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Abstract

We introduce a translation of the simply typed λ-calculus into C++,

and give a mathematical proof of the correctness of this translation. For

this purpose we develop a suitable fragment of C++ together with a

denotational semantics. We then introduce a formal translation of the

λ-calculus into this fragment, and show that this translation is correct

with respect to the denotational semantics and complete. We introduce a

mathematical model for the evaluation of programs of this fragment, and

show that the evaluation computes the correct result with respect to this

semantics.

1 Introduction

C++ is a general purpose language that supports object-oriented programming
as well as procedural and generic programming, but unfortunately not directly
functional programming. We have developed a parser-translator program that
translates typed λ-terms into C++ statements so as to integrate functional con-
cepts. The translated code uses the object-oriented approach of programming
that involves the creation of classes for the λ-term. By using inheritance, we
achieve that the translation of a λ-abstraction is an element of a function type.

In this article, we do not only present this translation, but give as well a
mathematical proof that it is correct. For this purpose we introduce a suitable
fragment of C++ with a precise denotational semantics. We give a formal trans-
lation of λ-terms into this fragment and show that it preserves this semantics.
We will show as well completeness, i.e. essentially all programs in this fragment
of C++ can be obtained by translating terms of the λ-calculus. We develop a
mathematical model for the evaluation of programs in this model, and show that
this evaluation is correct with respect to the denotational semantics. This shows
that our translation results in C++ programs which are evaluated correctly in
our mathematical model of C++.

We hope that our model of a fragment of C++ which includes a formal
model of the heap, will have applications which go beyond the translation of
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the typed λ-calculus. We expect that extensions of this model can be used
to verify formally the correctness of more complex C++ programs, including
programs with side effects.

Organisation of the paper. In Sect. 2 we introduce the typed λ-calculus
together with a standard denotational semantics. In Sect. 3, we present our
parser-translator program, which translates λ-terms into the full language of
C++. We discuss how the translated code is executed including a description
of the memory allocation. Since it is not feasible (at least for our group) to prove
the correctness of our translation with respect to the full operational semantics
of the very complex language C++, we develop in Sect. 4 a small fragment
of C++ into which we can translate the typed λ-calculus. We introduce as
well the evaluation of applicative terms in this language. In Sect. 5 we give a
formal translation of the typed λ-calculus into this fragment. We introduce a
denotational semantics of the fragment of C++ and show correctness and com-
pleteness of the formal translation: The translation respects the denotational
semantics, and essentially all applicative terms can be obtained by translating
suitable typed λ-terms (completeness). In Sect. 6 we show that the evaluation
of λ-terms is correct with respect to the denotational semantics. This proof
makes use of a Kripke-style logical relation. We conclude with an overall result,
namely that if we translate a λ-term into the fragment of C++ and evaluate it,
we obtain the correct result with respect to the denotational semantics.

Related work. Several researchers [Kis98], [Läu95] have discovered that C++
can be used for functional programming by representing higher order functions
using classes. Our representation is based on similar ideas. There are other
approaches that have made C++ a language that can be used for functional
programming such as the FC++ library [MS00] (a very elaborate approach) as
well as FACT! [Str] (extensive use of templates and overloading) and [Kis98]
(creating macros that allow creation of single macro-closure in C++). What is
different in our paper is that we develop a mathematical model of a fragment
of C++, and that we formally prove the correctness of our translation.

The approach of using denotational semantics and logical relations for prov-
ing program correctness has been used before by Plotkin [Plo77], Reynolds [Rey83]
and many others. The method of logical relations can be traced back at least
to Tait [Tai67] and has been used for various purposes (e.g. Jung and Tiuryn
[JT93], Statman [Sta85] and Plotkin [Plo80]). To our knowledge the verifica-
tion of the implementation of the λ-calculus in C++ (and related object-oriented
languages) using logical relations is new.

There are other fragments of object-oriented languages in the literature
which are used to prove the correctness of programs. A well-known example
is Featherweight Java ([IPW99]). The model for this language avoids the use
of a heap, since methods do not modify instance variables. In contrast, our
model of C++ does make use of a heap and is therefore closer to the actual
implementation of C++. Although our fragment of C++ does not allow for
methods with side effects, it could easily be extended this way and then used
to verify programs in C++ with side effects.
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1.1 General Notations

Notation 1.1 (Finite maps) By X →fin Y we denote the set of finite maps
from the set X to the set Y , that is, the set of functions f : dom(f)→ Y where
dom(f) is a finite subset of X. If f ∈ X →fin Y and (x, y) ∈ X × Y , then
f [x 7→ y] denotes the finite function with domain dom(f) ∪ x that sends x to y
and any other x′ ∈ domf to f(x′). A list x1 : y1, . . . , xn : yn, where the xi are
distinct elements of X and the yi are in Y , denotes an element of X →fin Y in
the obvious way. Furthermore, f, x : y := f [x 7→ y].

In this article we observe a strict naming convention: Once a group of letters
has been used to range over a certain entity (e.g. A, B (but not C) range over
types), letters in that group (possibly with sub- or superscripts) will always
denote instances of that entity. There will be only two exceptions: x, y, z may
denote elements of unspecified sets X, Y, Z as well as variables (Definition 2.2),
and f ranges over unspecified functions as well as basic C++ functions 2.1. For
the reader’s convenience there is a complete table of notations in Sect. 8 at the
end of this article

2 The Typed λ-Calculus

We introduce a version of the typed λ-calculus based on base types, which are
native C++-types, and basic functions, which are native C++-functions.

Assumption 2.1 (a) We fix a set basetype of base types ρ, σ, . . .. One specific
base type is the type of integers int.

(b) We fix a set F of names for basic functions f : (ρ1, . . . , ρk)→ σ.

(c) We view functions of arity 0 as constants and denote them by the letter
n.

(d) Let [[ρ]] denote the set of elements of base type ρ. In case of int, [[int]] is
the set of integers.

(e) Let [[f ]] : [[ρ1]]× . . .× [[ρk]]→ [[σ]] be the function denoted by f ∈ F.
Especially we assume that a constant (0-ary function) n, which stands for
the integer n, is interpreted by itself (i.e. by n).

Any native C++ type can be used as a base type, and any native C++ functions
without side effects (including constants) can be used as basic functions 1.

Definition 2.2 (Simply typed λ-calculus with basic functions)

(a) We fix a set Var of variables x, y, z, . . ..

1The translation given below makes sense as well fore functions with side effects, including
those which affect instance variables of the classes used. However, in this case we would go
beyond the simply typed λ-calculus, and could not use the simple denotational semantics of
the λ-calculus in order to express the correctness of the translation.
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(b) The sets of types, contexts and λ-terms are defined as follows:

Types: Type ∋ A, B, E, F ::= ρ | A→ B
Contexts: Context ∋ Γ, ∆ ::= Var→fin Type

λ-terms: Term ∋ r, s, t := x | f [r1, . . . , rk] | r s | λxA.r

(c) The relation Γ ⊢ r : A is inductively defined by the following standard
typing rules:

Γ, x : A ⊢ x : A
Γ, x : A ⊢ r : B

Γ ⊢ λxAr : A→ B

Γ ⊢ r : A→ B Γ ⊢ s : A

Γ ⊢ r s : B

Γ ⊢ r1 : σ1 . . . Γ ⊢ rk : σk

Γ ⊢ f [r1, . . . , rk] : ρ
(f : (ρ1, . . . , ρk)→ σ)

Note that we do not have any product types and that native C++-functions
are not necessarily objects – they can even be constants such as integers– there-
fore the rule for f [r1, . . . , rk] is not subsumed by the rule for r s.

The simply type λ-calculus has a well-known operational semantics defined
by β-reduction, (λxAr)s →β r[s/x], and function reduction, f [n1, . . . , nk] →f

[[f ]](n1, . . . , nk). But there is also an equivalent denotational semantics which,
for our purposes, will be more convenient to work with. Since our calculus does
not allow for recursive definitions, it is possible to interpret types and terms
in a naive set-theoretic hierarchy D of functionals of finite types over the base
types:

Definition 2.3 For A ∈ Type we define the set D(A) of functionals of finite
types over A by induction on A:

D(ρ) := [[ρ]]

D(A→ B) := the set of functions from D(A) to D(B)

D :=
⋃

A∈Type

D(A)

Semantic values (elements of D(A)) are denoted by d.

Definition 2.4 (a) A functional environment is a mapping ξ : Var→ D.
FEnv denotes the set of all functional environments.

(b) If Γ is a context, then ξ : Γ means ∀x ∈ dom(Γ).ξ(x) ∈ D(Γ(x)).

Definition 2.5 (Denotational semantics of the simply typed λ-calculus)
For every typed λ-term Γ ⊢ r : A and every functional environment ξ : Γ the
denotational value [[r]]ξ ∈ D(A) is defined by

[[x]]ξ = ξ(x)

[[f [r1, . . . , rk]]]ξ = [[f ]]([[r1]]ξ, . . . , [[rk]]ξ)

[[r s]]ξ = [[r]]ξ([[s]]ξ)

[[λxA.r]]ξ = λλd ∈ D(A).[[r]]ξ[x 7→ d]
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3 Translation of Typed λ-Terms into C++

In this section we describe how to translate simply typed λ-terms into C++
using the object-oriented concepts of classes and inheritance.

The translation generates new identifiers, which we need to disambiguate; in
order for this to work, we restrict ourselves to the translation of finitely many
λ-terms and types at a time. We first define an identifier name(A) : String for
finitely many A : Type. Here String is the set of strings.

• If ρ is a native C++-type, name(ρ) is a C++ identifier obtained from ρ.
This is ρ, if ρ is already an identifier, and the result of removing blanks
and modifying symbols not allowed in identifiers (e.g. replacing ∗ by x),
in case ρ is a compound type like long int or ∗ ρ. 2

• name(A → B) :=“C”∗name(A)∗“ ”∗name(B)∗“D”, where ∗ means con-
catenation. Here C stands for an open bracket, D for a closing bracket,
and for the arrow in this identifier. By using these symbols we obtain
valid C++-identifiers.3

For instance name(int→ int) =“Cint intD”, name((int→ int)→ int) =
“CCint intD intD”. In the following, we write CA BD instead of name(A → B)
and CA BD aux instead of name(A → B)∗” aux” (that type will be introduced
below), similarly for other types.

For every A ∈ Type we introduce a series of class definitions, after which
name(A) is a valid C++ type (assuming class definitions for any native C++
type used):

• For native C++-types the sequence of class definitions is empty.

• The sequence of class definitions for A→ B consists of the class definitions
of A, the class definitions of B not contained in the class definitions of A
and additionally

class CA_BD_aux{

public: virtual B operator () (A x)=0;};

typedef CA_BD_aux * CA_BD;

So, CA BD aux is a class with one virtual method used as application,4

which maps an element of type A to an element of type B. CA BD is a
pointer to an element of this class. The body of this method will then be
the body of the function to be invoked when applied to its arguments.

Now we define for every λ-term r a sequence of C++-class definitions and a
C++-term rC++, s.t. if r : A, then rC++ is of type name(A). 5

2This modification might result in name clashes, in which case one adds some string like n

for some integer n in order to disambiguate the names. Since we are translating only finitely
many λ-types at any time, this way of avoiding name clashes is always possible.

3Again, we might need to disambiguate the identifiers as it was done for native C++ types.
4In C++, if an object o has a method B operator () (A x), invocation of this method is

written like application, i.e. as o(s). Note however that Java objects correspond in C++ to
pointers to C++-objects. A pointer o’ to an object o has first to be dereferenced, written as
(* o’), and therefore o’ applied to s is written as (* o’)(s). Note that, when creating an
object using new, we obtain a pointer to an object.

5Strictly speaking, rC++ depends on the choice of identifiers for λ-types and C++-classes
representing λ-terms. When defining the parse function P in Sect. 6, this will be made explicit
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• If x is a variable, then the class definitions for introducing x are empty
and xC++ := x.

• Let t = λxA.r be of type A→ B. Assume the free variables of t are of type
x1 : A1, . . . , xk : Ak and that t is a new identifier. Assume name(Ai) = Ai,
xi is the C++-representation for xi, name(A) = A, name(B) = B, and
rC++ = r. The class definition for t consists of the class definition for r
together with

class t : CA_BD_aux{

public:

A1 x1;

...

An xk;

t(A1 x1,A2 x2, ... , Ak xk){

this->x1 = x1;

...

this->xk = xk;}

virtual B operator () (A x){

return r;};};

tC++ := new t(x1, ..., xk).

Therefore the class definition of t has instance variables xi of type Ai. The
constructors has one argument for each variable xi and sets the instance
variable xi to the value of that argument. The class has one method
operator()with one argument x of type A. When invoked, the body of this
method r, which is the translation of the body of the λ-term, is evaluated
in the environment mapping x to the value of the argument of the method,
and xi to the value of this instance variable. Note that no other variables
are visible in the body of this method, since this environment might differ
between when an object of this class was created and when it is used.
That is the reason why one needs to copy first, when creating an object
of such a class, the environment into some instance variables.6

When applying an object of this class to an element, the body of the λ-
term is invoked. The λ-term is translated into the statement which creates
a new object with the instance variables set to the value they have in the
current environment.

• Assume t = r s. Then the class definitions of t consist of the class def-
initions for r, and the class definitions for s (where the class definitions
corresponding to λ-abstractions occurring in both r and s need only to be
introduced once).7 Furthermore tC++ := (∗(rC++))(sC++).

by having the dependency of this function on the context Γ and the class environment C. Since
in our abstract setting λ-types are represented by themselves, P does not depend on the choice
of identifiers for those types.

6In C++ there are no inner classes as they occur in Java, which allow references to the
current environment.

7A λ-abstraction is represented as a new instance of its corresponding class. Even if the
classes for two occurrences of the same λ-abstraction coincide, for each occurrence a new
instance is created. Therefore there is no problem, if a variable occurs as the same name, but
with different referential meaning in two identical λ-expressions.
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So t is interpreted as the result of applying the translation of r to the
translation of s.

• Assume t = f [r1, . . . , rk]. Then the class definitions for t are the class def-
initions for ri (again class definitions for λ-terms occurring more than once
need only to be introduced once). Furthermore, tC++ := f(rC++

1 , ...,rC++

k ).

So t is interpreted as the result of applying the native C++ function f to
the translations of ri.

Note that a λ-abstraction is interpreted as a function of its free variables in
the form (new t(x1, . . . , xk)). Hence, the evaluation of a λ-abstraction in an
environment for the free variables is similar to a “closure” in implementations
of functional programming languages.

We have developed a program which parses λ-terms and translates them
into the full language of C++. Our intention is to upgrade this to an extension
of the language of C++ by λ-types and -terms together with a parser program
which translates this extended language into native C++. For this purpose
we introduce a syntax for representing λ-types and -terms in C++. We use
functional style notation rather than overloading existing C++-notation, since
we belief that this will improve readability and acceptability of our approach
by functional programmers. In our extended language, we write A –> B for the
function type A→ B, r ^̂ s for the application of r to s8, and \A x.B s for λxA.s
if s : B. (If s is a term starting with λ, B will be omitted). For instance, the
term

t = (λf int→intλxint.f (f x)) (λxint. x + 2) 3

is written in our extended C++ syntax as

(\ int->int f. \ int x. int f^^(f^^x))^^(\ int x. int x+2)^^3

As an example, we show how the translation program transforms the term t
above into native C++ code. We begin with the class definitions for the λ-types:

class Cint_intD_aux

{ public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux* Cint_intD;

class CCint_intD_Cint_intDD_aux

{ public : virtual Cint_intD operator()

(Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux*

CCint_intD_Cint_intDD;

The class definition for t1 := λxint.f (f x) is

class t1 : public Cint_intD_aux{

public :Cint_intD f;

t1( Cint_intD f) { this-> f = f;};

virtual int operator () (int x)

{ return (*(f))((*(f))(x)); };

};

8Note that we cannot r(s) here, since this notation will not translate into application, but
into (∗ r)(s).
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and tC++
1 = new t1(f). The class definitions for t0 := λf int→intλxint.f(fx) and

t2 := λxint.2 + x (using identifiers t0, t2) are as follows:

class t0 : public CCint_intD_Cint_intDD_aux{

public :

t0( ) { };

virtual Cint_intD operator () (Cint_intD f)

{ return new t1( f); }

};

class t2 : public Cint_intD_aux{

public :

t2( ) { };

virtual int operator () (int x)

{ return x + 2; };

};

Finally
tC++ := (∗((∗( new t0( )))( new t2( ))))(3);

When evaluating the expression tC++, first the application of t0 to t2 is
evaluated. To this end, instances l0, l2 of the classes t0 and t2 are created
first. Then the operator() method of l0 is called. This call creates an instance
l1 of t1, with the instance variable f set to l2. The result of applying t0 to t2

is l1.
The next step in the evaluation of tC++ is to evaluate 3, and then to call the

operator() method of l1. This will first make a call to the operator method of
f, which is bound to l2, and apply it to 3. This will evaluate to 5. Then it will
call the operator method of f again, which is still bound to l2, and apply it to
the result 5. The result returned is 7.

We see that the evaluation of the expression above follows the call-by-value
evaluation strategy.9 Note that l0, l1, l2 were created on the heap, but have
not been deleted afterwards. The deletion of l0, l1 and l2 relies on the use of
a garbage collected version of C++, alternatively we could use smart pointers
in order to enforce their deletion.

4 Modelling a Fragment of C++

In this section we construct a mathematical model of a fragment of C++ that
contains the code created by the translation of λ-terms described in the previous
section. We model the execution of C++ code by functions eval and apply,
similar to the modelling of the λ-calculus in [ASS85]. However, in order to
model the C++ implementation as truthfully as possible, we differ from [ASS85]
by making the pointer structures for the classes and objects explicit and letting
the functions eval and apply modify these pointer structures via side effects.

When we investigate what was needed from C++ in order to translate simply
typed λ-terms, we see that the classes obtained have instance variables, one
constructor, and one method corresponding to the operator() method. The

9Note that this computation causes some overhead, since for every subterm of the form
λx.r a new object is created, which is in many cases used only once, and can be thrown away
afterwards. One could optimise this, however at the price of having a much more complicated
translation, and therefore a much more complex correctness proof of the translation.
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constructor has one argument for each instance variable and sets the instance
variables to these arguments. No other code is performed. The method has
one argument, and the body consists of a simplified C++ expression. Here
simplified C++ expressions are the C++ expressions occurring in the translation
process, which were all translations of λ-terms. Simplified C++-expressions
are variables, native C++ functions applied to simplified C++ expressions,
the application of one simplified C++ expression to another simplified C++
expression (which corresponds to the method call in case the first applicative
term is an object), and the construct new applied to a constructor and simplified
C++ expressions.

We develop a language which formulates this fragment of C++. In this
language, a class is be given by a context representing its instance variables,
the abstracted variable of the method and its type, and an applicative term.
Applicative terms (which correspond to the simplified C++ expressions above)
are variables, native C++ functions applied to applicative terms (where C++
functions with no arguments are constants), the application of one applicative
term to another applicative term (which corresponds to the method call in case
the first applicative term is an object), or a constructor applied to applicative
terms (which corresponds to the new-construct).

This fragment could easily be extended in order to cover modification of
instance variables and method calls in the body of a method, the possibility of
having several methods, and other C++ constructs.

Definition 4.1 (Applicative terms, classes, class environments)

Let Constr be an infinite set of constructors (i.e. class names), denoted by c.
Applicative terms: App ∋ a, b ::= x | f [a1, . . . , ak] | a b | c(a1, . . . , ak)
Classes: Class ::= (Γ; x : A; b)
Class environments: CEnv ∋ C ::= Constr→fin Class

Applicative terms (∈ App) correspond to the C++ constructs x, f[a1, ..., ak],
(∗ (a))(b) and new c(a1, . . . , ak). A class (Γ; x : A; b) ∈ Class, where Γ = x1 :
A1, . . . , xn : An, corresponds to a C++ class definition of the form

class c : CA_BD_aux{

public: A1 x1;

...

An xk;

c(A1 x1,A2 x2, ... , Ak xk){

this->x1 = x1;

...

this->xk = xk;}

virtual B operator () (A x){

return b;};};

Note that the type B is omitted in (Γ; x : A; b) since it can be derived, and the
class name c is associated with the class through the class environment CEnv.

Definition 4.2 We define the free variables FV(a) of an applicative term a ∈
App as follows: FV(x) = {x}, FV(f [a1, . . . , ak]) := FV(a1) ∪ · · · ∪ FV(ak),
FV(a b) := FV(a) ∪ FV(b), FV(c(a1, . . . , ak)) := FV(a1) ∪ · · · ∪ FV(ak).
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When a constructor call of a class is evaluated, its arguments are first eval-
uated. Then, memory for the instance variables of this class is allocated on
the heap, and these instance variables are set to the evaluated arguments. The
address to this memory location is the result returned by evaluating this con-
structor call. The only other possible result of the evaluation of an applicative
term is a number, so values are addresses or numbers.

Note as well that on the heap we store elements of the form c(~v), which can be
represented as elements of Constr×Val∗ (here Val is the set of values). Therefore
we can model the heap as a finite function from addresses to Constr× Val∗.

Definition 4.3 (Values, closures, heaps, and value environments)

Let Addr be an infinite set of addresses denoted by h.
Let n range over C++ constants, that is, elements of basic C++ types;
Values: Val ∋ v, w ::= n | h
Closures: Constr× Val∗ ::= (c, v1, . . . , vk)
Heaps: Heap ∋ H ::= Addr→fin (Constr× Val∗)
Value environments VEnv ∋ η ::= Var→fin Val

Note that n denotes both constants and elements of basic C++-types. Since
constants are to be interpreted by themselves, this doesn’t cause any confusion.

The functions eval and apply defined below have side effects on the heap. This
fact can be conveniently expressed using monads.

Definition 4.4 (State monad)

The partial state monad for a given sets X (of states) is the functor MX : Set→
Set (the object part of which is)

MX(Y ) := X
∼
→ Y ×X

where X
∼
→ Y ×X is the set of partial functions from X to Y ×X.

Elements of MX(Y ) are called actions and can be viewed as elements of Y that
may depend on a current state x ∈ X and also may change the current state.
So, an element of MX(Y ) is a partial function which, depending on the current
state returns a result and a new state (or fails). Monads are a category-theoretic
concept whose computational significance was discovered by Moggi [Mog91].

We need to work with partial instead of total functions because the opera-
tions eval and apply defined below do not yield defined results in general. We
will however prove that for inputs that can be typed the results will always be
defined.

Notation 4.5 (do, return, mapM, read, add) We use the following standard monadic
notation (roughly following Haskell syntax): Suppose e1 : MX(Y1), . . . , ek+1 :
MX(Yk+1) are actions where ei may depend on y1 : Y1, . . . , yi−1 : Yi−1. Then

do{y1 ← e1 ; . . . ; yk ← ek ; ek+1} : MX(Yk+1)

is the action that maps any state y0 : Y to (yk+1, xk+1) where (yi, xi) ≃ ei xi−1,
for i = 1, . . . , k+1 (≃ denotes the usual “partial equality”). The intuitive idea is
that the do-expression is computed by evaluating e0, . . . , ek+1 in sequence, where
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ei can make use of the result yj returned by ej (j < i). The result returned is
that of ek+1, and the computation of each ei might change the state.

We also allow let-expressions with pattern matching within a do-construct
(with the obvious meaning). We adopt the convention that computations are
“strict”, i.e. the result of a computation is undefined if one of its parts is.
Furthermore, we use the standard monadic notations

return : Y → MX(Y ) return y x = (y, x)
mapM : (Z → MX(Y ))→ Z∗ → MX(Y ∗) mapM f ~z = do{y1 ← f z1 ; . . .

. . . ; yk ← f zk ; return (~y)}

as well as

read : X → MX→finY (Y ), read x m ≃ (m x, m)
add : Y → MX→finY (X), add y m ≃ (x, m[x 7→ y]) where x = fresh(m)

Here, fresh is a function with the property that if m : X →fin Y , then fresh(m) ∈
X \ dom(m) 10.

Definition 4.6 We define functions

eval : CEnv→ VEnv→ App→ MHeap(Val)
apply : CEnv→ Val→ Val→ MHeap(Val)

by mutual recursion as follows (in Sect.6 we will omit the argument C, since it
will be a global parameter):

eval C η x = return (η x)

eval C η f [~a] = do{~n← mapM (eval C η) ~a ; return [[f ]](~n)}

eval C η (a b) = do{(v, w)← mapM(eval C η) (a, b) ; apply C v w}

eval C η c(~a) = do{~v ← mapM (eval C η) ~a ; add (c, ~v)}

apply C h v = do{(c, ~w)← read h ; let (~y : ~B; x : A; a) = C c
in eval C [~y, x 7→ ~w, v] a}

apply C n v = ∅

where ∅ is the undefined action, i.e. the partial function with empty domain11.

Lemma 4.7 (1) If eval C η a H = (v, H ′), then H ⊆ H ′.

(2) If apply C v w H = (v′, H ′), then H ⊆ H ′.

Proof. Straightforward simultaneous induction on the definitions of eval and
apply, i.e. by “fixed point induction” [Win93]. q.e.d.

Due to the complexity of C++ it would be a major task, which would require
much more man power than was available in our research group, to formally
prove that our mathematical model, given by eval and apply, coincides with

10In our applications X will be a space of addresses which we assume to be infinite, i.e. we
assume that the allocation of a new address is always possible.

11It would be more appropriate to let apply C n v result in a finite error, but, for simplicity,
we identify errors with non-termination.
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the operational semantics of C++.12 (Note that other models of fragments
of object-oriented languages in the literature face the same problem and their
correctness w.r.t. real languages is therefore usually not shown.) However, when
going through the definitions we observe that the evaluation function eval is
indeed defined in accordance with the expected behaviour of C++:

• A variable is evaluated by returning its value in the current environment
η.

• The application of a native C++ function to arguments a1, . . . , ak is car-
ried out by first evaluating a1, . . . , ak in sequence, and then applying the
function f to those arguments.

• Note that constants are special cases of functions with arity 0, and there-
fore constants are evaluated by themselves.

• (a b) corresponds in C++ to the construct (∗ (a))(b). First a and b are
evaluated. Because of type correctness, a must be an element of the type
of pointers to a class, and the value of a will therefore be an address
on the heap. On the heap the information about the class used and the
values of the instance variables of that class are stored. Then (∗ (a))(b)
is computed by evaluating the body of the method of the class in the
environment where the instance variables have the values as stored on the
heap, and the abstracted variable has the result of evaluating b. This
is what is computed by eval η (a b) (which makes use of the auxiliary
function apply).

• The expression c(~a), which stands for the C++ expression new c(a0, . . . , ak),
is evaluated by first computing a0, . . . , ak in sequence. Then new storage
on the heap is allocated. Note that in our simplified setting, the construc-
tor of c simply assigns to the instance variables the values of a0, . . . , ak.
Consequently, the intended behaviour of C++ is that it stores on the
heap the information about the class used and the result of evaluating
a0, . . . , ak, which is what is carried out by eval.

5 Formal Translation of Typed λ-Terms and its

Correctness

Despite of the fact that we could describe only informally the connection of our
mathematical model with the actual implementation of C++, we will be able
to prove formally that the model as well as the translation of λ-terms described
in Section 3 are correct in the following sense: As we did for λ-terms, we will
define for C++ terms, a ∈ App, a typing relation, Γ ⊢ a : A, and a denotational
semantics, [[a ]]

H
ξ ∈ D(A). Similarly, we will define for values, v ∈ Val, a relation

H ⊢ v : A and a semantics [[ v ]]H ∈ D(A) (all these definitions will depend on
a class environment C ∈ CEnv). Our main results will be the correctness of
the translation function, P (see below), and the evaluation function, eval, with

12The formalisation of the semantics of Java in [SSB01] was a major project, and still this
book excludes some features of Java like inner classes. Note that C++ is much more complex
than Java.
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respect to these typing relations and denotational semantics (Theorems 5.6 and
6.9).

In this section we carry out the first step, namely the introduction of the
parsing relation and a proof that it is correct and complete. In the next section
we will show that the evaluation of applicative terms is correct as well and
obtain the correctness of our implementation.

Definition of the Parse Function P

We are going to define a formal analogue to the translation of λ-terms described
in Section 3. We use the monadic notation from Section 4.

Definition 5.1 (Definition of the Parse Function P) We define a function

P : Context→ Term→ MCEnv(App)

by recursion on terms as follows:

P Γ x = return x, if x is a variable

P Γ f [~r] = do{~a← mapM (P Γ) ~r ; return f [~a]}

P Γ (r s) = do{(a, b)← mapM (P Γ) (r, s) ; return (a b)}

P Γ (λxA.r) = do{a← P (Γ, x : A) r ; c← add(Γ; x : A; a) ; return c(dom(Γ))}

Hence, the translation has a side effect on the class environment.

Lemma 5.2 P Γ r is total and if P Γ r C = (a, C′), then C ⊆ C′.

Proof. Induction on the term r. q.e.d.

Typing and denotational semantics of applicative terms

Definition 5.3 (Typing of Applicative Terms) We define inductively a typ-
ing relation C; Γ ⊢ a : A (where we sometimes write Γ ⊢ a : A instead, if C is a
global fixed parameter):

C; Γ, x : A ⊢ x : A

f ∈ F, f : (ρ1, . . . , ρk)→ σ

C; Γ ⊢ ai : Ai (i = 1, . . . , k)

C; Γ ⊢ f [a1, . . . , ak] : B

C; Γ ⊢ a : A→ B C; Γ ⊢ b : A

C; Γ ⊢ a b : B

C(c) = (∆; x : A; a) ∆ = x1 : A1, . . . , xk : Ak

C; ∆, x : A ⊢ a : B

C; Γ ⊢ ai : Ai (i = 1, . . . , k)

C; Γ ⊢ c(a1, . . . , ak) : A→ B

13



Definition 5.4 (Denotational semantics of applicative terms) If C; Γ ⊢
a : A, then for every functional environment ξ ∈ FEnv such that ξ : Γ we define
[[ a ]]

C
ξ ∈ D(A) (we write [[a ]]ξ if C is a fixed global parameter):

[[ x ]]
C
ξ := ξ(x)

[[ f [a1, . . . , ak] ]]
C
ξ := [[ f ]]([[ a1 ]]

C
ξ, . . . , [[ak ]]

C
ξ)

[[ a b ]]
C
ξ := [[ a ]]

C
ξ([[ b ]]

C
ξ)

[[ c(a1, . . . , ak) ]]Cξ := λλd ∈ D(A).[[ a ]]Cξ′[x 7→ d]

where in the last clause it is assumed that we have C(c) = (∆; x : A; a) with
C; ∆, x : A ⊢ a : B, ∆ = x1 : A1, . . . , xk : Ak and C; Γ ⊢ ai : Ai (i = 1, . . . , k),

and ξ′ is defined by ξ′(xi) := [[ai ]]
C

ξ for i = 1, . . . , k.

Lemma 5.5 (a) If C ⊆ C′, Γ ⊆ Γ′, C; Γ ⊢ a : A, then C′; Γ′ ⊢ A.

(b) If C; Γ ⊢ a : A, C; Γ ⊢ a : A′, then A = A′.

(c) If C ⊆ C′, Γ ⊆ Γ′, ξ ⊆ ξ′, C; Γ ⊢ a : A, and ξ : Γ, ξ′ : Γ′, then

[[a ]]
C

ξ = [[ a ]]
C′

ξ′.

Proof: Straightforward.

Correctness of the Parse Function P

Theorem 5.6 If r is a λ-term, Γ ⊢ r : A, then P Γ r C ≃ (a, C′) for some

C′, a s.t. C′; Γ ⊢ a : A and for all ξ : Γ we have [[ r ]]ξ = [[a ]]
C′

ξ.

Proof: Induction on the derivation of Γ ⊢ r : A. The only interesting case
is r = λxB .r′, where we have Γ, x : B ⊢ r′ : A. Assume Γ = x1 : A1, . . . , xk : Ak

and let ~x := x1, . . . , xk. By induction hypothesis P (Γ, x : B) r′ C = (a′, C1) for
some C1, a

′ s.t. C1; Γ, x : B ⊢ a′ : A, and for d ∈ D(A) we have [[ r′ ]]ξ[x 7→ d] =

[[ a′ ]]
C1ξ[x 7→ d]. Then P Γ r C = (c(~x), C2), where C2 := C1[c 7→ (Γ; x : B; a′)],

for some fresh c. C2; Γ ⊢ xi : Ai, and by monotonicity C2; Γ, x : B ⊢ a′ : A,
therefore C2; Γ ⊢ c(~x) : B → A. Furthermore, [[xi ]]C2ξ = ξ(xi), therefore

ξ′ ⊆ ξ for the ξ′ as in the definition of [[ c(~x) ]]
C2ξ. Therefore [[ c(~x) ]]

C2ξ =

λλd.[[ a ]]C2ξ′[x 7→ d] = λλd.[[ a ]]Cξ[x 7→ d] = λλd.[[ r′ ]]ξ[x 7→ d] = [[ r ]]ξ. q.e.d.

Completeness of the Parse Function P

In addition to the correctness of the translation function P we show the oppo-
site direction, namely completeness: the translated versions of typed λ-terms
are already essentially all typed elements of App. The only restriction is that
constructors are only applied to variables, and that they are applied to all vari-
ables in the context, independently of whether the variables occur in the body
of the class or not.

Definition 5.7 Let C; Γ ⊢′ a : A be defined by the same rules as for C; Γ ⊢
a : A, except for the rule of deriving C; Γ ⊢ c(a1, . . . , ak) : A → B, which is
replaced by the following:
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C(c) = (Γ; x : A; a) Γ = x1 : A1, . . . , xk : Ak

C; Γ, x : A ⊢′ a : B

C; Γ ⊢′ c(x1, . . . , xk) : A→ B

Remark 5.8 In Theorem 5.6 we have as well C′; Γ ⊢′ a : A.

We have no control over the choice of class names (constructors) introduced
by the parse function. So a class term will in general only be reached by the
parse function up to renaming of class names. Furthermore, if in a λ-term there
exist the same λ-term twice as a subterm, the parse function will assign different
class names to each occurrence of it. (One could improve the parse function so
that this doesn’t take place.) Therefore, if we want to obtain an element a of
App by parsing a λ-term r, it might be that in the parsed λ-term a′ there are
two different constructors which correspond to the same constructor in a. So we
obtain an element of App by parsing a λ-term only up to renaming and possibly
identification of class names. The following definition of a class homomorphism
makes this explicit:

Definition 5.9 (a) Let θ : Constr →fin Constr. Then θ(a) is defined if each
constructor occurring in a is an element of dom(θ). If θ(a) is defined, then
θ(a) is the result of replacing each occurrence of c ∈ Constr in a by θ(c).
Furthermore, for (Γ; x : B; a) ∈ Class we define θ(Γ; x : B; a) :≃ (Γ; x :
B; θ(a)).

(b) Let C, C′ ∈ CEnv. θ : dom(C′) → dom(C) is a CEnv-homomorphism, if
∀c ∈ dom(C′).θ(C′(c)) = C(θ(c)).

Theorem 5.10 (Completeness of the Parse Function P) Assume C; Γ ⊢′

a : A, and C′ ∈ CEnv. Then there exists a λ-term r, a CEnv-homomorphism
θ : C′′ → C, and an a′ ∈ App s.t. the following holds

Γ ⊢ r : A ,
P Γ r C′ = (a′, C′ ∪ C′′) ,

C′ ∪ C′′; Γ ⊢ a′ : A ,
θ(a′) = a .

Proof: Induction on C; Γ ⊢′ a : A.
Case Γ = x1 : A1, . . . , xk : Ak, a = c(x1, . . . , xk), A = A′ → B′, C(c) =

(Γ; x : A′; a′), C; Γ, x : A′ ⊢ a′ : B′. Assuming C′ we find by induction
hypothesis C0, a CEnv-homomorphism θ′ : C0 → C, a λ-term r′, a′′ ∈ App

s.t. P (Γ, x : A′) r′ C′ = (a′′, C′ ∪C0) and θ′(a′′) = a′. Then P Γ (λxB .r′) C′ =
(c0(x1, . . . , xk), C′ ∪ C0[c0 7→ (Γ; x : B; a′′)]) for some fresh c0. Let a′ :=
c0(x1, . . . , xk), C′′ := C0[c0 7→ (Γ; x : B; a′′)], θ := θ′[c0 7→ c], r := λxB .r′.

The other cases are straightforward. q.e.d.

6 Correctness of the Evaluation of Applicative

Terms

In this Section, except for the main theorem 6.10 at the end, the class environ-
ment C will not change. We will therefore omit this parameter in all notations
(including apply, eval).
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Typing, Semantics, and Semantic Typing of Values

Definition 6.1 (Typing of Values) The typing relation H ⊢ v : A is defined
inductively by the following rules:

If ρ is a native C++ type and n ∈ [[ ρ ]], then

H ⊢ n : ρ

If h ∈ Addr, H(h) = (c, v1, . . . , vk), C(c) = (∆; x : A; a)
∆ = x1 : A1, . . . , xk : Ak then

∆, x : A ⊢ a : B

H ⊢ vi : Ai (i = 1, . . . , k)

H ⊢ h : A→ B

Definition 6.2 (Denotational Semantics of Values) (a) Assuming H ⊢

v : A we define the denotational semantics of v, [[ v ]]H ∈ D(A), by recur-
sion on the derivation of H ⊢ v : A:

[[n ]]
H

:= n

[[h ]]
H

:= λλd ∈ D(A).[[ a ]]ξ[x 7→ d]

where H(h) = (c, v1, . . . , vk), C(c) = (∆; x : A; a), ∆ = x1 : A1, . . . , xk :

Ak, ∆, x : A ⊢ a : B, H ⊢ vi : Ai and ξ(xi) := [[ vi ]]
H

(i = 1, . . . , k).

If C needs to be mentioned we write [[ v ]]
C,H

instead of [[ v ]]
H

.

(b) If η ∈ FEnv, η : Γ, we define [[ η ]]
H ∈ VEnv by [[ η ]]

H
:= λλx ∈ dom(η).[[ η(x) ]]

H
.

Lemma 6.3 (a) If H ⊢ v : A and H ⊆ H ′, then H ′ ⊢ v : A and [[ v ]]H =

[[ v ]]
H′

.

(b) If H ⊢ v : A and H ⊢ v : A′, then A = A′.

The next definition is motivated by the following consideration: We want
to show that eval η a H is defined, whenever we have Γ ⊢ a : A, and if the

result is (v, H ′), then [[a ]] = [[ v ]]
H′

(more precisely we have a dependency
on an environment η). The problem is that [[ a b ]] = [[a ]]([[ b ]]), whereas
eval η (a b) H :≃ apply v w H ′′ where v, w are obtained by applying eval

to a and b, and H ′′ is the heap obtained when evaluating a and b. Even so in
the proof of the correctness of eval we might know by induction hypothesis (for

some suitable heap H ′′′) that [[a ]] = [[ v ]]H
′′′

and [[ b ]] = [[ w ]]H
′′′

, we will not be

able to conclude that [[ a ]]([[ b ]]) = [[ v′ ]]
H′′′

, if apply v w H ′′ ≃ (v′, H ′′′), unless
we know for a already that it respects apply. If a = c(a1, . . . , an), this is no
problem, but a might be a variable or an application term a′ b′.

So, when proving the correctness for an applicative term of type A→ B, we
need to show that it respects apply as well. We can achieve this if we know that
apply is only applied to terms which respect apply themselves. We also need to
assume that all variables have this property as well. The correct condition is
expressed by using the following Kripke-style logical relation H |= v ∼ d : A
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between a C++ value v ∈ Val and a denotational value (d ∈ D(A)). This
relation, which depends on a class environment C, a heap H , and the type A,
can be viewed as a semantic analogue of the (proof-theoretic) typing relation.

Definition 6.4 (a) We define a relation H |= v ∼ d : A by recursion on the
type A.

In order to increase readability we will use the following abbreviations:
|= apply v w H ∼ d : A is shorthand for

∃v′, H ′ (apply v w H ≃ (v′, H ′) ∧H ′ |= v′ ∼ d : A).

Similarly, |= eval η a H ∼ d : A stands for

∃v′, H ′ (eval η a H ≃ (v′, H ′) ∧H ′ |= v′ ∼ d : A).

(Note that |= apply v w H ∼ d : A implies apply v w H is defined):

H |= v ∼ n : ρ :⇐⇒ v = n ∈ [[ ρ ]]

H |= v ∼ f : A→ B :⇐⇒ H ⊢ v : A→ B ∧ [[ v ]]
H

= f
∧∀H ′ ⊇ H, ∀(w, d) ∈ Val× D(A).

H ′ |= w ∼ d : A
=⇒|= apply v w H ′ ∼ f(d) : B

(b) We also define

H |= η ∼ ξ : Γ :⇐⇒ dom(Γ) ⊆ dom(η) ∩ dom(ξ)∧
∀x ∈ dom(Γ)H |= η(x) ∼ ξ(x) : Γ(x)

Lemma 6.5 If H |= v ∼ d : A and H ⊆ H ′ then H ′ |= v ∼ d : A.

Proof. Easy by the definition and Lemma 6.3 (a). q.e.d.

Lemma 6.6 If H |= v ∼ d : A, then H ⊢ v : A. Hence, if H |= η ∼ ξ : Γ, then
H ⊢ η : Γ.

Proof. Clear, by definition. q.e.d.

Proof of Correctness of eval

The main result below corresponds to the usual “Fundamental Lemma” or “Ad-
equacy Theorem” for logical relations:

Lemma 6.7 Assume Γ ⊢ a : A. Then for all η, ξ we have

H |= η ∼ ξ : Γ =⇒|= eval η a H ∼ [[a]]ξ : A .

Proof. The proof is by induction on the typing judgement Γ ⊢ a : A. In the
proof we will use the properties (1) and (2) of Lemma 4.7 and Lemma 6.5. We
refer to the latter one as “monotonicity”. We now consider the four possible
cases of how Γ ⊢ a : A can be derived.

Γ, x : A ⊢ x : A. Assume ξ : (Γ, x : A) and H |= η ∼ ξ : (Γ, x : A). We need
to show |= eval η x H ∼ [[x]]ξ : A. We have eval η x H = (η(x), H) and [[x]]ξ =
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ξ(x) ∈ D(A). Furthermore, H |= η ∼ ξ : (Γ, x : A) entails H |= η(x) ∼ ξ(x) : A,
and therefore the assertion follows.

Γ ⊢ c(~a) : A → B, derived from C(c) = (∆; x : A; a), where ∆ = ~y : ~A,

Γ ⊢ ~a : ~A, and Γ, x : A ⊢ a : B. Assume ξ : Γ and H |= η ∼ ξ : Γ.
We need to show |= eval η c(~a) H ∼ [[ c(~a) ]]ξ : A → B. By induction

hypothesis for Γ ⊢ ai : Ai and monotonicity we get that mapM (eval η) ~a H =
(~v, H1) for some H1, ~v s.t. H1 |= vi ∼ [[ai ]]ξ : Ai Therefore eval η c(~a) H =
(h, H ′), where H ′ = H1[h 7→ (c, ~v)]) with h = fresh(H1). We need to show
H ′ |= h ∼ [[ c(~a) ]]ξ : A→ B, which is a conjunction of three statements (i), (ii),
(iii):

(i) We need to show H ′ ⊢ h : A → B, which follows, since H ′(h) = (c, ~v),
C(c) = (∆; x : A; a), Γ, x : A ⊢ a : B and H ′ ⊢ vi : Ai, where the last
statement follows by H1 |= vi ∼ [[ai ]]ξ : Ai.

(ii) We need to show [[ h ]]
H′

= [[ c(~a) ]]ξ:

[[h ]]
H′

= λλd ∈ D(A).[[ a ]][[ η0 ]]
H′

[x 7→ d] ,
[[ c(~a) ]]ξ = λλd ∈ D(A).[[ a ]]ξ0[x 7→ d]

where η0 := [~y 7→ ~v], [[ η0 ]]
H′

:= λλy ∈ dom(η0).[[ η0(y) ]]
H′

, and
ξ0 = [~y 7→ [[~a ]]ξ]. By H1 |= vi ∼ [[ai ]]ξ : Ai and monotonicity we have

H ′ |= η0 ∼ ξ0 : ∆. Therefore [[ η0(yi) ]]H
′

= ξ0(yi) and we are done.

(iii) Assume H ′′ ⊇ H ′ and H ′′ |= w ∼ d : A. We need to show

|= apply h w H ′′ ∼ ([[ c(~a) ]]ξ)(d) : B .

First,
apply h w H ′′ ≃ eval η0[x 7→ w] a H ′′ ,
([[ c(~a) ]]ξ)(d) = [[ a ]]ξ0[x 7→ d] .

By H ′ |= η0 ∼ ξ0 : ∆, H ′′ |= w ∼ d : A, and monotonicity we obtain
H ′′ |= η0[x 7→ w] ∼ ξ0[x 7→ d] : (∆, x : A). Using the induction hypothesis
we obtain |= eval η0[x 7→ w] a H ′′ ∼ [[a]]ξ0[x 7→ d] : B.

Γ ⊢ a b : B, derived from Γ ⊢ a : A → B and Γ ⊢ b : A. Assume ξ : Γ
and H |= η ∼ ξ : Γ. We need to show |= eval η (a b) H ∼ [[a b]]ξ : A. By
induction hypothesis and (1), eval η a H = (v, H1) for some H1 ⊇ H with
H1 |= v ∼ [[a]]ξ : A → B and, using monotonicity, eval η b H1 = (w, H2) for
some H2 ⊇ H1 with H2 |= w ∼ [[b]]ξ : A. By the definition of H1 |= v ∼ [[ a ]]ξ :
A → B we obtain |= apply v w H2 ∼ [[a]]ξ([[b]]ξ) : B and we are done, since
eval η (a b) H ≃ apply v w H2 and [[a b]]ξ = [[a]]ξ([[b]]ξ).

Γ ⊢ f [a1, . . . , ak] : B, derived from Γ ⊢ ai : Ai, i = 1, . . . , k, where f :
(A1, . . . , An) → B. Assume ξ : Γ and H |= η ∼ ξ : Γ. We need to show
|= eval η f [~a] H ∼ [[f [~a]]]ξ : B. By induction hypothesis and (1), eval η a1 H =
(n1, H1) for some n1 ∈ [[A1 ]] and H1 ⊇ H with H1 |= n1 ∼ [[a1]]ξ : A1, especially
n1 = [[a1]]ξ. Similarly, using monotonicity and (1), for i = 1, . . . , k − 1 we have
eval η ai+1 Hi = (ni+1, Hi+1) for some ni+1 ∈ [[Ai ]] and Hi+1 ⊇ Hi with
ni+1 = [[ai+1]]ξ. It follows eval η f [~a] H = ([[f ]](~n), Hk) = ([[f [~a]]]ξ, Hk). q.e.d.
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Lemma 6.8 If H ⊢ v : A then H |= v ∼ [[ v ]]H : A.

Proof. Induction on H ⊢ v : A.
The case A ∈ basetype is trivial.
Case H ⊢ h : A → B, derived from H(h) = (c, ~v), C(c) = (~x : ~A; x : B; a),

~x : ~A, x : A ⊢ a : B, H ⊢ ~v : ~A. We need to show that for H ′ ⊇ H , w, d
s.t. H ′ |= w ∼ d : A we have |= apply h w H ′ ∼ [[h ]]

H
(d) : B, so assume H ′, w, d

as stated.
Let η := [~x 7→ ~v], ξ := [[ η ]]

H
. Then [[h ]]

H
(d) = [[ h ]]

H′

(d) = [[ a ]]ξ[x 7→ d].

By induction hypothesis H |= vi ∼ [[ vi ]]
H

: Ai, and by H ′ |= w ∼ d : A we get
therefore H ′ |= η[x 7→ w] ∼ ξ[x 7→ d] : Γ. Furthermore,
apply h w H ′ ≃ eval (η[x 7→ w]) a H ′. By Lemma 6.7 |= eval (η[x 7→ w]) a H ′ ∼
[[a]]ξ[x 7→ d] : B, which proves the assertion

Theorem 6.9 (Correctness of eval) If Γ ⊢ a : A, H ⊢ η : Γ, then there exists

H ′, v s.t. eval η a H ≃ (v, H ′), H ′ ⊢ v : A and [[a ]]([[ η ]]
H′

) = [[ v ]]
H′

.

Proof: Immediate by Lemma 6.7 and 6.8.

Main Theorem

Theorem 6.10 (Overall Correctness) Assume ⊢ r : A and let C ∈ CEnv.
Then P ∅ r C = (a, C′) for some C′ ⊇ C. Furthermore, for any heap H, any
environment η and any C′′ ⊇ C′ we have

eval C′′ η a H = (v, H ′)

for some H ′, v s.t. [[ r ]]∅ = [[ v ]]
C,H′

.
Especially, in case A = int we have that r →β n for some n, and therefore

[[ r ]]∅ = n and
eval C′′ η a H = (n, H ′) .

Proof. By Theorem 5.6 and 6.9.

Remark. The proof of Theorem 6.7 is rather “low level” since it mentions
and manipulates the class environment and the heap explicitely. It would be
desirable, in particular with regard to a formalisation in a proof assistant, to
lift the proof to the same abstract monadic level at which the functions P, eval

and apply are defined. A framework for carrying this out might be provided
by suitable versions of Moggi’s Computational λ–Calculus, Pitts’ Evaluation
Logic [Pit91] and special logical relations for monads [GLN02].

7 Conclusion

In this paper we showed how to introduce functional concepts into C++ in a
provably correct way. The modelling and the correctness proof used monadic
concepts as well as denotational semantics and logical relations.

This work lends itself to a number of extensions, for example, the integration
of recursive higher-order functions, polymorphic and dependent type systems,
the integration lazy evaluation and infinite structures as well as the combination
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of larger parts of C++ with the λ-calculus. The accurate description of these ex-
tensions would require more sophisticated, e.g. domain-theoretic constructions.
We believe that if our approach is extended to cover full C++, we obtain a
language in which the worlds of functional and object-oriented programming
are merged, and that we will see many examples, where the combination of
both language concepts (e.g. the use of λ-terms with side-effects) will result in
interesting new programming techniques.

The remarkable fact that it is possible to have a denotational semantics at a
description level where pointers are manipulated explicitely entails that the well-
known benefits of denotational semantics, extensionality and compositionality,
are still available at that level. This has already paid off in this paper where we
were able to give a short and concise correctness proof for our C++ fragment us-
ing the denotational semantics (instead of a complicated operational argument).
More benefits are to be expected when it comes to verifying programs written
in this C++ fragment or in one of the future extensions mentioned above.

8 List of Identifiers and Notations

In the following we list the notations used in this article, together with the place
where they are introduced. 2.1 (a).

Finite functions X →fin Y Def. 1.1
Extension of fin. fns. g[x 7→ y] or f, x : y Def. 1.1
Explicitly given fin. fns. x1 : y1, . . . , xk : yk Def. 1.1
Base types basetype ∋ ρ, σ Ass. 2.1 (a)
Base type int int Ass. 2.1 (a)
Basic functions F ∋ f Ass. 2.1 (b)
Denot. sem. of base type [[ ρ ]] Ass. 2.1 (d)
Denot. sem. of basic fn. [[ f ]] Ass. 2.1 (e)
Constants (of any base type) n Ass. 2.1 (c)
Variables Var ∋ x, y, z Def. 2.2 (a)
Types Type ∋ A, B Def. 2.2 (b)
Contexts Context ∋ Γ, ∆ Def. 2.2 (b)
Extension of Contexts Γ, x : A Def. 2.2 (b)
λ-terms Term ∋ r, s, t Def. 2.2 (b)
Typed λ-terms Γ ⊢ r : A Def. 2.2 (b)
Functionals of type A D(A) ∋ d Def. 2.3
Functional environment FEnv ∋ ξ Def. 2.4 (a)
Typed contexts ξ : Γ Def. 2.4 (b)
Denot. sem. of λ-terms [[ r ]]ξ Def. 2.5
Name of a type name(A) Sect. 3
Translation of λ-terms tC++ Sect. 3
Constructors or classnames Constr ∋ c Def. 4.1
Applicative terms App ∋ a, b Def. 4.1
Classes Class ∋ (Γ; x : A; b) Def. 4.1
Class environments CEnv = Constr ∋ C Def. 4.1
Free variables of a FV(a) Def. 4.2
Heap addresses Addr ∋ h Def. 4.3
C++ constants n Def. 4.3
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Values Val ∋ v, w Def. 4.3
Closures Constr × Val∗ ∋ (c, v1, . . . , vk) Def. 4.3
Heaps Heap = Addr ∋ H Def. 4.3
Value environments VEnv ∋ η Def. 4.3
State Monad MX(Y ) Def. 4.4
Monadic notations do, return, mapM, read, add Not. 4.5
Fresh element fresh(X) Not. 4.5
Eval and Apply eval, apply Def. 4.6
Parse function P Def. 5.1
Typed applicative terms C; Γ ⊢ a : A Def. 5.3

Denot. sem. of appl. terms [[ a ]]Cξ or [[a ]]ξ Def. 5.4
Variant of above C; Γ ⊢′ a : A Def. 5.7
CEnv-homomorphism θ Def. 5.9 (b)
θ applied to r θ(r) Def. 5.9 (a)
θ applied to a class θ(Γ; x : B; a) Def. 5.9 (a)
Typed values H ⊢ v : A Def. 6.1

Denot. sem. of values [[ v ]]
H

, [[ v ]]
C,H

Def. 6.2 (a)

Denot. sem. of value envs. [[ η ]]
H

Def. 6.2 (b)
Semantic typing of values H |= v ∼ d : A Def. 6.4
Special not. for the above |= apply v w H ∼ d : A

|= eval η a H ∼ d : A Def. 6.4
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