Ordinal Systems

Anton Setzer *

January 26, 2001

Abstract

Ordinal systems are structures for describing ordinal notation systems, which
extend the more predicative approaches to ordinal notation systems, like the Can-
tor normal form, the Veblen function and the Schiitte Klammer symbols, up to the
Bachmann-Howard ordinal. o-ordinal systems, which are natural extensions of this
approach, reach without the use of cardinals the strength of the theories for trans-
finitely iterated inductive definitions ID,, in an essentially predicative way. We explore
the relationship with the traditional approach to ordinal notation systems via cardi-
nals and determine, using “extended Schiitte Klammer symbols”, the exact strength
of o-ordinal systems.

1 Introduction

1.1 Motivation

The original problem, which motivated the research in this article, seemed to be a peda-
gogical one. We have been trying to teach ordinal notation systems above the Bachmann-
Howard ordinal several times. The impression we had was that we were able to teach the
technical development of these ordinal notation systems, but there always remained some
doubts in the audience. It remained unclear, why one could get a well-ordered notation
system by denoting small ordinals by big cardinals.

The situation was completely different with typical ordinal notation systems below the
Bachmann-Howard ordinal. We had the impression we always succeeded in teaching it
after the audience had overcome some technical problems. And this included the Schiitte
Klammer symbols (an ordinal notation system extending the Veblen hierarchy — they
will essentially be defined in this article): Although they are technically more complicated
than the systems using one uncountable cardinal, they seem to be far more acceptable.
Therefore the reason behind our pedagogical problems was not a technical one. The real
problem was about foundations.

The original task of proof theory as understood by Hilbert was to show the consis-
tency of systems in which mathematical reasoning can be formalized. After the proof of
Godel’s incompleteness theorem, one had to modify this and demand the reduction of the
consistency of a theory to some principles, for which we have good reasons to believe that
they are correct. One reason, why Gentzen’s result was so much appreciated, when it was
presented, was that he reduced the consistency of Peano Arithmetic to the principle of

*Department of Mathematics, Uppsala University, P.O. Box 480, S-751 06 Uppsala, Sweden, email:
setzer@math.uu.se

Ordinal Systems 2

well-ordering up to €, of which we believe intuitively that it is correct. The argument
presented in Lemma 2.2 is an attempt to formalize what we believe is the reason for our
confidence with this principle: the usual notation system for ¢ is built from below and has
therefore an intuitive well-ordering proof.

For the Veblen function and for the Schiitte Klammer symbols the same holds. So,
when analyzing a theory using these systems we have really gained more than only the
reduction of the consistency of theory to a primitive recursive well-ordering: the reduction
to the well-foundedness of an ordering, of which we intuitively believe that it is correct.

This leads to another aspect: the relationship to the notion of “natural well-ordering”.
There exists a trivial ordinal analysis for any consistent theory. Take as elements of a well-
ordering essentially pairs consisting of a well-ordering proof in the theory and elements of
the corresponding well-ordering and order them lexicographically by the Gédel-number of
the proof and the ordering we are referring to. (A slight refinement is necessary in order to
make it primitive recursive: replace the elements of the well-ordering by triples <a, b, c>
where a is an element of the well-ordering, b a calculation that determines that a is an
element of this ordering and ¢ is a calculation that determines for all z < a, where < is
the ordering on the natural numbers, whether x belongs to the well-ordering and, if yes,
the order relation between z and a. Order triples <a,b,c> by the ordering of a). The
corresponding ordering has as order type the proof theoretic ordinal of the theory.! In
order to make clear that what one was doing is not trivial, one usually states that one
determines the proof theoretic strength not in some arbitrary primitive recursive notation
system, but in a natural one. However, nobody succeeded up to now in defining precisely,
what a natural well-ordering is. But there might be some systematic reason, why we will
never be able to formalize, what a natural well-ordering is: if one has a precise notion, one
will probably find a system diagonalizing over it, and this system can no longer be natural,
although it will be in an intuitive sense.

After the considerations before, we suggest that one should replace “natural well-
ordering” by “ordering with an intuitive well-ordering proof”. We believe that the re-
duction to such well-orderings is in fact the real motivation for designing stronger and
stronger ordinal notation systems. We will see in the following that the usual systems as
developed by the Schiitte school (we have not studied ordinal diagrams sufficiently yet) ful-
fill essentially this requirement. With a little bit more structure it is easy to see intuitively,
why the system is consistent.

In the following we are going to explore three types of (iterated) ordinal systems: (non-
iterated) ordinal systems, m-ordinal systems and o-ordinal systems. For each of these
systems we will proceed as follows: First we motivate and introduce the structure. We will
motivate that each of the steps taken is very natural — it is not the only natural way of
proceeding but one possible one. We will then present, what we hope is an intuitive well-
ordering proof, which will be formalized rigorously in a theory of the appropriate strength
and provides therefore as well upper bounds for the order types of the structure. In the case
of o-ordinal systems the rigorous formalization is not completed yet and we will omit the
argument. After this intuitive well-ordering proof we will give constructive well-ordering
proofs, which will be far shorter than the intuitive argument. However, although they have
the advantage that they can be formalized in constructive theories, which does not hold for
the intuitive well-ordering proofs, we personally believe in the well-ordering of the system
essentially because of the intuitive well-ordering proof, not the constructive ones. We do
not understand yet why this is the case, an analysis of this needs still to be done. It will
become clear however that both proofs will be closely related.

Next we are going to introduce a sequence of ordinal notation systems, which exhausts

1We have heard this example from Richard Sommer, but do not know of its origins.

Ordinal Systems 3

the strength of the structure. It is no problem to develop it in a mere syntactical way.
However, we want as well to develop functions acting on ordinals and not only on notations,
and, when developing first the functions, we get the notation system almost for free. So we
will take the detour via ordinal functions, which might not be as convincing for those, who
like to cut out any ideal concepts like ordinals, but might be quite satisfactory for those,
who want to compare the approach taken here with the traditional approach. We will
succeed in recovering the functions used in the traditional approach in our setting. From
the development taken, it will be very clear that we can introduce the notation system
without referring to ordinals, not even for heuristic purposes, and it would be a boring
task to rewrite these subsections so that no ordinals are used.

Technical advantages: This approach separates properties of ordinal notation systems,
which do not have an influence on the whole strength of it, from structural properties,
which are crucial for achieving the strength. The well-ordering proofs itself will become
easier (for instance it works in one step, one does not have first to verify that the accessible
part is closed under +, then under w’, then under 1 etc.) and focuses on, what is actually
needed from the ordinal system, whereas the specific ordinal notation system plays only a
role when verifying that it is an instance of a (non-iterated or n- or o-) ordinal system. As
a side-result we get simultaneously well-ordering proofs in the formal theories considered
for a complete family of notation systems, not only for one specific system.

Background needed: We will in this article work quite lot with ordinals. However,
we believe that one can understand quite a lot of it, even without having a deep insight.
Without the knowledge of ordinal notation systems up to €g it will be probably difficult to
understand anything. Knowledge of the Veblen function will be useful, but not necessary.
We will consider Schiitte Klammer symbols as examples. But, who does not know the
Veblen function or the Klammer symbols, can take the equation we state between those
functions and the corresponding ordinal function generators as the definition. In this case
we recommend to skip the versions with fixed points and just consider the fixed-point free
versions of ¢ and the Klammer symbols, which are in our setting more natural than the
usual ones. The comparison with the 9¥- and -function is only relevant for those, who
know those systems. It will be useful — but not necessary — to read the first four sections
of [Set98a], especially of the motivation given there.

Future developments: With o-ordinal system we have not exhausted the power of com-
binations of ordinal systems, in the meantime we have developed ordinal systems which
cover the strength of one recursive inaccessible and one recursive Mahlo ordinal, and this
is certainly no the end of what can be done with our approach. For the author, this was
quite satisfactory, since one can see, that even up to Mahlo we can work with extensions
of Schiitte’s Klammer symbols in a way which is still from below. Before carrying out this
research, we could work with and calculate with the strong ordinal notation systems, but
always had some feeling that what we were doing, was dubious. The only real argument
for the well-foundedness of the systems was the well-ordering proof in a corresponding con-
structive theory and the main justification for carrying out ordinal analysis seemed to be
to provide good tools for reducing the consistency of one theory to another where a direct
way was impossible. But now we are really convinced that one gains something more:
the reduction of the consistency to the well-ordering of a structure, for which we have an
intuitive well-ordering proof, and which is — in an extended sense — built from below.

1.2 Notations

Definition 1.1 (a) As in [Set98a], A* will be the set of finite sequences of elements of
A, coded, if A C N as natural numbers, (&@); will be the ith element of the sequence
@ and (a slight change relative to [Set98a]) seqlength(d) will be the length of the

Ordinal Systems 4

sequence 4.

A class is an object {z | ¢}, where ¢ is a formula. In this case, after some possibly
necessary a-conversion, a € {z | ¢} := ¢[z := a]. We identify unary predicates @
with the class {z | Q(z)}.

A binary relation < is a class. For binary relations < we define r < s := «(r,s) €<,
where 7 is a standard primitive recursive pairing function on the natural numbers
having the usual properties.

An ordering is a pair (A, <) where A is a class and < is a binary relation on A. It
is primitive recursive, if A is a primitive recursive subset of N and < is primitive
recursive, and linear, if < is a linear ordering on A.

If A= (B,<), then |A|:= B, <4:=<.

If C C |A|, we will write (C, <) instead of (C, < N(B x B)).

Transfinite induction over (A, <) with respect to the class B, in short TI 4 4)(B), is
defined as Vx € A(Vy € Aly <z > y€ B) >z € B) 5> Vx € Ax € B.

As in [Set98a], we define PRA™ as the extension of PRA by additional predicates
(called free predicates) without having induction over formulas containing these pred-
icates. Let A be a class, < be a binary relation, both depending on unary free pred-
icates A; and binary free predicates <; (i = 1,...,n). Transfinite induction over
(4,<) is in PRA reducible to transfinite induction over (4;,<;) (i = 1,...,n),
in short TT 4 <) is PRA-reducible to T4, «,), if there exist n; € N, variables
2k, classes B;; with free variables C {2 j1,--.,%ijm.,}, such that PRAY I
(Niey Nj2y(Yzijas o5 Zigme ;- T a;, <) (Big)) = TIa,<)(Q) for some free unary pred-
icate Q.

Assume B is a class and < is a binary relation, both depending on unary free predi-
cates A; and binary free predicates <; (i = 1,... ,m). (B, <) is an elementary con-
struction from (A1, =<1), --., (Am, <m), if the following holds: the formulas defining
B, < are formulas of the language of PRA with bounded quantifiers only (ie. quan-
tifiers of the form Vz < t, 3z < t); PRA" proves that, if (4;, <;) are linear orderings
(1 =1,...,m), so is (B, <); transfinite induction over (B, <) is PRA-reducible to
transfinite induction over (4;, <;).

If f: A— B, M C A, then f[M]:={f(z) |z € M}.

PAin(A4) is the set of finite sets of elements of A coded, if A C N, as natural num-
bers, such that the usual properties, especially primitive recursiveness and decidable
subset-relation hold.

In case B € Pfin(A), we write t € B for the statement expressing ¢ is an element of
B expressed in the language of PRA.

If B € Pin(A), a € A, < is a binary relation of A, then B < a:& Vz € B.x < a,
a < B:& Jx € B.a < x. This definitions extends to arbitrary classes B as well.

If < is a binary relation on A, a < b:< a < bV a = b, similarly we define <’ from <,
< from < etc.

If k: A— Pi(B) and C C B, then k1(C):={z € A| k(z) C C}.

We write f: A —, Bfor f: A— Pin(B). If f:A—>,B, f':A—>,B,g:B -, C,
then go f: A =, C, (9o f)(a) :=g[f(a)], and f C f':& V2 € A.f(2) C f'(2).

If Ay,...,Ap areorderings, f : (JA1|X---Xx|An|) = M injective, then f[A1,... , Ap]
denotes the ordering (f[|A1| X - -+ x |Ap|], <) where f(a1,...,am) < f(b1,-.. ,bm)
if (a1,... ,an) lexicographically less then (b1,... ,b,) with respect to the orderings
A1,..., An. We will use this definition only in case where f(ay,... ,a,) is the result

of substituting in a term ¢ (such as ¢z, 2, ¥(x1), (€1, 22, 3), T1 + T2, (2)) variables
x; by a;, i. e. f = Ax1,...,%,.t, and will write in this case the result of replacing

2

2.1

Ordinal Systems 5

in ¢ the variable z; by A; instead of f[A;1,...,An] (l.e. pa,4s, ¥(A1), ... instead
of (Az,y.0.y)[A1, A2], (Ax.1p(z))[A1]). The convention is here that the variables z;
are ordered from left to right and in case of (“;j) from bottom to top (i.e. @a,As
is ordered by lexicographic ordering on (A, A2), (ﬁ;) by lexicographic ordering on
(A2, A1)). Note that, after some standard Godelization of terms, the new ordering
in the examples with f = AZ.t is an elementary construction from the orderings A;.

If A is an ordering, A%, (Akeardes) 15 the set/class of — possibly empty — strictly
descending (weakly descending) sequences ordered lexicographically, which is an ele-
mentary construction from A. We omit double brackets for the elements of A} . and

des
AY o okdes> Writing for instance (a1,b1,. .. ,am,bn) instead of ((a1,b1), ..., (@m,bm))
for an element of (A, B)ges and (Zi;:) instead of ((‘;11) .- (‘;:)) for an element of

(8) 5o, Obviously A%, is an elementary construction from A.

(Generalization of Schiitte’s Klammer symbols [Sch54]). If A, B are orderings, let
Schiitte(f) = () goe N {(35™) | m € w,a; € A,b; € B,by >p -+ >p bp}. Note
that we have reversed the order relative to [Sch54]. Further we define Schiitte(4, B)
= ((4,B))des N {(a1,b1,--- ,8m,bm) | m € w,a; € A)b; € Byag >4 -+ >4 G}
Both are elementary constructions from A, B.

If Ay,..., A, are orderings and |A4;| are disjoint, then B :=4; Q 42 Q- Q An
is the ordering with |B| being the union of the A; and <p being the union of the
<4; together with the pairs (a,b) for a € [4;], b € |4;],1 <i < j <n. Thisis an
elementary construction from the orderings A;.

We identify the one element set A with the ordering (A, ().

If A is an ordering, B a set, let AN B := (JA|N B, <4 N((|4| N B) x (JA| N B))) and
A\ B :=An(|A|\ B). Note that this is an elementary construction from A, if B is
primitive recursive.

If A is an ordering, let Acc(A) be the accessible part of |A| with respect to <4, i.e.
the largest well-founded part of A, J{X C |A]| | (X, <) well-ordered }. Acc<(B) :=
Acce(B, <).

If A is an ordering, a,b € |A|, B C |A|, let BNa := {¢ € B | ¢ <4 a}, and
[a,b] := {c € |A| | a <4 ¢ <4 b}. The half open and open intervals [a, b[,]a,b] and
]a, b are defined similarly. Again we obtain elementary constructions from A, if B is
primitive recursive.

If A is an ordering, B,C C |A|, then B C C (B is an initial segment of C) <& B C
CAVz e B.Bnz=CnNzx.

Ord is the class of ordinals, A the class of additive principal numbers > 0.
We identify classes of ordinals A with the ordering (A, <), where < is the usual
ordering on Ord.

Elementary Ordinal Systems

Definition of Ordinal Systems

We will in the following develop first the notation of ordinal systems from that of ordinal
notation systems from below as defined in the first four chapters of [Set98a]. However, it

Ordinal Systems 6

is not necessary to read this article, since for the reader who doesn’t know the previous
approach we will then repeat the motivation given there, adapted to the new setting.

In [Set98a], the underlying structure of ordinal notation systems from below consisted
of the set of notations T, a subset NF of T*, linear orderings < on T and <’ on NF and
a function f : NF — T. In order to deal with stronger systems, which extend the notion
of ordinal notation system from below and allow to define ordinals beyond the Bachmann-
Howard ordinal, one needs to deal with arguments that have more structure. Even in
the case of ordinals below the Bachmann-Howard ordinal some more structure on the
argument is needed. For instance in case of extended Schiitte Klammer symbols (in English:
“parenthesis symbols” or better “matrix symbols”), which will be defined in Example 2.7
(i) below, we need the information about the size of each of the sub-matrices and which
ordinal notations belong to which sub-matrix. We could handle this by using some coding
(see Subsection 2.2). However, the more elegant approach is to replace the set NF C T* by
an arbitrary set Arg together with a function k : Arg —,, T. The intuition is, that a € Arg
is an argument for the function f which is built from ordinal notations k(a), but has some
additional structural information. An ordinal notation system from below can be translated
into the new structure by defining Arg := NF and k(a1,... ,an) := {a1,... ,am}.

Now f was always a bijection, and therefore we can identify Arg with T, define f :=
Az.z and omit f completely. We have therefore two orderings on T, < and <’, < being
the ordering on the ordinal notation system and <’ being the ordering which determines
the order, in which new ordinal notations are introduced.

In order to express that T is the closure under the above process, we add a function
length : T — N and require length(a) < length(b) for a € k(b). We replace the long name
“ordinal notation system from below” by “ordinal system”.

The motivation for the resulting structure is now as follows: Ordinal notations ¢ are
built from a finite set of notations k(¢). We want that the system is built from below:
First, an ordinal should be denoted using smaller ones, i.e. k(t) < t. Second, whenever
we introduce a new notation ¢, we want to have constructed all smaller notations s before
t. Either s could be below one of the components of ¢, i. e. s < k(¢), since, whenever we
introduce an ordinal, we assume that we have constructed its components and therefore all
ordinals below them as well. Or s must have been introduced before ¢ with respect to the
termination ordering <', i. e. s <’ t. In [Set98a] we showed that in case of simple systems
like the standard system up to I'g or the Schiitte Klammer symbols, we can construct <’
from < by using the lexicographic ordering on pairs and on strictly descending sequences
together with some simple operations. For instance we ordered terms for the Cantor normal
form by the lexicographic ordering on strictly descending sequences and terms ¢,b by the
lexicographic ordering on pairs (a,b). Orderings <’ constructed like this have the property
that, whenever a set of notations is <-well-ordered, the set of notations built from it is
<'-well-ordered, and in the definition of ordinal systems we will demand this condition.
However, in the above examples it is possible to show this reduction in PRA, i.e. essentially
in logic, and we define elementary ordinal systems by demanding additionally this stronger
requirement. Elementary ordinal systems will have strength below the Bachmann-Howard
ordinal, whereas with ordinal systems we will have no upper bound (choose for an arbitrary
well-ordering (T, <), k(a) := 0, length(a) := 0, <":=<).

Definition 2.1 (a) An Ordinal System Structure, in short OS-structure, is a quintuple
F = (T, <, <"k, length) where T is a set, <', < are linear orderingson T,k : T —, T
and length : T - N.
We will sometimes regard the first two or three elements of this quintuple as a unity, so
when writing F is an OS-structure of the form F = (4, <', k,length) or (G, k, length)
we mean that A is of the form (T, <) and G is of the form (T, <, <') with T, < and

Ordinal Systems 7

<" as above.

(b) In the following, if not mentioned otherwise, let F be as in (a), and for any index i
Fi = (T4, <4, <}, ki, length,).

(c) If F is an ordinal system structure as above, A,B C T, then B [A:= BNk~1(4),
the restriction of B to arguments built from A or shorter restriction of B to A.

(d) An Ordinal System, in short OS, is an OS-structure F, such that the following holds:

(0S1) vVt e Tk(t) <t.

(0S 2) length[k(t)] < length(t).

(0S 3) Vte TVse T(s<t— (s <k(t) Vs <'t)).

(0S 4) If ACT, Ais <-well-ordered, then T | A is <'-well-ordered.

(e) An OS F is primitive recursively represented, if T is a primitive recursive subset of
N, <, </, k, length are primitive recursive, and all the properties of an OS, including
linearity of <, <’, but except of (OS 4), can be shown in PRA.

(f) A primitive recursively represented OS F is elementary, if additionally (OS 4) can be
shown in PRA, i.e. for a free predicate R TI(1p, <) is PRA-reducible to Tlirng, <)-

(g) An OS-structure is well-ordered, if T is well-ordered. The order type of a well-ordered
OS-structure F is the order type of T.

(h) Two OS-structures are isomorphic, if there exists a bijection between the underlying
sets, which respects <, <', k, length.

We illustrate an ordinal system by the following picture:

(T, <)

t
k(t) =
{r, s} ’ (T, <)

r S t

(The arrow from ¢ in (T, <) to ¢ in (T, <) represents the function f in the original definition,
which is now the identity).

2.2 Equivalence of Elementary Ordinal Systems and Ordinal No-
tation Systems from below.

Let <" be the ordering on NF in an ordinal notation system from below, f the function
used there, define <’ on f[NF] by f(@) <" f(b) :& @ <" b, k(f(@)) := {a1,... ,a,} and
length in the obvious way. Then, if we started with an ordinal notation system from below
in which <" is linear, provably in PRA, we obtain an elementary OS.

In the other direction, assume an elementary OS, together with an explicit enumeration
of the natural numbers, i. e. there exists a primitive recursive function g : w — T, where
we write n for g(n), such that Vn.n < n and Vn € Non = nth element of T provable in
PRA (more precisely the formula ¥n € N(n < nAVz € T(z < n « 3 < nz =1)) is
provable in PRA). Note that therefore glw] and g=! : g[w] — w are primitive recursive.
Define T/ := T, NF' C T'",

NF = {0} U{(0,n) [n € w}U

Ordinal Systems 8

{@L,t;81,---,8m) [t € T\ glw]lAmEwASs; <--- <5, ANk(t) = {51,---,5m}};
fl : NFI - TI7 fl() = Q; fI(QJQ) = H_‘H, fl(l7£7 S1y- .- 7Sm) = t7
<" on NF by () <" (0,0) <" (0,1) <" (0,2) <" --- <" (1,t,51,.-. ,5n) for all t and
(1,t,81,... ,8m) <" (L, t',s,...,8)) iff t <" ¢'.
Then one sees easily that (T, <,NF, <" f’) is an ordinal notation system from below,
which has the same order type as the original ordinal system and has essentially “the same
form”, therefore under the above mentioned weak conditions, elementary OS can be seen
as ordinal notation systems from below.

2.3 Intuitive Argument why OS are Well-ordered.

We will first illustrate, what we regard as an intuitive argument for the well-ordering of
ordinal system, by taking a standard example.

Take the notation system built from the Cantor Normal form and the Veblen-function,
based on poa = €,. More precisely, it is defined as follows: Let N be the set of terms
{0,5(0),S(5(0)),...}. 1:=85(0). The set of ordinal notations T together with the ordering
< on T are simultaneously defined by: NcCT ifai,...,am € T, n; € N \ {0}, m > 0,
then ,,a2 € T provided m = 2 and a2 is not of the form ¢4, by with a1 < b1, and
we ng + -+ w - ny, € T provided a,, < -+ < a; and if m = 1, then a; # 0 and
ay is not of the form ¢y, ba. SF(0) < SY(0) :& k < I, S¥(0) < w™ -ny + -+ + W - Ny,

SF(0) < @ab, w™ -my 4+ -+ WO cny < WP D 4 WO D S (ag,n, e G, M) S
lexicographically smaller than (by,l1,... ,bg, k), ¢ == W -0y + -+ - + W - Ny < Pb &
Alyeen 3Oy N, Ty < @b and, if this condition does not hold, then ¢,b < ¢, and

©ab < b & (a<ad'Ab < pab)V(a=ad Ab<D)V(a' < aNp,b < b'). The termination
ordering <’ on T is now defined by S¥(0) <’ w -ny +- - +w% -ny, <" p.b, S¥(0) <’ SL(0)
iff k <1, <' on terms w?! -ny +- - - +w®™ -n,, is the lexicographic ordering, and <’ on terms
©ab is the lexicographic ordering on pairs (a,b) (the last two with respect to <). Further
define k(0) = 0, k(S(¢)) := {t}, k(w™ -n1 4+ --- + w -ny) == {@1,... ,Gm, N1, ... ;N }
and k(pqb) := {a, b}.

It is easy to see that with the obvious definition of length we get an ordinal system
(T, <, <", k,length), especially we have: If A C T is <-well-ordered, the set of notations
“built from A” or “with components in A”, namely k=!(A4), is <'-well-ordered. Now we
proceed by selecting ordinal notations as follows: At the beginning we have no notation at
all. The only notation which has components in the empty set is 0 and we select it. Now,
if we take the the ordinals with components in the set of notations selected, namely in {0},
we choose the <'-least one not selected before, namely S(0). Again, we take all notations
with components in {0,S(0)}, select the <’-least one not chosen before, S(S(0)), etc. Once
we have selected all the natural numbers, the least one will be w! - 1. The <’ least one in
T | {0,5(0),S(S(0)),...} U {w! - 1} not selected before will be w! - 14 w® -1 and one sees
easily that we will proceed selecting systematically all ordinals built by the Cantor normal
form, i. e. all notations below 0.

The next ordinal will selected will be ¢g0. And here we will make for the first time
a jump in the <'-ordering: there are notations <’ 0 we have not chosen yet, but they
are built from notations which we have not constructed before. After o0 we will choose
w990 .14+ w%-1 — we will therefore move downwards with respect to <’ — and then we
will exhaust again the Cantor normal form and choose all ordinals below pgl. Now gl
will be selected and we will then proceed selecting (with the steps for building the Cantor
normal form in between) g2, @03, .. ,v0(©00), - -, vo(wa(ve0)),-- ., then ;0. etc.

In order to be able to select the <’-least element of the sets considered, we need that the
set of notations with components in the notations previously selected is <'-well-ordered.
Now by (OS 4) this will be the case, if we have that the sequence of ordinals previously

Ordinal Systems 9

selected is <-increasing and therefore <-well-ordered. Now we can easily see by induction
over the process above that, whenever we select an ordinal, we select in fact the <-least one
not chosen before and therefore the set of ordinals previously chosen will be a <-segment
of T:

Assume A is the ordinals previously selected, which is by IH a segment of the ordinals
and let a be the new notation chosen. a will be bigger than A, since A is a segment. We
need to show, which we will do by induction over the length of b, that, if b < a, b € A. If
b < a, then b <k(a) C A, so b € A by A being a segment, or b <’ a. b is built from smaller
components, they must be by side-TH all in A, therefore b has components in A, a was the
<'-least such not selected before, so b must have been selected before, b € A.

Now we assume that “we do not run out of ordinals”. Therefore we must reach a point,
where we cannot select an ordinal any more. But then one sees easily that all notations
must be selected, so the set of notations must be well-ordered (since we have selected them
in increasing order) and we are done.

The argument “we do not run out of ordinals”, can now be formalized in set theory
for elementary ordinal systems by using w$*: if we could select as above w{* ordinals, we
would have a primitive recursive well-ordering of order type w{¥, a contradiction. For this
argument we need the big ordinal wk. However it is only needed to provide an ordinal “big
enough”. In fact, the process of selecting ordinals will terminate after o steps for some
a which is below w§¥. Something similar will be the case for all recursively large ordinals
needed for stronger ordinal notation systems: they always play only the role of ordinals
“big enough”, in fact, all processes involved will terminate after a steps for some ordinal
< wsk.

We are now going to formalize the well-ordering argument above rigorously, in order to
get absolute precision. We will then show that for elementary ordinal systems, it can be
formalized in Kripke-Platek set theory (with natural numbers as urelemente). Therefore
we will get an upper bound for the strength of elementary ordinal systems.

Lemma 2.2 (a) Let F be an ordinal system, and assume L ¢ T. By recursion on
ordinals v we define a, € TU {L} as follows:
Let A<y := {an | @ < v}. Define “A., is increasing” iff A<, C T and Vo, <
Y@< B = aqy <ag).
_Jminy ((T [A<y) \ A<y) if A<y is increasing and T [Ay € A<y,
G = L otherwise.
Then there exists a <y such that A<, is increasing and A<, = T. Therefore (T, <) is
well-ordered.

(b) v as in (a) is < W, if F is primitive recursively represented.
(c) If F is elementary, (a) can be formulated in KPw.

Proof:

(a): The definition is well-defined, since, if A<, is increasing, T [A<, is well-ordered with
respect to <', therefore as well (T' [A<,) \ A<, and a, can be defined.

We show: If A., is increasing, then A, is an initial segment of T w.r.t. < by recursion on
~: The cases v = 0 or v limit ordinal follow trivially or by IH. Let now v = § + 1. We need
to show as is the <-least element in T \ A<s: as & A<y, which is an initial segment of T,
therefore A<s < as. We show by induction on length(b) Vb < as.b € A<, from which the
assertion follows. b < ag, therefore b < k(as) C A<s C T and therefore b € A5 or b <’ as.
In the last case, by IH, since k(b) < b < as, k(b) C A<s, b € T | Acs, by <'-minimality of
as b (T [Acs) \ Acs, b€ Acs.

Let x be an admissible ordinal such that F € L, (if F is primitive recursively represented,

Ordinal Systems 10

k can be chosen as w$k). If A, were now increasing, then A, = {a € T | a < @41}
would be a well-ordering, which is an element of L, and has order type &, a contradiction.
Therefore there exists a least v < « such that A<, is not increasing. v = v + 1, A<, is
increasing, therefore a well-ordered subset of T. T [A<,, C A<,,, therefore by induction
on length(a) follows for all a € T a € A<, A<y, =T and the assertion.

(b): by the proof of (a).

(c): The formalization is straight-forward, the only difficulty is the argument referring to
k, which we replace by the following: Let C := {vy € Ord | A<, increasing }, C' C Ord,
f:C =T, f(a) == aq. f[C] is a well-ordered initial segment of T. Assume f[C] # T.
Then (T | f[C]) € f[C],let a € (T | f[C])\ f[C] be <’ minimal. (Here we use reducibility
of transfinite induction). As in the argument before follows a is the least element of T not in
fIC], therefore f[C] = {b€ T | b < a}, aset, f: Ord — f[C] bijective, f~! : f[C] — Ord
bijective, therefore Ord = f~1[f[C]] is a set, a contradiction. Therefore f[C] = T is
well-ordered. O

Theorem 2.3 The order type of elementary ordinal systems is less than the Bachmann-
Howard ordinal.

Proof: by Lemma 2.2 (c¢) and since |[KPw| is the Bachmann-Howard ordinal. O

2.4 Constructive Well-ordering Proof

We regard the above well-ordering proof as rather intuitive. However, for treating intu-
itionistic theories we will need a constructive argument as well. This argument will as
well be shorter and can be formulated for instance in intuitionistic ID; or type theory
having the accessible part or one unnested W-type, which yields again the upper bound
Bachmann-Howard for the order type of elementary OS.

Constructive well-ordering proof: Let Acc := Acc<(T) and Acc’ := k™1 (Acc),
which is well-ordered w.r.t. <’. We show V¢ € Acc’.t € Acc by induction on t € Acc’. Tt
suffices to show Vs < t.s € Acc by side-induction on length(s). If s < k(t), then s € Acc
since k(t) C Acc. Otherwise s <' t, k(s) < s < t. By side-IH k(s) C Acc and by main-TH
therefore s € Acc and we are done. Now follows by induction on length(s) Vs € T.s € Acc,
T is well-ordered.

2.5 Ordinal Function Generators.

We are going to define elementary ordinal systems, which exhaust the strength of this
concept. As in the introduction, we want to get functions, which act on ordinals as well.
This does not require much extra work. As we said there, one can easily develop this
without any reference to ordinals. The advantage of our approach is that we will get
definitions for the usual ordinal functions like +, Aa.w®, ¢ and the Schiitte Klammer
symbols and further new definitions for extensions of the Klammer symbols without much
extra work.

There are typically two kinds of ordinal functions usually used: Versions having fixed
points and fixed point free versions. One example is the Veblen function versus its fixed
point free version (see for instance the function ¢ in [Sch77], p. 84). When using versions
with fixed points, we will usually not have the property, that the arguments of an ordinal
functions are strictly smaller than the value of it. This is no harm, since in a next step one
selects normal forms. The following definition allows to introduce both fixed point versions
and fixed point free versions:

Ordinal Systems 11

Definition 2.4 (a) An ordinal function generator, in short OFG is a quadruple O :=
(Arg, k,1,<’), where Arg is a class (in set theory), k,1 : Arg —, Ord such that
Va € Argl(a) C k(a) and <’ is a well-ordered relation on Arg. We define <{:=<".

(b) If O is as above, we define by recursion on a € Arg simultaneously sets Co(a) :
C(a) C Ord and evalp(a) := eval(a) € Ord: C(a) := U,,,, C"(a), where C%(a) :=
(Uk(a)) Ul(a), C™*1(a) := C™(a) U{eval(b) | b € Arg,b <’ a,k(b) C C"(a)}.
eval(a) == min{a € Ord | a € C(a)}.

(c) Define for O as above, NF := {a € Arg | k(a) < eval(a)}.

(d) Define for O as above Cl C NF inductively by: If a € NF, k(a) C eval[Cl], then
a € CL
Arg[Cl] := {a € Arg | k(a) C eval[Cl]}. Note that Cl C Arg[Cl].
Assuming eval | NF is injective, which will be shown later, we define k° : Arg[Cl] —,
Cl and length : Arg[Cl] — N by
k(a) := eval *[k(a)] N Cl, length(a) := max(length[k®(a)] U {-1}) + 1
for a € Arg[Cl] with -1 <nforneN, -1+1:=0.
Further let for a,b € Arg[Cl] a < b :& eval(a) < eval(b).

Note that the definition of eval(a) expresses something similar as for OS: When defining
eval(a), we know all a < eval(a), since a < k(a), a < 1(a), or a was introduced before a,
i.e. a = eval(b) for some b <' a. Further, if a is in normal form, then a is a notation for
eval(a) referring to smaller ordinals only, namely k(a).

Lemma and Definition 2.5 Let O be as above.

(a) C(a) is the least set such that (Jk(a)) Ul(a) C C(a) and, if b € NF, b <' a,
k(b) C C(a), then eval(b) € C(a).

(b) Va € Arg(k(a) < eval(a) Al(a) < eval(a)).
(c) C(a) is an initial segment of Ord.
(d) eval restricted to NF is injective.
(e) eval[Cl] is an initial segment of Ord.
(f) For a,b e Arg[Cl] it follows
eval(a) < eval(b) & (a <’ bAk(a)<eval(h))Veval(a) < k(b) Veval(a) < 1(b)
eval(a) = eval(h) < (a <’ bAeval(h) = max(k(a)) A eval(h) & l(a)) V
(b <" a Aeval(a) = max(k(b)) Aeval(a) €1(b)) V
a=b
(9) For a,b € NF we have eval(a) < eval(b) & (a <' b Ak(a) < eval(h)) V eval(a) < k(b).

(h) F := (Cl,<,<',k% length) is an ordinal system. We will call any OS-structure iso-
morphic to F an ordinal system based on O.

Proof:

(a), (b): easy.

(c) Note that, if C(a) is an initial segment, eval(a) = C(a). Proof of the assertion by
induction on a. We show Va € C(a).a C C(a) by induction on the definition of C(a). If
a € Jk(a), then a C C(a). If a € 1(a) C k(a), a C Uk(a) C C(a). If a = eval(b), b <’ a,

Ordinal Systems 12

k(b) C C(a), by side-IH Jk(b) C C(a), and by transitivity of <’ and 1(a) C k(a) follows
easily C(b) C C(a) and by main TH a = C(b) C C(a).

(d) Assume a # b, a,b € NF, eval(a) = eval(b). By linearity of <', a <" b or b <’ a,
so wlo.g. a <' b. k(a) < eval(a) = eval(b), therefore k(a) C C(b), a <’ b, therefore
eval(a) € C(b) = eval(b), a contradiction.

(e) We show Va € Cl.eval(a) C eval|[Cl] by induction on a € Cl: Using IH, (a) and -NF(b) —
eval(b) € k(b) it follows C(a) C eval[Cl], eval(a) C eval[Cl].

(f) First formula “<”: eval(a) € C(b) = eval(b).

Second formula “<” consider only the case (a <’ b A eval(b) = max(k(a)) Aeval(b) & 1(a)).
eval(b) € k(a) < eval(a). Assume eval(b) < eval(a). Then, since eval(b) £ k(a), eval(b) £
1(a), by eval(b) € C(a) it follows eval(b) = eval(b') for some b’ <' a, k(b') C C(a). By
the definition of C(a) and eval(b) € C(a) \ C°a) there exists b' <’ a and n such that
k(b') C C™(a), eval(b') € C"1(a)\ C"(a) and eval(b') = eval(b). b’ <’ b, eval(d') = eval(b),
so k(b') &£ eval(h) = eval(b'), eval(t') € k(b'), contradicting the choice of b’. Therefore
eval(b) = eval(a).

“=” first formula: if the right hand side is false the right hand holds for eval(a) = eval(b)
or eval(h) < eval(a), therefore the left hand side is false. For the second formula “=”
follows in the same way.

(g) “«” is immediate, and “=" follows as before.

(h) (OS 1), (OS 2), (OS 4) are clear. (OS 3): If s < ¢, s,t € NF, then eval(s) € C(t),
eval(s) < k(t) or s <' t and the assertion. O

Definition 2.6 If O; = (Arg;, <!, k%,1¥) are OFG (i = 0,1), Arg, N Arg; = 0, Let Oy Q
0, = (Arg, <',k,1), be defined by (Arg, <') := (Argy, <§) Q (Arg;, <}) and k(r) := ki(r),
I(r) := 1¥(r) for r € Arg;. Op Q O is obviously an OFG and evalp(a) = evalp,(a) for
a € Arge, .

Example 2.7 (a) Let a € Ord be fixed, (Arg,, <) := a+0rd (i.e. expanding Defini-
tion 1.1 (d), Arg, = {a+8 | 8 € Ord}, a+8 <., a+vy & B < 7; here and in the
following a+p, £a6 etc. are formal terms defined from ordinals a, 3, etc. coded

0 ifg=0,

{a} otherwise,

04 = (Arg,, <), k,1). Then eval(a+3) = a + 3. Note that Cl = 0.

(We could change the definition of OFGs by omitting the condition “<’ linear”. Then

Lemma 2.5 (a) - (¢) and (e) go through as well and one could define (Arg, <') as the

union of (Arg,, <!) with a4+ and y+p incomparable for a # 7. eval(a+8) = a+ 3,

so this way we would get a definition of the full function +.)

(b) Let (Arg, <) := X(Aweakdes), K(E(1, ... ,am)) :={a1,... ,an}, I(E(aq, ... ,am))

_ JH{a} ifm>1,
R otherwise.

in set theory in some way). Let k(a+0) := {a, 3}, l(a+8) :=

Let Oy be the resulting OFG. Then one easily verifies

eval(X()) = 0 (similar cases occurring in future examples will not be mentioned

below) eval(X(ai,... ,am)) = a1 + --- + amy for m > 0. The fixed point free version

of it, i.e. 1(¢) := k(t) yields the same result, except eval(X(a,1,... ,1))=a+1+1
N—_———r’

(c) Let (Arg, <) := X'(Schiitte(A,w \ {0})),
k(Z (Q1,m1, - 5 QmyMm)) = {01,y oy Qs Mty e e M1, My, — 1},
m—1} if 1or ng, > 1,
) = {{al,n } ifm>1orng, >

1 (ay,n1,. ..
&l m 0 otherwise.

Ordinal Systems 13

Let Oy be the resulting OFG. evalp, (X'(a1,n1,. .. ,Qm,nm)) = (a1 -n1) + -+ +
(Qm - 1)
If we replace in (b), (¢) A by Ord and X by CNF, we obtain ordinal function generators

Ocnr,w, Ocnr for the Cantor normal form, ie. evalogyg ., (CNF(aq,...,an)) =
W + -+ w* and evalogye (CNF (1,11, -+, Qmy) = W sng + -+ W -myy

Let Og be Oy v or O, O; := (w9 k,1) with k(w?®) := {a}, (w®) =0, O := Oy Q
O1, then eval(w*) = w®. The fixed point free version (1(w*) := {a}) yields the same
result, except eval(w®t™) = w** ™+ for epsilon numbers a.

Let Og be Oy or O, 01 := (fordOrd, k,1), k(gaﬂ) = {a, 8},

e B):= {a} if 5> (_)’ O := 0y Q0O;. Then eval(p) = ¢,0, where ¢ is the
o] otherwise, o

Veblen function with @83 := wP. If we use the OFG from (d) or (e) instead for Og
we obtain the p-function starting with goa = €,, and defining 1() := k() yields the
fixed point free version of the Veblen function.

Let Op be Oy, or O, O1 := p(Schiitte(V"G\1%)). I A = (775m), define
k(f(A)) = {/815 s 7ﬂm;a17 s aam} and

I(Q(A)) = {ﬂl;--- ,ﬂm_l,al,... ,Otm_l}U {

0:=00Q0;.
As in [Sch54] we allow addition of columns (g) and identify matrices which differ in
such columns only. If A = (70 (A, By, ama) o= (2 5mOms)

a1 ayramam41/’

{am} if B > 1,
] otherwise,

(A, Brnst, @ma1, Bmg2, @my2) ete. are defined similarly.

Then eval(p(A)) = p(A), where ¢(A) is defined as in [Sch54], based on ¢(a) := w?,
but with reversed order of the columns. We prove this by induction on </;:

If A= p(,0), then we can easily show eval(4) = w* = ¢(a, 0).

If A= ¢(B,a,B,7,0), then it follows that C(¢(A)) is closed under +,
M.eval(p(B,a*, 8,6, 3)) for a* < a, 3* < 3 and contains further
eval(¢(B, a, 3,7*,0)) for 4v* < ~, therefore using the IH eval(¢(B,a,3,7,0)) >
(B, a, 3,7,0). On the other hand, p(A) > k(p(A)), ¢(A) > 1(p(A)), and, if B <’ A,
k(o(B)) < p(A), by the calculations in [Sch54] ¢(B) < ¢(A), therefore using the TH

Vy € Clp(A)) (v < p(A)), p(A) > eval(p(A)).

If we define in (g) I(E(A)) = k((A)), we obtain a fixed point free version of the
Klammer symbols or equivalently eval(yp (B’")) =3[+ - -+ 0% G,,), where
¥ is defined as in [RW93], but without closmg "C(e, B) under)«y w?. (We obtain the
original ¥ function, if we take as Oy the OFG for CNF). See [Sei94] for details. If
we restricting the deﬁnition to those a;, B; such that for v := Q*1 8, +--- + Q%" 3,
~ € C(v), where C() is defined as for the ordinary -function, then we will get the
same result, but with ¥ replaced by the ¢-function (¢ = 1o as in [Buc86] or ¢ = vq,
as in [Buc92], however with C(a, 3) not closed under). Note that this restriction
has the effect that <’ and < coincide in the corresponding OS for terms of the form

p(a).

Let Sy := Ord, Sy,41 := Schiitte (Ord\{O}))

ki :S; =, Ord, kJ(a) := {a}, k'+1(mm) ={B1,--.,Bm} U U;"Zl ki (A;).

Let ki(p(A)) :=kj(A),

01 := (Q(Si)vki7kz)= 0Ot := Oy Q Oy (O as before). We obtain, what we can call the

Ordinal Systems 14

“fixed point free version of extended Schiitte Klammer symbols”. Let f; : S; — Ord,
fola) == a, fi+1(£i:::ﬁ7:1) = QfitA)g ... 4 QfilAn) g then one can easily see

evalpi (¢(A)) = ¥(fi(A)), ¥ as in (h). Applying a similar restriction as in (h) yields

the 9-function restricted to ordinals < Q% .
——
i times
(j) Asin (g) and (h), we can define a version of the extended Schiitte Klammer symbols
with fixed points. The verifications takes more space than is available here. In some

sense we believe however that in the context of OS, the fixed point free versions are
at least as natural or even more natural than the versions with fixed points.

(k) Let O be as in (i). The union of O can be described as follows: Let S’ := {0},
S = Ord, 8}.1y = S, @ (Schiitte(*H%) \ |Schiitte(%5 (D)), kb : S; =, Ord,
k(@) == {a}, ki (4) = kj(A) for A € S!, kit (A) is defined as in (i) for A €
Sitt \ Si- Let 8" = Ui, ISil, <s7:= Uico, =sp> K'(9(4)) = Kkj(4), k == UK,
0 := 0y B (¢(S'), k, k), which is an OFG.

Define 1; : |@(Si)] = [o(Si)| by w(p(a) = a, ule()) = ¢0), ule(f)) =
p(a), t1(a) := a otherwise, t;42(a) := tiy1(a) for a € ¢(Siy1), Li+2(£(£i:::i'f;)) =
f(’fi+l(A[133:::Lﬂi7il(Am)) otherwise. Then ¢; is an isomorphism from ¢(S;) to ¢(S}),
©(Sp) € ¢(8;) E ---, the isomorphism can be extended to an isomorphism from

Arg,: to an initial segment of Arg, which preserves the component sets k;. In this
sense (O is the union of the O;.

The following lemma, which will be used in the proof of 2.9, helps to derive from an OFG
an OS based on it, which is primitive recursive: One introduces a set of terms T"”, which
have the syntactical form of being arguments, if we replace its components by ordinals.
From these terms we select now a set T of terms and T' of arguments based on T such that
T represents all elements of Cl and T’ all elements of Arg[Cl]. Whether an element belongs
to T or T depends now on the ordering of its components, which need to be in T and then
one can show that under the assumptions formulated in the next lemma, T, T', < and
<" will be primitive recursive. Especially condition (e) will have some flavor of II3-logic,
however, the ordering of the elements of T and whether and element of T" belongs to T
will depend not only on the order of its components, which allows some more generality.

Lemma 2.8 Let O be an OFG as usual, and let T" be a primitive recursive set, T CT' C
T, f:T' = Arg, k: T" =, T",1: T —, T", length’ : T" — N, all primitive recursive.
Let for a,b € T', a <" b f(a) <' f(b), a < b:& eval(f(a)) < eval(f(b)). Assume the
following conditions:

(a) Ya € T'1(a) C k(a) C T.

(b) Va € T'(f[k(a)] = K°(f(a)) A fll(a)] =1(f(a))).
Va € T" length'[k(a)] < length’(a).

(c) For every subset A of T f[{t € T' | k(t) C A}] = {a € Arg | k(a) C eval[f[A]]}.
(d) If ACT!, f A is injective, then f [{t € T' | E(t) C A} is injective.

(e) For a,b € T" such that E(a) U E(b) C T we can determine from < restricted to
k(a) Uk(b) (coded as a finite list which is coded as a natural number) in a primitive
recursive way, whether a,b € T' and, if this is the case, whether a <’ b.

Ordinal Systems 15

(f) ac TeaeT A f(a) € NFAk(a) C T,

Then T, T', <', <, are primitive recursive, we can define 1@1 : T —, T such that
length(a) = length(f(a)) for a € T', and (T, <, <',k,length) is an OS based on O.

Proof: We determine for ¢ € T” whether t € T/, t € T and for r,s € T’ such that
length’(r), length’(s) < length’(¢) whether » <’ s and whether r < s holds by recursion on
length'(t) and side-recursion on length’(r) + length’(s): If k(t) € T, t € T'. Otherwise we
can decide whether t € T'. Assume now r, s as above. Whether r <’ s follows from the
induction hypothesis and then using Lemma 2.5 (f) we can determine whether r < s holds.
Now t € Tt € T AK(t) < t.

f:T — Arg is injective by condition (d). f[T] C NF, f[T] C Cl. We show f[T] =Cl. It
suffices to show Va € Cl.3b € T.f(b) = a. Induction on a. E(a) C f[T]. Therefore there
exists at € T, E(t) C T, such that f(¢t) = a. Since NF(a), follows t € T.

length(t) is defined now by length(t) := max(length[k(t)] U {—1}) + 1. O

Lemma 2.9 For all the OFG in the Example 2.7 (a) - (i), except for those examples
involving the lexicographic ordering on weakly descending sequences ((b) and the examples
referring to it) there exists an elementary OS represented by them.

Remark 2.10 Note that the development of the OS can be done without having to refer
to ordinals.

Proof of Lemma 2.9: First, using Lemma 2.8 we can define a primitive recursively
represented OS based on the OFG. We look only at the example (g) in detail: Let 0 := X'(),
1+1:=3%(0,1+1), N:={l | | € w}. Define T" together with k : T" —, T",1: T" —,, T",
length(T") — N recursively by:

Ifmew,a; €T, b; €N, b; #0 for i < m, then

to := El(aly b, @m—1,bm1,0m, bmil) e T",

=~ ~ ai,b ifm>1lorb 0,
K(to) := {a1,b1, ... ,am,bm}, (to) := é 1, bm} otheraise m 7

length(tg) := max{length(ai), ... ,length(ay,),length(b1),... ,length(b,,)} + 1.
/I\f Alyeer s Qmybiye.. b €T ay,... ,am #0, t; 1= g(‘;i‘;’m") € T”, and we define k(t),
1(¢t1) by translating the conditions from Example 2.7 (g) and length(¢;) as before. T",

length, k, 1 are primitive recursive.
Define T C T", T' C T", together with f : T' — Arg inductively by: If #; is as above,
k(to) C T, eval(f(ay)) > --- > eval(f(am)), then to € T,
f(to) = X' (eval(f(a1)), eval(f(b1)), - .. ,eval(f(am-1)),eval(f (bm-1)),
eval(f(am)), eval(f(bm)) + 1).

If ¢; is as above, eval(f(b1)) > -+ > eval(f(by,)), then t; € T,

— val(f(a1))---eval(f(am
flt) = £(Zv21((f((b1§§...Evilgfgbm)))))-
Further t € T :& t € T' ANF(f(t)).

The conditions of Lemma 2.8 are now fulfilled and therefore most conditions of a primitive
recursively represented OS are fulfilled, what is missing is verified easily.

The other OS are treated similarly. The constructions of new orderings considered
in [Set98a] Lemma 3.5 (especially the lexicographic ordering on pairs and and strictly
descending sequences) yield orderings such that transfinite induction over it reduces to
transfinite induction over the underlying orderings in PRA and therefore we get actually
get in all cases elementary OS. 0O

Ordinal Systems 16

However, transfinite induction over weakly descending sequences reduces only in HA
to the underlying ordering, so the examples where we used weakly descending sequences
do not yield elementary OS.

Theorem 2.11 (a) The bound in Theorem 2.3 is sharp: The supremum of the order
types of elementary OS is exactly the Bachmann-Howard ordinal.

(b) The limit of the order type of ordinal systems from below as introduced in [Set98a] is
the Bachmann-Howard ordinal.

Q

Proof: (a): Example 2.7 (i) yields OS of strength #(Q9), which in the limit reaches the
Bachmann-Howard ordinal. Lhmes
(b): by subsection 2.2, (a) and the upper bound developed in the last two sections of
[Set98a]. O

Note that the construction in the example used in (a) really exhausts the full strength of
elementary OS: In the OS related to O; <’ is built from < using i-times nested lexicographic
ordering on descending sequences, TI over which reduces to the underlying ordering by
using formulas of increasing length. The union of the O;, @’ yields an OFG, such that in
the OS belonging to it TT over <’ does no longer reduce to TI over < in PRA, so it is no
longer elementary. What is required are twice iterated ordinal systems.

3 n-times Iterated Ordinal Systems

3.1 Introduction

The usual way of getting beyond the Bachmann-Howard ordinal is to violate condition (OS
1), which was the basis for our analysis in the last two sections of [Set98a]. However, the
foundationally more interesting approach seems to keep the condition that the ordinals are
built from below and instead weaken the requirement that TT over <’ reduces to TI over
< in an elementary way, namely in PRA.

If we look at the OS corresponding to Example 2.7 (k) we can see that we generated
by meta recursion a sequence of matrices of increasing complexity. We can replace this
meta recursion by using a second OS: Let Fy := (Ty, <, <, k,length) be the primitive
recursive (but non-elementary) OS based on O, defined by the method used in Lemma
2.9. Let T, := {A | p(A4) € Ty} with the ordering A <; A’ :& p(A) <" p(A"). Define
k(],j : To —=o TJ for Z,] = 0,1 by kg,o = k, ko’l(zl(d’)) = @, kO,l(E(A)) = {A} and
let for D C To, E C Ty, D [o; E := ka;(E) Then if B C Ty, C C T; are well-
ordered w.r.t. <, <1, then (To [o,0 B) lo,1 C is well-ordered. If we take as C the set
of matrices built from notations in B only and, if we know that C is well-ordered, then
To 0,0 B = (T [0,0 B) 0,1 C is well-ordered, and we have shown that Fo is an OS.

Now in order to show that C is an well-ordered we use a second OS: Define k; ; :
T1 =, T; by: if a € To, ki,0(a) := {a}, ki,1(a) :=0, and if A = (le‘i(';), then kq o(4) :=
{a1,... ,an} UUGZ, ki0(4)), ki (A) == {A1,... ,Ap} and define C [1; D as before. Let
F1 = (T1,ki,1,=<', <, length). and for B C Tg F1[B] := (T1 [1,0 B, <1,<1,k,1,length).
If B is <-well-ordered, then F7[B] is now an ordinal system, and therefore C := Ty [1,0 B
is well-ordered and with this C' the above holds.

JFi is a system which internalizes what was before meta-induction. It is a relatively weak
OS which is the relativized extension of the OS for the Cantor normal form. Expanding
the OS we introduced in the last section we can get now more complex “matrices”, which
can be used by the first OS. As before, we will exhaust the strength of this concept (which

Ordinal Systems 17

will be called 2-OS) by using the hierarchy of extended Klammer symbols. In order to go
beyond this, we can iterate the step from OS to 2-OS once more and yield 3-O8S, 4-OS etc.
We are going to formalize in the following n-OS for arbitrary natural numbers n.

3.2 n-Ordinal Systems

In the example before we had as basic structures two ordinal structures F; := (T, <,
-<;-,k,-,j,1engthj) (= 0,1) together with functions k; 1—; : T; =, T1—;. It can be visualized
as follows:

(11, <1) (T3, <)

(Ty, <5)
U v
(T, <) (@ <h)
kg,l(w) =
{r.s} b2
kaa(w) = Fa, (T, <2)
{u, v} (Th, <4)
T S U U w

For simplicity assume To N'Ty = () and write <, <, length instead of <;, <}, length; and
write [; instead of [; ; as defined before.

In the example F; fulfilled all conditions of an OS except (OS 4). We used that, if
A C Ty, B C T, are well-ordered, then (Tg o 4) [1 B is <'-well-ordered. In order
to have that Fi[A] is an OS, we need as well that under the same conditions for A, B
(T1 o A) |1 B is well-ordered. Further we needed that (To [o 4) 1 (T1 [0 A) = To [o A
for all A C Ty. Only D needs to be fulfilled, which is equivalent to ki o[ko,1(a)] C ko,o(a).
In order to get that Fi[A] is an OS-structure, we need ki1 : Ty [o A =, T1 o A for
all A C Ty, i. e. kiglki1(a)] C kio(a). The generalization to n-ordinal systems is now
straight-forward and we get the following definition:

Definition 3.1 (a) An n-times iterated Ordinal-System-structure, in short n-OS-struc-
ture is a triple F = ((G;)i<n, (ki j)i,j<n, (length;)i<,) such that F; :=
(Gi, ki i, length;) are OS-structures and k; ; : T; —,, T; (4,5 < n).
In the following, when introduced as an n-OS, F will be always as above (where n
can be replaced by any natural number), F; = (Gi, ki), Gi = (Ti, <4, <}) and and
we will usually write ((G;), (ki,;),length;) instead of ((G;)i<n, (ki,j)i,j<n). Further we
assume T; are always disjoint and write <, <', length instead of <;, <}, length,.

(b) If F is an n-OS-structure as above, A C T;, B C T;, A [; B := AN kl_]l[B]

If B C Ty, then A [, B; := ANk [B;]. We write [ic;, lic; for 1155
and [_,. If F is an n + 1-OS-structure and A C Ty, then F[A] := ((Tit1 lo 4,
<it1, <ip1)icn—1, (Kiy1,5741)i50<n—1, (length; 1)icn1)). (More precisely we have
to restrict <iy1, <j; 1, kit1,5741 and length, ; to Tiyq o A.)

Ordinal Systems 18

(¢) An n-OS-structure F is an n-times iterated Ordinal System, in short n-OS, if for all
i,J,1 < n the following holds
(n—08S1) F; fulfill (OS 1), (OS 2) and (OS 3);
(’I’L - 0S8 2) ifl <j,4,j <n, then kj,l Oki’j - ki,l;
(n— 08 3) if A; C T; are <-well-ordered (i < n), I < n, then T} <, A; is <'"-well-
ordered.

(d) An n-OS F is well-ordered, if (T, <) is, and its order type is that of (T, <). It is
primitive recursive, if the involved sets are primitive recursive subsets of the natural
numbers, all functions, relations are primitive recursive and all properties except
of the well-ordering condition can be shown in primitive recursive arithmetic. It is
elementary, if additionally the well-ordering condition follows in PRA in the sense of
reducibility of transfinite induction in PRA.

(e) Two n-OS are isomorphic, if there is are bijections between the underlying sets, which
respect k; j, length;, <;, <} for all ¢,j < n.

We will need the following auxiliary definition:

Definition 3.2 (a) A relativized n-OS is a triple (F,T_1, <, (ki,—1)o<i<n) such that
F is an n-OS structure, (T_1,<) is a linearly ordered set, k; 1 : T; —, T_1,
for j > —1k; _1ok;; C k;_1 and such that F fulfills the conditions of an n-OS
except for condition(n — OS 3), which is replaced by: if A; C T; are <-well-ordered
(=1 <i<n), then Ty [7=!, A; is <'-well-ordered (0 <1 < n).

(b) If (F,T_1,ks—1) is a relativized n-OS, A C T_,, then F[A]_; is the relativization
of F to A defined in a straightforward way.

Well-ordering of a n + 1-OS reduces to the well-ordering of an n-OS as follows:
Lemma 3.3 Assume F is an n + 1-OS-structure.

(a) If A C To and F fulfills ((n + 1) — OS 2), then F[A] is an n-OS-structure which
fulfills (n — OS 2).

(b) If F is an n + 1-0S and A C Ty is <-well-ordered, then F[A] is an n-OS.
(c) If F is an 1-0OS, then F is an OS.
(d) n-0S are well-ordered.

(e) For elementary n-OS, (d) can be shown in KPw extended by the existence of n — 1
admissible sets ©1,... ,%,_1 sSuch that x1 € x5 € --- € Ty 1.

Proof: (a) We need only to show that ki1, 41 : Tiy1 [o A = Tj41 [o A, which follows by
kj+1,0 (ki+1’j+1 (a)) g ki+1,0(a). (b) easy. (C)Z trivial.

(d) We show by induction on n > 1: If F is an n-OS, then (T;, <) are well-ordered for
i <n. n=1: (c) and Theorem 2.2 (a). n — n + 1: We show first Fo is an OS. We have
only to show (OS 4). Assume A C T is <-well-ordered. Then F[A] is an n-OS, by IH it
follows that T; o A are well-ordered (i = 1,... ,n+1). Therefore (Tg [o A) [Ty (T; [0 A)
is <'-well-ordered. But (TO ro A) r?zl (T, ro A) =Ty rg A, since ki,O (kO,i (a)) - ko’o (a)
(e) We show by Meta-induction on n in KPw: If (F,T_y,<,k; 1) is a relativized n-OS,
A C T_, is well-ordered, and there are n —1 admissibles above {A, F,k; _1}, then T; [A
are <-well-ordered.

The case n = 1 follows as in Theorem 2.2 (b). In the step n — n + 1 let k be the least

Ordinal Systems 19

admissible ordinal such that {4, F,k; 1} € L. Define a, as in Lemma 2.2 (c) for a < k.
This can be done, by the same argument as in (d), using that F[A]_1[B] is an n-OS for
B C Ty <-well-ordered and that therefore, if B € L+, (T; [—1 A) o B are well-ordered
(i =1,...,n), where kT is the next admissible ordinal above k. If we replace now in the
proof of 2.2 (¢) C by {« € k | A<, increasing}, and the argument that there is no bijection
between a set and Ord by that there is no (Ag-definable) bijection between an element of a
and &, we conclude that {a, | @ € C} =T -1 A, To [_1 A is well-ordered and therefore
as well T; [_; A are well-ordered. 0O

Theorem 3.4 The strength of an n-OS (n > 0) is less than |ID,| = ¥q, (€q,+1) (¥ as in
[Buc92]).

Proof:
By Lemma 3.3 (e) and, since the strength of KPw extended by the existence of n — 1
admissibles is [ID,|. O

3.3 Constructive Well-ordering Proof.

We will give now a proof of Lemma 3.3 (e) which can be formalized even in constructive
theories like Martin-L&f’s type theory extended by an at most n times nested W-type or
intuitionistic ID,,:

Define inductively M;, Acc; C Ti: M; := Ty [j<i Accj, Acc; := Acc<(M;). Let Acc) :=
Ti lj<n Accj. (Acci, <), (Acc, <) are well-ordered. We show by induction on n — i
Acc; = M;. Assume i according to induction. We show Vs € Acci.s € Acc; by side-
induction on (Acc}, <'):

s € M;. Further Vr € M;(r < s — r € Acc;) by (side-side-)induction on length(r): Assume
r according to induction, » € M; Ar < s. If r < k;(s) C Acgy, it follows r € Acc;.
Otherwise 7 <' s. We show r € Acc}. If j < i, k; j(r) C Accy. ki i(r) <r < s, if j <,
k; ;[ks i (r)] C k; ;(r) C Acc;, therefore k; ;(r) C M; and by side-side-IH k; ;(r) C Acc;. For
i < j <n we show by side3-induction on j k; ;j(r) C Acc;. If 1 < j, kj[ki ;(r)] C ki (r) C
Ace; by IH, k; j(r) € M;, by main-TH k; j(r) C Accj. Therefore r € Accj, r <’ s, by
side-TH r € Acc;, and the side-side-induction and therefore as well the side-induction are
complete. Now follows by induction on length(s) Vs € M;.s € Acc;, Acc; = M; and the
main induction is finished. Now it follows To = My = Acco and we are done.

3.4 n-Ordinal Function Generators

As before we are going to define the ordinal systems which exhaust the strength of elemen-
tary n-ordinal systems. As there, we want as a side result as well to get functions defined
on arbitrary ordinals. Again of course this detour via ordinals is not necessary, one could
define easily the n-ordinal systems purely syntactically.

We need to represent the higher ordinal systems we used as ordinals and will do it in the
usual way by taking ordinals of higher number classes: Let Qq := 0, Q,, := X,,. Ordinals
in [Q, Qnt1] can be regarded as objects referring to ordinals in [0, Q,[and therefore be
considered as representatives of the higher OS. In a refined approach one could replace €,
by the n-th admissible ordinal Q¢ (starting with Q¢ := wk).

In the definition of (non-iterated) OFG we closed the sets C(a) under (k(b) C C(a)Ab <’
a) — eval(b) € C(a) with no restriction on b being in normal form. But one could easily
show that having the restriction of b being in normal form yields the same result, since, if
b is not in normal form, eval(b) € k(b). In the case of n-OFG, normal form will again mean
that k(b) C C;(b). However, this condition can be violated by having eval;(c) € k(b) such

Ordinal Systems 20

that j > i and k(c) N[Q;, Q;41[> eval(a). So we do no longer have a ¢ NF — eval(a) € k(a)
and the above argument does no longer go through. We will use the easiest way of dealing
with these problems: we add only eval(c) to C(a), if NF(¢) holds.

Definition 3.5 (a) An n-ordinal function generator, in short n-OFG is a quadruple
O = (Arg;, ki, li, <})i<n such that Arg, are classes (in set theory), k;,1; : Arg;, —,,
Ord, Va € Arg;.1;(a) C ki(a), and <} is a well-ordered relation on Arg; (i < n). We
assume in the following that Arg, are disjoint and omit therefore the index 4 in k, 1,
<'. Let in the following O be as above.

(b) Qo :=0, Quy1 == Vyyyy,

(c) An n-OFG is cardinality based, if for all B C Ord countable k; '(B) is countable
and for a € Arg;, 1;(a) C k;(a) N [Qs, Qi1[. In this case we define k; ;(a) :=k;i(a) N

[, Q1 [-
(d) If O as above is a cardinality based n-OFG, we define by main recursion on n — i
(¢ =1,...,n) by side-recursion on <’ ordinals for a € Arg; eval;(a) € Ord and subsets

Ci(a) C Ord by: C;(a) := U, Cl(a), where C?(a) := [0, 2;[U(U(ki(a)NQ4it1))Ul(a),
Cit(a) := Ci(a)u

Ui<j<nfeval;(b) | (] =i —b<'a),be Arg;, NF;(b),k(b) C Ci(a)} and
NF(b) :& NFJZb) & eval;(b) € C;(b).
eval;(a) := min{a | a ¢ C (@)}, eval() :=eval;(a) if a € Arg;, and
NF; := {a € Arg; | NF(a)}.

(e) For cardinality based n-OFG O we define Cl; C NF; simultaneously for all i < n
inductively defined by: if b € NF;, k(b) C U,, eval;[Cl;], then b € Cl;. Cl :=
Uicn Cli, Arg[Cl); := {a € Arg; | k(a) C eval[Cl]}, Arg[Cl] := ,.,, Arg[Cl];. Note
Cl; C Arg[Cl);.

Assuming, that eval; [NF; is injective, which will be shown later, we define length :
Arg[Cl] = N, k9, k] ; : Arg[Cl]; —)w Cl; simultaneously inductively by:

k9 5(b) = eval; '[ki; (B)] N Cly. X 5(b) := k2 () UU, <y K7 ;KD (D)].
length(b) := max(length[J k] ;(b)] U {—1}) + 1.

(f) Define for a,b € Arg; a < b:& a <; b:& eval;(a) < eval;(b).
Lemma 3.6 Let O be a cardinality based n-OFG.

(a) Ci(a) is the least set M such that C9(a) C M and such that, if b € Arg;, j = iAb<'a
or j > 1, and, if NF(b) and k(b) C M, then eval;(b) € M.

(b) C,(a) n Q’H—l C Ord.
Therefore especially eval;(a) = C;(a) N Qit1

(c) If a € Arg;, then eval;(a) € [, Qita].

(d) If a,b € NF;, then eval(a) < eval(h) & (a <’ bAk;i(a) < eval(h)) V eval(a) < ki ;(b).
Especially eval | NF; is injective and therefore length and k;’j are well-defined.

(e) If a € Arg[Cl];, I < j, then k; ;[k; ;(a)] Ck; ;(a).

(f) If a € Arg;, b € Cl; N Ci(a), 4,5,1 <n, i < j, then evallk},;(b)] C C;(a).
If a € Cl;, then evallk; ;(a)] C Ci(a).

9) F:=((Cli, <i)i<n, (K ;)i j<n, (length,)ic) is an n-ordinal system. We will call any
1,7 /%] [
n-08 structure isomorphic to F an n-OS based on O.

Ordinal Systems 21

Proof: (a) is clear, since k(a) is finite.

(b): Main induction on n — 4, Side Induction on a € Arg;: Assume assertion for b <’ a.
We show Va € CP(a) N Qiy1.a C Ci(a) by side-side-induction on n: n = 0: clear, since
li(a) C ki(a). n = n+1: If a € (CI'(a) \ CP(a)) N Qiy1, then o = eval;(h) with
k(b) C C?(a), by side-side-IH and, since 1(b) C k(b), Uk(d) N Qpt1) U1(d) C C;(a),
and by an immediate induction Ci(b) C C;(a) for all I € w, C;(b) C C;(a), therefore
o = min{y | 7 ¢ Ci()} C Ci(a).

(c¢) By an induction using the condition “cardinality based OFG” it follows that the car-
dinality of C?'(a) and therefore as well that of C;(a) is < Q;1. We conclude that there
exists an a < Q41 such that a ¢ C;(a).

(d) “« If a <' b, ki;(a) < eval(h), NF(a), it follows easily k(a) C C(a) C C(b),
eval;(a) € C(b) N Q11 = evaly(b). If eval(a) < k;;(b), follows by k; ;(b) < eval(b) the
assertion. “=" If the right side is false, the right side holds for eval;(b) < eval;(a) or a = b,
so the left side is false.

(e): easy induction on length(a).

(f): First assertion by induction on length(a), side-induction on length(b). Second asser-
tion: by k(a) C C;(a).

(): by the above (in order to show k; ;(a) < eval(a) use ki ;(a) C Ci(a)). O

Example 3.7 (a) Let
Argg := CNF; ([0, Q1[,]0,w]),
Argly = ONFL (0,041, 10, 0uia) | ONFL, (0,10, 2],
kh, 15 as k, 1 in Example 2.7 (d) (with CNF' replaced by CNFy),
k;+1(CNF;~+1(a1,ﬁ1,. .. ,am,ﬁm)) = {Oél,. . ,am,ﬁl,. .. ;ﬁm};

ifm>1lor B, >1
I, (CNF., (a1, Br, - - s, I m =S
z+1(H—l(al 61 (e770) ﬁm)) @ otherwise.

(|Argi|, ki, 15, < Arg;) is a cardinality based n-OFG such that

evalg(CNFg(a1,n1 ... ,Qm,Nim)) = w®ng + -+ + wamnm,
evaliy1 (CNFiy (a1, B ... s 0m, Bm)) = Q5L B + -+ + Q3 Brm.

(b) Let S;, k! be defined as in Example 2.7 (i), but with the restriction to ordinals
< Q41 always. Let Argy, ki, 1 be as before, F; := Arg; Q¢.(S), ki | Arg; = ki,
1; | Arg; =1, ki(¢,(a)) == k!(a), Li(¢,(a)) == kl(a) N [Q,,Q,+1[for a € |S;|. The
resulting cardinality based n-OFG can be seen as a generalization of the extended
Schiitte Klammer symbols.

(c) Let 7 & — Ord, f5(a) =, fiiy (§5m) == QfF gy - 4+ QT)8, 1 we
restrict now ¢.(S') to ¢,(A) such that fl (4) € Cy,,,, (f(A)), where Cpy,, (a) is the
C-set for the function vq,,, asin [Buc92], but with 0, 4, w" as basic function, we get
eval;(¥,(A4)) = Ya.,, (fi*(4)). Again, with this last modification we get that in the
resultmg ordinal notation system <; and <; coincide for terms of the form ¢ (A4).

Remark 3.8 (a) The straightforward generalization of Lemma 2.8 holds as well for car-
dinality based n-OFG with the exception that we can conclude that a < b is primitive
recursive only for a € T, b € T'. Further under the assumptions of this generalized
lemma the function corresponding to k;-,j, which takes the place of k; ; in the resulting
n-08, is primitive recursive.

(b) In order to replace Q; by Q¢ (the i th admissible, starting with Qo = 0, Q1 = wk)
we need some additional conditions, which essentially express that we have terms as
in (a) for the higher number classes and arguments, but based on ordinals in [0, Q*°[.

Ordinal Systems 22

They can be developed in a similar way as the conditions in (a), but because of lack
of space, we omit them here.

Proof of (a): Asin Lemma 2.8. Only the primitive recursive determination of 7 < s follows
as follows: Note that Ei,j corresponds to k? ;. Let for s € T} C/(s) := {r € T; | eval(f(r)) €
C;i(f(s))}. We determine for s € T;, r € T; such that length(r), length(s) < length(t) by
recursion on length(r) primitive recursively whether r € C/(s): If j < i, r € CI(s). If
j=d,reCis) &r ki) V(@ < sAVl < nky(r) C CYs)) and, if i < j,
re Ci(s) & VI < nk;;(r) C Cl(s). Then in case i = j follows r < s < r € Ci(s) and
t e T, o NF(f(t) © Vj <nk;;(t) CCi(t). O

Lemma 3.9 (a) For the OFG in the Examples 3.7, there exists an elementary OS rep-
resented by them.

(b) The supremum of the strength of n-0S is |ID,|.

Proof: (a) as for Lemma 2.9, (b) as for Theorem 2.11. O

4 Transfinitely Iterated Ordinal Systems
4.1 Definition of 0-OS

The naive way of extending the approach used in the last section to the transfinite does not
work. In the proof of well-ordering of n-OS we always reduced well-ordering of an n-OS
Fn to Fu[A] for well-ordered sets A C To. If we try this with n replaced by w, we will
reduce the well-ordering of an w-OS to the well-ordering of an w-OS, which does not work.
In the proof using the accessibility predicate we had to use induction by n — i instead of 7,
and this induction does not work if n is replaced by w.

Proof theoretically, when moving to at least w-iterated OS, we go beyond the strength
of TI} — CA, so IT}-arguments, which we used in the intuitive well-ordering proofs there,
do no longer work.

Our proof proceeded in some sense by induction on the lexicographic ordering of
(To,T4,...,Th—1). Whereas the lexicographic ordering on tuples of fixed length is well-
ordered, if the underlying orderings are, this does no longer hold for tuples of arbitrary
length. However, for sequences descending along some well-ordering this holds. The so-
lution for our problem is now the following: Introduce a function level : T, — L, where
(L,<y) is an ordering. TLet T5' (T;!) be the restriction of T, to those a such that
level, (a) <1 (level,(a) <1 I). Now let Tgl refer to T;¥ only (if 4 < v), i.e. level, [k, (t)]
<, level, () for p < v, and assume T5! C Ty, i.e. r <, s = level,(r) <L, level,(s). Then
we will proceed by working on sequences T5/', T5%, ... such that Iy >y lp > ---.

We need now that (L, <r,) is a well-ordering. But to demand this directly would be
a too strong requirement. What suffices is, to have functions k, : L — T, such that, if
we define L [,«, B, as usual, but referring to Eu: well-ordering of L [,«, B, reduces to
well-ordering of B,,. We only need additionally to demand that, if we relativize the sets of
terms and the levels to some set B, the levels of the terms in the relativized sets are in the
relativized set of levels, i.e. Va € T, .k, (level(a)) C ky ,(a).

A last necessary modification is that, since we are no longer introducing first the nth
OS completely, then the (n — 1)th OS completely, etc., we need to demand that there is
a descend in length when moving to higher components, i.e. v > u — lengthlk, ,(r)] <
length(r).

Ordinal Systems 23

Apart from the conditions stated before we need the (naive) generalization of the con-
ditions for n-OS, which will include that for every a only for finitely many v k, . (a) # 0.
We can now (although for the concrete examples this is not necessary, but it might be
useful in the future) weaken the condition (OS 2) in the sense that if r <, s, then one new
alternative is that level, (r) <1, level,(s).

Assumption 4.1 In the following we assume that some well-ordering (X, <) of order type
o > 0, where o is an ordinal below the Bachmann-Howard ordinal, is given. Let 0 = min X
We will identify (¥, <) with o, writing p < o for p € ¥, Q, for Qz,, where f : £ — o
is the order isomorphism, etc.. In the following we assume p,v, £ < o. (Note that we use
the same symbol < as for the ordering on ordinals).

Definition 4.2 (a) A o-times iterated Ordinal-System-structure relative to (X,<), in
short o-OS-structure is a quadruple
‘7: = ((glt)) (ku,v)a (La '<L) (levelu)a (kH))JIengthp)

= ((Gu)u<o, Kpw)pw<o, (L, <L, (levely)uco, (ku)p<o), (length) u<q)
such that, with G, = (T,,<,,<},) and F,, := (G, ky u,length,), it holds that F,

are OS-structures, k,, : T, =, T,, (L, <r) is an ordering, Eu :L =, T, and
level, : T, =+ L (p,v € X).

We will always assume that T, are disjoint and L is disjoint from T, and write
therefore <, </, length, level instead of <, <], length,,, level, and < instead of <r..
Let in the following F be as above.

(b) If F is a 0-OS-structure as above, A C T,, BCT,, A[, B:= AN k;,},[B]. If
B, CT, forallv < ¢ then A [,c¢ B, := AN, k. L[B,]. In the same way we

define for ACL A [, B, A [,«<¢ By, referring to k, instead of k, .

(¢) A o-OS-structure as above is a o-times iterated Ordinal System relative to X, in short
o-08, if for all p,v,€ < o and r,s € T, the following holds
(6—-0S1) kyu(r)=<mn;

() 1 <v —lengthlk, ,(r)] < length(r);

() ifr <s, thenr <k, ,(s) Vr <'sVlevel(r) < level(s);

() if&<wv,thenk, ok, , Ck,g;

(6 —085) kye(r)=0for almost all & < o3

() if p < v, then levelk, , (r)] < level(r);

() if r < s, then level(r) < level(s);

() K (level(r)) € ky (r);

() if A C T, are <-well-ordered (£ < 0), then (T, [,<s Ay, <') and

(L lp<o Ay, <) are well-ordered, too.

(d) A 0-OS F is well-ordered, if (To, <) is (where 0 = min. ¥), and its order type is that
of (To,<). It is primitive recursive, if the involved sets (including ¥) are primitive
recursive subsets of the natural numbers (parameterized in X, i. e. ¢t € T, is primitive
recursive in ¢ and p), all functions, relations (including <) are primitive recursive,
the finitely many v such that k., (a) # @ can be computed primitive recursively from
i, v, a, and all properties (including linearity of < and that the chosen v such that
ky,.(a) # 0 are the only ones) except of the well-ordering condition can be shown
in primitive recursive arithmetic. It is elementary, if additionally the well-ordering
condition follows in PRA in the sense of reducibility of transfinite induction in PRA
to transfinite induction on {(u,a) | p < o Aa € T} with the lexicographic ordering
(m0) < (b)) e pu<vVv(p=vAa<,b).

Ordinal Systems 24

(e) “Two 0-08 are isomorphic” is defined as for n-OS.

Comparison with n-OS. n-OS have now been defined twice, since o can be finite. So
more precisely we have to distinguish between “finite n-OS” and “transfinite n-OS”. How-
ever, one can see easily that a finite n-OS F can be considered as a special cases of a transfi-
nite n-OS. Let ¥ := {0,... ,n—1}, < be the usual orderingon ¥, L := {n—1,n—2,...,0},
ki(j) :==0,i < j 1= j < i, level(r) := i for r € T;. Replace length;(r) by length!(r) :=
max{length;(r)} U U;>; length’;[k;,;(r)] (defined by recursion on n — i side-recursion on
length(r)). One can easily see, that, if we extend the structure by the above and replace
length by length’, we get a transfinite n-OS. This illustrates again why a naive generaliza-
tion of n-OS to w-0OS does not work: We get the reverse ordering of the natural numbers,
which is not well-ordered.

4.2 Constructive Well-ordering Proof.
Theorem 4.3 (a) Every o-0S is well-ordered.

(b) Every elementary o-OS has order type below |ID,| = 9(eq, +1).

Proof: (a): Define by recursion on p € ¥ inductively M,,, Acc, C T,:

M, :=T, lv<p Accy, Accy := Acc(My,).

Acc), :=T) <o Accy, Accp, :=L [y<oace, -

Further, if L € L, A C T, A% := {z € A|level(z) < I}, similarly we define A=!.
(Acey, <), (Acc,,<") and (Accy,, <) are well-ordered.

We show by induction on I € Accy,

Vi € Acep, Vp < o. M3 C Acey,

and assume [according to induction.
We show 2
Vs € Acc,~ .s € Acc,

by (side-)induction on (Acc),, <') and assume s according to induction:

s € M,. We define C¥(s) C T, (v <o):

For v < pu, C¥(s) := Acc,,.

Ch(s):={reM,|r <s}.

If u<w, C¥(s) :={r € T, |level(r) < level(s) AVE < vk, ¢(r) C Cé(s)}.

Note that by (o-OS 4) for v > pu

CY(s) = {r € T, | level(r) < level(s) AVE < p(kye(r) C Acce) Ak, () < SA
Vé(p < & < v — levellk, ¢(r)] < level(s))}.

The last equation allows to define C¥(s) in |ID,| as needed in (b).

We prove

Yo(u < v — V€ < 0k, [CY(s)] C C4(s)) (%)

by induction on &:

For ¢ < v this follows by the definition of C¥(s). Otherwise for &' < &, ke ¢/[ky,e[CY(s)]] C
k,.¢[C¥(s)] C C¢ (s) by TH. Let r € C¥(s). In case u = v = & we have k, ¢(r) < r < s and,
if p < &, it follows level[k, ¢ (r)] < level(r) < level(s), and one of the < is actually <, so in
both cases we get the assertion.

We show by (side-side-)induction on length(r) simultaneously for all v

Yv.Vr € C”(s).r € Acc,

Ordinal Systems 25

and assume r according to induction, r € C¥(s). If v < pu, r € Acc,. Assume p < v. By
side-side-TH and (x) follows for all &, k, ¢(r) C Acce and Eg(level(r)) C kye(r) C Acce,
r € Accl,, level(r) € Accy.
Ifp=v,7 <51 =<k,u(s) CAccy, 7 € My, r € Accy or r <' s, r € Acc),, level(r) <
level(s) <1, and by side-IH r € Acc,, or level(r) < level(s) and as in the next case “u < v”
follows the assertion.
If 4 < v, level(r) < level(s) < 1, level(r) € Accy,, r € M,,, by main IH r € Acc,.
Now follows Vr € M,(r < s = r € Acc,), and, since s € M, s € Acc(M,) = Acc,, and
the side-induction is complete.
Now by induction on length(s) it follows Vs € M3'.s € Acc,: If s € M3 we first show
Vvk,,(s) C Acc,. For v < p this follows by assumption. For p < v we show this
by induction on v. With the usual argument we get using the IH k, ,(s) € M3, and
therefore by IH k, ,(s) C Acc,. Therefore s € Acc), and by the proven statement of the
side-induction it follows s € Acc,. Therefore the main-TH is completed.
Now follows by induction on length(r), simultaneously for all u, Vr € T,(r € Acc, A
level(r) € Acc}): By IH k,,(r) C Acc,, k,(level(r)) C Acc,, level(r) € Accl, r €
M) e Ace,.
Therefore it follows T}, is well-ordered and we are done.

(b) The proof of (a) can be carried out in ID,. (Note, that transfinite induction over
o is one of the axioms of ID,). O

4.3 0-0Ordinal Function Generators

The ordinal function generators referring to o-OS are now defined similarly as for n-OFG.
The only difference is that in the definition of C,(a) we will refer only to b € Arg, (v > p)
such that level, (b) < level,(a), which is the obvious adaption of the principles for o-OS to
OFG.

Definition 4.4 (a) A o-ordinal function genmerator, in short o-OFG is a triple O :=
(A, L,k), where A = (Arg,, k,,1,, <}, level,) <5, £ = (L, <), Arg, are classes (in
set theory), ky,1, : Arg, —, Ord, level, : Arg, — L, Ya € Arg, 1,(a) C ky(a), <,

is a well-ordered relation on Arg,, Va,b € Arg,(a <}, b — level,(a) <], level, (D)), £

is a well-ordering, k : £ —,, Ord, Va € Arg, .E[level,, (a)] C ky(a).
We assume in the following that Arg, and L are disjoint and omit therefore the index
pin k, 1, <’ level and the index L in <’. Let O always be as above.

(b) Qo :=0, Q, := N, otherwise.

(c) A 0-OFG is cardinality based, if for all B C Ord countable k;;*(B) is countable,
Lu(a) C ku(a)N[Qp, Yy and Va € Arg, Vv > plevel,[k(a)N[Qy, Qi1 [] < level,(a).
In this case we define for a € Arg,, k. (a) := k(a) N [Q,,Q,41[and for a € L

Kk, (a) :=k(a) N [Q, Qia].

(d) If O as above is a cardinality based 0-OFG, we define for a € Arg,, simultaneously for
all u < o by recursion on level,(a) € L, side-recursion on (<', Arg,,), eval,(a) € Ord
and subsets C,(a) C Ord by: C,(a) := (U;_, C}i(a) where
Cﬂ(a) := [0, Qu[U(U(ku(a) N Qi) Ulu(a),

Cil(a) :== CL(a)U
U,>,feval,(b) [b € Arg,, (v = p A D <" a Alevel(b) = level(a))V
(level(b) < level(a))) Ak(b) C CL(a) ANF,(b)},

Ordinal Systems 26

where NF, (b) :& k(b) C C,(b).
eval, (a) := min{a | a ¢ C,(a)}.

(e) Let O be a cardinality based o-OFG. Referring to the definition of NF(b) as above
and assuming that eval [NF, is injective, which will be shown later, NF,, Cl,, Cl,
Arg[Cl],, and Arg[Cl] are defined as in Definition 3.5.

Further we define k9, k!, , : Arg[C1], =, Cl, by

K5, ,(0) := eval, [k, (0)] N Cly, K, , (D) := K5, ,(0) U U, e K, [KD, (D)),

length as in Definition 3.5 and level), : Cl, — L by level),(r) := max{level,(r)} U

levell, [k, . (r)]-
(f) For r,s € Arg,, we define r < s :& r <, s 1 eval,(r) < eval,(s).
Lemma 4.5 Let O be a cardinality based o-OFG.
(a) Lemma 3.6 (a) - (f) holds mutatis mutandis.

() F = ((Cly, <p)u<o> K,) uw<o, (ength;)icn, (L, <v), (level,) <o, (length ,),) is a
o-ordinal system. We will call any o-OS-structure isomorphic to F a o-ordinal sys-
tem based on O.

Proof: (a): We write (a).(x) for the assertion corresponding to Lemma 3.6(x). (a).(a):
clear. (a).(b): Similarly as in Lemma 3.6 (b). In the argument, which showed there C!(b) C
Ci(a) and in the new context now shows C!(b) C Cy(a), we use that b < a, therefore
level(b) < level(a). (a).(c): as before; (a).(d): as before, using a <’ b — level(a) < level(b);
(a).(e): as before easy induction on length(a); (a).(f): as before.

(b): The only problem are (o-OS 6), (0-OS 7): We show for r,s € Cl, that if eval, () €
C,(s), then, in case v = p, level, (r) < leveIL(s), and, in case v > p, level! (r) < level 1 (8)s
by main induction on length(s), side-induction on length(r), which is immediate. O

Example 4.6 (a) The straight forward generalization of Example 3.7 (a) together with
L := {0}, k,(0) := 0, level,(a) := 0 yields a cardinality based -OFG for the Cantor
normal form with basis w (¢ = 0) and Q, (1 > 0).

(b) Example 3.7 (b) generalizes again to a cardinality based o-OFG with L := §; as in
Example 2.7 (i), k(a) := k!(a), level(¥], (£)) := 0 (where 0 := () € L), level(ﬂl (A)) :=
(A) (only in case | = 0 we have to modify L in order to make it disjoint from T,,).
The resulting system can be seen as a further generalization of the extended Schiitte
Klammer symbols. Note that, whereas for n-OS for all terms ¢ = ¢)(A) € T it holds
t € T (in the fixed point free version), this is no longer the case here.

(c) If fL is defined similarly and we apply a similar restriction as in Example 3.7 (c),
then we get eval, (Qu (a)) = tq,.,. (fL(a)) with ¢q,,, the usual ¢-function based on
0, +, w.

Remark 4.7 Assume the assumptions of the straight forward generalization of Lemma
2.8 to cardinality based o-OFG. Additionally assume sets L C o cir corresponding
to L such that L 4s primitive recursive, a function f : L > Land primitive recursive

functions ku 3 T, levelﬂ 1Ty — L corresponding to k“, level,,. Define forl,l' € L,
I < l' :& f(l) <1, f(I'). Assume the adaption of condition (b) of Lemma 2.8 for the

new structure and (a), (c) - (f) for E, k instead of T, E, where appropriate, and omitting
NF. E.g. the adaption of condition (d) to L reads: If A, C T), f [A, is injective

Ordinal Systems 27

(u<o) then f | {t €L |Vu< a.ﬂu(t) C A,} is injective. Then the conclusion of this
lemma generalized to our setting holds as well in the weakened version of Remark 3.8, and
additionally L, L', <1, are primitive recursive.

Proof: As before. O

Theorem 4.8 (a) For every OFG in the Example 4.6 there exists an elementary OS
based on it.

(b) The supremum of the strength of o-0S is |ID,|.

Proof: As for Theorem 3.9. 0O

References

[BS88]

[Buc86)

[Buc92]

[Gir]
[Gir80]

[Gir81]
[Poh8o)]
[RW93]
[Sch54]
[Sch77]

[Sei94]

[Set93]

W. Buchholz and K. Schiitte. Proof Theory of Impredicative Subsystems of Anal-
ysis. Bibliopolis, Naples, 1988.

W. Buchholz. A new system of proof-theoretic ordinal functions. Ann. Pure a.
Appl. Logic, 32:195 — 207, 1986.

W. Buchholz. A simplified version of local predicativity. In P. Aczel, H. Simmons,
and S. S. Wainer, editors, Proof Theory. A selection of papers from the Leeds
Proof Theory Programme 1990, pages 115 — 147, Cambridge, 1992. Cambridge
University Press.

J.-Y. Girard. Proof theory and logical complexity. Handwritten notes, 1135 pp.

J.-Y. Girard. Proof theoretic investigations of inductive definitions I. In E. En-
geler, H. Laeuchli, and V. Strassen, editors, Logic & Algorithms. An international
symposium held in honour of Ernst Specker, pages 201 — 236, Zurich, Switzerland,
1980.

J.-Y. Girard. I}-Logic, part 1: Dilators. Ann. Pure a. Appl. Logic, 21:75 — 219,
1981.

W. Pohlers. Proof Theory. An introduction, volume 1407 of Springer Lecture
Notes in Mathematics. Springer, Berlin, Heidelberg, New York, 1989.

Michael Rathjen and Andreas Weiermann. Proof-theoretic investigations on
Kruskal’s theorem. Annals of Pure and Applied Logic, 60:49-88, 1993.

K. Schiitte. Kennzeichnung von Ordinalzahlen durch rekursiv definierte Funktio-
nen. Math. Ann., 127:16-32, 1954.

K. Schiitte. Proof Theory. Springer, Berlin, Heidelberg, New York, 1977.

M. Seisenberger. Das Ordinalzahlbezeichnungssystem OT(¥) und seine Verwen-
dung im Beweis von Kruskals Satz. Master’s thesis, Universitit Miinchen, March
1994.

A. Setzer. Proof theoretical strength of Martin-Lof Type Theory with W-type and
one universe. PhD thesis, Universitdt Miinchen, 1993.

Ordinal Systems 28

[Set98a] A. Setzer. An introduction to well-ordering proofs in Martin-L6f’s type theory.
To appear in: G. Sambin, J. Smith (Eds.), Twenty-five years of constructive type
theory, Oxford University Press, 1998.

[Set98b] A. Setzer. Well-ordering proofs for Martin-Lof Type Theory. Ann. Pure App.
Logic, 92:113 — 159, 1998.

