
Chapter 1
Coalgebras as Types determined by their
Elimination Rules

Anton Setzer

Abstract We develop rules for coalgebras in type theory, and give meaning ex-
planations for them. We show that elements of coalgebras aredetermined by their
elimination rules, whereas the introduction rules can be considered as derived. This
is in contrast with algebraic data types, for which the opposite is true: elements are
determined by their introduction rules, and the elimination rules can be considered
as derived. In this sense, the function type from the logicalframework is more like
a coalgebraic data type, the elements of which are determined by the elimination
rule. We illustrate why the simplest form of guarded recursion is nothing but the
introduction rule originating from the formulation of coalgebras in category theory.
We discuss restrictions needed in order to preserve decidability of equality.

Dedicated to Per Martin-L̈of on the occasion of his retirement.

1.1 Introduction

Most programs in computing are interactive programs. This means that they are
not batch programs, which, once started, are guaranteed to terminate after a certain
amount of time and deliver their result. They are programs which keep running and
interacting with user input, until they are terminated by the user. Such programs
correspond to non-well-founded trees: Nodes are labelled by commands and the
branching degree of a node labelled by a command is the set of responses to this
command. A computation which goes on for ever corresponds toan infinite path in
this tree. More details of this can be found in a series of articles by the author and
Peter Hancock [22, 23, 24, 25, 26]. Colists are simple trees with branching degrees
0 or 1, and for ease of presentation, we restrict ourselves inthis article to colists.
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Martin-Löf type theory is supposed to be a language in whichprograms can be
written and in which we can prove correctness properties of such programs. In order
to be able to write interactive programs and reason about them, we need to represent
non-well-founded structures. Coalgebras originating from category theory provide
a theory of non-well-founded structures. They allow to represent the elements of
such structures in a finitary way. Elements are not per se infinitary – in fact we will
represent them in type theory as finitary objects. As part of acoalgebra we have a
case distinction operation. In case of colists, the result of applying it to a colist is
the information whether the element represents the empty list or a list formed from
a given head and a given tail. By iteratively applying case distinction, a colist then
unfolds to a potentially infinite list.

The goal of this article is to introduce a notion of coalgebras into type theory
and provide meaning explanations for them. We want coalgebras to be first class
citizens, i.e. they are not encoded in terms of other data types. This seems to be the
general way of moving forward in type theory. In most other mathematical theories
the goal is to define a minimal closed theory, which allows to encode all structures
needed in mathematics. In type theory it is usual practice tocontinuously extend the
theory in such a way that new structures needed are represented directly.

In this article we develop the theory of coalgebras in type theory, while closely
following the categorical notions. One main focus is to develop meaning explana-
tions for coalgebras, in order to fully integrate them into the theoretical setting of
type theory. Whereas coalgebras only extend the expressiveness, not the proof theo-
retic strength, of type theory, we hope that this project will help to develop the basis
for future proof theoretic strong extensions of type theory.

We start by exploring the notion of inductive data types, which correspond to
initial algebras. We will as well review meaning explanations for them. Then we
develop the notion of a final coalgebra. We will see that a simple form of guarded
recursion is nothing but the introduction rule of final coalgebras, which represent
the existence of morphisms in the defining diagrams for coalgebras. We will de-
velop a slight extension of guarded recursion as well. We then explore limitations of
coalgebras needed in order to maintain decidable equality.For this reason we will
switch to weakly final coalgebras with an extended version ofguarded recursion.
We will see that in a decidable type theory we cannot assume that every element is
introduced by a coconstructor. This is the underlying reason for the failure of sub-
ject reduction in implementations of type theory and problems with dependent case
distinction. Next, we develop type theoretic rules for coalgebras based on extended
guarded recursion.

In the last part, we will develop meaning explanations for coalgebras. We will
need to change the setting of meaning explanations in order to be able to explain
coalgebras. As in the original meaning explanations by Martin-Löf, inductive data
types are given given by explaining how to introduce its elements and when two
elements introduced are equal. So the elements are determined by their introduction
rules. The elimination rules are justified by verifying thatthey operate correctly for
every element introduced. Meaning explanations of coalgebras are given differently.
Elements of coalgebras are given by defining how to compute other elements from



1 Coalgebras as Types determined by their Elimination Rules 3

them. Elements are equal if the computed results are equal. Therefore elements are
given by their elimination rules. The introduction rules are justified by verifying that
they introduce elements which allow to apply the elimination principle.
Related Work. The use of coalgebras in non-dependent functional programming
was to the author’s knowledge first introduced 1987 in the PhDthesis of Hagino [20]
(see as well [21]). He used the terminology codatatype for coalgebras defined by
their elimination rules. Aczel introduced 1988 in his book [1] non-well-founded set
theory. Non-well-founded sets are necessarily infinite objects, which can be intro-
duced by the anti-foundation axiom, a form of guarded recursion. Based on Hagino’s
work, Cockett, Fukushima and Spencer developed 1992 the non-dependent func-
tional programming language Charity with a very clean categorical syntax. Leclerc
and Paulin-Mohring in [32] 1994 used the impredicative types in Coq in order to
represent streams and define the sieve of Eratosthenes. Coquand 1994 introduced in
[10] the concept of guarded recursion. Giménez [19, 18] developed 1994 an exten-
sion of the calculus of constructions by inductive and coinductive types. He showed
how to reduce general forms of guarded recursion to coalgebras. Already in his PhD
thesis [18], he discovered problems with subject reduction, which will discussed
later in this paper. Paulson implemented 1994 axioms for coinduction in Isabelle
[43]. Telford and Turner [47, 49, 48] starting 1995 promotedthe use of codata as
truly infinite data types introduced by their introduction rules, and implemented
them in the functional programming language Miranda. The author has together
with Hancock since 1999 developed in [22, 23, 24, 25, 26] interactive programs in
dependent type theory. This included in [25, 26] a definitionof the rules for guarded
recursion and weakly final coalgebras in Martin-Löf Type Theory (2004). Coalge-
bras have been introduced in the interactive theorem proverCoq. The “Coq-book”
[6] by Bertot and Castéran contains an extensive chapter 14on the development
of coinductive data types and proofs of their properties. See as well the note [5]
by Bertot. Coinductive data types have as well been implemented in Agda [41] by
Norell, Danielsson, Abel and other members of the Agda development team – see
intense discussions on the Agda email list [2]. The latest version, which is currently
implemented in Agda using a notion for coalgebraic arguments, was presented in
[4]. McBride has written a short paper [38] on the problem of subject reduction in
coalgebras, and how to develop coalgebras in observationaltype theory. We will
discuss this paper later in detail.
General setting and notations.This paper is heavily based on Martin-Löf Type
Theory [34], mainly on the version presented in the second part of [40], with the
restriction to the small logical framework outlined below.As usual we have the
basic judgementsA : Set,A= B : Set,a : A anda= b : A. Hypothetical judgements
will be written asΓ ⇒ θ , whereθ is a basic judgement andΓ a context. Contexts
Γ have the formx : A1, . . . ,xn : An, wherex1 : A1, . . . ,xi−1 : Ai−1 ⇒ Ai : Set. If /0 is
the empty context, we write instead of /0⇒ θ simply θ .

We will develop type theory based on the small logical framework, see for in-
stance [44]. IfA : Set andx : A ⇒ B : Set, we can form the dependent function set
(x : A) → B : Set. (This type is often written asΠx : A.B. However, in Martin-Löf
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Type TheoryΠx : A.B is reserved for the inductive data type having constructor
λ : ((x : A)→ B)→ Πx : A.B).

The canonical elements of(x : A)→B are terms(x)t wherex : A⇒ t : B, which is
sometimes written asλx.t. Following the conventions in Martin-Löf Type Theory,
we reserveλ for the constructor ofΠx : A.B. Application is written in functional
style in the form(s t). We use usual abbreviations such as writing(r s t) for ((r s) t)
(the outermost brackets are only for better readability). Furthermore(x : A,y : B,z :
C)→ D denotes(x : A)→ ((y : B)→ ((z : C)→ D)).

Note that large types such as(x : A) → Set are only allowed in the full logical
framework. The reason for restricting ourselves to the small logical framework is
that we have a satisfactory understanding of how to develop meaning explanations
for it. One central part of this article is the discussion of meaning explanation for
coinductive types.

Because of the restriction to the small logical framework, arguments referring to
elements of type Set are presented as premises in rules. For practical applications,
the use of the full logical framework, as it is implemented for instance in Agda, is
preferred. Then these arguments can easily be abstracted.

Apart from the standard structural rules and the rules for the dependent function
sets, we add rules for the intensional equality typea ==A b (whereA : Set,a : A
andb : A), the one element set1 with only element∗ : 1, the binary product(A×B)
(whereA,B : Set), the disjoint union(A+B) (againA,B : Set), and the set of natural
numbersN. The use ofN is not crucial for the development of type theory in this
article, we just use it as a convenient example set.

We will use expressions such asC(x), stepcons(n, l) for terms depending on free
variablesx or n, l . After usingC(x), the expressionC(t) is the result of substitut-
ing the termt for x (where we identifyα-equivalent terms and resolve substitution
problems as usual). After a premise of a rulex : A⇒C(x) : Set we write simplyC
rather than(x)C(x) for the argumentC. The same applies to similar expressions as
well.
Acknowledgements.We want to thank the anonymous referee for valuable com-
ments on earlier version of this articles. We want to thank aswell our PhD student
Fredrik Nordvall Forsberg for diligent proof reading and valuable remarks.

1.2 Initial Algebras defined by their Introduction Rules

The set of lists in Martin-L öf Type Theory. In Martin-Löf type theory, types are
usually introduced by their introduction rules. Let us consider the type of lists of
natural numbers. It has formation rule

ListN : Set

and introduction rules
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nil : ListN cons :N→ ListN → ListN

The elimination rules express that ListN is the least set closed under these operations,
as expressed by the principle of higher type primitive recursion over lists:

x : ListN ⇒C(x) : Set

RecList
C : (stepnil : C(nil))

→ (stepcons: (n : N, l : ListN)→C(l)→C(consn l))
→ (l : ListN)
→C(l)

The equality rules, where we omit the obvious assumptions ontypes of the param-
eters, are as follows:

RecList
C stepnil stepconsnil = stepnil

RecList
C stepnil stepcons(consn l) = stepconsn l (RecList

C stepnil stepconsl)

By the type theoretic rules for ListN we mean the rules above.
Meaning explanationswere introduced by Per Martin-Löf [34, 35, 36, 37]. They
are part of a program to develop a theory in such a way that we have a direct insight
that everything proved in it is correct. By Gödel’s incompleteness theorem we know
that there is no proof of the consistency of any reasonable mathematical theory by
weaker methods. Therefore, there is no mathematical argument which guarantees
that the mathematical theories used for proving theorems are actually consistent,
and which wouldn’t be prone to the danger of using an inconsistency of the theory
in question. So any justification for the consistency of a reasonable mathematical
theory needs ultimately be based on a philosophical argument. Such an argument
can never be fully formal – otherwise we would obtain a mathematical proof of the
consistency of the theory in question. What meaning explanations by Martin-Löf
provide is the to the author’s knowledge at this time best possible way of getting a
direct insight into the validity of the judgements derivable in Martin-Löf type theory.
They are a way of making as precise as possible the reasons whyall judgements
derivable in this theory are valid.

In meaning explanations one gives a meaning to each judgement and investigates
for each rule that we obtain valid judgements in the conclusion from valid judge-
ments in the premise. The meaning of a set is given by explaining what the elements
are and when two elements are equal. Two sets are equal if an element of one set is
an element of the other, and if two elements are equal in one set they are so in the
other.

One should note that meaning explanations, as the author understand them, jus-
tify extensional equality. For colists, as defined later, they will even justify bisim-
ilarity as equality (which will be introduced below). We do not see any inherent
problem in it. The reason for having intensional equality isthat we want to decide
for every proposition whether a termp is a proof of this proposition. Hence we need
decidable type checking.
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Meaning explanations for ListN. In these explanations, elements are determined
by their introduction rules. ListN is a set. We have nil is a canonical element of ListN,
and forn a natural number, andl an element of ListN we have that(consn l) is a
canonical element of ListN. Non-canonical elements of ListN are programs which
evaluate to canonical elements of ListN. The element nil is equal to itself. The ele-
ments(consn l) and(consn′, l ′) are equal, ifn andn′ are equal elements ofN and
l andl ′ are equal elements of ListN. The elements nil and(consn l) are not equal.
Non-canonical elements are equal, if the results of evaluating them to canonical
elements are equal.

The elimination and equality rules are explained by showinghow to compute
from elements of ListN elements of other sets. Their explanation uses that we have
determined what the canonical elements of ListN are, so it makes use of the intro-
duction rules for ListN. The explanation of RecList

C is as follows: AssumeC(x) is a
set, depending on an elementx of ListN. So for every elementl of ListN we have
thatC(l) is a set. Assume stepnil is an element ofC(nil) and stepcons is a function,
which maps elementsn of N, l of ListN and p of C(l) to elements ofC(consn l).
Assumel is an element of ListN. Then(RecList

C stepnil stepconsl) is a program which
computes an element ofC(l). This element is computed as follows: Firstl is com-
puted which evaluates to a canonical element of ListN. If this element is nil, then
(RecList

C stepnil stepcons l) evaluates to the result of computing stepnil which is an
element ofC(nil) and therefore as well ofC(l). Otherwisel evaluates to(consn l′),
wheren is an element ofN andl ′ is an element of ListN. Before we introducel we
have introducedl ′ and thereforec′ := RecList

C stepnil stepconsl
′ is an element ofC(l ′).

Now (RecList
C stepnil stepconsl) is evaluated by computing(stepconsn l′ c′) which has

as result an element ofC(consn l′) and therefore ofC(l). The equality rules follow
since the left hand side is evaluated by evaluating the righthand side.
ListN as an initial algebra. Assume a category having finite products (including
an initial object1 which is the empty product), and a binary coproduct(A+B) for
objectsA,B. Assume as well a natural numbers objectN (we will not need any
specific properties about it). Elementsa of objectsA are arrowsa : 1→ A, and we
write a : A for such elements. Let FList be the functor with object part FList X =
nil + cons(N,X). Herenil + cons(N,X) is a notation for1+ (N×X), where we
write nil := inl ∗ for the element∗ : 1 (corresponding to id :1→ 1) and(consn x)
for the element(inr 〈n,x〉) wheren : N and x : X. The namenil signifies a nil-
shape andcons a cons-shape. Forf : A → B we obtain an obvious morphism part
FList f : FList A→ FList B. An FList-algebra is a pair(A, f ) whereA is an object and
f : FList A→ A. A morphism between FList-algebras(A, f ) and(B,g) is a function
h : A→ B s.t. the following diagram commutes:

FList A
f

- A

FList B

FList h

? g
- B

h

?
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An initial FList-algebra(ListN, intro) is an initial object in the category with objects
FList-algebras and morphism being FList-morphisms. So we have a morphism intro :
FList(ListN) → ListN, and if we have any other FList-algebra(A, f ), i.e. if we have
f : FList A→ A, then there exists a uniqueg : ListN → A s.t. the following diagram
commutes:

FList(ListN)
intro

- ListN

FList A

FList g

? f
- A

∃!g

?

Consider now the specific category, in which objects are elements of Set (where def-
initionally equal sets are identified) derivable in Martin-Löf type theory. Let mor-
phism f : A→ B be functions of this type derivable in type theory. Letf , f ′ : A→B.
Considerf equal to f ′ as morphisms in category theoretic diagrams, if and only if
f , f ′ are equal extensionally, i.e.∀a : A. f a==B f ′ a, where==B is the intensional
equality type. Assume the type theoretic rules for ListN. Let intro : FList(ListN) →
ListN, intro nil = nil and intro(consn l) = consn l. Then(ListN, intro) is an ini-
tial FList-algebra: It is obviously an FList-algebra. Furthermore, assume(A, f ) is an-
other FList-algebra. Then we can define using the elimination rule for FList a function
g : ListN →A such thatgnil = f nil, g (consn l) = f (consn (g l)). It follows in type
theory thatg is the unique FList-algebra morphismg : (ListN, intro) → (A, f ): That
it is a FList-algebra morphism is obvious. Further, if there is any otherFList-algebra
morphismg′ : (ListN, intro)→ (A, f ), one can show by induction onl : ListN (which
corresponds to the elimination rule for ListN) ∀l : ListN.g(l) ==ListN g′(l), sog and
g′ are equal morphisms.

Therefore the rules of type theory for ListN imply the principle that ListN is an
initial algebra. One can show as well that the principle of(ListN, intro) being an
initial algebra implies the type theoretic rules for ListN. However, this direction
requires extensional equality. This result is in fact a special case of [16]. The type
theoretic rules for ListN and the principle of(ListN, intro) being an initial algebra
are therefore extensionally equivalent, but are intensionally different (although we
have no formal proof for this). In this sense we can regard thetype theoretic rules
without extensional equality as one possible representation of the rules of an initial
algebra.

1.3 Weakly Final Coalgebras

Colist. We will introduce the type of colists, which are elements which can be un-
folded to potentially infinite lists of natural numbers. Colists will be defined as
weakly final coalgebras. Coalgebras are the dual of algebras, and are obtained by
inverting the direction of the arrows in the category theoretic formulation of alge-
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bras. An FList-coalgebra is a pair(A, f ) where f : A → FList A, and as for algebras
we sometimes omitf when it is obvious from the context. An FList-coalgebra mor-
phism between coalgebras(A, f ) and(B,g) is a functionh : A→B s.t. the following
diagram commutes:

A
f
- FList A

B

h

?

g
- FList B

FList h

?

A final FList-coalgebra(coList,case) is a terminal object in the category of FList-
coalgebras. Therefore, it is an FList-coalgebra. Furthermore, for any other coalgebra
(A, f ), i.e. f : A → FList A there exists a unique coalgebra morphismg : (A, f ) →
(coList,case), i.e. a uniqueg : A→ coList s.t. the following diagram commutes:

A
f

- FList A

coList

∃!g

?

case
- FList(coList)

FList g

?

Weakly final FList-coalgebras are weakly terminal objects in the category of FList-
coalgebras, which means that we omit the condition thatg as above is unique. As-
sume in the following(coList,case) is a weakly final FList-coalgebra.

The function case : coList→ (nil + cons(N,coList)) determines for an element
of coList whether it is of the formnil or (consn l). Note that we can apply case to
l again. So an element of coList is an element which can, by iteratively applying
case to it, be unfolded to a potentially infinite list. For instance an elementa : coList
s.t. casea= cons 0a represents what would in a framework of infinite terms be the
infinite list (cons 0(cons 0(cons 0· · · ))).
Codata types and guarded recursion.In functional programming, codata types
([49]) are often considered as variants of algebraic data types which allow the for-
mation of infinitely many applications of constructors. Forinstance one could define
the codata type of colists, which has constructors nil and cons. Then it is possible
to have infinite nesting of cons and define a colist(cons 0(cons 0(cons 0· · ·)))
directly. One sees immediately that this destroys normalisation. We will see below
that decidable type checking is not possible, if we assume that each element of a
coalgebra is introduced by a constructor. Coalgebras are a version of codata types,
where elements are not per se infinitary, but unfold to infinite objects.
Relationship to guarded recursion.Guarded recursion was introduced by T. Co-
quand in [10] in a setting of infinitary terms. Bertot and Castéran use in Chapter 13
of the “Coq-book” [6] guarded recursion and codata types extensively for the devel-
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opment of infinite objects and proofs for these objects. Guarded recursion allows to
define elements of codata types recursively, by allowing full recursion, as long as
recursive calls are guarded by at least one (possibly more) constructors of the co-
data type in question, and no other functions are applied to the result of a recursive
call. A simple form of guarded recursion is where we always have one recursive call
guarded by exactly one constructor.

We can see now that in the coalgebraic setting the existence of the FList-coalgebra
morphismg : A→ coList for any FList-coalgebra(A, f ) corresponds to this simple
form of guarded recursion: We have

case(g a) =

{

nil if f a= nil,
consn (g a′) if f a= consn a′.

By choosing suitablef we can therefore defineg : A→ coList by guarded recursion,
s.t. fora : A we have case(g a) = nil or case(g a) = consn (g a′). Which of the two
cases holds and the choice ofn anda′ can be decided depending ona. Note that there
are no conditions ona′ to be smaller thana. This principle is the simple form of the
principle of guarded recursion. The difference to the setting using codata types is
that(g a) is not equal to nil or(consn (g a′)), but unfolds when applying case to it
to an element having the shapenil or (consn (g a′)).

An example of guarded recursion is that we can define a function g : N →
coList s.t. case(g n) = consn (g (n+ 1)). Then(g 0) represents the infinite list
(cons 0(cons 1(cons 2· · ·))).
Extended guarded recursion.Let (nil′+consr(N,A)+consn(N,coList)) be the set
having elementsnil′, (consr n a) for n : N,a : A and(consn n l) for n : N, l : coList.
We are going to show that, ifg : A→ (nil′+ consr(N,A)+ consn(N,coList)), then
we can define a functionf : A→ coList s.t.

case( f a) =







nil if g a= nil′,
consn (g a′) if g a= consr n a′,
consn l if g a= consn n l

So(g a) decides whether( f a) is of nil-shape (constructornil′); of cons-shape with
a recursive call to(g a′) (therefore the nameconsr); or of non-recursive cons-shape
(therefore the nameconsn). This principle adds to the principle of guarded recursion
the possibility of defining(case( f a)) by a non-recursive cons shape.

We show the existence off just given, provided that coList is a final coalgebra.
Here (nil′ + consr(N,A) + consn(N,coList)) will be a notation for the disjoint

union(1+((N×A)+(N×coList))) wherenil′ := inl ∗, consr n a := inr (inl 〈n,a〉)
andconsn n l := inr (inr 〈n, l〉).

Assumeg as just given. DefineA′ :=A+coList, andg′ : A′ → (nil+cons(N,A′)),
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g′ (inl a) =







nil if f a= nil′ ,

consn (inl a′) if f a= consr n a′ ,

consn (inr l) if f a= consn n l .

g′ (inr l) =

{

nil if casel = nil ,

consn (inr l ′) if casel = consn l′ .

Let f ′ : A′ → coList be the coalgebra morphism such that the following diagram
commutes:

A′ g′
- FList A′

coList

f ′

?

case
- FList(coList)

FList f ′

?

If coList is a final coalgebra, then one can see that( f ′ (inr l)) is equal tol . The
reason for defining( f ′ (inr l)) was that it allows to replace the non-recursive call to
l in f by a recursive call to( f ′ (inr l)). Let f := f ′ ◦ inl : A→ coList. We obtain that
f indeed fulfils the desired equations.

We call the principle that, for everyg : A→ (nil′+consr(N,A)+consn(N,coList))
we can definef : A→ coList such that the equations for(case( f a)) just given hold
the principle of extended guarded recursion. Full details will be found in [45]. Note
that we chose in the third case not to escape directly to an element l : coList, but
only to an elementl such that casel = consn l′ for givenn, l ′. The reason for this is
that this allows to define cons as given before.

Giménez shows in [19] how to derive more general forms of guarded recursion
for coalgebras.
The coconstructors nil,cons. In case of final coalgebras it follows (e.g. [30],
Lemma 2.3.3) that case : coList→ FList(coList) is an isomorphism. Let case−1 be its
inverse and define nil := case−1 nil, consn l := case−1 (consn l). Then we have that
case nil= nil and case(consn l) = consn l. cons−1 is surjective, so everyl : coList is
equal to nil or(consn l′) for somen, l ′. Especially, casel = nil if and only if l = nil,
and casel = consn l′ if and only if l = consn l′. By iterating it we obtain that if
l : coList, then for everyk we have thatl = consn1 (consn1 · · · (consni nil) · · · ) for
somei < k andn1, . . . ,ni :N or l is equal to(consn1 (consn1 · · · (consnk l ′) · · · )) for
somen1, . . . ,nk :N andl ′ : coList. Roughly speaking, an element of coList is a poten-
tially infinite list of natural numbers. Furthermore, the principle of extended guarded
recursion can be rewritten as follows: We can defineg : A→ coList s.t. depending
on a we can chooseg a= nil, g a= consn (g a′)) for somen,a′ or g a= consn l
for somen, l .
Bisimilarity as equality. A weakly final FList-coalgebra(coList,case) is final if and
only if equality on coList is bisimilarity. Here bisimilarity on colists is the largest
relation∼ s.t., if l ∼ l ′, then (casel) = nil = (casel ′) or (casel) = (consn l0)
and(casel ′) = (consn l′0) for somel0 ∼ l ′0. Bisimilarity can be introduced as an
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indexed coalgebra (as will e.g. be shown in the current context in [45]). Bisimilarity
is equality on final FList-coalgebras (see e.g. [30], Theorem 3.4.1) and one can easily
show as well that weakly final coalgebras are final coalgebras, if bisimilar elements
are equal. Full details will be presented in [45].
Coconstructors in case of weakly final coalgebras.In case of weakly final coalge-
bras we can define nil by case nil= nil. We can define(consn l) s.t. case(consn l) =
consn l′ for somel which is bisimilar tol ′. This can be done by definingA =
(N× coList) + coList, f : A → (nil + cons(N,A)), f (inl 〈n, l〉) = consn (inr l),
f (inr l) = nil if casel = nil, f (inr l) = consn (inr l ′) if casel = consn l′. Then
one can easily see thatf (inr l)∼ l , and define therefore consn l = f (inl 〈n, l〉). We
obtain case(consn l) = consn l′ for somel ′ ∼ l .

Combining the above we obtain a version of case−1 as well. The function case−1

is not surjective. In case ofcons, the equality holds only up to bisimilarity. If we
add the principle of extended guarded recursion to weakly final coalgebras, we can
define case−1 in such a way that the equality holds definitionally (howevercase−1

will not be surjective): Define case−1 : FList(coList) → coList, case(case−1 nil) =
nil, case(case−1 (consn l)) = consn l. In order to allow this definition we defined
the non-recursive case in case of extended guarded recursion the way we did it.
Undecidability results. Bisimilarity on FList-coalgebras is undecidable: Define
toColist :(N→N)→N→ coList, case(toColist f n) = cons( f n) (toColist f (n+
1)). Therefore, in case of final coalgebras we have toColistf n= cons( f n) (cons( f (n+
1)) (cons( f (n+2)) · · · )). Now it follows immediately thatf ,g are extensionally
equal if and only if(toColist f 0) ∼ (toColistg 0). Since extensional equality on
N → N is undecidable, bisimilarity is undecidable as well. Therefore, if we want
decidable definitional equality, we cannot define final coalgebras, only weakly final
coalgebras.

In [45] we will show that the assumption that case−1 is surjective results in an
undecidable equality as well. So, if we want decidable equality on a weakly final
coalgebra, we cannot assume that every element of it is of theform nil or (consn l)
for somen, l . This implies that pattern matching on coalgebras in the setting of de-
cidable type checking is misleading, since it suggests thatevery element of a coalge-
bra is introduced by a coconstructor, and therefore contains the hidden assumption
that case−1 is surjective.
Problem of Subject Reduction.The problems of pattern matching have been dis-
cussed intensively on the Agda email list. Giménez [18, Sect. 3.4] discovered that
dependent case distinction results in a problem with subject reduction. Later Nico-
las Oury found a very short program in a previous version of Agda, which exposes
this problem, and which he orally communicated to N. Danielsson, who then posted
it in [11]. Oury then converted it to Coq and posted it in [42].A detailed analysis
can be found in [38]. There were as well intensive discussions on the Agda and Coq
club mailing lists, to which the author contributed. Some changes have been made
to Agda which avoid this problem, see [4]. The author would prefer a more aesthet-
ically clear solution, based on what is presented in his article. The goal would be to
have a solution which presents algebras and coalgebras in a symmetric way. In Coq
the problem of subject reduction seems to persist.
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Type theoretic rules for weakly final coalgebras.Because of the undecidability of
equality in final coalgebras, we can only introduce rules forweakly final coalgebras,
if we want to preserve decidable type checking. For weakly final coalgebras we
can still derive the principle of extended guarded recursion, but the equations we
want to satisfy will only hold up to bisimilarity as equality. For initial algebras we
observed that the fact that the type theoretic rules for ListN are extensionally equal
but intensionally stronger than the rules for ListN being an initial algebra. In the
same way we are defining rules for coList which are up to bisimilarity equivalent
but without bisimilarity as equality stronger than the rules for coList being a weakly
final coalgebra. The principle of a weakly final coalgebra plus the principle that
bisimilarity is equality is equivalent to the principle of afinal coalgebra. If we take
the rules for coiteration derived from the diagram, we get type theoretic rules which
are up to bisimilarity equivalent to the rules of a weakly final coalgebra. If we extend
the principle of guarded recursion to extended guarded recursion, we get a principle
which is up to bisimilarity derivable, but without it stronger than the principle of
simple guarded recursion. Therefore extended guarded recursion plus the principle
of (coList,case) being a coalgebra is without bisimilarity as equality stronger, with
it equivalent to that of a weakly final coalgebra. As in case ofListN we use the rules
of (coList,case) being a coalgebra augmented by the principle of extended guarded
recursion as one possible type theoretic formulation of therules for(coList,case)
being a weakly final coalgebra. It is not the only possible one. In general one can
think of adding rules which imply further definitional equalities, which are provable
up to bisimilarity, as long as the rules behave well (we have decidable type checking,
subject reduction and other good properties). One reason for including extended
guarded recursion is that it allows us to define the coconstructor cons by defining
consn l : coList, s.t. case(consn l) = consn l).

For completeness, we introduce rules for dealing with(nil + cons(X,Y)) and
(nil′+ consr(X,Y)+ consn(Z,Z′)). (Note that if as above we treat these definitions
as abbreviations, these rules can be derived from the rules for 1, + and×). We bor-
row notations for case distinction from [9]:

Assume in the following rulesX,Y,Z,Z′ : Set.
Formation rule: (nil′+ consr(X,Y)+ consn(Z,Z′)) : Set .

Introduction rules:nil′ : (nil′+ consr(X,Y)+ consn(Z,Z′)) ,

consr : X →Y → (nil′+ consr(X,Y)+ consn(Z,Z′)) ,

consn : Z → Z′ → (nil′+ consr(X,Y)+ consn(Z,Z′)) .
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Elimination rule:

x : (nil′+ consr(X,Y)+ consn(Z,Z′))⇒C(x) : Set

stepnil′ : C(nil′)

x : X,y : Y ⇒ stepconsr(x,y) : C(consr x y)

z : Z,z′ : Z′ ⇒ stepconsn(z,z
′) : C(consn z z′)







nil′ 7→ stepnil′

consr x y 7→ stepconsr(x,y)
consn z z′ 7→ stepconsn(z,z

′)







: (x : (nil′+ consr(X,Y)+ consn(Z,Z′)))→C(x)

Equality rules: {· · ·} nil′ = stepnil′

{· · ·} (consr x y) = stepconsr(x,y)
{· · ·} (consn z z′) = stepconsn(z,z

′)
where{· · ·} is the expression introduced in the elimination rule

Now we can define the rules for colist:

Formation rule: coList : Set
Elimination rule: case : coList→ (nil+ cons(N,coList))

Introduction rule:
A : Set

introA : (A→ (nil′+ consr(N,A)+ consn(N,coList))
→ A→ coList

Equality rule: case(introA f a) =







nil′ 7→ nil
consr n a′ 7→ consn (introA f a′)
consn n l 7→ consn l







( f a)

Note that the introduction rule is complex because a genericform of guarded recur-
sion in the same way that the elimination rule for algebraic data types is complicated,
because it is generic. Specific instances can be described more easily. For instance
we can define

toColist :(N→ N)→ N→ coList
case(toColist f n) = cons( f n) (toColist f (n+1))

The coconstructors nil and cons can be defined by

nil : coList cons :N→ coList→ coList
case nil= nil case(consn l) = consn l

We observe that the elimination rules are simple whereas theintroduction rules
seem to be complicated and refer to all sets. This is dual to the setting for initial
algebras where the introduction rules are simple and the elimination rules refer to all
sets. So a weakly final coalgebra is given by its elimination rules, which essentially
expresses: elements of coList are programs, to which we can apply case and obtain
nil or (consn l) for some other colistl .
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Problems with dependent case distinction.McBride [38] discussed dependent
case distinction, as it occurs in the PhD thesis by Giménez [18] and is implemented
in Coq. In our notation it reads

x : coList⇒ B(x) : Set

depcaseB : (stepnil : B(nil))
→ (stepcons: (n : N, l : coListN)→ B(consn l))
→ (l : coList)
→ B(l)

depcaseB stepnil stepconsnil = stepnil
depcaseB stepnil stepcons(consn l) = stepconsn l

There is an equality rule missing, namely for an element introduced by intro. Such
a rule should be (the case forconsn was added by the author to stay in accordance
with the rest of the current article):

depcaseB stepnil stepcons(introA f a)

=







nil′ 7→ stepnil
consr n a′ 7→ stepconsn (introA f a′)
consn n l 7→ stepconsn l







( f a)

McBride states that this is the source of the problem discovered/communicated by
Giménez/Oury/Danielsson [18, 42, 11]. As McBride observes, it does not even type
check: in case off a= nil′, the two sides of the equations have typesB(introA f a)
andB(nil), but introA f a 6= nil.

As observed by McBride dependent case distinction results,if we omit the
last rule, in non-canonical terms for the intensional equality type. In fact the sit-
uation is even worse: We get non-canonical elements ofN in normal form: Let
f = depcase(x)N 0 ((n, l)0) : coList→N. Let zeroStream= intro1 ((x)(consr 0∗)) ∗ :
coList. We have that( f zeroStream) is a non-canonical closed element ofN in nor-
mal form. The reason is of course that we do not have an equality rule for depcase
applied to an element introduced by intro.

The underlying problem is that dependent case distinction expresses that every
element of coList is of the form nil or(consn l), i.e. that case−1 is surjective. In order
to repair this problem, McBride suggests to switch to observational type theory. This
means essentially to define for all types a propositional equality together with some
additional axioms. In case of coList, this equality would bebisimilarity. Since, if we
add to weakly final coalgebras bisimilarity as equality, we obtain final coalgebras,
the problem vanishes. However, it does not solve the problem, what the correct rules
regarding definitional equalities in intensional type theory are.
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1.4 Meaning explanations for coalgebraic types as determined by
their elimination rules.

We give now meaning explanations for coList based on the principle that elements
of coalgebras are determined by their elimination rules. coList is a set. Elements of
coList are programsl , which, if we apply case to them, evaluate tonil or (consn l′)
for somen in N, and some other elementl ′ of coList. Note that we do not demand
thatl ′ is defined beforel . Several elements of coList might be introduced simultane-
ously. Two elementsl , l ′ of coList are equal if after applying case to it, both evaluate
to nil or they evaluate to(consn l0) and(consn′ l ′0) wheren,n′ are equal elements of
N andl0, l ′0 are equal elements of coList. Again we do not demand that the equality
of l0, l ′0 is established before the equality ofl , l ′ is established.
AssumeA is a set andf a function mapping an element ofA to an element of
(nil′ + consr(N,A) + consn(N,coList)). Then for everya : A, (introA f a) is an
element of coList. For this we determine(case(introA f a)): Compute( f a). If
( f a) evaluates tonil′ then (case(introA f a)) evaluates tonil. If ( f a) evaluates
to (consr n a′), then(case(introA f a)) evaluates to(consn (introA f a′)). If ( f a)
evaluates to(consn n l), then(case(introA f a)) evaluates to(consn l).
AssumeA, A′ are equal sets,f , f ′ map elements ofA to equal elements of
(nil′ + consr(N,A) + consn(N,coList)). For all a,a′ equal elements ofA we have
that (introA f a) and(introA′ f ′ a′) are equal elements of coList: Assumea anda′

are equal elements ofA.
Assume( f a) evaluates tonil′. Then, sincef is equal tof ′ anda is equal toa′,

f ′ a′ evaluates tonil′ as well. Then(case(introA f a)) and(case(introA′ f ′ a′)) both
evaluate to the same elementnil.

Assume( f a) evaluates to(consr n a0). Then( f ′ a′) evaluates to(consr n′ a′0)
for somen′ equal ton and a′0 equal toa0. Then(case(introA f a)) evaluates to
(consn (introA f a0)) and(case(introA′ f ′ a′)) evaluates to(consn′ (introA′ f ′ a′0)).
n andn′ are equal elements ofN, and(introA f a0) and (introA′ f ′ a′0) are equal
elements of coList. Therefore(case(introA f a)) and(case(introA′ f ′ a′)) evaluate
to equal elements.

Assume( f a) evaluates to(consr n l). Then( f a′) evaluates to(consr n′ l ′) for
somen equal ton′ andl equal tol ′. Therefore(casel) and(casel ′) and therefore as
well (case(introA f a) and(case(introA′ f ′ a′) evaluate to equal elements. Therefore
(introA f a) and(introA′ f ′ a′) are equal.
Function sets as determined by their elimination rules.We can see now that the
elements of the function type of the logical framework are aswell introduced by
their elimination rules: AssumeA is a set andB(x) is a set depending on elements
x of A. Then(x : A) → B(x) is a set. An element of(x : A) → B(x) is a program
t which, when applied to an elementa of A evaluates to an element ofB(a). Two
elementst, t ′ of (x : A)→B(x) are equal, if, when applied to an elementa of A, they
evaluate to equal elements ofB(a). Assume that for everyx of A we have thatt is an
element ofB(x). Then(x)t is the following element of(x : A)→ B(x): If applied to
a : A it first substitutes int the variablex by a. Let the result bes. Thens is evaluated,
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which is the result returned. Since forx of A, t is an element ofB(x), s is an element
of B(a). So(x)t is an element of(x : A)→ B. Assume thatt, t ′ are equal elements of
B(x), depending onx of typeA. Then if(x)t and(x)t ′ are applied to an elementa of
typeA, we obtains, s′ which are equal elements ofB(a). So(x)t and(x)t ′ are equal
elements of(x : A)→ B(x).
More advanced examples of coalgebras.coList is only the simplest example of a
coalgebra. More advanced examples are the definition of bisimilarity on colists or
on other transition systems. In [22, 23, 24, 25, 26] we discussed how to define state-
dependent interactive programs in Martin-Löf type theory, and in [25] we showed
how to define them as an indexed coalgebra. More examples can be found for in-
stance in Chapter 13 of [6].

1.5 Conclusion

We have seen that coalgebras can be introduced in Martin-Löf type theory using
formation, elimination, introduction and equality rules.Meaning explanations can
be given by defining as elements of coalgebras those which allow elimination rules.
One can then explain that the introduction rules indeed introduce elements of the
coalgebra. So elements of coalgebras are given by their elimination rules, the intro-
duction rules can be considered as being derived. This is similar to algebraic data
types, for which the elements are given by their introduction rules, and the elimina-
tion rules are derived. We have seen as well that the elementsof the function types
from the logical framework are as well determined by their elimination rules. One
can as well develop models of coalgebras, in which coalgebras are interpreted as the
set of those terms which allow to apply the elimination principle.
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