adM .((∀x ∈ adM .∃y ∈ adM .φ(x, y, ~z)) →
∃w ∈ adM(Ad(w) ∧ ∀x ∈ w.∃y ∈ w.φ(x, y, ~z)))

(φ a ∆0-formula)
(Ad(adM)) Ad(adM)
(+n) ∃x1, . . . , xn.Ad(x1) ∧ · · · ∧ Ad(xn) ∧ adM ∈ x1 ∧ x1 ∈ x2 ∧ · · ·

∧xn−1 ∈ xn.

(c) KPM+ is the theory (Ext) + (Found) + (Pair) + (Union) + (∆0-sep) +
(∆0-coll) + (inf) + (Ad.1 - 3) + (Mahlo)adM + (Ad(adM))+ {(+n)|n ∈ ω}.
So KPM+ is a theory, which guarantees the existence of one recursive Mahlo
and of finitely many admissibles above it.

(d) We define Lα, func(f) (for f is a function) dom(f), rng(f) (for domain
and range of a function) and Ord (the class of ordinals) as usual. M :=⋃

α∈Ord∩adM
α. In the following α, β always denote ordinals. Inacc(α) := α ∈

Ord ∧ Ad(Lα) ∧ ∀x ∈ Lα∃y ∈ Lα.(Ad(y) ∧ x ∈ y) (α is an inaccessible).

(e) We define α(a), ad(u), α+(u), Ad1, Ad2 as in [Se96b].

(f) In the following in all definitions and lemmata, where we don’t mention which
part can be done in KPM+, the statement and definition can be carried out
in KPM+.
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4 Interpretation of terms and types

As in [Se96b], definition 4.1 we define the meaning of a0-extended g-terms, -types,
b-objects.

Definition 4.1 (a) The introductory term constructors are the term constructors
i, j, p, 0, S, r, sup, nV , nk,V (k ∈ ω), +̃V , πV , σV , wV , ĩV , u.

(b) Let →red,imma0
or short →red,imm be the relation between closed a0-extended

g-terms, having the clauses for p0, p1, Ap, Cn, D, P , R, Ai as in [Se93],
definition 5.1 (c), additionally:
nf,g→red,immnV nk,f,g(r, s)→red,immnk,V

sf,g(r)→red,immr σf,g(r, s)→red,immσV (r, s)
πf,g(r, s)→red,immπV (r, s) wf,g(r, s)→red,immwV (r, s)
r+̃f,gs→red,immr+̃V s ĩf,g(r, s, t)→red,immĩV (r, s, t)

Res0(x,y)s0,(x′,y′,z′)t0(r, (u)s)→red,imms0[x := r, y := λu.s]
Res1(x,y)s0,(x′,y′,z′)t0(r, (u)s, t)→red,immt0[x

′ := r, y′ := λu.s, z′ := t]

(c) Termnf , t
red, t→red,imm t′ are defined as in [Se93] definition 5.1

Lemma 4.2 Lemma 5.3 of [Se93], with KPi+ replaced by KPM+, holds.

Definition 4.3 (a) We define F α, Compl(u), N basis
k , N∗∗

k , N basis, N∗∗

k , Πbasis,
Π∗, Σbasis, Σ∗, λ∗, F basis

W , FW , W ∗, +basis, +∗, ibasis, i∗ as in [Se96b].

(b) u→∗ v := Πbasis(u, λ∗(v)).

(c) For A being a Σ-function, nj ∈ ω, i ∈ ω we define A[~x := ~n] as in [Se93],
definition 5.7 (where it is written as A[~x/~n]).

(d) In the situation of (c), let (zi)A be the Σ-function with the same arguments as
A except ui i.e. ((zi)A)[~x := ~n] = {< u,A[zi := u, ~x := ~n] > |u ∈ TermCl}.

(e) Overloading a little bit the notation of (c), we define for z ∈ V arML, t a set
(which should be a function), r ∈ Term, (z)t(r) := {< s, t(r[z := s]) >∈
TermCl × TC(t)|r[z := s] ∈ dom(t)}.

(f) We define the interpretation of g-types A as in [Se96b], except that we remove
the definition of U ∗, and T (t)∗ and add instead:
lev(V ) := 1, V ∗ := V̂ M ,
lev(T (t)) := 0, (T (t))∗[~x := ~s] := T̂M(t[~x := ~s]),
lev(Uf,g) := 0, (Uf,g)

∗ := T̂M(uf,g),

where V̂ α, T̂ α are defined in the next definition.
For finitely many g-types this definition can be done in KPM+.
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Definition 4.4 (a) Complv(v) := {< r, r′ >∈ TermCl × TermCl|
∃s, s′ ∈ Termnf .r→reds ∧ r

′→reds
′∧ < s, s′ >∈ v}.

Complt(tv) := {< s, v >∈ TermCl × TC(tv)|
∃s′ ∈ TermCl.s→reds

′∧ < s′, v >∈ tv}.

(b) Ṽα(fv, tv) := Complv(Ṽ basis
α (fv, tv)), T̃α(fv, tv) := Complt(T̃ basis

α (fv, tv)),
where

Ṽ basis
α (fv, tv) := {< nV , nV >}
∪ {< nk,V , nk,V > |k ∈ ω}
∪ {< πV x ∈ r.s, πV x

′ ∈ r′.s′ >∈ Termnf × Termnf |
φ(r, x, s, r′, x′, s′, fv(α), tv)}

∪ {< σV x ∈ r.s, σV x
′ ∈ r′.s′ >∈ Termnf × Termnf |

φ(r, x, s, r′, x′, s′, fv(α), tv)}
∪ {< wV x ∈ r.s, wV x

′ ∈ r′.s′ >∈ Termnf × Termnf |
φ(r, x, s, r′, x′, s′, fv(α), tv)}

∪ {< r+̃V s, r
′+̃V s

′ >∈ Termnf × Termnf |
| < r, r′ >,< s, s′ >∈ fv(α)}

∪ {< ĩV (r, s, t), ĩV (r′, s′, t′) >∈ Termnf × Termnf |
| < r, r′ >∈ fv(α)∧ < s, s′ >,< t, t′ >∈ tv(r)}

∪ {< u(x,y)s,(x0,y0,z)t, u(x′,y′)s′,(x′

0
,y′

0
,z′)t′ >∈ Termnf × Termnf |

|ψ(x, y, s, x0, y0, z, t, x
′, y′, s′, x′0, y

′

0, z
′, t′, β, α+ 1, fv, tv)},

T̃ basis
α (fv, tv) := {< nV , N

∗∗ >}
∪ {< nk,V , N

∗∗

k > |k ∈ ω}
∪ {< πV x ∈ r.s,Π

∗(tv(r), (x)tv(s)) >∈ Termnf × ad(fv ∪ tv)|
φ(r, x, s, r, x, s, fv(α), tv)}

∪ {< σV x ∈ r.s,Σ
∗(tv(r), (x)tv(s)) >∈ Termnf × ad(fv ∪ tv)|

φ(r, x, s, r, x, s, fv(α), tv)}
∪ {< wV x ∈ r.s,W

∗(tv(r), (x)tv(s)), α+(fv ∪ tv) >
∈ Termnf × ad(ad(fv ∪ tv))|φ(r, x, s, r, x, s, fv(α), tv)}

∪ {< r+̃V s,+
∗(tv(r), tv(s)) >∈ TermCl × ad(fv ∪ tv)|

< r, r >,< s, s >∈ fv(α)}
∪ {< ĩV (r, s, t), I∗(tv(r), s, t) >∈ ad(fv ∪ tv)|

< r, r >∈ fv(α)∧ < s, s >,< t, t >∈ tv(r)}
∪ {< u(x,y)s,(x0,y0,z)t, fv(β) >∈ Termnf × ad(fv ∪ tv)|

ψ(x, y, s, x0, y0, z, t, x, y, s, x0, y0, z, t, β, α+ 1, fv, tv)}

φ(r, x, s, r′, x′, s′, v, tv) :=
< r, r′ >∈ v ∧ (∀ < t, t′ >∈ tv(r). < s[x := t], s′[x′ := t′] >∈ v)

ψ(x, y, s, x0, y0, z, t, x
′, y′, s′, x′0, y

′

0, z
′, t′, β, α, fv, tv) :=

ψ′(x, y, s, x0, y0, z, t, x
′, y′, s′, x′0, y

′

0, z
′, t′, β, α, fv, tv) ∧

∀β ′ < β¬ψ′(x, y, s, x0, y0, z, t, x
′, y′, s′, x′0, y

′

0, z
′, t′, β ′, α, fv, tv),

and
ψ′(x, y, s, x0, y0, z, t, x

′, y′, s′, x′0, y
′

0, z
′, t′, β, α, fv, tv) :=
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Inacc(Lβ) ∧ β < α ∈ Ord ∧
(∀ < r, r′ >∈ fv(β).∀ < r0, r

′

0 >∈ tv(r) →
∗ fv(β).

(< s[x := r, y := r0], s
′[x′ := r′, y′ := r′0] >∈ fv(β) ∧

∀ < s0, s
′

0 >∈ tv(s[x := r, y := r0]).
< t[x := r, y := r0, z := s0], t

′[x′ := r′, y′ := r′0, z := s′0] >∈ fv(β))).

(c) By simultaneous recursion on α ∈ Ord we define V̂ α, T̂ α:
V̂ 0 := T̂ 0 := ∅.
V̂ α+1 := Ṽα(V̂ |α, T̂ α), T̂ α+1 := T̃α(V̂ |α, T̂ α),
where V̂ |α := {< γ, V̂ γ > |γ ≤ α}.
V̂ λ :=

⋃
α<λ V̂

α, T̂ λ :=
⋃

α<λ T̂
α for λ limit ordinal.

We verify that similar properties as in 6.1 - 6.17 of [Se93] hold and assume the same
definitions as there. Additionally we have

Lemma 4.5 ∀α ∈M.U�(α+ 1), T α ∈ LM .

5 Main Lemma

Lemma 5.1 (Main lemma)
Let Γ,∆ be g-context-pieces, x, xi ∈ V arML, Ai, A, B g-types, t, t′ g-terms, θ a g-
judgement. Assume Γ = x1 : A1, . . . , xn : An.

(a) If TTM ` Γ ⇒ t = t′ : A, then

(i) KPM+ ` ∀Γ=(~r;~s).(t = t′ : A)∗[~x/~r;~s].

(ii) KPM+ ` ∀Γ=(~r;~s).(A = A)∗[~x/~r;~s].

(b) If TTM ` Γ ⇒ A = A′, then

KPM+ ` ∀Γ=(~r;~s).(A = A′)∗[~x/~r;~s].

(c) If TTM ` Γ, x : A,∆ ⇒ θ, then

KPM+ ` ∀Γ=(~r;~s).(A = A)∗[~x/~r;~s].

Proof: As lemma 6.18 in [Se93], with changes for the new rules. Because of lack
of space, we only give hints for some rules and treat the rule (uI) carefully. For
simplicity we assume for this rule that the context Γ is empty.
Assume α < M . If < r, r′ >∈ V̂ α, < s, s′ >∈ T̂ α(s) →∗ V̂ α, then < r, r′ >∈ V ∗, <
s, s′ >∈ (T (s) → V )∗, by IH therefore < s0[x := r, y := s], s′0[x := r′, y := s′] >∈ V β

for some α < β < M . By (∆0 −Coll)M there exists α < h0(α) < M such that all β
can be chosen to be less than h0(α).
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If < t, t′ >∈ T̂ h0(α)(s0[x := r, y := s]), then < t0[x := r, y := s, z := t], t′0[x :=
r′, y := s′, z := t′] >∈ V̂ γ for some γ, again by the collection-axiom we can find
some h0(α) < h1(α) < M such that we can bound the γ as before by h1(α).
Further we can find h1(α) < h2(α) < M such that Ad(h2(α)).
Since M is Mahlo, we can find some β < M s.t. Ad(β), ∀α < β.h2(α) < β.
Therefore Inacc(β) and β fulfils ψ′(x, y, s0, x, y, z, t0, x, y, s

′

0, x, y, z, t
′

0, β, β + 1, Û |β,
T̂ β), therefore with the minimal such β ′ we have ψ(x, y, s0, x, y, z, t0, x, y, s

′

0, x, y, z,
t′0, β

′, β + 1, Û |β, T̂ β), and therefore < u(x,y)s0,(x,y,z)t0 , u(x,y)s′

0
,(x,y,z)t′

0
>∈ V̂ β+1 ⊂ V̂ M .

The other rules are easy, since U ∗

(x,y)r,(x,y,z)s = (T (u(x,y)r,(x,y,z)s))
∗ = V β (if the as-

sumptions as for the rule uI are fulfilled) for some inaccessible β, therefore has (as
in the construction of U ∗ in [Se93]) the closure properties of a universe, and by our
reduction rules we identify πV and πf,g, the same for the other type constructors,
omit sf,g and evaluate Res0f,g, Res1f,g.
A more detailed proof will be given in a forthcoming paper.

6 Results

Lemma 6.1 |KPM+| ≤ ψΩ1
(ΩM+ω).

Proof: Adapt [Ra91] or [Bu93] as in similar to the arguments for KPi+ in the proof
of theorem 7.8 in [Se93].

Remark: We write ≤ instead of = in 6.1 only, because we haven’t seen a well-
ordering proof for KPM yet (which could then be lifted to KPM+) although such
a proof probably exists. However the sequence (which is an unnecessary detour)
|TTM | ≤ |KPM+| ≤ ψΩ1

(ΩM+ω) ≤ |TTM | shows anyway, that = holds.

Lemma 6.2 Assume φ is a Π1
1-formula. Let φ̂ be the standard interpretation of φ

in type theory and φ̃ its interpretation in KPM+ as in [Se96b] (with the power set
of the natural numbers restricted to sets in Ad1). Then, if TTM ` s : φ̂, follows
KPM+ ` φ̃.

Proof: By modifying the interpretation slightly by taking in the above proof the
corresponding definitions and proofs of [Se96b] instead of those in [Se93] and then
as in [Se93].

Theorem 6.3 |TTM | ≤ ψΩ1
(ΩM+ω).

Proof: as in [Se96b].
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