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Abstract

This paper is a further step in extending the verification of Bitcoin Script using weakest
precondition semantics in our articles [6, 1, 5] to Solidity-style smart contracts. The first
step is to develop a model, which is substantially more complex than that of Bitcoin Script
because smart contracts in Solidity are object-oriented. This paper extends the simple
model of Solidity-style smart contracts in Agda in our article [2] to a complex model.
The main addition in the complex model is that it deals with the termination problem by
adding a cost per instruction (gas cost) as implemented in Ethereum, therefore execution
of smart contracts passes the termination checker of Agda.

One main application of blockchain are smart contracts. Smart contracts can be defined as
programs that automatically run when specific predetermined criteria are met [16, 13].

Smart contracts face several challenges, particularly in terms of security [8]. All smart
contract transactions and codes are immutable once published on the blockchain network. The
only way to amend the clauses of an ongoing smart contract or to withdraw it is by using
functions already provided by the original contract. Thus, the developers must ensure and
verify the security of the code before publishing it on the blockchain in order to avoid any
errors. Errors in smart contract programs have resulted in massive financial losses [14, 15].

One formal way to specify the validity of imperative programs is Hoare logic [11]: one
defines pre- and postconditions as the required conditions on the state of a program before
and after execution. Hoare logic works well for guaranteeing the safety of programs, i.e. that
programs work correctly when executed according to requirements. A very stringent technique
can identify errors early in the development phase [12]. However, it doesn’t work very well
for showing that a program is secure in the presence of malicious inputs. Our solution is
to use weakest preconditions of Hoare logic instead. Weakest preconditions express that the
conditions are not only sufficient but also necessary for the program to end up in a state
fulfilling the postcondition. An example is that certain data needs to be present in order to
obtain cryptocurrency coins.

In this paper, we extend the simple model of Solidity-style smart contracts in our previous
paper [2] (see as well the simulator [3]) to a complex model. In the complex model, we add
gas cost. We use the gas cost to guarantee termination — each instruction costs at least one
unit of gas, and once all gas allocated has been consumed, the program terminates with an out
of gas error. Using this idea we succeed it showing that our implementation of the execution
mechanism of programs passes Agda’s termination checker.

We work directly on Solidity code rather than on its compiled Ethereum Virtual Machine
(EVM) code. Therefore we cannot use gas costs associated with EVM instructions, and instead
add to each high level Solidity instruction a parameter which estimates the gas costs for its
execution. Therefore verification depends on good estimates for these parameters.

As in our previous simple model, we have ordinary functions (corresponding to methods in
the terminology of object-orientation). We encode the arguments and return values of functions
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as elements of a message type, which allows as well to encode multiple arguments as single
ones. In our settings, functions have only one argument and one return element of this message
type. Ordinary functions are given by a coalgebraic definition, which consist of a possibly
unbounded sequence of basic operations such as making a transfer, looking up the balance of
an account, or making recursive calls to other functions. In addition to ordinary functions,
we add view functions (functions which can be modified by ordinary functions but don’t call
other functions). Variables are represented as view functions. They are especially useful for
representing variables which have the type of a mapping, which frequently occur in Solidity
code. View functions are represented as simple functions in Agda, and, therefore, are elements
of a data type different from that of ordinary functions. Ordinary functions have instructions
for updating view functions, but are not able to update ordinary functions. Therefore we keep
view functions and normal functions as separate entities. (In Solidity view functions are defined
as ordinary functions, but with a restriction on their code). The gas cost of ordinary functions
is given by the cost of the basic instructions involved during their execution. For view functions
we need in addition functions which estimate the cost for their execution.

We start by defining the data type of contracts (Contract), which includes four fields: the
balance of a contract (amount), its functions (fun), its view functions (viewFunction), and the
estimated gas cost for executing a view function (viewFunctionCost). The definition of Contract
is as follows:

record Contract : Set where
field
amount : Amount
fun : FunctionName — (Msg — SmartContractExec Msg)
viewFunction : FunctionName — Msg — MsgOrError
viewFunctionCost : FunctionName — Msg — N

Ethereum uses a simple model of mapping addresses to their state as opposed to the UTXO
model (see e.g. [9], or our article [15]) used e.g. in Bitcoin which tracks the state to previous
unspent transaction outputs. We call such a mapping for brevity a ledger. Strictly speaking
it is the state of a ledger — a full ledger would include its history. The execution of a smart
contract function in Ethereum only depends on the current state of the ledger without its
history, and function calls are executed as one atomic operation which includes all its recursive
calls and updates. Therefore the correctness of a smart contract in this setting relates only to
the current state of the ledger. We define therefore a ledger as a function which maps addresses
to contracts: Ledger = Address— Contract

As in the simple model, we have an execution stack, which records currently open recursive
calls. The elements of the execution stack (ExecStackEl) include the following fields: the address
that made the last call (lastCallAddress), the address that was called (calledAddress), continuation
which determines the next execution step to be executed depending on the message returned
after the call to the function has been completed, funcNameexecStackE which is the last function
called and the argument of the last function call (msgexecStackEl).

record ExecStackEl : Set where
field lastCallAddress calledAddress : Address
continuation : (Msg — SmartContractExec Msg)

costCont : Msg — N
funcNameexecStackEl : FunctionName
msgexecStackEl . Msg
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The execution stack is a list of ExecStackEl. The state of the execution (StateExecFun) include
the following fields: the ledger, the execution stack (executionStack), the initial address that
initiated the current sequence (initialAddr), the last called made (lastCallAddr), the address which
is called (calledAddr), the current code to be executed (nextstep), the gas left (gasLeft), and two
extra fields that we use with debug information: funcNameexecStackE and msgexecStackEl.

record StateExecFun : Set where

field ledger : Ledger
executionStack : ExecutionStack
initialAddr lastCallAddr calledAddr : Address
nextstep : SmartContractExec Msg
gasleft - N
funNameevalState : FunctionName
msgevalState : Msg

In order to state the verification conditions in Hoare logic, we define the state of the system as
given by the ledger and the address making the call. Pre- and post-conditions will be defined
as predicates on this state. In order to accommodate with intermediate steps in the program
execution, the program will be given by the code to be executed, the execution stack and
the called address. In order to have a robust definition which works as well in the simple
model where programs are not guaranteed to terminate, we define a relation expressing that
during execution, the program starting in a start state terminates successfully in an end state.
Then, we show that the precondition is a weakest precondition for the program to end in the
postcondition state. A simple example is that in order for the amount in one contract to reach a
certain value, a second contract (which triggered a transfer) must have had a sufficient balance.
In a follow-up paper, we will show how to formally prove this in Agda, which reveals unexpected
subtleties in the precise formulation of its precondition.

Related Work. For a detailed literature review see our article [4]. Some additional work
to mention is the formalisation KEVM [10] of the EVM in the K framework, which directly
formalises the low level Ethereum virtual machine. Our approach works instead directly on
Solidity in order to support the derivation of human readable weakest preconditions. Annenkov
et. al. [7] developed a framework ConCert for extracting smart contracts from Coq, and a testing
framework that allows to detect specific high level exploits. In our work we define instead a
direct semantics for Solidity style contracts based on weakest preconditions. There is extensive
work such as [9] from researchers, many of whom are associated with IHOK, which studies and
extends the unspent transaction model (UTXO). We have studied the UTXO model used in
Bitcoin in [15]. In this paper, we use the model used in Ethereum, which instead directly maps
addresses to balances. Ethereum uses transaction nonces instead of UTXOs in order to prevent
replay attacks.
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