
Functional Concepts in C++

Rose H. Abdul Rauf, Ulrich Berger, Anton Setzer?

Department of Computer Science, University of Wales Swansea
Email: rosehafsah@yahoo.co.uk, {u.berger,a.g.setzer}@swansea.ac.uk

Abstract

We describe a parser-translator program that translates typed λ-terms into C++ classes
so as to integrate functional concepts. We prove the correctness of the translation of
λ-terms into C++ with respect to a denotational semantics using Kripke-style logi-
cal relations. We introduce a general technique for introducing lazy evaluation into
C++, and illustrate it by carrying out in C++ the example of computing the Fibonacci
numbers efficiently using infinite streams and lazy evaluation. Finally, we show how
merge higher-order λ-terms with imperative C++ code.

1 INTRODUCTION

C++ is a general purpose language that supports object oriented programming as
well as procedural and generic programming, but unfortunately not directly func-
tional programming. We have developed a parser-translator program that translates
typed λ-term into C++ statements so as to integrate functional concepts. This trans-
lated code uses the object oriented approach of programming that involves creation
of classes for the λ-term. That a translated λ-term is an element of the translation
of a function type is achieved by using inheritance.

The paper is organised as follows: First, we introduce the translation and dis-
cuss how the translated code is executed including a description of the memory
allocation (Sect. 2). The correctness of our implementation is proved with respect
to the usual (set-theoretic) denotational semantics of the simply typed λ-calculus
on the one hand, and a mathematical model of a sufficiently large fragment of C++
on the other hand. The proof is based on a Kripke-style logical relation between
the C++ class and the denotational model (Sect. 3). In Sect. 4 we introduce a gen-
eral technique for introducing lazy evaluation into C++ by introducing a data type
of lazy elements of type A. Finally, in Sect. 5 we discuss a few general features
arising if we allow λ-terms in C++ to have side-effects.

Related work. Several researchers [Kis98], [Läu95] have discovered that C++
can be used for functional programming by representing higher order functions
using classes. Our representation is based on similar ideas. There are other ap-
proaches that have made C++ a language that can be used for functional pro-
gramming such as the FC++ library [MS00] (a very elaborate approach) as well
as FACT! [Str] (extensive use of templates and overloading) and [Kis98] (creating
macros that allow creation of single macro-closure in C++). The advantages of our

?Supported by EPSRC grant GR/S30450/01.

solution are that it is very simple, it uses classes and inheritance in an essential way,
it can be used for implementing λ-terms with side-effects, and, most importantly,
we have a formal correctness proof.

The approach of using denotational semantics and logical relations in a proof
of the correctness of programs has been used before by Plotkin [Plo77] and others.
The method of logical relations can be traced back at least to Tait [Tai67] and has
been used for various purposes (e.g. Jung and Tiuryn [JT93], Statman [Sta85] and
Plotkin [Plo80]). To our knowledge the verification of the implementation of the
λ-calculus in C++ using logical relations is new.

Lazy evaluation in C++ has been studied in the literature (see [Sch00], [MS00],
[Kel97]). To our knowledge all implementations are restricted to lazy lists, whereas
we introduce a general type of lazy elements of an arbitrary type.

2 TRANSLATION OF TYPED λ-TERMS INTO C++

In this section we describe how to translate simply typed λ-terms into C++ using
the object-oriented concepts of classes and inheritance.

The simply typed λ-calculus over the base type of integers with constants for
arithmetic functions, λ-calculus for short, is given as follows: Types are built
from the base type, Int, and and function types, A→ B. Terms are of the form
x (variables), n (numerals ∈ N = {0,1,2, , . . .}), λxAr (abstraction), r s (applica-
tion), f [r1, . . . ,rn] (function application). In the last case f is taken from a set
F of names of number-theoretic C++ functions. A context is a finite set of pairs
Γ = x1 : A1, . . . ,xn : An (all xi distinct) which is, as usual, identified with a finite
map. We let Type, Var, Term, Context denote the set of types, variables, terms and
contexts, respectively. The typing rules are as expected:

Γ,x : A ` x : A Γ ` n : Int

Γ,x : A ` r : B
Γ ` λxAr : A→ B

Γ ` r : A→ B Γ ` s : A
Γ ` r s : B

Γ ` r1 : Int . . .Γ ` rk : Int
Γ ` f [r1, . . . ,rk] : Int

(f a k-ary arithmetic function)

Rather than explaining in general how a λ-term is translated into its equivalent
C++ statements, we describe the translation of the example term

t = (λ f Int→IntλxInt. f (f x)) (λxInt.x+2) 3 .

The concrete ASCII notation for this term (i.e. the input for the parser program) is

(\int->int f. \int x. int fˆˆ(fˆˆx))ˆˆ(\int x. int x+2)ˆˆ3

For each function type we first define an abstract class with a virtual operator that
will be overloaded in the definition of the λ-term. The type itself is the type of

pointers to an object of this class. In the class names the letters C and D are used
to represent opening and closing brackets and an underscore stands for an arrow.
Hence Cint_intD means Int→ Int. The type of t, (Int→ Int)→ (Int→ Int), is
represented in stages:1

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux* Cint_intD;

class CCint_intD_Cint_intDD_aux
{ public : virtual Cint_intD operator()

(Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux*
CCint_intD_Cint_intDD;

The term t is translated in stages as well. The subterm λxInt. f (f x) is translated as
an instance of the class Cint_intD_aux:

class lambda1 : public Cint_intD_aux{
public :Cint_intD f;
lambda1(Cint_intD f) { this-> f = f;};
virtual int operator () (int x)
{ return (*(f))((*(f))(x)); };

};

The subterm λ f Int→IntλxInt. f (f x) is translated as follows:

class lambda0 : public CCint_intD_Cint_intDD_aux{
public :
lambda0() { };
virtual Cint_intD operator () (Cint_intD f)
{ return new lambda1(f); }

};

The other λ-term, λxInt.2+ x, is translated in a similar way:

class lambda2 : public Cint_intD_aux{
public :
lambda2() { };
virtual int operator () (int x)
{ return x + 2; };

};

The defining equation for t will be finally translated into the expression

1In order to obtain fast compilation of the translated code, we do not use templates in our
machine-generated code. This will as well ease the correctness proof to be given in Sect. 3. If one
defines λ-types by hand it is of course easier to define a general C++-template for the class
corresponding to the type X → Y .

int t = (*((*(new lambda0()))(new lambda2())))(3);

When evaluating the expression t, first the application of lambda0 to lambda2 is
evaluated. For this first instances l0, l2 of the classes lambda0 and lambda2 are
created. Then the operator()-method of l0 is called. That call will create an instance
l1 of lambda1, with the instance variable f set to l2. The result of application of
lambda0 to lambda2 is l1.

The next step in the evaluation of t is to evaluate 3, which evaluates to 3, and
then to call the operator() method of l1. This will first make a call to the operator
method of f, which is bound to l2, and apply it to 3. This will evaluate to 5. Then
it will call the operator method of f again, which is still bound to l2, and apply it to
the result 5. The result returned is 7.

We see that the evaluation of the expression above follows the call-by-value
evaluation strategy. Note that l0, l1, l2 were created on the heap, but have not
been deleted afterwards. The deletion of l0, l1 and l2 relies on the use of a garbage
collected version of C++, otherwise we could use smart pointers in order to enforce
their deletion.

3 PROOF OF CORRECTNESS

We sketch how to prove the correctness of our C++ implementation of the λ-
calculus. By “correctness” we mean that every closed term r of type Int is eval-
uated by our implementation to a numeral which coincides with the value of r.
The value of a term can be defined either operationally as the normal form w.r.t.
β-reduction, (λxAr)s→β r[s/x], and function reduction, f [n1, . . . ,nk]→ f n (n the
value of f at n1, . . . ,nk), or, equivalently, denotationally as the natural value in a
suitable domain of functionals of finite types. Since our calculus doesn’t allow
for recursive definitions, the details of the operational and denotational semantics
do not matter: Operationally, any sufficiently complete reduction strategy (call-by-
value, call-by-name, full normalisation) will do, and denotationally, any Cartesian
closed category containing the type of integers can be used. For our purposes it
will be most convenient to work with a denotational model. For simplicity we take
the naive set-theoretic hierarchy D of functionals of finite types over the integers
(setting N = {0,1,2, . . .} and X →Y = { f | f : X →Y}):

D(Int) = N, D(A→ B) = D(A)→ D(B), D =
[

A∈Type

D(A)

A functional environment is a mapping ξ : Var→ D. FEnv denotes the set of all
functional environments. If Γ is a context, then ξ : Γ means ∀x ∈ dom(Γ).ξ(x) ∈
D(Γ(x)).

For every typed λ-term Γ ` r : A and every functional environment ξ : Γ the
denotational value [[r]]ξ ∈ D(A) is defined as follows:

i) [[n]]ξ = n

ii) [[x]]ξ = ξ(x)

iii) [[r s]]ξ = [[r]]ξ([[s]]ξ)

iv) [[λxA.r]]ξ(a) = [[r]]ξ[x 7→ a]

v) [[f [~r]]] = [[f]]([[~r]]ξ)

where in the last clause [[f]] is the number-theoretic function denoted by f . Our
implementation of the λ-calculus is modelled in a similar way as e.g. in [ASS85]
using functions eval and apply. In order to model the C++ implementation as
truthfully as possible, we will introduce a simplified model of C++, in which we
will make the pointer structures for the classes and objects explicit. The functions
eval and apply modify these pointer structures via side effects.

In our model all classes will have instance variables, one constructor, and one
method corresponding to the operator() method. The constructor has one argument
for each instance variable, and will set the instance variables to these arguments.
No other code is performed. The method has one argument, and the body consists
of an applicative term, where applicative terms are simplified C++ expressions in
our model. So, a class is given by a context representing its instance variables, the
abstracted variable of the method and its type, and an applicative term.

Applicative terms will be numbers, variables, function terms applied to ap-
plicative terms, the application of one applicative term to another applicative term
(which corresponds to the method call in case the first applicative term is an object),
or a constructor applied to applicative terms.

When a constructor call of a class is evaluated, its arguments are first evaluated.
Then, memory for the instance variables of this class will be allocated on the heap,
and these instance variables will be set to the evaluated arguments. The address to
this memory location is the result returned by evaluating this constructor call. The
only other possible result of the evaluation of an applicative term is a number, so
values are addresses or numbers.

The data sets associated with our model of C++ classes are defined as follows
(letting X +Y and X×Y denote the disjoint sum and Cartesian product of X and Y ,
X∗ the set of finite lists of elements in X and X →finY the set of finite maps from
X to Y):

Addr = a set of numbers denoting addresses of classes on the heap
Constr = a set of strings denoting constructors, i.e. class names
Val = N+Addr
F = a set of names for arithmetic C++ functions
App = N+Var+F×App∗+App×App+Constr×App∗

Context = Var→fin Type
Class = Context×Var×Type×App
VEnv = Var→fin Val
Heap = Addr→fin Constr×Val∗

CEnv = Constr→fin Class

We write applicative terms (∈ App) that are neither numbers nor variables as f [~a],
a b and c[~a]. Classes (∈ Class) are written as (Γ;x : A;r).

The fact that the parsing function as well as the functions eval and apply have
side effects on the classes and the heap can be conveniently expressed using the
familiar state monad

MX(Y) := X →Y ×X

Elements of MX(Y) are usually called actions and can be viewed as elements of
Y that may depend on a current state x ∈ X and also may change the current state.
Monads are a category-theoretic concept whose computational significance was
discovered by Moggi [Mog91]. The functionalities of the parsing function P and
the operations eval and apply can now be written as

P : Context→ Term→MCEnv(App)
eval : CEnv→ VEnv→ App→MHeap(Val)

apply : CEnv→ Val→ Val→MHeap(Val)

Hence, parsing has a side effect on the class environment, while eval and apply
have side effects on the heap.

Strictly speaking, the definitions above (and below) are not quite accurate since,
for example, applicative terms (∈ App) are untyped, but are supposed to represent
valid (and hence typed) C++ expressions. A corresponding typing discipline could
easily be introduced, but would probably be more distracting than insightful. Sim-
ilarly, actions as well as the functions P, eval and apply should be modelled by
partial rather than total functions. For example, in order for an expression of the
form apply C v w to make sense the value, v, must not be a numeral, n, but an ad-
dress, h, in the heap (pointing to the C++ implementation of a λ-abstraction). The
defining equation for apply reflects the assumption that this is the case. Similar
soundness assumptions are tacitly made elsewhere. In case these assumptions are
violated it is assumed that the computation results in an error. Again, the error
cases could be modelled by a suitable monad, and one could show that, if we refer
to correctly typed C++ expressions, this error never occurs. For the sake of brevity,
we refrain from carrying this out. There is as well another reason for partiality,
namely the fact that C++ programs can be recursive and therefore evaluation of
C++ programs, even if correctly typed, might not terminate. However, it is a con-
sequence of Theorem 3.1 that the evaluation of parsed λ-terms terminates and does
not result in an error.

Also note that the use of monads for describing the C++ implementation is just
a notational convenience. We do not make any assumptions of monadic structures
to exist in C++.

We use the following standard monadic notation (roughly following Haskell
syntax): Suppose e1 : MX(Y1), . . . , ek+1 : MX(Yk+1) are actions where ei may de-
pend on y1 : Y1, . . . , yi−1 : Yi−1. Then

do{y1← e1 ; . . . ; yk← ek ; ek+1} : MX(Yk+1)

is the action that maps any state x0 : X to (yk+1,xk+1) where (yi,xi) = ei xi−1, for
i = 1, . . . ,k +1. If yi does not occur in any e j with j > i, then we suppress “yi←”.
We also allow let-expressions with pattern matching within a do-construct. Fur-
thermore, we use

return : Y →MX(Y) return y x = (y,x)
mapM : (Z→MX(Y))→ Z∗→MX(Y ∗) mapM f ~a = do{y1← f a1 ; . . .

. . . ; yk← f ak ; return (y1, . . . ,yk)}
get : MX(X), get x = (x,x)
put : X →MX({∗}) put x x′ = (∗,x)

With these notations the definitions of P, eval and apply read as follows (we
use a function fresh with the property that if m : X →finY , where X is infinite, then
fresh(m) ∈ X \dom(m)):

P Γ u = return u, if u is a numeral or a variable

P Γ f [~r] = do{~a←mapM (P Γ)~r ; return f [~a]}

P Γ (r s) = do{(a,b)←mapM (P Γ) (r,s) ; return (a b)}

P Γ (λxA.r) = do{a← P Γ[x 7→ A] r ; C← get ; let c = fresh(C) ;
put(C[c 7→ (Γ;x : A;a)]) ; return(c[dom(Γ)])}

eval C η n = return n

eval C η x = return (η x)

eval C η f [~a] = do{~n←mapM (eval C η)~a ; return [[f]](~n)}

eval C η (a b) = do{(v,w)←mapM(eval C η) (a,b) ; apply C v w}

eval C η c[~a] = do{~v←mapM (eval C η)~a ; H← get ; let h = fresh(H) ;
put(H[h 7→ (c,~v)]) ; return(h)}

apply C h v = do{H← get ; let (c,~w) = H h ; let (~y : ~B;x : A;a) = C c ;
eval C [~y,x 7→ ~w,v] a}

The correctness proof of the translated code is based on a Kripke-style relation
between the C++ representation of a term (∈Val×Heap) and its denotational value
(∈D(A)). The relation is indexed by the class environment C and the type A of the
term. Since in the case of an arrow type, A→ B, extensions of the heap and the
class environment have to be taken into account, this definition has some similarity
with Kripke models. The relation

∼C
A⊆ (Val×Heap)×D(A),

where A ∈ Type,C ∈ CEnv, is defined by recursion on A as follows:

(v,H)∼C
Int n :⇐⇒ v = n

(v,H)∼C
A→B f :⇐⇒ ∀C⊆C′,∀H ⊆H ′,∀(w,d) ∈ Val×D(A) :

(w,H ′)∼C′
A d =⇒ apply C′ v w H ′ ∼C′

B f (d)

We also set (η,H)∼C
Γ ξ :⇐⇒∀x ∈ dom(Γ)(η(x),H)∼C

Γ(x) ξ(x).
The main result below corresponds to the usual ”Fundamental Lemma” or ”Ad-

equacy Theorem” for logical relations:

Theorem 3.1 Assume η : VEnv, ξ : FEnv, Γ` r : A. Assume ξ : Γ, P Γ r C = (a,C ′),
C′ ⊆C′′, (η,H)∼C′′

Γ ξ , and H ⊆ H ′. Then eval C′′ η a H ′ ∼C′′
A [[r]]ξ.

The theorem can be proven by induction on the typing judgement Γ ` r : A. Due to
limited space we omit details.

Corollary 3.2 (Correctness of the implementation) Assume ` r : Int,
P /0 r /0 = (a,C) and C ⊆ C′. Then for any heap H and environment η we have
eval C′ η a H = ([[r]],H ′) for some H ′ ⊇ H.

4 LAZY EVALUATION IN C++

Haskell is famous for its programming techniques using infinite lists. A well-
known example are the Fibonacci numbers, which are computed efficiently by us-
ing the following code:

fib = 1:1:(zipWith (+) fib (tail fib))

This example requires that we have infinite streams of natural numbers, and relies
heavily on lazy evaluation. We will show how to translate this code into efficient
C++ code. This requires that we are able to deal with lazy evaluation.

The standard technique for replacing call-by-value by call-by-name is to re-
place types A by () → A where () is the empty type (i.e. void). This delays
execution, but does not cater for the reuse of evaluated expressions, so that an ex-
pression is only evaluated once. In order to obtain this, we will define a new type
Lazy(A). This type delays evaluation of an element of type A in such a way that,
if needed, the evaluation is carried out – however, only once. Once the value is
computed, the result is stored in a variable for later reuse. The definition is as fol-
lows (we make use of the extended C++ syntax introduced in Sect. 2, especially
r ˆˆ t for functional application, \ for λ, and A -> B for the type of functions
from A to B):

template<typename X> class lazy{
bool is_evaluated;
union {X result;

() -> X compute_function;};
public:

lazy(()-> X compute_function){
is_evaluated = false;
this->compute_function = compute_function;};

X eval(){
if (not is_evaluated){

result = compute_function ˆˆ ();

is_evaluated = true;};
return result;};};

#define Lazy(X) lazy<X>*

Using this class we can now easily define lazy streams of natural numbers (lazy
lists, i.e. possibly terminating streams, can be defined similarly, but require the
usual technique based on the composite design pattern for formalising algebraic
data types as classes by introducing a main class for the main type which has sub-
classes for each constructor, each of which stores the arguments of the constructor)

template<typename X>class lazy_stream{
public: Lazy(X) head;

Lazy(lazy_stream<X>*) tail;
... Constructor as usual ... }

#define Lazy_Stream(X) lazy_stream<X>*

In order to deal with the example of the Fibonacci numbers, one needs to define
the operators used in the above mentioned definition of fib:

• lazy_cons<X> computes the cons-operation on streams:

Lazy(Lazy_Stream(X)) lazy_cons<X>
(Lazy(X) head, Lazy(Lazy_Stream(X)) tail)

• lazy_tail<X> computes the tail of a stream lazily:

Lazy(Lazy_Stream(X)) lazy_tail<X>
(Lazy(Lazy_Stream(X)) s)

• lazy_zip_with<X> computes the usual zip with function (i.e.
zip with(f , [a,b, ..], [c,d, ..]) = [f a c, f b d, . . .]):

Lazy(Lazy_Stream(X)) lazy_zip_with<X>
(X -> X -> X f,
Lazy(Lazy_Stream(X)) s0,
Lazy(Lazy_Stream(X)) s1)

The definition of these operation is straightforwards, once one has introduced a few
combinators for dealing with Lazy(X).

Now we can define the stream of Fibonacci numbers as follows (plus is
λx,y.x+y, one_lazy is the numeral 1 converted into an element of Lazy(int),
create_lazy transforms elements of type ()->A into Lazy(A), and eval
evaluates an element of type Lazy(A) to an element of type A):

()-><Lazy_Stream(int)> fib_aux =
\() x. Lazy_Stream(int)

eval(
lazy_cons(

one_lazy,
lazy_cons(

one_lazy,
lazy_zip_with(

plus,
create_lazy(this),
lazy_tail(create_lazy(this))))));

Lazy_Stream(int) fib = eval(create_lazy(fib_aux))

Note that here we were using the keyword this in the definition of fib_aux.
This is how a recursive call should be written. If we instead put fib_aux here,
C++ will, when instantiating fib_aux, first instantiate fib_aux as an empty
class, and then use this value when evaluating the right hand side. Only when
using this we obtain a truely recursive definition.

When evaluated, one sees that the nth element of fib obtains fib(n) and this
computation is the efficient computation in which previous calls of fib(k) are mem-
orized. If one replaces Lazy(X) by () -> X, one obtains an implementation of
the Fibonacci numbers, which computes the correct results. However, since that
implementation doesn’t memorize values, it has exponential running time and on
our laptop we were not able to compute fib(25).

Generalization. The above technique can easily be generalized to general
algebraic types, in fact to all class structures avilable in C++. If one replaces in
a tree structure all types by lazy types, then only a trunk of the tree structure is
evaluated and kept in memory, namely the trunk which has been used already by
any function accessing this structure.

5 COMBINING FUNCTIONAL AND IMPERATIVE PROGRAMMING

When combining functional and imperative programming we obtain more than just
the disjoint union of both constructs. The translation can be extended to λ-terms
which execute imperative C++-code with side effects. Assume

class Student{
public: int student_number;

Student(int x){student_number = x;};}

Assume some standard (lazy or non-lazy – in fact the full range of C++ implemen-
tations of lists is possible) implementation list<X> of lists of type X. Then it is
easy to define the map functional

template<class X,class Y> list<Y>*
map (X->Y f, list<X>* l);

which takes a function and a list and returns the result of applying each element to
this list.

Now, if we extend the above language by allowing λ-terms to have arbitrary
sequences of expressions, we can define

S->() print_Student_Number
= \(Student s).() {cout >> Student.student >> endl;

return ();};

If we map this function to an element of list <Student∗>∗, then it will print
out all the students, without any need for using an explicit loop. Similarly we can
define functions, which update student numbers in a list of students, etc, using
functional style programming in C++.

Having λ-terms with side effects seems to be an intereresting feature in pro-
gramming and is not covered by usual implementations of λ-terms in C++, since
those implementations require the body of a λ-term to be an expression – a se-
quence of statements is not allowed.

6 CONCLUSION

In this paper we showed how to introduce functional concepts into C++ in a prov-
ably correct way. The modelling and the correctness proof used monadic concepts
as well as logical relations. We also showed how to integrate lazy evaluation and
infinite structures into C++ and gave examples indicating how to model higher-
order functions with side effects. This work lends itself to a number of extensions,
for example, the integration of recursive higher-order functions, polymorphic and
dependent type systems as well as the combination of larger parts of C++ with the
λ-calculus. The accurate description of these extensions will require more sophis-
ticated, e.g. domain-theoretic constructions and a more systematic mathematical
modelling of C++. We believe that if our approach is extended to cover full C++,
one obtains a language in which the worlds of functional and object-oriented pro-
gramming are merged, and that we will see many examples, where the combination
of both language concepts will result in interesting new programming techniques.

REFERENCES

[ASS85] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation of
computer programs. MIT Press, 1985.

[JT93] A. Jung and J. Tiuryn. A new characterization of lambda definability. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and Applications,
volume 664 of Lecture Notes in Computer Science, pages 245–257. Springer
Verlag, 1993.

[Kel97] R. M. Keller. The Polya C++ Library. Version 2.0. Available via
http://www.cs.hmc.edu/ keller/Polya/, 1997.

[Kis98] O. Kiselyov. Functional style in C++: Closures, late binding, and lambda ab-
stractions. In ICFP ’98: Proceedings of the third ACM SIGPLAN International
conference on Functional programming, page 337, New York, NY, USA, 1998.
ACM Press.

[KL05] O. Kiselyov and R. Lämmel. Haskell’s overlooked object system. Draft. Sub-
mitted for journal publication. Online since 30 Sep. 2004. Full version released
10 September 2005, 2005.

[Läu95] K. Läufer. A framework for higher-order functions in C++. In COOTS, 1995.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation,
93(3):55–2, 1991.

[MS00] B. McNamara and Y. Smaragdakis. Functional programming in C++. In ICFP
’00: Proceedings of the fifth ACM SIGPLAN international conference on Func-
tional programming, pages 118–129, New York, NY, USA, 2000. ACM Press.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5:223–255, 1977.

[Plo80] G. D. Plotkin. Lambda definability in the full type hierarchy. In R. Hindley and
J. Seldin, editors, To H.B. Curry: Essays in Combinatory Logic, lambda calculus
and Formalisms, pages 363 – 373. Academic Press, 1980.

[Pol81] W. Polak. Program verification based on denotation semantics. In POPL ’81:
Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 149–158, New York, NY, USA, 1981. ACM
Press.

[Sch00] S. Schupp. Lazy lists in C++. SIGPLAN Not., 35(6):47–54, 2000.

[Set03] A. Setzer. Java as a functional programming language. In Herman Geuvers and
Freek Wiedijk, editors, Types for Proofs and Programs: International Work-
shop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002. Selected
Papers., pages 279 – 298. LNCS 2646, 2003.

[SS71] D. Scott and C. Strachey. Toward a mathematical semantics for computer lan-
guages. Programming Research Group Technical Monograph PRG-6, Oxford
Univ. Computing Lab., 1971.

[Sta85] R. Statman. Logical relations and the typed lambda-calculus. Inf. and Control,
65:85 – 97, 1985.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[Str] J. Striegnitz. FACT! – the functional side of C++.
http://www.fz-juelich.de/zam/FACT.

[Tai67] W. W. Tait. Intensional interpretation of functionals of finite type. J. Symbolic
Logic, 32:198 – 212, 1967.

[Win93] G. Winskel. The formal semantics of programming languages: an introduction.
MIT Press, Cambridge, MA, USA, 1993.

