
Unnesting of Copatterns

Anton Setzer1, Andreas Abel2, Brigitte Pientka3, and David Thibodeau3

1 Dept. of Computer Science, Swansea University, Swansea SA2 8PP, UK
a.g.setzer@swan.ac.uk

2 Computer Science and Engineering, Chalmers and Gothenburg University,
Rännvägen 6, 41296 Göteborg, Sweden, andreas.abel@gu.se

3 School of Computer Science, McGill University, Montreal, Canada
{bpientka,dthibo1}@cs.mcgill.ca

Abstract. Inductive data such as finite lists and trees can elegantly be
defined by constructors which allow programmers to analyze and manip-
ulate finite data via pattern matching. Dually, coinductive data such as
streams can be defined by observations such as head and tail and pro-
grammers can synthesize infinite data via copattern matching. This leads
to a symmetric language where finite and infinite data can be nested. In
this paper, we compile nested pattern and copattern matching into a core
language which only supports simple non-nested (co)pattern matching.
This core language may serve as an intermediate language of a compiler.
We show that this translation is conservative, i.e. the multi-step reduc-
tion relation in both languages coincides for terms of the original lan-
guage. Furthermore, we show that the translation preserves strong and
weak normalisation: a term of the original language is strongly/weakly
normalising in one language if and only if it is so in the other. In the
proof we develop more general criteria which guarantee that extensions
of abstract reduction systems are conservative and preserve strong or
weak normalisation.

Keywords: Pattern matching, copattern matching, algebraic data types,
codata, coalgebras, conservative extension, strong normalisation, weak
normalisation,abstract reduction system, ARS

1 Introduction

Finite inductive data such as lists and trees can be elegantly defined via con-
structors, and programmers are able to case-analyze and manipulate finite data
in functional languages using pattern matching. To compile functional languages
supporting pattern matching, we typically elaborate complex and nested pattern
matches into a series of simple patterns which can be easily compiled into ef-
ficient code (see for example [3]). This is typically the first step in translating
the source language to a low-level target language which can be efficiently exe-
cuted. It is also an important step towards developing a core calculus supporting
well-founded recursive functions.

Dually to finite data, coinductive data such as streams can be defined by
observations such as head and tail. This view was pioneered by Hagino [7] who

2

modelled finite objects via initial algebras and infinite objects via final coalgebras
in category theory. This led to the design of symML, a dialect of ML where we
can for example define the codata-type of streams via the destructors head and
tail which describe the observations we can make about streams [8]. Cockett and
Fukushima [6] continued this line of work and designed a language Charity where
one programs directly with the morphisms of category theory. Our recent work
[2] extends these ideas and introduces copattern matching for analyzing infinite
data. This novel perspective on defining infinite structures via their observations
leads to a new symmetric foundation for functional languages where inductive
and coinductive data types can be mixed.

In this paper, we elaborate our high-level functional language which supports
nested patterns and copatterns into a language of simple patterns and copatterns.
Similar to pattern compilation in Idris or Agda, our translation into simple
patterns is guided by the coverage algorithm. We show that the translation
into our core language of simple patterns is conservative, i.e. the multi-step
reduction relations of both languages coincide for terms of the original language.
Furthermore, we show that the translation preserves strong normalisation (SN)
and weak normalisation (WN): a term of the original language is SN or WN in
one language if and only if it has this property in the other.

The paper is organized as follows: We describe the core language including
pattern and copattern matching in Sect. 2. In Sect. 3, we explain the translation
into simple patterns. In Sect. 4 we develop criteria which guarantee that exten-
sions of abstract reduction systems are conservative and preserve SN or WN.
We use this these criteria in Section 5 to show that the translation of patterns
into simple patterns is a conservative extension preserving SN and WN.

2 A Core Language for Copattern Matching

In this section, we summarize the basic core language with (co)recursive data
types and support for (co)pattern described in previous work [2].

2.1 Types and Terms

A language L = (F , C,D) consists of a finite set F of constants (function sym-
bols), a finite set C of constructors, and a finite set D of destructors. We will in
the following assume one fixed language L, with pairwise disjoint F , C, and D.
We write f, c, d for elements of F , C,D, respectively.

Our type language includes 1 (unit), A×B (products), A → B (functions),
disjoint unions D (labelled sums, “data”), records R (labelled products), least
fixed points µX.D, and greatest fixed points νX.R.

Types A,B,C ::= X | 1 | A×B | A → B | µX.D | νX.R

Variants D ::= 〈c1 A1 | . . . | cn An〉
Records R ::= {d1 : A1, . . . , dn : An}

In the above let ci be different, and di be different. Variant types 〈c1 A1 | . . . |
cn An〉, finite maps from constructors to types, appear only in possibly recursive

3

data types µX.D. Records {d1 : A1, . . . , dn : An}, finite maps from destructors
to types, list the fields di of a possibly recursive record type νX.R. To illustrate,
we define natural numbers Nat, lists and Nat-streams:

Nat := µX.〈zero 1 | suc X〉
List A := µX.〈nil 1 | cons (A×X)〉
StrN := νX.{head : Nat, tail : X}

In our non-polymorphic calculus, type variables X only serve to construct
recursive data types and recursive record types. As usual, µX.D (νX.R, resp.)
binds type variable X in D (R, resp.). Capture-avoiding substitution of type C

for variable X in type A is denoted by A[X := C]. A type is well-formed if it has
no free type variables; in the following, we assume that all types are well-formed.

We write c ∈ D for cA for some A being part of variantD and define the type
of constructor c as (µX.D)c := A[X := µX.D]. Analogously, we write d ∈ R for
d : A for some A being part of the record R and define the type of the destructor
d as (νX.R)d := A[X := νX.R].

A signature for L is a map Σ from F into the set of types. Unless stated
differently, we assume one fixed signature Σ. A typed language is a pair (L, Σ)
where L is a language and Σ is a signature for L. We sometimes write Σ instead
of (L, Σ). We write f ∈ Σ if Σ(f) is defined, i.e. f ∈ F . Next, we define the
grammar of terms of a language L = (F , C,D). Herein, f ∈ F , c ∈ C, and d ∈ D.

e, r, s, t, u ::= f Defined constant (function) | x Variable
| () Unit (empty tuple) | (t1, t2) Pair
| c t Constructor application | t1 t2 Application
| t .d Destructor application

Terms include identifiers (variables x and defined constants f) and intro-
duction forms: pairs (t1, t2), unit (), and constructed terms c t, for the positive
types A×B, 1, and µX.D. There are however no elimination forms for positive
types, since we define programs via rewrite rules and employ pattern matching.
On the other hand we have eliminations, application t1 t2 and projection t .d, of
negative types A → B and νX.R respectively, but omit introductions for these
types, since this will be handled by copattern matching.

We write term substitutions as s[x1 := t1, . . . , xn := tn] or short s[~x := ~t].
Contexts ∆ are finite maps from variable to types, written as lists of pairs
x1 : A1, . . . , xn : An, or short ~x : ~A, with · denoting the empty context. We write
∆ → A or ~A → A for n-ary curried function types A1 → · · · → An → A (but A
may still be a function type), and s ~t for n-ary curried application s t1 · · · tn.

The typing rules for terms (relative to a typed language Σ) are defined in
Figure 1. If we want to explicitly refer to a given typed language (L, Σ) or Σ we
write ∆ ⊢L,Σ A or ∆ ⊢Σ A, similarly for later notions of ⊢.

2.2 Patterns and copatterns

For each f ∈ F , we will determine the rewrite rules for f as a set of pairs
(q −→ r) where q is a copattern sometimes referred to as left hand side, and r a

4

∆(x) = A

∆ ⊢ x : A ∆ ⊢ () : 1

∆ ⊢ t : (µX.D)c

∆ ⊢ c t : µX.D

∆ ⊢ t1 : A1 ∆ ⊢ t2 : A2

∆ ⊢ (t1, t2) : A1 × A2

∆ ⊢ f : Σ(f)

∆ ⊢ t : A → B ∆ ⊢ t′ : A

∆ ⊢ t t′ : B
∆ ⊢ t : νX.R

∆ ⊢ t .d : (νX.R)d

Fig. 1. Typing rules

term, sometimes referred to as right hand side. Patterns p and copatterns q are
special terms given by the grammar below, where c ∈ C and d ∈ D.

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

q ::= f Head (constant)
| q p Application copattern
| q .d Destructor copattern

In addition we require p and q to be linear, i.e. each variable occurs at most once
in p or q. When later defining typed patterns ∆ ⊢ q : A as part of a coverage
complete pattern set for a constant f , we will have that, if this judgement is
provable as a typing judgement for terms, the variables in q are exactly the
variables in ∆, and f is the head of q.

The distinction between patterns and copatterns is in this article only rele-
vant in this grammar, therefore we often write simply “pattern” for both.

Example 1 (Cycling numbers). Function cyc of type Nat → StrN, when passed an
integer n, produces a stream n, n− 1, . . . , 1, 0, N,N− 1, . . . , 1, 0, N,N − 1, . . . for
some fixed N . To define this function we match on the input n and also observe
the resulting stream, highlighting the mix of pattern and copattern matching.
The rules for cyc are the following:

cyc x .head −→ x

cyc (zero ()) .tail −→ cyc N

cyc (suc x) .tail −→ cyc x

Example 2 (Fibonacci Stream). Nested destructor copatterns appear in the fol-
lowing definition of the stream of Fibonacci numbers. It uses zipWith + which
is the pointwise addition of two streams.

fib .head −→ 0
fib .tail .head −→ 1
fib .tail .tail −→ zipWith + fib (fib .tail)

2.3 Coverage

For our purposes, the rules for a constant f are complete, if every closed, well-
typed term t of positive type can be reduced with exactly one of the rules of

5

f . Alternatively, we could say that all cases for f are uniquely covered by the
reduction rules. Coverage implies that the execution of a program progresses,
i.e. does not get stuck, and is deterministic. Note that by restricting to positive
types, which play the role of ground types, we ensure that t is not stuck because
f is underapplied. Progress has been proven in previous work [2]; in this work,
we extend coverage checking to an algorithm for pattern compilation.

We introduce the judgement f : A ⊳ | Q, called a coverage complete pattern
set for f (cc-pattern-set for f). Here Q is a set Q = (∆i ⊢ qi : Ci)i=1,...,n. If
f : A ⊳ | Q then constant f of type A can be defined by the coverage complete
patterns qi (depending on variables in ∆i) together with rewrite rules qi −→ ti
for some ∆i ⊢ ti : Ci.

The rules for deriving cc-pattern-sets are presented in Figure 2. In the vari-
able splitting rules, the split variable is written as the last element of the context.
Because contexts are finite maps they have no order—any variable can be split.
Note as well that patterns and copatterns are by definition required to be linear.

Result splitting:

f : A ⊳ | (· ⊢ f : A)
CHead

f : A ⊳ | Q (∆ ⊢ q : B → C)

f : A ⊳ | Q (∆,x : B ⊢ q x : C)
CApp

f : A ⊳ | Q (∆ ⊢ q : νX.R)

f : A ⊳ | Q (∆ ⊢ q .d : (νX.R)d)d∈R

CDest

Variable splitting:

f : A ⊳ | Q (∆,x : 1 ⊢ q : C)

f : A ⊳ | Q (∆ ⊢ q[x := ()] : C)
CUnit

f : A ⊳ | Q (∆,x : A1 ×A2 ⊢ q : C)

f : A ⊳ | Q (∆,x1 : A1, x2 : A2 ⊢ q[x := (x1, x2)] : C)
CPair

f : A ⊳ | Q (∆,x : µX.D ⊢ q : C)

f : A ⊳ | Q (∆,x′ : (µX.D)c ⊢ q[x := c x′] : C)c∈D

CConst

Fig. 2. Coverage rules

The judgement f : Σ(f) ⊳ | (∆i ⊢ qi −→ ti : Ci)i=1,...,n called a coverage
complete set of rules for f (cc-rule-set for f) has the following derivation rule

f : Σ(f) ⊳ | (∆i ⊢ qi : Ci)i=1,...,n ∆i ⊢ ti : Ci (i = 1, . . . , n)

f : Σ(f) ⊳ | (∆i ⊢ qi −→ ti : Ci)i=1,...,n

Then f : Σ(f) ⊳ | (∆i ⊢ qi : Ci)i=1,...,n is called the underlying cc-pattern-set of
the cc-rule set. The corresponding term rewriting rules for f are qi −→ ti.

A program P over the typed language Σ is a function mapping each constant
f to a cc-rule-set Pf for f . We write t −→P t′ for one-step reduction of term t to

6

t′ using the compatible closure4 of the term rewriting rules in P , and drop index
P if clear from the context of discourse. We further write −→∗

P for its transitive

and reflexive closure and −→≥1
P for its transitive closure.

Example (Deriving a cc-pattern-set for cyc) We start with CHead

cyc : Nat → StrN ⊳ | (· ⊢ cyc : Nat → StrN)

We apply x to the head by CApp.

cyc : Nat → StrN ⊳ | (x : Nat ⊢ cyc x : StrN)

Then we split the result by CDest.

cyc : Nat → StrN ⊳ |
(x : Nat ⊢ cyc x .head : Nat)
(x : Nat ⊢ cyc x .tail : StrN)

In the second copattern, we split x using CConst.

cyc : Nat → StrN ⊳ |
(x : Nat ⊢ cyc x .head : Nat)
(x : 1 ⊢ cyc (zero x) .tail : StrN)
(x : Nat ⊢ cyc (suc x) .tail : StrN)

We finish by applying CUnit which replaces x by () in the second clause.

cyc : Nat → StrN ⊳ |
(x : Nat ⊢ cyc x .head : Nat)
(· ⊢ cyc (zero ()) .tail : StrN)
(x : Nat ⊢ cyc (suc x) .tail : StrN)

This concludes the derivation of the cc-pattern-set for the cyc function.

3 Reduction of Nested to Simple Pattern Matching

In the following, we describe a translation of deep (aka nested) (co)pattern
matching (i.e. pattern matching as defined before) into shallow (aka non-nested)
pattern matching, which we call simple pattern matching, as defined below. We
are certainly not the first to describe such a translation, except maybe for copat-
terns, but we have special requirements for our translation. The obvious thing
to ask for is simulation, i.e. each reduction step in the original program should
correspond to one or more reduction steps in the translated program. However,
we want the translation also to preserve and reflect normalization: A term in
the original program terminates, if and only if it terminates in the translated
program. Preservation of normalization is important for instance in dependently
typed languages such as Agda, where the translated programs are run during
type checking and need to behave exactly like the original, user-written pro-
grams.

4 See e.g. Def. 2.2.4 of [12].

7

The strong normalization property is lost by some of the popular translations.
For instance, translating rewrite rules to fixed-point and case combinators breaks
normalization, simply because fixed-point combinators reduce by themselves,
allowing infinite reduction sequences immediately. But also special fixed-point
combinators that only unfold, if their principal argument is a constructor term,
or dually co-fixed-point combinators that only unfold, if their result is observed5,
have such problems. Consider the following translation of a function f with deep
matching into such a fixed-point combinator:

f (zero ()) −→ zero ()
f (suc (zero ())) −→ zero ()
f (suc (suc x)) −→ f (suc x))

 fix f (x).case x of

zero () −→ zero ()
suc (zero ()) −→ zero ()
suc (suc x) −→ f(suc x))

While the term f (sucx) terminates for the original program simply because no
pattern matches (i.e. no rewrite rule applies), it diverges for the translated pro-
gram since the fixed-point applied to a constructor unfolds to a term containing
the original term as a subterm. A closer look reveals that this special fixed-point
combinator preserves normalization for simple pattern matching only.

3.1 Simple patterns

A simple copattern qs is of one of the forms f ~x (no matching), f ~x .d (shallow
result matching) or f ~x ps (shallow argument matching) where
ps ::= () | (x1, x2) | c x is a simple pattern.

Definition 1 (Simple coverage-complete pattern sets).

(a) Simple cc-pattern-sets f : A ⊳ |s Q are defined as follows (∆ = ~x : ~A):

f : ∆ → A ⊳|s (∆ ⊢ f ~x : A)

f : ∆ → νX.R ⊳|s (∆ ⊢ f ~x .d : (νX.R)d)d∈R

f : ∆ → 1 → A ⊳|s (∆ ⊢ f ~x () : A)

f : ∆ → (B1 ×B2) → A ⊳|s (∆, y1 : B1, y2 : B2 ⊢ f ~x (y1, y2) : A)

f : ∆ → (µX.D) → A ⊳|s (∆,x′ : (µX.D)c ⊢ f ~x (c x′) : A)c∈D

(b) A cc-rule-set is simple if the underlying cc-pattern-set is simple. A constant
in a program is simple, if its cc-rule-set is simple. A program is simple if all
its constants are simple.

Remark 2. If f : A ⊳ |s Q then f : A ⊳ | Q.

5 Such fixed-point combinators are used in the Calculus of Inductive Constructions,
the core language of Coq [9], but have also been studied for sized types [4,1].

8

3.2 The translation algorithm by example

Neither the cyc function, nor the Fibonacci stream are simple. The translation
into simple patterns introduces auxiliary function symbols, which are obtained
as follows: We start from the bottom of the derivation tree of a non simple
cc-pattern-set, remove the last derivation step, and create a new function sym-
bol. This function takes as arguments the variables we have not split on from
the original function and (co)pattern matches just as the last derivation set of
the original derivation did. Let us walk through the algorithm of transforming
patterns into simple patterns for the cyc function. The original program is

cyc : Nat → StrN ⊳ |
(x : Nat ⊢ cyc x .head −→ x : Nat)
(⊢ cyc (zero ()) .tail −→ cyc N : StrN)
(x : Nat ⊢ cyc (suc x) .tail −→ cyc x : StrN)

In the derivation of the underlying cc-pattern-set, the last step was CUnit replac-
ing pattern variable x : 1 by pattern (). We introduce a new constant g2 with
simple cc-rule-set and replace the right hand side of the split clause with a call
to g2 in the cc-rule-set of cyc. We obtain the following program:

(x : Nat ⊢ cyc x .head −→ x : Nat)
cyc : Nat → StrN ⊳| (x : 1 ⊢ cyc (zero x) .tail −→ g2 x : StrN)

(x : Nat ⊢ cyc (suc x) .tail −→ cyc x : StrN)

g2 : 1 → StrN ⊳|s (· ⊢ g2 () −→ cyc N : StrN)

Let a term in the new language be good, if all occurrences of g2 are applied at
least once. We can define a back-translation int of good terms into the original
language by recursively replacing g2 s by cyc (zero s) .tail.

The second last step in the derivation of the cc-pattern-set was a split of
pattern variable x : Nat into zero x and suc x using CConst. Again, we introduce
a simple auxiliary function g1, which performs just this split and obtain a simple
program with mutually recursive functions cyc, g1, and g2:

cyc : Nat → StrN ⊳|s
(x : Nat ⊢ cyc x .head −→ x : Nat)
(x : Nat ⊢ cyc x .tail −→ g1 x : StrN)

g1 : Nat → StrN ⊳|s
(x : 1 ⊢ g1 (zero x) −→ g2 x : StrN)
(x : Nat ⊢ g1 (suc x) −→ cyc x : StrN)

g2 : 1 → StrN ⊳|s (· ⊢ g2 () −→ cyc N : StrN)

The back-interpretation of g1 for good terms of the new program replaces recur-
sively g1 s by cyc s .tail. We note the following:

(a) The translation can be performed by induction on the derivation of coverage;
or, one can do the translation while checking coverage.6

6 This is actually happening in the language Idris [5]; Agda [10] has separate phases,
but uses the split tree generated by the coverage checker to translate pattern match-
ing into case trees.

9

(b) The generated functions are simple upon creation and need not be processed
recursively. The right hand sides of these functions are either right hand
sides of the original program or calls to earlier generated functions applied
to exactly the pattern variables in context.

(c) When generating a function, it is invoked on the pattern variables in context.
We can define a function int which interprets this generated function back
into terms of the original program (if applied to good terms).

(d) Since we gave earlier created functions (here: g2) a higher index than later
created functions (here: g1), calls between generated functions increase the
index. There can only be finitely many calls between generated functions
before executing an original right hand side again. This fact ensures preser-
vation of normalization (see later).

(e) Calls between generated functions are undone by the back translation int,
thus the corresponding reduction steps vanish under int.

In the case of the Fibonacci stream, the translated simple program is as follows:

fib .head −→ 0
fib .tail −→ g

g .head −→ 1
g .tail −→ zipWith + fib (fib .tail)

3.3 The translation algorithm

Let P be the input program for typed language Σ. Let Pf be a non-simple
cc-rule-set of P . Consider the last step in the derivation of the underlying cc-
pattern-set. Since Pf is non-simple, this step cannot be CHead. Assume

Pf = f : Σ(f) ⊳ | Q (∆i ⊢ qi −→ ti : Ci)i∈I .

where in some cases I = {0}. Let the last step in the derivation of the underlying
cc-pattern-set be

f : Σ(f) ⊳ | Q (∆′ ⊢ q : A)

f : Σ(f) ⊳ | Q (∆i ⊢ qi : Ci)i∈I
C

We extend Σ to Σ′ by adding one fresh constant g : ∆′ → A. Let ∆′ = ~y : ~A.
Depending on C we introduce below a simple q′i and define the program P ′ for
the typed language Σ′ by

P ′
f = f : Σ(f) ⊳| Q (∆′ ⊢ q −→ g ~y : A)

P ′
g = g : ∆′ → A ⊳|s (∆i ⊢ q′i −→ ti : Ci)i∈I

P ′
h = Ph otherwise

Note that the underlying cc-pattern-set for f is as in the premise of C, P ′
g

is simple, and all other constants are left unchanged. Therefore the height of
the derivation for the cc-pattern-set for f is reduced by 1. We then recursively
apply the algorithm on P ′. Since each step of the algorithm makes the coverage
derivation of one non-simple function shorter, and new constants are simple, the
algorithm terminates, returning only simple constants.

10

In case of variable splitting, we always reorder ∆′ such that the variable we
split on appears last. When referring to a context ∆, assume ∆ = ~x : ~A.
Case q x −→ t and C is

f : Σ(f) ⊳ | Q (∆ ⊢ q : B → C)

f : Σ(f) ⊳ | Q (∆,x : B ⊢ q x : C)
CApp

Define q′0 = g ~x x. Therefore,

P ′
f = f : Σ(f) ⊳| Q (∆ ⊢ q −→ g ~x : B → C)

P ′
g = g : ∆ → B → C ⊳|s (∆,x : B ⊢ g ~x x −→ t : C)

Case q .d −→ td for all d ∈ R and C is

f : Σ(f) ⊳ | Q (∆ ⊢ q : νX.R)

f : Σ(f) ⊳ | Q (∆ ⊢ q .d : (νX.R)d)d∈R

CDest

Define q′d = g ~x .d. Therefore,

P ′
f = f : Σ(f) ⊳| Q (∆ ⊢ q −→ g ~x : νX.R)

P ′
g = g : ∆ → νX.R ⊳|s (∆ ⊢ g ~x .d −→ td : (νX.R)d)d∈R

Case q[x′ := ()] −→ t and C is

f : Σ(f) ⊳ | Q (∆,x′ : 1 ⊢ q : C)

f : Σ(f) ⊳ | Q (∆ ⊢ q[x′ := ()] : C)
CUnit

Define q′0 := g ~x (). Therefore,

P ′
f = f : Σ(f) ⊳| Q (∆,x′ : 1 ⊢ q −→ g ~x x′ : C)

P ′
g := g : ∆ → 1 → C ⊳|s (∆ ⊢ g ~x () −→ t : C)

Case q[x′ := (x1, x2)] −→ t and C is

f : Σ(f) ⊳ | Q (∆,x′ : A1 ×A2 ⊢ q : C)

f : Σ(f) ⊳ | Q (∆,x1 : A1, x2 : A2 ⊢ q[x′ := (x1, x2)] : C)
CPair

Define q′0 = g ~x (x1, x2). Therefore,

P ′
f =f : Σ(f) ⊳| Q (∆,x′ : A1 ×A2 ⊢ q −→ g ~x x′ : C)

P ′
g :=g : ∆ → (A1 ×A2) → C ⊳|s (∆,x1 : A1, x2 : A2 ⊢ g ~x (x1, x2) −→ t : C)

Case q[x′ := c x′] −→ tc for all c ∈ D and C is

f : Σ(f) ⊳ | Q (∆,x′ : µX.D ⊢ q : C)

f : Σ(f) ⊳ | Q (∆,x′ : (µX.D)c ⊢ q[x′ := c x′] : C)c∈D

CConst

Define q′c := g ~x (c x′). Therefore,

P ′
f = f : Σ(f) ⊳| Q (∆,x′ : µX.D ⊢ q −→ g ~x x′ : C)

P ′
g = g : ∆ → µX.D → C ⊳|s (∆,x′ : (µX.D)c ⊢ g ~x (c x′) −→ tc : C)c∈D

11

4 Extensions of Abstract Reduction Systems

It is easy to see that a reduction in the original program P (over Σ) corresponds
to possibly multiple reductions in the translated language P ′ (over Σ′). What is
more difficult to prove is that we do not get additional reductions, i.e. if t 6−→ ∗

Pt
′

then it is impossible to reduce t to t′ using reductions and intermediate terms
in P ′. We call this notion conservative extension. Even this will not be sufficient
as pointed out in Sect. 3, we need in addition preservation of normalisation. We
will define and explore the corresponding notions more generally for abstract
reduction systems (ARS).

An ARS is a pair (A,−→), often just written A, such that A is a set and
−→ is a binary relation on A written infix. Let −→∗ be the transitive-reflexive
and −→≥1 be the transitive closure of −→. An element a ∈ A is in normal form
(NF) if there is no a′ ∈ A such that a −→ a′. It is weakly normalising (WN) if
there exists an a′ ∈ A in NF such that a −→∗ a′. a is strongly normalising (SN)
if there exist no infinite reduction sequence a = a0 −→ a1 −→ a2 −→ · · ·. Let
SN, WN, NF be the set of elements in A which are SN, WN, NF respectively.
For a reduction system (A′,−→′), let SN′, WN′, NF′ be the elements of A′ which
are −→′-SN, -WN, -NF.

Let (A,−→), (A′,−→′) be ARS such that A ⊆ A′. Then,

A′ is a conservative extension of A iff ∀a, a′ ∈ A. a −→∗ a′ ⇔ a−→′∗a′

A′ is an SN-preserving extension of A iff ∀a ∈ A. a ∈ SN ⇔ a ∈ SN′

A′ is a WN-preserving extension of A iff ∀a ∈ A. a ∈ WN ⇔ a ∈ WN′

Lemma 3 (Transitivity of conservative/SN/WN-preserving extensions).
Let A,A′,A′′ be ARSs, A′ be an extension of A and A′′ an extension of A′, both
of which are conservative, SN-preserving, or WN-preserving extensions. Then A′′

is a conservative, SN-preserving, or WN-preserving extension, respectively, of A.

In order to show the above properties, we use the notion of a back-translation
from the extended ARS into the original one:

Let (A,−→), (A′,−→′) be ARSs such thatA ⊆ A′. Then a back-interpretation
of A′ into A is given by
– a set Good such that A ⊆ Good ⊆ A′; we say a is good if a ∈ Good;
– a function int : Good → A such that ∀a ∈ A.int(a) = a.

We define 3 conditions for a back-interpretation (Good, int) where condition (SN
2) refers to a measure m : Good → N:

(SN 1) ∀a, a′ ∈ A.a −→ a′ ⇒ a−→′≥1
a′.

(SN 2) If a ∈ Good, a′ ∈ A′ and a −→′ a′ then a′ ∈ Good and we have
int(a) −→≥1 int(a′) or int(a) = int(a′) ∧m(a) > m(a′).

(WN) If a ∈ Good ∩ NF′ then int(a) ∈ NF.

The following theorem substantially extends Lem. 1.1.27 of [13] and Lem. 2.2.5
of [11]:

12

Theorem 4 (Backinterpretations for ARSs and conservativity, SN,WN).
Let (A,−→), (A′,−→′) be ARSs such that A ⊆ A′. Let (Good, int) be a back-
interpretation from A′ into A, m : Good → N. Then the following holds:

(a) (SN 1), (SN 2) imply that A′ is a conservative extension of A preserving SN.
(b) (SN 1), (SN 2), (WN) imply that A′ is an extension of A preserving WN.

Proof: (a): Proof of Conservativity: a −→∗ a′ implies by (SN 1) a−→′∗a′. If
a, a′ ∈ A, a−→′∗a′ then by (SN 2) a = int(a) −→∗ int(a′) = a′.
Proof of preservation of SN: We show the classically equivalent statement
∀a ∈ A.¬(a is −→-SN) ⇔ ¬(a is −→′-SN).
For “⇒” assume a = a0 −→ a1 −→ a2 −→ · · · is an infinite −→-reduction
sequence starting with a. Then by (SN 1) a = a0−→

′≥1
a1−→

′≥1
a2−→

′≥1
· · · is

an infinite −→′-reduction sequence.
For “⇐” assume a = a′0−→

′a′1 −→P′ a′2 −→P′ · · ·.
Then by (SN 2) a = int(a0) = int(a′0) −→∗ int(a′1) −→∗ int(a′2)−→

′∗ · · ·. If
int(a′i) = int(a′i+1) then m(a′i) > m(a′i+1), so by (SN 2) after finitely many steps,
where int(a′i) = int(a′i+1), we must have one step int(a′j) −→

≥1 int(a′j+1). Thus,
we obtain an infinite reduction sequence starting with a in A.
(b) Assume a ∈ A, a ∈ WN. Then a −→∗ a′ ∈ NF for some a′, therefore a′ ∈ SN,
by (a) a′ ∈ SN′, a′−→′∗a′′ for some a′′ ∈ NF′, therefore a−→′∗a′−→′∗a′′ ∈ NF′,
a ∈ WN′. For the other direction, assume a ∈ A, a ∈ WN′. Then a−→′∗a′ ∈ NF′

for some a′, by (SN 2), (WN) a = int(a) −→∗ int(a′) ∈ NF, a ∈ WN.

5 Proof of Correctness of the Translation

In our translation we extend our language by new auxiliary constants while
keeping the old ones, including their types. More formally, we define Σ ⊆F Σ′,
pronouncedΣ′ extends Σ by constants, if (1)Σ′ andΣ have the same constructor
and destructor symbols C,D, (2) the constants F of L form a subset of the
constants of L′, and (3) Σ and Σ′ assign the same types to F .

Let P be a program for Σ, TermΣ = {t | ∃∆,A.∆ ⊢Σ t : A}. The ARS for
a program P is (TermΣ ,−→P). Let P ,P ′ be programs for typed languages Σ,
Σ′, respectively. P ′ is an extension of P iff Σ ⊆F Σ′. If P ′ is an extension of P ,
then P ′ is a conservative, SN-preserving, or WN-preserving extension of P if the
corresponding condition holds for the ARSs (TermΣ ,−→P) and (TermΣ′ ,−→P′).

We will define a back-interpretations by replacing in terms g t1 . . . tn the new
constants g by a term of the original language. Due to lack of λ-abstraction, we
only get a term of the original language if g is applied to n arguments. So, for our
back translation, we need an arity(g) = n of new constants, and an interpretation
Int(g) of those terms:

Assume Σ ⊆F Σ′. A concrete back-interpretation (arity, Int) of Σ′ into Σ is
given by the following:

– An arity arity(g) = n assigned to each new constant g of Σ′ such that
Σ′(g) = A1 → · · · → An → A for some types A1, . . . , An, A. Here, A (as well
as any Ai) might be a function type.

13

– For every new constant g of Σ′ with arity(g) = n and
Σ′(g) = A1 → · · · → An → A a term Int(g) = t of Σ such that
x1 : A1, . . . , xn : An ⊢ t : A. In this case, we write Int(g)[~t] for t[~x := ~t].

Assume that (arity, Int) is a concrete back-interpretation of Σ′ into Σ.
– The set Goodarity,Int of good terms is given by the set of t ∈ TermΣ such that

each occurrence of a new constant g of arity n in t is applied to at least n
arguments.

– If t ∈ Goodarity,Int, then intarity,Int(t), in short int(t), is obtained by inductively
replacing all occurrences of g ~t for new constants g by Int(g)[int(~t)].

Trivially, concrete back-interpretations are back-interpretations. We now have
the definitions in place to prove SN+WN-conservativity of our translation.

Lemma 5 (Some simple facts).

(a) If f : A ⊳ | Q (∆ ⊢ q : A) then each variable in ∆ occurs exactly once in q.
(b) If x is a variable occurring in pattern q, then t is a subterm of q[x := t].
(c) Assume s is a maximal subterm of t, i.e. s is a subterm such that there is

no term s′ such that s s′ is a subterm starting at the same occurrence as s
in t. If t is good, then s is good as well.

Theorem 6 (Correctness of Translation). Let P be a program for Σ. Then
there exists a typed language Σ′ ⊇F Σ and a simple program P ′ for Σ′, which
is a conservative extension of P preserving SN and WN.

Proof: Define for a program P the height of its derivation height(P) as the sum
of the heights of the derivations of those covering patterns in P , which are not
simple covering patterns. The proof is by induction on height(P).

The case height(P) = 0 is trivial, since P is simple. Assume height(P) > 0. We
obtain a Σ′ ⊇F Σ and corresponding program P ′ for Σ′ by applying one step of
Algorithm 3.3 to P . We show below that P ′ is a conservative extension of P pre-
serving SN and WN. Since the derivations for the coverage complete pattern sets
in P ′ are the same as for P , except for the one for P ′

f , which is reduced in height
by one as the algorithm takes out the last derivation of the coverage derivation
of Pf , and that for P ′

g, which is simple, we have height(P ′) = height(P)− 1. By
induction hypothesis there exists a conservative extension P ′′ of P ′ preserving
SN and WN, which is simple, which is as well a conservative extension of P
preserving SN and WN. This extension is obtained by the recursive call made
by the algorithm.

So we need to show that P ′ is a conservative extension of P preserving SN
and WN. Let f, g,∆′, ~y, q, A, I,∆i, qi, ti, Ci, q

′
i be as stated in Algorithm 3.3,

∆i = ~yi : ~Ai, and n be the length of ∆′.
We introduce a concrete back-interpretation of P ′ into P by

arity(g) := n and Int(g)[~y] := q. Let m(t) be the number of occurrences of f in t.
Let (Good, int) be the corresponding back interpretation.

Assume P ′ fulfils with the given q′i the following conditions:

(1) int(q′i) = qi −→P′ q′i
(2) If q[~x := ~s] ~t = qi, then g ~s ~t = q′i, where ti are terms or of the form .d.

14

Then (Good, int) fulfils (SN 1), (SN 2), and (WN), and therefore P ′ is a
conservative extension of P preserving SN and WN:
(SN 1) holds since the only changed derivation is based on the original redex
qi[~yi := ~t] −→P ti[~yi := ~t] and by (1) qi[~yi := ~t] −→P′ q′i[~yi := ~t] −→P′ ti[~yi := ~t].
(SN 2) holds since the new redexes are the following:

– q[~y := ~t] −→P′ g ~t, where q[~y := ~t] is good. Since it is good and variables
in a pattern are not applied to other terms, by Lem. 5 ~t is good as well,
and therefore as well g ~t. We have int(q[~y := ~t]) = q[~y := int(~t)] = int(g ~t).
Furthermore, m(q[~y := ~t]) = m(g ~t) + 1 > m(g ~t), since pattern q starts with
f , and each variable in ~y occurs by Lem. 5 exactly once in q.

– q′i[~yi := ~t] −→P′ ti[~yi := ~t]. Since q′i[~yi := ~t] is good, as in (a) ~t are good and
therefore ti[~yi := ~t] is good. Furthermore, by (1) int(q′i[~yi := ~t]) =
int(q′i)[~yi := int(~t)]) = qi[~yi := int(~t)] −→P ti[~yi := int(~t)] = int(ti[~yi := ~t]).

Proof of (WN): We first show that (2) implies
(3) If s ∈ Good, int(s) = qi then s = qi ∨ s = q′i
Since qi starts with f , smust start with f or g. The only occurrence of a constant
in qi is at the beginning, therefore s = f ~r or s = g ~r where int(~r) = ~r. If s = f ~r

then s = int(s) = qi. If s = g ~r = g ~s ~t, q[~x := ~s] ~t = int(s) = qi, therefore by (2)
s = g ~s ~t = q′i.
Using (3), assume s ∈ Good, s ∈ NF′, and show int(s) ∈ NF. Assume int(s) 6∈ NF,
int(s) has redex q̃[~x := ~r] for a pattern q̃ of P . If q̃ 6= qi, q̃ starts with some

h 6= f, g, and has no occurrences of f, g. Then s contains q̃[~x := ~r′] where

int(~r′) = ~r, and has therefore a redex, contradicting s ∈ NF′. Therefore q̃ = qi

for some i. Therefore s contains a subterm s′[~x := ~r′] such that int(s′) = qi,

int(~r′) = ~r. But then by (1), (3) s′[~x := ~r′] has a reduction, again a contradiction.
So the proof is complete provided conditions (1), (2) are fulfilled. We verify

the case when the last rule is (CDest), the other cases follow similarly:

(1) int(q′d) = int(g ~x .d) = Int(g)[~x] .d = q .d = qd −→P′ g ~x .d = q′d.

(2) If q[~x := ~s] ~t = qd = q .d, ~s = ~x, ~t = .d, g ~s ~t = g ~x .d = q′d.

6 Conclusion

We have described a reduction of deep copattern matching to shallow copat-
tern matching. The translation preserves weak and strong normalization. It is
conservative, thus establishing a weak bisimulation between the original and the
translated program. The translated programs can be used for more efficient eval-
uation in a checker for dependent types or can serve as intermediate code for
translation into a more low-level language that has no concept of pattern at all.

There are two more translations of interest. The first one, which we have
mostly worked out, is a translation into a variable-free language of combina-
tors, including a proof of conservativity and preservation of normalization. Our
techniques were developed more generally in order to prove correctness for this
translation as well. A second translation would be to a call-by-need lambda-
calculus with lazy record constructors. This would allow us to map definitions of

15

infinite structures by copatterns back to Haskell style definitions by lazy evalu-
ation. While there seems to be no (weak) bisimulation in this case, one still can
hope for preservation of normalization, maybe established by logical relations.

Acknowledgements The authors want to thank the referees for many detailed and

valuable comments, especially regarding preservation of weak normalisation and gen-

eralisation to ARS. Anton Setzer acknowledges support by EPSRC (Engineering and

Physical Science Research Council, UK) grant EP/C0608917/1. Andreas Abel acknowl-

edges support by a Vetenskapsr̊adet framework grant 254820104 (Thierry Coquand)

to the Department of Computer Science and Engineering at Gothenburg University.

Brigitte Pientka acknowledges support by NSERC (National Science and Engineer-

ing Research Council Canada). David Thibodeau acknowledges support by a graduate

scholarship of Les Fonds Québécois de Recherche Nature et Technologies (FQRNT).

References

1. Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types.
PhD thesis, Ludwig-Maximilians-Universität München, 2006.

2. Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns:
Programming infinite structures by observations. In Proc. of the 40th ACM Symp.
on Principles of Programming Languages, POPL 2013, pages 27–38. ACM Press,
2013.

3. Lennart Augustsson. Compiling pattern matching. In Jean-Pierre Jouannaud, ed-
itor, Functional Programming Languages and Computer Architecture (FPCA’85),
volume 201 of Lect. Notes in Comput. Sci., pages 368–381. Springer, 1985.

4. Gilles Barthe, Maria J. Frade, Eduardo Giménez, Luis Pinto, and Tarmo Uustalu.
Type-based termination of recursive definitions. Math. Struct. in Comput. Sci.,
14(1):97–141, 2004.

5. Edwin Brady. Idris, a general purpose dependently typed programming language:
Design and implementation.
http://www.cs.st-andrews.ac.uk/∼eb/drafts/impldtp.pdf, 2013.

6. Robin Cockett and Tom Fukushima. About Charity. Technical report, Department
of Computer Science, The University of Calgary, June 1992. Yellow Series Report
No. 92/480/18.

7. Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
Category Theory and Computer Science, volume 283 of Lect. Notes in Comput.
Sci., pages 140–157. Springer, 1987.

8. Tatsuya Hagino. Codatatypes in ML. J. Symb. Logic, 8(6):629–650, 1989.
9. INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition,

2012.
10. Ulf Norell. Towards a Practical Programming Language Based on Dependent Type

Theory. PhD thesis, Dept. of Computer Science and Engineering, Chalmers,
Göteborg, Sweden, 2007.

11. Paula Gabriela Severi. Normalisation in lambda calculus and its relation to type
inference. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Nether-
lands, 1996.

12. Terese. Term Rewriting Systems. Cambridge University Press, 2003.
13. Femke van Raamsdonk. Concluence and Normalisation for Higher-Order Rewrit-

ing. PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1996.

	Unnesting of Copatterns

