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Abstract

After the failure of Hilbert’s original program due to Gödel’s second
incompleteness theorem, relativized Hilbert’s programs have been sug-
gested. While most metamathematical investigations are focused on car-
rying out mathematical reductions, we claim that in order to give a full
substitute for Hilbert’s program, one should not stop with purely mathe-
matical investigations, but give an answer to the question why one should
believe that all theorems proved in certain mathematical theories are valid.

We suggest that, while it is not possible to obtain absolute certainty,
it is possible to develop trustworthy core principles using which one can
prove the correctness of mathematical theories. Trust can be established
by both providing a direct validation of such principles, which is nec-
essarily non-mathematical and philosophical in nature, and at the same
time testing those principles using metamathematical investigations. We
investigate three approaches for trustworthy principles, namely ordinal no-
tation systems built from below, Martin-Löf type theory, and Feferman’s
system of explicit mathematics. We will review what is known about the
strength up to which direct validation can be provided.

1 Reducing Theories to Trustworthy Principles

In the early 1920’s Hilbert suggested a program for the foundation of mathemat-
ics, which is now called Hilbert’s program. As formulated in [40], “it calls for
a formalization of all of mathematics in axiomatic form, together with a proof
that this axiomatization of mathematics is consistent. The consistency proof it-
self was to be carried out using only what Hilbert called ’finitary’ methods. The
special epistemological character of finitary reasoning then yields the required
justification of classical mathematics.” Because of Gödel’s second incomplete-
ness theorem, Hilbert’s program can be carried out only for very weak theories.
Because of this failure (see, e.g., [44, 40]) a relativized Hilbert’s program has
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been suggested by Kreisel (Zach [44] cites [17, 18, 19]), and then further de-
veloped by Feferman ([7, 8, 9, 10]). In the approach by Feferman [7, 9], one
considers two frameworks F1 and F2. F1 could mean infinitary, F2 finitary,
or F1 mean nonconstructive, F2 constructive (see p. 367 of [7]). Consider for
i ∈ {1, 2} certain theories Ti formulated in languages Li corresponding to frame-
works Fi. Let Φ be a primitive recursive subset of the formulae of L1 ∩L2. Let
U be a third theory, usually a very weak theory such as PRA. Then combining
[8, 10], we have T1 ≤ T2[Φ] in U , if there exists a partial recursive function f
such that

(1) if p is a proof in T1 of a formula ϕ in Φ, then f(p) is a proof of ϕ in T2;

(2) (1) can be shown in U .

Feferman presents many examples of such reductions.
This program of reductive proof theory gives rise to many interesting con-

nections between various theories which provides us with a broad picture of
mathematical theories and their relationship. While being very insightful and re-
sulting in lots of metatheorems, it fails to answer the initial question by Hilbert,
namely: do I know that my original theory T1 is consistent? Or widening it in
the sense of Kreisel and Feferman: If I have proved in theory T1 a mathematical
statement, do I know that it is valid? If we take say a proof of Fermat’s last
theorem, do we know that there is actually no counter example to this theo-
rem? From Gödel’s second incompleteness theorem it follows that there is no
mathematical argument that excludes that there is at the same time a proof of
Fermat’s last theorem in a theory T1 and a counter example (unless T1 is very
weak), without assuming at least the consistency of another theory of at least
equal strength.

Many mathematicians evade this problem and say that all they want is to
have a proof which can be formulated in, for instance, Zermelo-Fraenkel set
theory. However, this is not what mathematics is intended for. Mathematics is
not just a glass bead game in the sense of Hesse [15], a formal game of finding
strings of symbols which follow certain decidable rules. The goal of mathematics
is, as any science, to establish truth about real properties. In case of Fermat’s
last theorem, we want to know whether there are no numbers violating it.

What we can do, in the sense of Kreisel and Feferman, is to reduce T1 to
another theory T2, which is essentially as strong as T1, and then obtain that
T2 proves as well the mathematical theorems of T1 we are interested in. Any
mathematical argument will only reduce T2 further to another theory T3. So in
order not to continue going in circles, we need to reduce T1 to one theory T2 for
which we can give reasons why we believe that everything it proves (possibly
restricted to a subset of statements) is valid.

At this point pure mathematical reasoning ends. No matter what we do,
we cannot obtain absolute certainty. However we can establish trust. Trust
does not mean blind faith. Trust is established by convincing ourselves in the
best possible way that what we trust in does not break. This means that we
carefully investigate the principles underlying T2, examine them, and give an
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argument why we can trust them. However, such an analysis can never be done
in a purely mathematical way – if we do this, then we just reduce T2 to a third
theory T3, namely the theory in which the argument of the correctness of T2 is
formulated, and we just have added a new theory to our chain of theories.

However, what we can do, and many constructive and semi-constructive
theories have been developed for this purpose, is to formulate theories T2 where
these principles are as pure and clean as possible. Then we can carry out two
further steps:

(1) We can formulate as precisely as possible an argument why we believe
that we can trust in those principles. Note that this is no longer a purely
mathematical argument. However, making it as precise as possible is a very
valuable exercise, since it could reveal any possible flaws in those principles.

(2) Since an argument as in (1) does not have the status of a mathematical
theorem, it can never provide absolute certainty.1 Therefore what is needed is
to carry out additional testing. Note that mathematicians will in many cases
still test their mathematical theorems even if they have proven them, however
usually only in order to detect possible flaws in their proofs.

How do we test a theory?

• We can look at theorems provable in T2 and check whether the theorems
actually are true (e.g. in case of Fermat’s last theorem that there is no
counter example). However, there is one problem, namely that by the
results of reverse mathematics we know that most mathematical theorems
require very little proof theoretic strength. So such tests do not explore
the limits of the theory.

Peter Dybjer has in [3] suggested to develop meaning explanations for
Martin-Löf type theory based on the principle that for each judgement of
type theory a test is given. The judgement is valid if it passes all tests.
Once carried out in full ([3] provides only the basic idea) one obtains for
every provable judgements of type theory a test for its validity. Dybjer’s
article was a major inspiration for this part of the article.

• Ordinal analysis, or any other proof theoretic analysis (e.g. normalisation
proofs) is a very strong test, because it tests the theory at its limits. How-
ever, this does not establish absolute certainty. When the author was
pointing out to Per Martin-Löf that Michael Rathjen had told the author
that he knows that Π1

2-CA is consistent because he has proof theoreti-
cally analysed it, Martin-Löf pointed out that he had an inconsistent type
theory and a normalisation proof of it. The problem was that the nor-
malisation proof was carried out in an inconsistent theory. So even a cut
elimination or normalisation argument does not guarantee the consistency
of the theory.

1Of course even mathematical theorems can never give absolute certainty as outlined before.
One can think as suggested by one of the referees that a short carefully checked mathematical
proof that uses no controversial principles is the paradigm of practical certainty. However,
unless one uses extremely weak principles, Gödel’s incompleteness theorem applies here as
well – even though it is unlikely that an inconsistency is used, we cannot exclude it.
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Does this mean that we should give up proof theoretical analysis and nor-
malisation proofs? No, not at all. If a theory is inconsistent, it is likely
but not guaranteed that the inconsistency will be found when analysing
it proof theoretically. A proof theoretic analysis is up to now one of the
strongest ways to stretch a theory to its limits, because it requires to use
principles which cannot be reduced to simpler ones. We can often reduce
theories which are more expressive to less expressive ones of equal strength
in such a way that the reduction shows that they are equiconsistent. How-
ever, we cannot reduce a proof theoretic stronger theory to a weaker one,
unless both are inconsistent. A proof theoretic analysis needs to distin-
guish theories of different strength and therefore needs to make use of
the principles which are responsible for its strength and which cannot be
reduced to weaker ones.

One reason why a proof theoretic analysis is of big significance was pointed
out by one of the referees of this article, who wrote “Something that makes
specifically ordinal-theoretical proof-theoretical analyses of a theory par-
ticularly convincing is that in many cases there is a big difference be-
tween the metatheory and the object theory; whereas with normalisation
proofs based on Tait-style computability, or Girard-style ’candidates’, the
metatheory is (more-or-less) the theory itself together with a uniform re-
flection principle. Something would be far wrong if one could not prove a
normalisation theorem for Church’s theory of types in such a metatheory;
but the extra confidence one gets in the principles formulated therein from
a normalisation theorem is tiny.”

• In general, any metamathematical analysis of a theory is a test of it. It
requires to investigate all axioms and rules of the theory in detail. And
if there is an inconsistency in a theory, there is the possibility that one
discovers it when carrying out this analysis.2 If one does not discover any
problem, we know at least that any derivation of an inconsistency must be
increasingly complicated, since it escaped such a careful analysis. So even
if a theory is eventually found to be inconsistent, it is likely that most
proofs carried out in it do not make use of it, and we can replace them by
proofs in a weaker theory, which does not have this inconsistency.

Therefore there is the need to define mathematical theories in which we can
put our trust and describe as clearly as possible the reasons why we trust in the
consistency of those theories.

1.1 Does the Consistency Problem Matter?

When discussing the problem about consistency, many mathematicians will won-
der why there is a problem. Zermelo-Fraenkel set theory (ZF) has been in use

2However, we can never be certain since the metatheory in which the analysis is carried
out would be inconsistent as well.
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since 1922. Most of mathematics can be carried out in extensions of it, and it
has been analysed thoroughly by set theorists.

However, as we know from reverse mathematics, most mathematical proofs
can be carried out in theories which are proof theoretically very weak com-
pared to ZF, therefore mathematical proofs will not explore the limits of ZF.
Metamathematical investigations have not really stretched theories having the
strength of ZF or greater by themselves, but only investigated such theories
relative to other theories of strength of at least that of ZF. Proof theory has
succeeded to analyse in unpublished form (Arai, [1], see as well [2]) theories
of strength Kripke-Platek set theory + Π1-Collection + V = L (which embeds
(Σ1

3 − DC) + BI and (Σ1
3 − AC) + BI). In fully published form Rathjen has

analysed [33] the theory of Kripke-Platek set theory plus the existence of one
stable ordinal, which embeds (∆1

2−CA)+(BI)+(Π1
2−CA)−, where (Π1

2−CA)−

is parameter free Π1
2−CA. These theories have strength well below that of ZF,

and already here interesting phenomena were discovered which were very diffi-
cult to harness proof theoretically. Writing down those results has taken a long
time. Most likely the reason why an analysis has been so difficult is that our
technology is not evolved enough to harness that strength. However, as long as
we have not analysed proof theoretically full set theory, it cannot be ruled out
that there is an inconsistency lurking somewhere.3

Martin-Löf said in his talk at the conference “100 years of intuitionism” at
Cerisy ([24], p. 254) that we are not certain that set theory is consistent. He
stressed his point using a quote by Woodin4 He talked as well about the second
failure of Hilbert’s problem, which is due to technical difficulties in reaching
Π1

2 − CA and beyond5.
Many mathematicians have experienced that sometimes when they get stuck

with proving a theorem the underlying reason is that the theorem is actually
false. This psychological argument does not prove anything, especially, since
when getting mathematically stuck, often all that is needed is a better idea
in order to prove the theorem. However, it should provide at least for the
highly sceptical scientist a strong motivation to continue with the proof the-
oretic project. Hilbert said “We need to know, we will know”.6 The future
development of proof theory will hopefully decide whether set theory is consis-

3And even if we have, a validation argument needs to be carried out.
4“Just as those who study large cardinals must admit the possibility that the notions are

not consistent” [43, p. 330].
5Martin-Löf puts Π1

2−CA on the other side of the “abyss”, because the analysis by Rathjen
only reduces it to some set theoretic ordinal notation system. Rathjen is here following a
successful tradition in the Schütte school of proof theory, and the author believes that this
is already the major step in constructivising this theory. The author does not see at this
moment any principal reason apart from effort and time why the resulting ordinal notation
system cannot be proved to be well-founded in a suitable constructive theory. However, as
long as such a reduction to a fully constructive theory has not been carried out, the analysis by
Rathjen remains incomplete, and one could therefore at this moment in time place Π1

2 − CA,
as Martin-Löf did, on the other side of the “abyss”. See however the discussion in Sect. 5
about the limits of constructivism, which indicates that it might be very difficult to carry out
the necessary constructivisation.

6German: “Wir müssen wissen. Wir werden wissen.”
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tent or not.7 Of course, even if one ever found an inconsistency, it most likely
has no effect on everyday mathematics (which is often anyway on the surface
carried out in naive set theory, which is inconsistent).

2 Well-foundedness of Ordinal Notation Systems

Since the work of Gentzen, the main step in proving the consistency of reference
theories in proof theory is ordinal analysis; other theories are then reduced using
various techniques to these reference theories.8 Ordinal analysis amounts to
showing that the consistency of a theory can be shown in PRA + TIqf(α). Here
PRA is primitive recursive arithmetic, and TIqf(α) is the principle of quantifier
free transfinite induction up to α for a specific ordinal notation system. The
formula TIqf(α) is defined as follows: Let ϕ(x) be a quantifier free formula
in the language of PRA. The formula Prog(ϕ, α), meaning ϕ is progressive
up to α, is defined as ∀β < α.((∀γ < β.ϕ(γ)) → ϕ(β)). Now TIqf(α) is the
statement that for all such quantifier-free formulae ϕ we have that Prog(ϕ, α)
implies ∀β < α.ϕ(β). We will in the following sometimes replace in notions such
as TIqf(α) the ordinal α by an ordinal notation system (A,<). Here, an ordinal
notation system (A,<) is a linearly ordered set (A,<), such that A is a primitive
recursive subset of N and < ⊆ A × A is primitive recursive. So with notations
such as TIqf(α) we introduce as well for ordinal notation systems (A,<) the
notion TIqf(A,<) for which we write as well TIqf(A).

We assume that Tait’s article [41], in which he argues that PRA corresponds
to finitary methods, provides sufficient arguments for validating the proof prin-
ciples of PRA. So in order to validate PRA + TIqf(α), one needs to validate the
principle of TIqf(α). So assume ϕ is progressive up to α. Since ϕ is quantifier
free, it is decidable, and we get ϕ(β)∨¬ϕ(β), and can argue indirectly. Assume
that for β0 := β we have that ϕ(β0) does not hold. Then by searching through
all ordinal notations and using the decidability of ϕ, we can find recursively an
ordinal β1 < β such that ¬ϕ(β1) holds. Continuing we find β2 such that ¬ϕ(β2)
holds. By continuing his process we obtain a recursive sequence β0 > β1 > · · ·
such that ¬ϕ(βi) holds for all i. Note that this argument requires Markov’s
principle, however not as a principle of our theory, but as a metamathematical
principle. Note as well that, if we have any proof of a theorem which is not
correct, it must contain (unless there is a problem with PRA) a concrete quan-
tifier free ϕ and a concrete β < α for which the principle of transfinite induction
up to β < α is violated. From ϕ and β we will then obtain a concrete infinite
descending sequence. So in order to validate our theory, we need to validate

7Of course in case of a positive answer a validation argument needs then to be carried out.
8Of course often consistency is shown using normalisation proofs without ordinal analysis,

however, as pointed out before when quoting the referee in Subsect. 1.1, in a proof theo-
retic analysis a reduction to a quite different (very slim) theory is carried out whereas in
normalisation proofs we usually reduce the consistency to a slight extension of the theory
in question, and therefore do not gain such a deep understanding of the proof theoretically
strong principles.
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that there is no recursive infinite descending sequence of ordinals < α, which
we call NRDS(α).

We will look now at the steps towards validating that ε0 is well-founded.
First of all, we can rule out an infinite descending recursive descending se-
quence of natural numbers and therefore validate NRDS(ω). If we assume
NRDS(A,<A) and NRDS(B,<B) for linearly ordered sets (A,<A) and (B,<B)
we can validate NRDS(A×B,<lex) where <lex is the lexicographic ordering on
A×B w.r.t. <A, <B . For if we had an infinite descending sequence (an, bn)n∈N,
we immediately see that a0 ≥A a1 ≥A a2 ≥ · · ·. Furthermore, for every n
we can find m > n s.t. am <A an. For as long as an = am for n < m we
have bn >B bn+1 >B .. >B bm. This descending recursive sequence of bi will
eventually stop, so there must be an m > n s.t. am <A an, which we can find
recursively. By iterating this we find an infinite descending sequence (ank

)k∈ω
in A, which does not exist. Note that the purpose of this exercise is not prov-
ing in a formal theory TIqf(A × B) but that we can get a direct insight into
NRDS(A×B) and therefore of TIqf(A×B).

Up to now we were working with recursive sequences, which corresponds to
quantifier free induction. Using the validation of well-foundedness of ω and of
the lexicographic ordering on the products, we can validate transfinite induction
up to ωn which is provable in PRA which has proof theoretic ordinal ωω. In order
to prove transfinite induction up to an ordinal α ≥ ωω, quantifier free induction
on ω is no longer sufficient. This translates into the non-existence of descending
(possibly non-recursive) sequences in α, which we call NDS(α). For instance
induction over arbitrary arithmetical formulae corresponds to non-existence of
arithmetically definable descending sequences in ω. Note that NDS(α) implies
NRDS(α) which as stated before validates TIqf(α).

So we will now, instead of validating NRDS(α), validate the stronger prin-
ciple NDS(α), which means we leave a fully constructive approach9. Even if it
is nonconstructive, we consider it still to be possible to carry out a validation
argument based on this notion. We can in our opinion validate NDS(ω), which
means we can get a direct insight that this principle is valid. Using the same ar-
gument as before we can in our opinion validate that the principle NDS is closed
under forming the lexicographic ordering for the product of two orderings.

Now assume NDS(A,<A). Consider Adec, the set of finite sequences (or lists)
of elements (a1, . . . , ak) of A such that a1 >A · · · >A ak. Let <lex be the lexico-
graphic ordering on finite sequences of elements in A based on <A. We validate
NDS(Adec, <lex). Assume a descending sequence (an,0, an,1, . . . , an,kn−1)n∈ω.
We immediately see that an,0 is defined (i.e. kn ≥ 1) and weakly descend-
ing, i.e. a0,0 ≥A a1,0 ≥A a2,0 ≥A · · ·. Because there is no infinite descending
sequence in A, this sequence must eventually become constant. Assume it is
constant from n = n0 onwards. Then for n ≥ n0 we have that an,1 is defined
(i.e. kn ≥ 2) and forms a descending sequence an0,1 ≥A an0+1,1 ≥A an0+2,1 ≥A

9Constructive, if one regards Markov’s principle as constructive .
In fact we will need NDS(A′, <A′ ) only for intermediate notation systems (A′, <A′ ) used for
validating NDS(α). For the final system, NRDS(α) is all what is required, which is implied
by NDS(α).
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· · · in A. That sequence will eventually become constant for n ≥ n1 for some n1.
Therefore an,2 is descending for n ≥ n1 onwards and will become constant for
n ≥ n2 for some n2. By continuing this process we obtain a sequence of natural
numbers (ni)i∈ω and have an0,0 = an1,0 >A an1,1 = an2,1 >A an2,2 >A · · ·. So
we obtain an infinite descending sequence an0,0 >A an1,1 >A · · · in A which does
not exist, and have therefore shown that there is no infinite descending sequence
in (Adec, <lex). Note that we cannot determine n0, n1, · · ·, so NRDS(A) is not
sufficient to carry out this argument.

This argument validates transfinite induction on (Adec, <lex). Ordering on
ordinals in Cantor Normal Form (CNF) α = ωα1n1 + · · ·ωαknk is the same as
the double lexicographic ordering on ((α1, n1), . . . , (αk, nk)). Let (A,<) be an
ordinal notation system. Let CNF(A) be the set of terms obtained by applying
once CNF to elements in A, ordered correspondingly. CNF(A) is isomorphic
to a subset of ((A × (ω \ 0), <lex)dec, <lex)10 which in turn is isomorphic to
((A × ω,<lex)dec, <lex). The order type of CNF(A) is ωα, if the order type
of A is α. This means that, if we have validated NDS(α), we have validated
NDS(ωα).

Therefore we can validate NDS(ωn) and therefore at least TIqf(ωn) where
ω0 = ω, ωn+1 = ωωn . Since ε0 = supn∈ω ωn we have validated quantifier free
transfinite induction up to all ordinals less than ε0.

Gentzen showed that PRA+TIqf(ε0) proves the consistency of PA, which was
considered as a proof of the consistency of PA. The belief that this proof shows
the consistency of PA (in an absolute way) must be based on some argument
which validates PRA + TIqf(ε0), and we have given one such argument. The
above argument has shown the validity of the consistency of PA. Therefore it
follows, for instance, that, if we have shown in PA Fermat’s last theorem, then
there can be no counter example.

In our articles [36, 37] we extended this approach to ordinal notation sys-
tems from below. Up to the strength of (Π1

1 − CA)0 we were able to give
arguments, which we regard as a validation of transfinite quantifier-free induc-
tion up to those ordinals. When reaching higher ordinals, the direct insight into
the well-foundedness rests necessarily upon principles of increasing proof theo-
retic strength. Note that according to the results of reverse mathematics, most
real mathematical theorems can be shown in (Π1

1 − CA)0 , so most of math-
ematics can be validated by pure ordinal analysis. Beyond that strength, we
could develop ordinal notation systems from below, but could only give a formal
well-foundedness proof, which then needs to be carried out in another theory of
at least equal strength. It is no accident that this happens when moving from
(Π1

1 − CA)0 to Π1
1 − CA, since the argument is based on the concept of well-

foundedness, which is a Π1
1-concept, and one needs in some form a principle,

which goes beyond Π1
1, in order to validate Π1

1 − CA.

10Those sequences ((a1, n1), . . . , (ak, nk)) s.t.a1 > · · · > ak.
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3 Martin-Löf Type Theory

With increasing strength, ordinal notation systems for describing the proof
theoretic ordinal of theories become increasingly complicated. Therefore, the
complexity of the well-foundedness proofs for these ordinal notation systems in-
creases as well. Correspondingly, it becomes increasingly difficult, if possible at
all, to validate the well-foundedness of the ordinal notation system directly. A
solution for this problem is to make a second step and prove the well-foundedness
of the ordinal notation system in a second theory for which one can carry out a
validation argument more directly. Hilbert wanted originally to validate theories
involving the infinite by reducing them to finitary methods. A suitable gener-
alisation of finitary methods are constructive theories, in which the elements
of sets are still finite objects, or terms. In order to deal with function spaces,
we need reduction rules for terms, for instance n + S(m) reduces to S(n + m).
This allows to determine elements of function types as terms which applied to
elements of the argument type are elements of the result type, or reduce to such
an element. So infinite objects (full functions) are replaced by finite objects
(programs or terms).

The addition of recursive functions as finitary objects was the motivation
of Gödel in his Dialectica paper ([13]), where he writes (p. 282, translation p.
245 of [11]): “It is the second requirement that must be dropped. This fact
has hitherto been taken into account by our adjoining to finitary mathematics
parts of intuitionistic logic and the theory of ordinals. In what follows we shall
show that, for the consistency proof of number theory, we can use, instead, the
notion of computable function of finite type on the natural numbers and certain
elementary principles of construction for such functions.”11

Gödel’s Dialectica interpretation was still referring to classical logic, and is
usually used mainly as a proof theoretical tool rather than being considered
as an approach to obtaining a foundation of mathematics. A more radical
approach was taken in Martin-Löf’s type theory (MLTT)12. MLTT is, as Martin-
Löf phrased it once to the author (we unfortunately do not remember the precise
wording), the most serious attempt to develop a theory such that we have an
insight that all judgements are valid. Those not familiar with MLTT are often
perplexed by the large number of its rules. The reason for having such a large
number of rules is that this theory is not defined so that it has a shortest

11“Es ist die zweite Forderung, welche fallen gelassen werden muss. Dieser Tatsache wurde
bisher dadurch Rechnung getragen, dass man Teile der intuitionistischen Logik und Ordi-
nalzahltheorie zur finiten Mathematik adjungierte. Im folgenden wird gezeigt, dass man statt
dessen für den Widerspruchsfreiheitsbeweis der Zahlentheorie auch den Begriff der berech-
nenbaren Funktion endlichen Types über den natürlichen Zahlen und gewisse sehr elementare
Konstruktionsprinzipien für solche Funktionen verwenden kann.”

12The standard reference is Martin-Löf’s book [20]. The article [28] contains a good concise
summary of the rules of MLTT (starting p. 162), however the rules for ω and Ω, which make
it a partial type theory, the topic of that article, need to be omitted. Another listing can be
found in the author’s article [35], where everything was made precise in order to be able to
carry out a proof theoretic analysis. Arne Ranta’s book [29] contains a nice introduction to
MLTT. Nordström et al.’s book [26] is an excellent reference for MLTT, and there is the more
recent and more concise handbook version [25].
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description. Instead it is designed so that we can get an insight into the validity
of all provable judgements.

In MLTT we have non-dependent judgements of the form

• a : A for a is of type A,

• a = b : A for a, b are equal elements of type A,

• A : Set for A is a set,

• A = B : Set for A,B are equal sets.

Dependent judgements have the form x1 : A1, . . . , xn : An ⇒ θ where θ is a
non-dependent judgement, with free variables in x1, . . . , xn.

We have as rules

• structural rules (rules for dealing with contexts, assumptions, and the
definitional equalities a = b : A and A = B : Set);

• formation rules (which introduce sets, e.g. conclude N : Set);

• introduction rules (which introduce a canonical element, an element start-
ing with a constructor, e.g. for N derive 0 : N and from a : N derive
S(a) : N);

• elimination rules, e.g. higher type primitive recursion in case of N,

• equality rules (e.g. deriving that if t(x) is defined by higher type primitive
recursion into type B(x), with base case a : B(0), that t(0) = a : B(0));

• and equality versions of the formation, introduction and elimination rules
(e.g. deriving S(a) = S(a′) : N from a = a′ : N).

The validation argument for MLTT is done via meaning explanations.13 In
meaning explanations, one determines the meaning of each judgement. Then one
validates for each rule that, if the premises are valid w.r.t. meaning explanations,
so is the conclusion. Therefore all judgements provable are valid.

Elements of sets can be canonical elements, which are formed by the intro-
duction rules. For instance, S(2 + 2) is a canonical element of N. Non-canonical
elements are considered by Martin-Löf (see, e.g., [20]) as programs, which evalu-
ate to a canonical element. Canonical elements are special cases of non-canonical
elements, which as programs evaluate to themselves. Martin-Löf (private com-
munication) considers the concept of a program, for which we have a direct
insight how it operates, as crucial for understanding his meaning explanations.

13We could not find a definite and complete reference to meaning explanations. Martin-Löf’s
articles and book [20, 21, 22, 23] introduce meaning explanations when discussing the rules
of type theory. Tasistro’s PhD thesis [42] describes meaning explanations if one uses explicit
substitutions (see as well a short reference in the more accessible article [12]). The author
has in [39] given an account of his understanding of meaning explanation with a variation in
order to accommodate coalgebraic data types defined by their elimination rules.
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The meaning of A : Set is given by determining what its canonical elements
are and when two canonical elements are equal. The meaning of a : A is that
a is a non-canonical element of A. The meaning of the judgement a = a′ : A
is that a, a′ are equal elements of A, which means that they evaluate to equal
canonical elements of A.

In case of N we have that 0 is a canonical element, and, if n is an element
of N, then S(n) is a canonical element of it. 0 is equal to 0, and if n,m are two
equal elements of N, then S(n) and S(m) are equal canonical elements of it.

The meaning of the judgement A = B : Set is that A and B are equal sets
which means that canonical elements of A are canonical elements of B and vice
versa, and equal canonical elements of A are equal canonical elements of B and
vice versa.

For determining the meaning of dependent judgements, we introduce abbre-
viations ~x for x1, . . . , xn, similar for ~a, ~a′ (referring to a′i), and ~xk for x1, . . . , xk,
similar for ~ak,~a

′
k. A dependent judgement

x1 : A1, x2 : A2(x1), . . . , xn : An(~xn−1)⇒ θ(~x)

is valid if for every choice of elements

a1 : A1, a2 : A2(a1), . . . , an : An(~an−1)

the judgement θ(~a) is valid. One needs as well that for equal elements

a1 = a′1 : A1, a2 = a′2 : A2(a1), . . . , an = a′n : An(~an−1)

the equality judgements in the conclusion holds: If θ = (A : Set) we require that
A(~a) = A(~a′) : Set holds, in case θ = (a : A) we require that a(~a) = a(~a′) : A(~a)
holds. Judgement A = B : Set presupposes A : Set, B : Set, judgement a : A
presupposes A : Set, judgement a = b : A presuppose a : A, b : A. The
judgement

x1 : A1, . . . , xn : An(~xn−1)⇒ θ(~x)

presupposes A1 : Set, x1 : A1 ⇒ A2(x1) : Set, etc, and as well

x1 : A1, . . . , xn : An(~xn−1)⇒ θ′(~x)

for any presupposition θ′(~x) of θ(~x).
Adding the meaning of the presuppositions of judgements (applied transi-

tively) to the meaning of a judgement gives the full meaning of the judgement.
Now one can easily validate structural rules, formation rules, introduction

rules, and their equality versions. Elimination rules are more difficult to validate
(and that’s where an increasingly high level of trust is required). In case of N,
in the simple case where we derive x : N ⇒ t(x) : B(x) by primitive recursion,
we validate that t(0) : B(0) and if we have x : N and t(x) : B(x) are valid, so is
t(S(x)) : B(S(x)). Now one sees that for each element of a of N as given by the
meaning explanations t(a) : B(a). This holds first for canonical elements, by
going through what we said constitutes a canonical element of N, and checking

11



for each canonical element a that t(a) : B(a) is validated. For non-canonical
elements, the reduction of t(a) is given by first reducing a to canonical form
0 or S(a′), and then applying the reductions corresponding to the base case
or induction step. Therefore the rules are validated as well for non-canonical
elements.

The key principle one needs to trust is the correctness of the elimination
rules for the inductively defined sets N, W-type, and universes. We cannot get
around the fact that we cannot prove the consistency of MLTT, so when moving
to proof theoretically stronger principles, one needs to trust the validity of the
rules for proof theoretically stronger sets. We cannot avoid this, but the author
believes that one can trust in the principles involved.

3.1 Induction-Recursion and the Mahlo Universe

The validation of principles works well for concrete inductive-recursively defined
sets, as long as we do not make use of the full logical framework, which allows
to have A : Set or even higher types in the context.14 Therefore, one can vali-
date Palmgren’s superuniverse ([27], Sect. 3), but not Palmgren’s higher order
universes ([27], Sect. 5) or the external Mahlo universe ([4], Sect. 6.3), which
reaches at least the strength of KPM ([4], Sect. 6.4). The strength of Palmgren’s
superuniverse is not known ([30, 31] analyse only the metapredicative version
without the W-type), but substantially exceeds that of Martin-Löf type theory
with W and one universe.15 The latter theory was analysed by Rathjen, Grif-
for, Setzer [34, 14, 35], and has strength slightly bigger than Kripke Platek set
theory with one recursively inaccessible, KPI.

For the Mahlo universe we have given meaning explanations in our article
[38] (not yet published). However, we cannot say that the validity of its rules
are as fully convincing as they are for inductive-recursive definitions without
use of the full logical framework.

14When introducing his version of meaning explanations, the author usually avoids the logi-
cal framework. The reason is that he has not yet found an account of meaning explanations of
the logical framework, which does not consider Set as a Russell style subuniverse of Type, and
which he considers as fully satisfactory. If Set is treated as a universe, one adds considerable
proof theoretic strength. Especially, with the rules for inductive-recursive definitions Set is
closed under the introduction rules of (a Russell style variant of) the internal Mahlo universe.
In the community of MLTT, inductive-recursive definitions is often considered as the limit
of what can be at the moment justified without making use of the Mahlo universe principle.
Martin-Löf has given presentations about how to treat the logical framework without adding
additional strength, however we could not find yet a written account of it needed in order to
judge it completely.

15It is easy to conjecture the precise strength, and it would not be difficult albeit time
consuming to analyse the full version of it.
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4 Feferman’s System of Explicit Mathematics
and the Extended Predicative Mahlo Universe

In [16] Kahle and the author have published an extended predicative version of
the Mahlo universe. This version is developed in Feferman’s system of explicit
mathematics [5, 6]. It uses the fact that in Feferman’s system one has access to
the collection of all terms, and therefore can form for every term a subuniverse
of the Mahlo universe which is relatively closed under this term considered as
a partial function. In MLTT all objects have a type and are therefore total.
Therefore in MLTT we do not have access to the collection of all terms, which
in general are only partial objects.

We regard this version ([16]) as being predicative (in an extended sense) and
believe that this theory can be validated. Feferman’s theory has been developed
in second order logic16, and optimised towards a short and concise theory. While
this makes metamathematical investigations easy and makes it easily accessible
to non-specialists, it causes problems when validating the provable statements17.
It seems however that this is not a principal problem. It should be possible to
present Feferman’s theories in a style which is very close to that of Martin-Löf
type theory, and develop meaning explanations. This way hopefully one could
validate the extended predicative Mahlo universe in the sense of this article.

With [16] we have not reached the limit of this methodology. We have
developed draft versions which reach at least the strength of Kripke Platek set
theory extended by Π3-reflection, and it is likely that we can go far beyond with
that strength.

5 The Limit of Constructivism

In [32, Sect. 6] Rathjen introduces assumptions (A0) - (A3) about possible
extensions MLTT+ of Martin-Löf Type Theory, of which the most important
one is assumption (A3):

(A3) Every inductive definition Φ : Pow(N) → Pow(N) for generating the el-
ements of a type A in MLTT+ and its pertinent decoding function are
definable by set-theoretic Σ-formulae. These formulae may contain fur-
ther sets as parameters, where these sets correspond to previously defined
types.

He shows (Theorem 6.1) that under these assumptions a set M such that M ≺1

V is a model of MLTT+. Here M ≺1 V means that M is a Σ1-elementary
substructure of V, where V is the set theoretic universe. This determines a
limit to a constructive program based on MLTT.

16Not much of second order logic is actually used, its use is mainly for convenience rather
than need.

17We note that this is the opinion of the second author of [16] only, who is the author of
the current article.
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In his argument, Rathjen already admits that due to the acceptance of the
Mahlo universe as an acceptable extension of MLTT, a more strict assumption
had to be abandoned, namely that sets are introduced by monotone inductive
definitions. This already indicates that it is very difficult to determine an upper
bound for a constructive program. While it may be difficult to go beyond prin-
ciple (A3), we believe that this is only a temporary limitation – it is likely that
new constructive principles will emerge, which will be considered as acceptable
but go beyond this principle. However, drawing this line is of great benefit,
since it determines the requirements a new principle needs to fulfil in order to
go beyond that limit.
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type and one universe. PhD thesis, Universität München, available via
http://www.cs.swan.ac.uk/∼csetzer, 1993.

[35] A. Setzer. Well-ordering proofs for Martin-Löf type theory. Annals of Pure
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