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Abstract

We introduce an extension of Martin-Löf type theory, which we con-
jecture to have the same proof theoretic strength as Kripke-Platek set
theory (KP) extended by one Π3-reflecting ordinal and finitely many ad-
missibles above it. That would mean that the proof theoretic strength of
this type theory is substantially bigger than that of any previous predica-
tively justified extensions of Martin-Löf type theory, including the Mahlo
universe. The universe is constructed following the principles of ordinal
notation systems of strength KP plus one Π3-reflecting ordinal, therefore
extracting key ideas of these notation systems. We introduce a model
for this type theory, and determine an upper bound for its proof theo-
retic strength. This article only presents the main ideas of this model
construction, full details will be given in a future article.

1 Introduction

This article is a step in a research programme of the author with the goal of
introducing proof theoretically as strong as possible extensions of Martin-Löf
type theory, which still can be regarded as predicatively justified. (However,
because of our lack of expertise in philosophy, we refrain from giving any mean-
ing explanations.) We have three main reasons for following such a research
programme:

(1) We hope that this approach gives more insights into the development of
ordinal theoretic proof theory. Results in the area of proof theory of
impredicative theories are often regarded as very difficult to understand
by non-specialists. The theories developed in this programme use cru-
cial ideas from proof theory, while – as we hope – being much easier
understandable by a more general audience. We hope this allows more
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researchers to understand the insights gained by recent proof theoretic
developments.

(2) This research can be seen as part of a revised Hilbert’s programme. The
goal of Hilbert’s original programme was to prove the consistency of the-
ories for formalising mathematical proofs using finitary methods. By
Gödel’s second incompleteness theorem we know that such a programme
cannot be carried out, except for very weak theories. In ordinal theoretic
proof theory the consistency of theories of increasing strength is reduced
to the well-foundedness of ordinal notation systems. Using strong exten-
sions of Martin-Löf type theory one is able to prove the well-foundedness of
such ordinal notation systems and therefore the consistency of the original
theories. This provides a reduction of the consistency of classical theories
(mainly fragments of second order logic and fragments of set theory) to
constructive theories, which have a philosophical argument for the validity
of their theorems. Therefore extensions of Martin-Löf type theory can be
regarded as a substitute for Hilbert’s finitary methods.

(3) We hope that by developing such extensions we will discover new data
structures. One example of this was the discovery of the data type of
inductive-recursive definitions ([16, 17, 18, 19]), which was strongly influ-
enced by the Mahlo universe, a first step in this proof theoretic programme.
Variants of this data type can be used in the area of generic programming
([12, 15]).

In the article [50], we have introduced type theories of strength Kripke-Platek
set theory extended by one recursively inaccessible, one recursively hyperinac-
cessible and one recursively Mahlo ordinal, respectively, and finitely many ad-
missibles above those ordinals. The type theories considered were Martin-Löf
type theory with W-type and one universe, one super universe and one Mahlo
universe, respectively. We have as well given basic model constructions in the
corresponding extensions of Kripke-Platek set theory, in order to obtain an up-
per bound for their proof theoretic strength. (For the reader not familiar with
Kripke-Platek set theory it suffices to understand these constructions as model
constructions in which one tries to use as little strength of the theory, in which
the models are developed, as possible.) Lower bounds for the proof theoretic
strength of these theories have been shown in [39, 43, 46].

In this article we introduce a new universe construction into Martin-Löf type
theory of expected strength Kripke-Platek set theory plus one Π3-reflecting or-
dinal and finitely many admissibles above it. At the time of writing we have a
sketch of a well-ordering proof, full details have still to be worked out. If this
result is proven this will show that the strength of this universe goes substan-
tially beyond that of the Mahlo universe. The step from Mahlo to Π3-reflection
is very natural and follows recent developments in proof theory.

After an analysis of (∆1
2 − CA) + (BI) and, equivalently, Kripke Platek set

theory plus one recursively inaccessible had been carried out, the next step in
the development of proof theory was an analysis of Kripke-Platek set theory
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plus one Mahlo ordinal independently by Rathjen and Arai (see [31, 32, 34] and
[2, 3, 7, 9])1. Then both researchers analysed Kripke-Platek set theory plus one
Π3-reflecting ordinal ([33, 35] and [2, 3, 6, 10]), and in this article we develop a
type theory which we expect to have essentially the same strength. Then later in
proof theory theories of strength ΠN -reflection (Arai only), Π1

1-reflection (Arai
only), stability, (Π1

2−CA)+(BI) and (∆1
3−CA)−(BI) (Arai only) were analysed

(see [30, 36, 37] and [2, 4, 5]; one should note that at present Rathjen’s analysis
of full (Π1

2 − CA) + (BI) and Arai’s analysis of theories beyond Π3-reflection
exist only in draft form or got stuck in the referee process). We hope to present
soon extensions of Martin-Löf type theory which follow further steps in the
development of proof theory (although at present (Π1

2 − CA) is out of reach).

Relationship to the article [50]. This article is a follow-up article of the
article [50], in which we introduced type theories with one universe, one super
universe, and one Mahlo universe. We gave there as well the basic model con-
structions, without carrying out all details. Similarly, in this article we will not
carry out the model construction in full detail. The main goal of this article is to
introduce the Π3-reflecting universe and give a sketch of the model construction
– full details will follow in a future article. This article might in fact be more
accessible to a general audience than the more detailed model construction to
be introduced later.

The model will be carried out in Kripke-Platek set theory plus one Π3-
reflecting ordinal and finitely many admissibles above it. Therefore we obtain
an upper bound for the proof-theoretic strength of this universe construction.
In order to obtain a lower bound for its strength we plan to extend our approach
to well-ordering proofs for ordinal notation systems based on ordinal systems
([44, 47, 49]) to Π3-reflection, which can then be carried out using the Π3-
reflecting universe.

Notations. We will frequently make use of notations and some basic lemmata
introduced in [50], but will repeat the most important ones briefly, so that the
reader, who is not interested in all details, can read it without having to go
through the article [50] first.

Content. The structure of this article is as follows: In Section 2 we start
by discussing in Subsection 2.1, why a näıve approach for developing a Π3-
reflecting universe doesn’t work. One is tempted to suggest such an approach
since the previous universe constructions were based on reflections of type-0 and
type-1 functionals, therefore one expects that Π3-reflection should be based on
reflections of type-2 functionals – we show why this approach doesn’t work out.

1Both researchers have quite independent approaches and have achieved their results at
different times. If one takes the dates of publication, Rathjen’s results were obtained much
earlier – however many results of Arai have been around for long time in the form of notes,
which makes it difficult to determine who obtained which results first.
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Then we introduce in Subsect. 2.2 the autonomous Mahlo universe which cor-
responds to the existence of an admissible α which is hyper-α-Mahlo. We first
introduce hyper-Mahlo and hyperα-Mahlo universes and discuss how to over-
come the minor complications arising there. Then we introduce the autonomous
Mahlo universe, which is the main intermediate step towards the Π3-reflecting
universe.

In Section 3 we first motivate the Π3-reflecting universe (Subsect. 3.1), and
then introduce in Subsect. 3.2 the Π3-reflecting universe in detail.

Finally, in Sect. 4 we introduce a model for the Π3-reflecting universe and
give a sketch of its correctness. This way we determine an upper bound for its
proof-theoretic strength. We hope to be able soon to present the corresponding
well-ordering proof, which shows that this bound is sharp.

Related work. As pointed out in Subsect. 2.1, G. Jäger and T. Strahm have
introduced in [23] a Π3-reflecting universe in the context of Feferman’s systems of
explicit mathematics. Because this is a theory which allows partial applications,
they can develop their approach by using reflection of type-2 functionals, which
is much simpler than the present construction, but – as we will demonstrate –
not possible in a type theoretic setting. They considered only a proof theoretic
analysis in a Meta-predicative setting (translated to type theory this means
that the W-type is omitted), so the proof theoretic ordinal is well below the
Bachmann-Howard ordinal.

This work is heavily inspired by M. Rathjen’s and T. Arai’s proof theoretic
analysis of Π3-reflection ([33, 35] and [2, 3, 6, 10]) – the Π3-reflecting universe
mimics the ordinal notation systems of that strength. Without their work it
would have been difficult to discover this model construction.

Acknowledgements. This research benefited very much from intensive dis-
cussions with both T. Arai and M. Rathjen, whose research we deeply admire.

2 The Autonomous Mahlo Universe

2.1 Problems with a Näıve Approach Towards Π3-Reflection

If one considers the steps taking from the simple universe (corresponding to one
recursively inaccessible) via a super universe to the Mahlo universe, one observes
that a simple universe is a universe closed only under the universe constructions;
a super universe (V, TV) contains additionally for every a : IFam(V, TV)2 a
universe containing a; a Mahlo universe (V, TV) contains additionally for every
f : IFam(V, TV) → IFam(V, TV) a subuniverse closed under f . If we consider no
reflection as reflection of type-(−1) functionals, we see that we have introduced
universes reflecting type-(−1), type-0 and type-1 functionals.

2IFam(U, T ) := (x : U) × (T (x) → U), the set of internal families of sets in (V,TV); see
Def. 4.1 (b) of [50].
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One might expect that the next step is to form a universe (V, TV) which
reflects type-2 functionals, i.e. a universe such that for every

F : (IFam(V, TV) → IFam(V, TV)) → IFam(V, TV)

there is a subuniverse closed under F . One might experiment with the precise
type of F , e.g. replacing it by the type of functions, mapping families of functions
from IFam(V, TV) into itself to other such families, i.e.

IFam′(V, TV, IFam(V, TV) → IFam(V, TV))
→ IFam′(V, TV, IFam(V, TV) → IFam(V, TV)) ,

where IFam′(A, B, C) := (a : A) × (B(a) → C). However, the general form of
being essentially a type-2 functional remains the same. The problem is that
it is not possible to define what it means to form a universe closed under F .
When forming a universe, containing a family of sets, we simply add codes
for those elements to it. When forming a recursive subuniverse (U, TU)3 of a
universe (V, TV) closed under a function f : IFam(V, TV) → IFam(V, TV), one
uses the fact that every element a : IFam(U, TU) can be lifted to an element
of IFam(V, TV). Then f can be applied, and all one needs is to form codes
for the resulting elements in U. If one however takes an F : (IFam(V, TV) →
IFam(V, TV)) → IFam(V, TV), we have the problem that we can no longer
in general lift a function f : IFam(U, TU) → IFam(U, TU) to a function f ′ :
IFam(V, TV) → IFam(V, TV). But such an f ′ would be needed in order to be
able to apply F to it and to obtain therefore an element of IFam(V, TV), for
which we then introduce a code in IFam(U, TU).

In a setting with partiality such as Feferman’s theory of explicit mathematics
G. Jäger and T. Strahm have shown in [23] how to overcome this problem. There
one uses the fact that the F as above can always be applied to f . (One should
note that the type of F used in [23] is slightly different – we try to stay in
this discussion as close as possible to type theory.) The result might be defined
or not. Now for the Π3-reflecting universe one demands that F (f) is a defined
element of IFam(V, TV) for any f : IFam(U, TU) → IFam(U, TU). The resulting
elements of V are then added to U. This gives a very short formulation of a
Π3-reflecting universe.

There is a drawback, namely that one needs to assume that certain “ghost”
elements enter U, which makes the theory not as explicit as one would like to
have it in a constructive framework. What happens is that if one looks at F as
being a continuous function, one finds out that in order to evaluate F on a given

3See Subsect. 2.5 of [50], paragraph “Type theories with several universes” for details
on the notions of recursive vs. inductive subuniverses. We repeat this briefly: A recursive
subuniverse of a universe (V,TV) is given by a set U together with a recursively defined

function bTU : U → V, which determines for every a : U the element in V it corresponds
to. Then one defines TU(a) := TV(bTU(a)). So for every element a : U we need to have an
element of V already defined. In an inductive universe, one has a recursively defined function
TU : U → Set. bTU : U → V is a constructor of V, with equality rule TV(bTU(x)) = TU(x).
So one can define new elements a of U, whether they already correspond to elements in V or
not, as long as one defines TU(a).
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function f , f is not used as a whole, but needs to be evaluated only for certain
elements of V (the choice of values depends on f). Indirectly the reflection of
F demands now that if we have f : IFam(U, TU) → IFam(U, TU), all elements
needed in order to obtain a defined value for F (f) must have already been
elements of U. So when defining a Π3-reflecting universe, these elements need
to be elements of U, but are not constructed explicitly.

We consider here an example: Consider for a fixed element a : IFam(V, TV)

the functional F := λf.〈π0(f(a)), (y)N̂1〉 : (IFam(V, TV) → IFam(V, TV)) →
IFam(V, TV). That (U, TU) is closed under F means that any function f :
IFam(U, TU) → IFam(U, TU) can be applied to a as well. Now, assume a is not
an element of IFam(U, TU). Then define f which checks whether the argument
is equal to a. If yes it returns an element which doesn’t belong to any universe,
say 17. Otherwise it returns 〈N̂1, (x)N̂1〉.4 f : IFam(U, TU) → IFam(U, TU),
but F (f) returns an element which cannot be in U. So we are forced to add a

to IFam(U, TU).
It turns out that in proof theory there is a similar problem as in type the-

ory: the collapsing technique allows only to deal with Π2-reflections, or more
generally with Π2-statements. When M. Rathjen in his famous paper [35] (see
as well [33]) analysed Π3-reflection5, he had to decompose Π3-reflection into a
sequence of Π2-steps. This paper was the main inspiration for our Π3-reflecting
universe, which we will present in the following – what we will do is to replace
type-2 functionals (as the F above) by a combination of type-1 functionals.

2.2 Steps Towards the Autonomous Mahlo Universe

We will introduce the Π3-reflecting universe in several steps: First we consider
the formulation of a hyper-Mahlo universe. Then we consider hyperα-Mahlo
universes. Next we consider an autonomous Mahlo universe, corresponding to
an ordinal κ which is recursively hyperκ-Mahlo. And finally we will introduce
in Sect. 3 the Π3-reflecting universe.

The hyper-Mahlo universe. The step from a Mahlo universe to a hyper-
Mahlo universe is similar to the step from a super universe to a hyper-super-
universe (see the beginning of Sect. 5.1 of [50]): A hyper-Mahlo universe is a
universe (U2, T2) such that for ever f : IFam(U2, T2) → IFam(U2, T2) there
exists a subuniverse U1,f represented in U2 such that U1,f is a Mahlo universe
closed under f . That U1,f with its decoding function T1,f is a Mahlo universe

4Here we of course assume that our language is strong enough to define such a function
and one might argue that one shouldn’t be able to define such functions. (Note that such
functions are very natural in the framework of explicit mathematics, which is different from
type theory, where elimination rules for the Mahlo universe already result in an inconsistency
– when adding such constants to explicit mathematics one doesn’t make any assumptions
about their definedness as a function, so they shouldn’t carry any ontological meaning.) But
this means that one has a restriction on the language, and a theory should allow for extensions
of the language by new constants. Even if one says that such extensions are forbidden, one
sees here the high dependency of the theory on the function space.

5The same step was taken by Arai in his analysis of Π3-reflection.
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means that for every g : IFam(U1,f , T1,f ) → IFam(U1,f , T1,f ) there exists a
subuniverse U0,f,g of U1,f closed under g and represented in U1,f . If one wants
to define U1,f as a recursive subuniverse of U2, one has one small problem, that
one needs to have a code for U0,f,g in U2. But it is straightforward to introduce
such a code there (in the final version one would do a similar step as for the
Mahlo universe and uncurry f and g and split each of them into two functions6).

f : IFam(U2, T2) → IFam(U2, T2) g : IFam(U1,f , T1,f ) → IFam(U1,f , T1,f )

Û0,2,f,g : U2

T2(Û0,2,f,g) = U0,f,g

We leave it to the reader to spell out the rules for such a universe in detail and to
model it in Kripke-Platek set theory, extended by one recursively hyper-Mahlo
ordinal and finitely many admissibles above it.

The hyperα-Mahlo universe. A hyperα-universe is a universe (Uα, Tα),
such that for every β < α and f : IFam(Uα, Tα) → IFam(Uα, Tα) there exists
a hyperβ-sub-universe of (Uα, Tα), closed under f and represented in Uα. It
is again straightforward to formulate a type theory with one hyperα-Mahlo
universe in detail. The only difference is that we get the problem of having
chains of universes of unbounded depth, which causes problems when using
recursive subuniverses.7 The solution is to introduce Uβ as an inductive rather
than recursive subuniverse of Uα (β < α). A similar construction would be
done if one would like to formulate hyperα-super universes (see the beginning
of Subsect. 5.1 of [50]). We leave it to the reader to model a hyperα-Mahlo
universe in Kripke-Platek set theory plus one recursively hyperα-Mahlo ordinal
and finitely many admissibles above it.

2.3 The Autonomous Mahlo Universe

The next step is to define a universe (V, TV) which has strength (KPω +
(Aut − Mahlo))+. Here (KPω + (Aut − Mahlo))+ means that there exists an
ordinal κ which is recursively hyperκ-Mahlo plus finitely many admissibles
above it. We will call this universe the autonomous Mahlo universe. We
can replace the ordinals α < κ needed in order to form hyperα-Mahlo uni-
verses by elements of Deg = Wv : V.TV(v). This means that we have for
every w : Deg a set of inductive subuniverses Univw of V of that degree.
For every f : IFam(V, TV) → IFam(V, TV) and every degree w there exists
a universe in Univw closed under f . Furthermore, if w = sup(a, b), where

6See the formation rule for Uf,g in Subsect. 5.1 of [50]. What one does is to replace
f : IFam(U2,T2) → IFam(U2,T2) by two functions f1 : (x : U2,T2(x) → U2) → U2 and
f2 : (x : U2, y : T2(x) → U2, T2(f1(x, y))) → U2, similarly for g.

7See Subsect. 2.5 of [50] for a discussion on why recursive subuniverse cause problems when
forming unbounded chains of subuniverses. In short, the problem is that when using chains
of recursive subuniverses, one needs to add to the uppermost universe codes for all nested
subuniverses, which is technically difficult to achieve.
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a : V and b : TV(a) → Deg, c : TV(a), and w′ := b(c), then any universe
in Univw is Mahlo reflecting in Univw′ : If (U, TU) is a universe in Univw,
f : IFam(U, TU) → IFam(U, TU), then there exists an inductive subuniverse of
(U, TU) in Univw′ closed under f and represented in U.

One problem seems to be that Deg depends on all of V, TV – therefore
Deg is only available once the construction of V, TV is complete. But when
constructing V one needs to know Deg in order to be able to introduce new
universes for appropriate Mahlo degrees.

However, one can easily seen that for every d : (Wx : V.TV(x)) there exists
an 〈a, b〉 : IFam(V, TV) such that d and its subtrees only refer to elements of V
in (b(x))x:a (collect all branching degrees of d and its subtrees into one family
of sets in V). More precisely, the situation is as follows: Define f : (Wx :
TV(a).TV(b(x))) → Wx : V.TV(x), f(sup(r, s)) = sup(b(r), (y)f(s(y))). Then
d = f(d′) for some d′ : (Wx : TV(a).TV(b(x))).

Therefore the set of degrees depend only locally on V and one can construct
Deg simultaneously while constructing V – whenever one constructs new ele-
ments of V one obtains new elements of Deg, which allow to construct new
elements of V, namely subuniverses of V having the new degrees. The exis-
tence of an autonomous Mahlo universe means that we claim that this process
eventually stops after transfinitely many steps.

It turns out that we don’t need any elimination rules for Deg. This is
unnecessary, since there exists an obvious embedding g : (Wx : V.TV(x)) →
Deg. So if one wanted to refer to the least set of degrees introduced like this,
one could refer to g(w) for w : (Wx : V.TV(x)) and use the elimination rule of
Wx : V.TV(x).

We therefore obtain now the following rules for the type theory with one
autonomous Mahlo universe:

• Preliminaries. We will always determine, which sets are defined induc-
tively, and which sets are defined recursively. So elements of the induc-
tively defined sets are given by constructors, and whenever we introduce
a new element we have to determine the values of the recursively defined
functions. This notion is inspired by the notion of inductive-recursive defi-
nitions ([14, 16, 17, 18, 19]), although this construction is not an inductive-
recursive definition. (Already the Mahlo universe construction, which is
one of the main ingredients of this construction, goes beyond induction-
recursion.)

• Basic type theory. We have the rules for the small logical framework
and for the basic set constructions.8

In the following we introduce the rules for the sets specific to the au-
tonomous Mahlo universe.

• Formation rules.

8The basic set constructions are N, Nk, +, Π, Σ, W, Id, and their rules. The small logical
framework consists of the dependent function type (x : A) → B and the dependent product
(x : A) × B, restricted to Set. See Sect. 2.1 of [50] for details.
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– Formation rules for V, TV (V is defined inductively, TV recursively):

V : Set
a : V

TV(a) : Set

– Formation rule for Deg. Every d : Deg has a branching degree
bdeg(d) : V and for every a : TV(bdeg(d)) subdegrees subdeg(d, a),
which are both defined recursively:

Deg : Set
bdeg : Deg → V

subdeg : (d : Deg, a : TV(bdeg(d)) → Deg

– Formation rule for Univ, and for the universes (Ud,u, TU,d,u) in Univd.
Univd and Ud,u are defined inductively, TU,d,u is defined recursively:

d : Deg

Univd : Set

d : Deg u : Univd

Ud,u : Set

d : Deg u : Univd a : Ud,u

TU,d,u(a) : Set

• Introduction rules and equality rules for the recursively defined functions:

– We have standard rules expressing that (V, TV) is a universe.

– We have standard rules expressing that (Ud,u, TU,d,u) is a universe.

– Introduction rule for Deg:

a : V b : TV(a) → Deg

deg(a, b) : Deg

bdeg(deg(a, b)) = a subdeg(deg(a, b), c) = b(c)

– (Ud,u, TU,d,u) is an inductive subuniverse of V. These rules form
introduction rules for V. Assume d : Deg, u : Univd.

a : Ud,u

T̂U,d,u(a) : V

TV(T̂U,d,u(a)) = TU,d,u(a)

– Ud,u is represented in V.9 Assume d : Deg, u : Univd.

ÛU,d,u : V TV(ÛU,d,u) = Ud,u

9As I learned from Peter Hancock, who has worked a lot on families of sets (see e.g. [21]),
the above means that the successor of (Ud,u,TU,d,u) is a subfamily of (V, TV), where the
successor of a family of sets (A, B) is the family of sets (A+N1, B′) where B′(inl(a)) = B(a),
B′(inr(A1

0)) = A.
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– Every function in IFam(V, TV) → IFam(V, TV) is reflected in a uni-
verse in Univd for every d : Deg. (f will as usual be split into two
functions).

∗ We obtain the following introduction rule for Univd:

d : Deg

f : (a : V, TV(a) → V) → V

g : (a : V, TV(a) → V, TV(f(a, b)) → V

vd,f,g : Univd

∗ Assume d, f, g as in the premises for that rule. Let temporarily
in this item only

v− := vd,f,g : Univd ,

U− := Ud,v−
: Set ,

T−(a) := TU,d,v−
(a) : Set (where a : U−) ,

T̂−(a) := T̂U,d,v−
(a) : V (where a : U−) .

The closure of (U−, T−) under f, g is given by the following in-
troduction rules for U−:

f̂v,d,f,g : (a : U−, b : T−(a) → U−) → U−

T−(̂fv,d,f,g(a, b)) = TV(f(T̂−(a), T̂− ◦ b))
ĝv,d,f,g : (a : U−,

b : T−(a) → U−,

TV(f(T̂−(a), T̂− ◦ b)))
→ U−

T−(ĝv,d,f,g(a, b, c)) = TV(g(T̂−(a), T̂− ◦ b, c))

– Assume d : Deg, u : Univd, c : TV(bdeg(d)). Let temporarily in this
item only

U+ := Ud,u : Set ,

T+(a) := TU,d,u(a) : Set (where a : U+) ,

d− := subdeg(d, c) : Deg .

Then every function f : IFam(U+, T+) → IFam(U+, T+) is reflected
in an inductive subuniverse of (U+, T+) which is in Univd−

. As usual
f will be split into two functions.

So assume

f : (a : U+, b : T+(a) → U+) → U+ ,

g : (a : U+, b : T+(a) → U+, T+(f(a, b))) → U+ .

∗ We have the following introduction rule for Univd−
:

ud,u,c,f,g : Univd−
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Let

u− := ud,u,c,f,g : Univd−
,

U− := Ud−,u−
: Set ,

T−(a) := TU,d−,u−
(a) : Set (where a : U−) .

∗ (U−, T−) is an inductive subuniverse of (U+, T+), as expressed
by the following introduction and equality rule for U+:

a : U−

T̂u,d,u,c,f,g(a) : U+

T+(T̂u,d,u,c,f,g(a)) = T−(a)

Let for a : U−

T̂−(a) := T̂u,d,u,c,f,g(a) : U+ .

∗ (U+, T+) is closed under f, g as expressed by the following in-
troduction rules for U−:

f̂u,d,u,c,f,g : (a : U−, b : T−(a) → U−) → U−

T−(̂fu,d,u,c,f,g(a, b)) = T+(f(T̂−(a), T̂− ◦ b))
ĝu,d,u,c,f,g : (a : U−,

b : T−(a) → U−,

T+(f(T̂−(a), T̂− ◦ b)))
→ U−

T−(ĝu,d,u,c,f,g(a, b, d)) = T+(g(T̂−(a), T̂− ◦ b, d))

∗ Finally U− is represented in U+. So we have the following intro-
duction and equality rule for U+:

Ûu,d,u,c,f,g : U+ T+(Ûu,d,u,c,f,g) = U−

We will not spell out a model for the autonomous Mahlo universe in Kripke-
Platek set theory plus the existence of a κ which is recursively hyperκ-Mahlo
and finitely many admissibles above it. The details will be carried out in a
future paper.

3 The Π3-Reflecting Universe

3.1 Motivation

When defining the autonomous Mahlo universe, the notion of a Mahlo de-
gree (the set Deg) emerged. The set of subdegrees (given by bdeg(d) and
subdeg(d, b)) do not depend on a universe in Univd.

We want to extend the degree structure (Deg, bdeg, subdeg) to a new struc-
ture, in which we can associate a degree to the autonomous Mahlo universe
itself. We want to use the same names Deg, bdeg, subdeg as before, but now
with different types which reflect the new dependencies.
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If we want to associate with the autonomous Mahlo universe (V, TV) a degree
d, we see that the set of subdegrees of d should be Wx : V.TV(x) or a set related
to this. This is problematic since it is a set which depends on the whole universe
(V, TV).

We have however seen already that any w : (Wx : V.TV(x)) depends only
on a small subset of V, i.e. a subset of V indexed by an element of V. Therefore
the set of subdegrees of d can be approximated fully by referring to restrictions
of Wx : V.TV(x) to the set of trees over a small subset 〈a, b〉 : IFam(V, TV), i.e.
to Wx : TV(a).TV(b(x)). This makes this a “good” set of subdegrees: the set
of subdegrees depends only locally on V. So every subdegree will be available
at some point during the construction of V – we don’t have to wait until all of
V is constructed.

We want to generalise this notion of a local dependency to our new set
of degrees Deg. Then the set of subdegrees of elements of Deg depends on a
family of elements of (V, TV). So the index set for the subdegrees bdeg and the
subdegrees subdeg of an element Deg have types

bdeg : Deg → (a : V, b : TV(a) → V) → V ,

subdeg : (d : Deg, a : V, b : TV(a) → V, TV(bdeg(d, a, b))) → Deg .

We will (once we have defined the introduction rules for Deg) be able to deter-
mine for every element w : (Wx : V.TV(x)) a Mahlo degree f(w) : Deg such
that

bdeg(f(sup(a, b)), c, d) = a ,

subdeg(f(sup(a, b)), c, d, e) = f(b(e)) .

So the old degrees are specific in the sense that bdeg and subdeg do not depend
on c, d. With the autonomous Mahlo universe we associate the Mahlo degree
m : Deg such that

bdeg(m, c, d) = ŴVx : c.d(x) ,

subdeg(m, c, d, e) = f(g(c, d, e)) ,

where

g : (c : V, d : TV(c) → V) → (Wx : TV(c).TV(d(x))) → (Wx : V.TV(x))

is the embedding defined recursively by

g(c, d, sup(a, b)) = sup(d(a), (x)g(c, d, b(x)) ,

and f is as before the embedding of Wx : V.TV(x) into Deg. The remaining
structure is essentially the same as for the autonomous Mahlo universe, except
that we need, when forming subdegrees, to refer to a family of elements of the
subuniverse one is constructing.

The main other difference is the introduction rule for Deg. This rule says
now that everything, for which we can define bdeg and subdeg is an element of
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Deg. In full this means:

r : (a : V, TV(a) → V) → V s : (a : V, TV(a) → V, TV(r(a, b))) → V

deg(r, s) : Deg

bdeg(deg(r, s), a, b) = r(a, b) subdeg(deg(r, s), a, b, c) = s(a, b, c)

Define for A : Set, B : A → Set, C : Set10

IFam′(A, B, C) := (a : A) × (B(a) → C) : Set .

Then we see that the above means essentially that for every

f : IFam(V, TV) → IFam′(V, TV, Deg)

we get a new element of Deg. The constructor deg depends negatively on V,
which is defined simultaneously with Deg. We have here a similar principle as
the Mahlo principle, which allows to introduce subuniverses of a Mahlo universe
(V, TV) closed under f : IFam(V, TV) → IFam(V, TV). Here we use the Mahlo
principle in order to introduce new Mahlo degrees, i.e. new elements of Deg.

3.2 Rules for the Π3-reflecting universe.

Since this is the main type theory introduced in this article, we will spell out
the rules of the Π3-reflecting universe in detail:

• Basic type theory: We have the rules for the small logical framework
and for the basic set constructions.
In the following we introduce the rules for the sets specific to the Π3-
reflecting universe.

• Formation rules.

– Formation rules for V, TV (V is defined inductively, TV recursively):

V : Set
a : V

TV(a) : Set

– Formation rule for Deg. Deg is defined inductively, bdeg and subdeg
are defined recursively:

Deg : Set
bdeg : (d : Deg, a : V, b : TV(a) → V) → V ,

subdeg : (d : Deg, a : V, b : TV(a) → V, TV(bdeg(d, a, b))) → Deg .

– Formation rule for Univ, and for the universes (Ud,u, TU,d,u) in Univd.
Univd and Ud,u are defined inductively, TU,d,u is defined recursively:

10The following definition was already introduced in Subsect. 2.1.
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d : Deg

Univd : Set

d : Deg u : Univd

Ud,u : Set

d : Deg u : Univd a : Ud,u

TU,d,u(a) : Set

• Introduction rules and equality rules for the recursively defined functions:

– Rules expressing that (V, TV) is a universe.

N̂V : V TV(N̂V) = N

a : V b : TV(a) → V

Σ̂V(a, b) : V
TV(Σ̂V(a, b)) = Σx : TV(a).TV(b(x))

Similarly for the other basic set constructions Nn, +, Π, W, Id.

– Rules expressing that (Ud,u, TU,d,u) is a universe: Assume d : Deg,
u : Univu:

N̂U,d,u : Ud,u TU,d,u(N̂U,d,u) = N

a : V b : TU,d,u(a) → V

Σ̂U,d,u(a, b) : V

TU,d,u(Σ̂U,d,u(a, b)) = Σx : TU,d,u(a).TU,d,u(b(x))

Similarly for the other basic set constructions Nn, +, Π, W, Id.

– Introduction rule for Deg:

r : (a : V, TV(a) → V) → V s : (a : V, b : TV(a) → V, TV(r(a, b))) → V

deg(r, s) : Deg

bdeg(deg(r, s), a, b) = r(a, b) subdeg(deg(r, s), a, b, c) = s(a, b, c)

– (Ud,u, TU,d,u) is an inductive subuniverse of V. These rules form
introduction rules for V. Assume d : Deg, u : Univd.

a : Ud,u

T̂U,d,u(a) : V
TV(T̂U,d,u(a)) = TU,d,u(a)

– Ud,u is represented in V. Assume d : Deg, u : Univd.

ÛU,d,u : V TV(ÛU,d,u) = Ud,u

– Every function IFam(V, TV) → IFam(V, TV) is reflected in a universe
in Univd for every d : Deg (as usual f will be split into two functions):
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∗ We obtain the following introduction rule for Univd:

d : Deg

f : (a : V, TV(a) → V) → V

g : (a : V, TV(a) → V, TV(f(a, b)) → V

vd,f,g : Univd

∗ Assume d, f, g as in the premises for the previous rule. Let tem-
porarily in the definition of the rules for vd,f,g only

v− := vd,f,g : Univd ,

U− := Ud,v−
: Set ,

T−(a) := TU,d,v−
(a) : Set (where a : U−) ,

T̂−(a) := T̂U,d,v−
(a) : V (where a : U−) .

The closure of (U−, T−) under f, g is given by the following in-
troduction rules for U−:

f̂U,d,f,g : (x : U−, y : T−(x) → U−) → U−

T−(̂fU,d,f,g(x, y)) = TV(f(T̂−(x), T̂− ◦ y))
ĝU,d,f,g : (x : U−,

y : T−(x) → U−,

TV(f(T̂−(x), T̂− ◦ y)))
→ U−

T−(ĝU,d,f,g(x, y, z)) = TV(g(T̂−(x), T̂− ◦ y, z))

– Assume d : Deg, u : Univd. Let temporarily in this item only

U+ := Ud,u : Set ,

T+(a) := TU,d,u(a) : Set (where a : U+) ,

T̂+(a) := T̂U,d,u(a) : V (where a : U+) .

Assume a : U+ b : T+(a) → U+. Let

aV := T̂+(a) : V ,

bV := (x)T̂+(b(x)) : TV(aV) → V .

Assume c : TV(bdeg(d, aV, bV)). Let temporarily in this item only

d− := subdeg(d, aV, bV, c) : Deg .

Then every function f : IFam(U+, T+) → IFam(U+, T+) is reflected
in an inductive subuniverse of (U+, T+) which is in Univd−

(as usual
f will be split into two functions).

So assume

f : (a : U+, b : T+(a) → U+) → U+ ,

g : (a : U+, b : T+(a) → U+, T+(f(a, b))) → U+ .
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∗ We have the following introduction rule for Univd−
:

ud,u,a,b,c,f,g : Univd−

∗ Let

u− := ud,u,a,b,c,f,g : Univd−
,

U− := Ud−,u−
: Set ,

T−(a) := TU,d−,u−
(a) : Set (where a : U−) .

(U−, T−) is an inductive subuniverse of (U+, T+), as expressed
by the following introduction and equality rule for U+:

a : U−

T̂u,d,u,a,b,c,f,g(a) : U+

T+(T̂u,d,u,a,b,c,f,g(a)) = T−(a)

Let for a : U−

T̂−(a) := T̂u,d,u,a,b,c,f,g(a) : U+ .

∗ That (U+, T+) is closed under f, g is expressed by the following
introduction rules for U−:

f̂u,d,u,a,b,c,f,g : (x : U−, y : T−(x) → U−) → U−

T−(̂fu,d,u,a,b,c,f,g(x, y)) = T+(f(T̂−(x), T̂− ◦ y))
ĝu,d,u,a,b,c,f,g : (x : U−,

y : T−(x) → U−,

T+(f(T̂−(x), T̂− ◦ y)))
→ U−

T−(ĝu,d,u,a,b,c,f,g(x, y, z)) = T+(g(T̂−(x), T̂− ◦ y, z))

∗ Finally U− is represented in U+. So we have the following intro-
duction and equality rule for U+:

Ûu,d,u,a,b,c,f,g : U+ T+(Ûu,d,u,a,b,c,f,g) = U−

We call the resulting type theory MLW + (Π3 − refl).

4 A Model of the Π3-Reflecting Universe

4.1 The Basic Idea of the Model

Notations. We will in the following make use of the notations and basic prin-
ciples for developing models as introduced in the sections on model constructions
of [50]. We repeat here the most important ones:

• Terms are interpreted as slightly reduced terms of the language (we throw
away some typing information which is not relevant in the model). For a
term r let [[ r ]]ρ be the result of substituting free variables x by ρ(x) in r

and omitting the information to be thrown away. Let [[ Term ]] be the set
of terms.
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• A set A in an environment ρ is interpreted as a partial equivalence relation
(PER; i.e. a symmetric and transitive relation; see Def. 2.6(c) of [50])
[[ A ]]ρ, where 〈a, b〉 ∈ [[ A ]]ρ means that a and b are equal elements of
[[ A ]]ρ. Flat([[ A ]]ρ) is the underlying set of terms, i.e. since [[ A ]]ρ is a
PER, Flat([[ A ]]ρ) = {a | 〈a, a〉 ∈ [[ A ]]ρ}.

• We have a reduction relation on terms corresponding to the elimination
rules of the type theory. All interpretations of sets will be in addition to
what is stated in the following be closed under reductions.

• We have operations on PERs corresponding to the operations of the stan-
dard set constructions and of the small logical framework, where we write
[[→ ]], [[× ]], [[ + ]] infix. Especially we write (x ∈ A) [[→ ]] B(x) for the
set of functions mapping a ∈ Flat(A) to Flat(B(a)), or more precisely
the corresponding partial equivalence relation. (x ∈ A) [[× ]] B(x) stands
for the PER corresponding to the set of pairs 〈a, b〉 for a ∈ Flat(A) and
b ∈ Flat(B(a)). A[[ + ]]B is to be understood in a similar way.

• [[ IFam ]](U, T ) := (x ∈ U) [[× ]] (T (x) [[→ ]] U), which is the PER cor-
responding to the set of pairs 〈a, b〉 such that a ∈ Flat(U) and b ∈
Flat(T (a) [[→ ]] U).

• [[ IFamOper ]]0(U, T ) := (x ∈ U) [[→ ]] (T (x) [[→ ]] U) [[→ ]] U .

[[ IFamOper ]]1(U, T, f) :=
(x ∈ U) [[→ ]] (y ∈ (T (x) [[→ ]] U)) [[→ ]] T (f(x, y)) [[→ ]] U .

These two sets form the two components of the set of functions

[[ IFam ]](U, T ) [[→ ]] [[ IFam ]](U, T ) .

ΠN -reflecting ordinals (see [35]). A transitive and non-empty set a is ΠN -
reflecting, if for any ΠN -formula ϕ in the language of Kripke-Platek set theory
with parameters in a we have

a |= ϕ → ∃z(trans(z) ∧ z 6= ∅ ∧ ϕz) (∗)

where ϕz is the result of replacing in ϕ any unbounded quantifier ∃y, ∀y by
∃y ∈ z, ∀y ∈ z respectively, and trans(z) is the formula expressing that z is
transitive. An ordinal α > 0 is ΠN -reflecting if Lα is ΠN -reflecting.

(KPω + (Π3 − refl))+ is the theory consisting of the axioms of Kripke-Platek
set theory with infinity, and axioms expressing that there exists a constant aP s.t.
aP is Π3-reflecting, and constants bn for Meta-natural numbers n and axioms
Ad(bn), aP ∈ b0 and bn ∈ bn+1.

As shown in [38], Theorem 1.9. (iv), the z, which reflects a ΠN -formula in
(∗), can, in case of N ≥ 3, be chosen to be admissible, and for a ΠN -reflecting
ordinal P for N ≥ 2 we have that P is admissible. We cannot show Ad(z) and
Ad(LP), since the axioms of our formulation of Kripke-Platek set theory state
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only that, if Ad(u) holds, then u fulfils the axioms of being admissible, not
the other way around. However, as stated in [38], Theorem 2.4, there exists a

Π3-formula Ãd(x) such that a transitive set x 6= 0 is admissible, if Ãd(x) holds,

and we can guarantee z to fulfil Ãd(z), and P always fulfils Ãd(LP). One easily
sees that Theorem 3.311 and Lemma 3.412 of [50] hold, if one replaces Ad by

Ãd.

Basic Ideas. The general idea for constructing models is as in Subsect. 3.2 of
[50]: One defines by recursion on α (Vα, Tα) ∈ [[ Fam ]](Set) fulfilling Assump-
tion 3.2. of [50] by closing Vα under the basic set constructions and adding
codes for universes, whenever for some β < α we have that (Vβ , Tβ) is suitable
as an interpretation for this universe. The added universe is then interpreted
as Vβ for the minimal such β. Then [[ V ]] := VP and [[ T(a) ]]ρ := TP([[ a ]]ρ) for
a Π3-reflecting ordinal P.

Therefore the main task is to define when (Vβ , Tβ) is sufficiently closed so
that it can be used as an interpretation of a subuniverse of (V, TV) of appropriate
Mahlo degree.

A problem when dealing with the Π3-reflecting universe is that the set Deg
depends on the whole universe, so [[ Deg ]] can be defined only when [[ V ]] is
complete. This is similar to the initial problem we had with modelling the
Mahlo universe in [50], namely that we know the set of functions from families
of elements in [[ V ]] to families of elements in [[ V ]] only, when the definition of

[[ V ]] is complete. The solution there was to add Ûf,g without knowing that f

and g are defined on all of [[ V ]] – all we needed was that they are defined on
Uf,g .

Similarly, we will add in the construction of the Π3-reflecting universe codes
vd,f,g to our universe, using only the fact that f , g are locally defined and that
d is a local degree. In fact we will only consider codes for subuniverses of the
form vd,f,g.

All other occurring universes will be modelled in this universe by codes of the
form vd,f,g. For instance, we will have the reduction rule ud,u,a,b,c,f,g −→ vd−,f,g

where d− = subdeg(d, a, b, c). This means of course that when we derive in
the type theory u : Univd and have [[ u ]] = vd′,f,g, it is not necessarily the
case that f , g are total on V: if u = ud′′,u,a,b,c,f,g, then we know only that
f, g are total on Ud′′,u, not on V. However, the type theory guarantees that
d′ = subdeg(d′′, aV, bV, c) : Deg, therefore in the model d′ is an element of
[[ Deg ]] – roughly speaking d′ is a “total degree”.

As for the model of the super and the Mahlo universe in [50], we will not
start defining at each stage α the least subuniverse of V<α closed under the

11Which says essentially that under [50], Assumption 3.2, if κ is recursively inaccessible,
then U<κ is closed under the basic set constructions. Here Assumption 3.2 expresses roughly
that (Vα,Tα) are increasing, PERs, closed under reductions, well-behaved w.r.t. definability,
and contain at least the one step application of basic set operations to previously defined sets.

12Which says that under [50], Assumption 3.2, if κ is admissible, then a family of sets
internal to U<κ is already a family in U<α for some α < κ.

18



constructions needed but only check whether for some β < α V<β is sufficiently
closed. This reduces the technical work to be carried out.

We could define now at each stage α first the set of local degrees on V<α.
We could do so by defining the least set Deg<α such that, if

f : IFam(V<α, T<α) → IFam′(V<α, T<α, Deg<α) ,

then deg(f) ∈ Deg<α (or more precisely the corresponding statement in the
model; see Subsect. 2.1 for the definition of IFam′(A, B, C)). More precisely we
would have to divide f into its two components.

But this would create a lot of overhead. All we need is that V<α is closed
under all subuniverses which we can define from vd,f,g. This means that for
〈a, b〉 ∈ [[ IFam ]](V<α, T<α) we have that bdeg(d, a, b) ∈ V<α and that for all
c ∈ T<α(bdeg(d, a, b)), which gives us a subdegree d− := subdeg(d, a, b, c) of
d, and for all functions f ′, g′ from families of elements in V<α to families of
elements in V<α we have that vd−,f ′,g′ is in V<α.

This gives us the inductive definition of Vα, Tα, and, as stated above, we
define [[ V ]] := V<P, [[ TV ]] := T<P, where P is a Π3-reflecting ordinal.

[[ Univd ]]ρ will be essentially the set of vd′,f,g (where d′ = [[ d ]]ρ) occurring in
[[ V ]]. (We have to vary this definition slightly in order to accommodate for the
rule stating that d = d′ : Deg implies Univd = Univd′ : Set.) We will not define
Flat([[ Deg ]]) as the least set closed under deg. Instead we define Flat([[ Deg ]])
as the set of d such that for all functions f, g from families of [[ V ]] into families
of [[ V ]] we have vd,f,g is in [[ V ]]. Therefore we have trivially the closure of V
under the formation of vd,f,g, but have to show that Deg is closed under its
introduction rule, given by the constructor deg. This will require the use of the
fact that P is Π3-reflecting.

4.2 Formal Definition of the Model

We will work in (KPω + (Π3 − refl))+ which is, as stated above, Kripke-Platek
set theory plus the existence of one Π3-reflecting ordinal and finitely many
admissibles above it. Proof-theoretically equivalent is the theory KPlr plus the
existence of one Π3-reflecting ordinal. Let P be the Π3-reflecting ordinal which
we know does exist.

The set of terms in the model. As for all models of type theory in [50],

we will omit in [[ Term ]] the dependency of N̂, Σ̂ on V, U, d, u, and have for

instance [[ N̂V ]]ρ := [[ N̂U,d,u ]]ρ := N̂.
Univd, Ud,u will be interpreted as subsets of [[ V ]], and in the model we

treat inductive subuniverses as if they were subsets. Therefore ÛU,d, T̂U,d,u,

T̂u,d,u,a,b,c,f,g will be treated as if they were identity functions, and Ûu,d,u,a,b,c,f,g
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will be identified with ud,u,a,b,c,f,g So we have the following reduction rules:

T̂U,d,u(a) −→ a

T̂u,d,u,a,b,c,f,g(x) −→ x

ÛU,d,u −→ u

Ûu,d,u,a,b,c,f,g −→ ud,u,a,b,c,f,g

The reduction rules for bdeg and subdeg are as given by their equality rules,
i.e.

bdeg(deg(r, s), a, b) −→ r(a, b) ,

subdeg(deg(r, s), a, b, c) −→ s(a, b, c) .

f̂ and ĝ will be interpreted by their underlying functions, i.e. we have

f̂U,d,f,g(x, y) −→ f(x, y) ,

f̂u,d,u,a,b,c,f,g(x, y) −→ f(x, y) ,

ĝU,d,f,g(x, y, z) −→ g(x, y, z) ,

ĝu,d,u,a,b,c,f,g(x, y, z) −→ g(x, y, z) .

(We have to be careful that this causes no problems with the equality rules for
TU,d,u, Tu,d,a,b,c,f,g, but one sees immediately that there are indeed no prob-
lems.)

Furthermore ud,u,a,b,c,f,g will be identified with vsubdeg(d,a,b,c),f,g, so we have

ud,u,a,b,c,f,g −→ vsubdeg(d,a,b,c),f,g

Definition of Vα, Tα. As for the super and Mahlo universe in [50], we define
(Vα, Tα) ∈ [[ Fam ]](Set) by closing it under the standard set constructions. We
will then interpret [[ V ]] = V<P, [[ TV ]] = T<P.

Instead of closing it under Ûf,g – as for the model for the Mahlo universe –
we close it now under vd,f,g as follows. We first introduce what it means for a
family of sets to be closed under d:

Definition 4.1 (a) Let (U, T ) ∈ [[ Fam ]](Set), 〈d, d′〉 ∈ [[ Term ]]
2
. (U, T ) is

downward closed under d, d′, written as degClosure(U, T, d, d′), if the fol-
lowing holds:

(1) U is closed under 〈bdeg(d), bdeg(d′)〉:

〈(x, y)bdeg(d, x, y), (x, y)bdeg(d′, x, y)〉 ∈ [[ IFamOper ]]0(U, T )

(2) U is closed under the formation of subuniverses for subdegrees of
d, d′:

Assume a, b, a′, b′, c, c′, f̃ , f̃ , g̃, g̃′ ∈ [[ Term ]] such that the following
holds:

– 〈〈a, b〉, 〈a′, b′〉〉 ∈ [[ IFam ]](U, T ),

– 〈c, c′〉 ∈ T (bdeg(d, a, b)),
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– d− := subdeg(d, a, b, c), d−

′ := subdeg(d′, a′, b′, c′),

– U is closed under f̃ , f̃ ′, g̃, g̃′, i.e.

〈〈f̃ , g̃〉, 〈f̃ ′, g̃′〉〉 ∈ [[ IFamOper ]](U, T )

Then

– 〈vd−, ef,eg
, vd−

′, ef ′,eg′
〉 ∈ U .

(b) Assume (U, T ) ∈ [[ Fam ]](Set), and that U is closed under N1 and +,

i.e. that the following following holds: We have N̂1 ∈ U and T (N̂1) =
[[ N1 ]]; for a, b ∈ Flat(U) we have a+̂b ∈ Flat(U) and T (a+̂b) = T (a)[[ + ]]T (b);
we have that if 〈a, a′〉, 〈b, b′〉 ∈ U then 〈a+̂b, a′+̂b′〉 ∈ U . Furthermore, as-
sume 〈a, b〉, 〈c, d〉 ∈ Flat([[ IFam ]](U, T )).

Then we define

• S[[ IFam ]](U,T )
(〈a, b〉) := 〈a+̂N̂1, b

′〉 ∈ Flat([[ IFam ]](U, T )).

Here b′(inl(x)) = b(x), b′(inr(A1
0)) = a. Remember that A1

0 is the
canonical element of N1. So S[[ IFam ]](U,T )

(〈a, b〉) is the successor of

〈a, b〉, which contains both all sets b(x) for x ∈ T (a), and a code for
a itself.

• 〈a, b〉 ∪[[ IFam ]](U,T )
〈c, d〉 := 〈a+̂c, e〉 ∈ Flat([[ IFam ]](U, T )).

Here e(inl(x)) = b(x), e(inr(x)) = d(x). So 〈a, b〉 ∪[[ IFam ]](U,T )
〈c, d〉

is the union of the two families of sets 〈a, b〉 and 〈c, d〉.

• 〈a, b〉 ∪S

[[ IFam ]](U,T )
〈c, d〉 :=

S[[ IFam ]](U,T )
(〈a, b〉) ∪[[ IFam ]](U,T )

S[[ IFam ]](U,T )
(〈c, d〉) .

So 〈a, b〉 ∪S

[[ IFam ]](U,T )
〈c, d〉 is the family of set containing a, c, b(x)

for x ∈ T (a), and d(x) for x ∈ T (c).13

Assume now an ordinal α and d, d,′ f, f ′, g, g′ ∈ [[ Term ]]. Assume β s.t.
β + 1 < α. Assume

• V<β , T<β is closed under the universe constructions.

• V<β , T<β is closed under f, f ′, g, g′:

〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<β , T<β)

• degClosure(V<β , T<β , d, d′).

Let β be minimal such that the above holds. Then

〈vd,f,g, vd′,f ′,g′〉 ∈ Vα Tα(vd,f,g) := V<β .

13P. Hancock suggested to split the notion ∪
S
[[ IFam ]](U,T )

into two operations, first the

successor operation and the union operation. In [50], Def. 5.1.(c) a similar definition for
Fam(U, T ) was introduced, which could in the light of P. Hancock’s comment as well be split
up into the two operations.
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Interpretation of the other sets. We define now for a Π3-reflecting ordinal
P

[[ V ]]ρ := V<P ,

[[ TV(a) ]]ρ := [[ TV ]]([[ a ]]ρ) := T<P([[ a ]]ρ) ,

and then

[[ Deg ]]ρ := {〈d, d′〉 ∈ [[ Term ]]
2 |

∀〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]]([[ V ]], [[ TV ]]).
〈vd,f,g, vd′,f ′,g′〉 ∈ [[ V ]]} .

[[ Univd ]]ρ := Closure({〈vd′′,f,g , vd′′′,f ′,g′〉 ∈ [[ Term ]]2 |
〈vd′,f,g , vd′′,f,g〉 ∈ [[ V ]] ∧ 〈vd′′,f,g, vd′′′,f ′,g′〉 ∈ [[ V ]]})

where d′ = [[ d ]]ρ.

[[ Ud,u ]]ρ := [[ TV ]]([[ u ]]ρ)

[[ TU,d,u(a) ]]ρ := [[ TV ]]([[ a ]]ρ)

We will need below as well the relativisation of [[ Deg ]] with (V<P, T<P) replaced
by (V<α, T<α) and define therefore

[[ Deg ]]
<α

:= {〈d, d′〉 ∈ [[ Term ]]
2 |

∀〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<α, T<α).
〈vd,f,g, vd′,f ′,g′〉 ∈ V<α} .

As for all previous models we have [[ V ]] ∈ LP+1 and [[ TV ]](a) ∈ LP for
a ∈ [[ V ]] and define therefore

o(U) := P + 1 o(TV(a)) := P

The interpretation of the basic set constructions will be defined as in the previ-
ously introduced models of type theories, and this will require the use of finitely
many admissibles on top of P.

4.3 Correctness of the Model

Basic correctness. The difficult part of the model is to show that [[ Deg ]]
is closed under the introduction rule for Deg. A minor complication arises as
well when showing that, if d, d′ are equal elements of [[ Deg ]], then [[ Univd ]] and
[[ Univd′ ]] are equal. Before verifying these, we show the correctness of the other
rules (full details will be presented in a future article, here we give only the
main proof ideas):

• The correctness of all equality rules follow by the corresponding reduction
rules.

• We have

[[ bdeg ]] ∈ [[ Deg ]] [[→ ]] [[ IFamOper ]]0([[ V ]], [[ TV ]]) :
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Let 〈d, d′〉 ∈ [[ Deg ]], 〈a, a′〉 ∈ [[ V ]], 〈b, b′〉 ∈ [[ TV ]](a) → [[ V ]]. Let

f := (x, y)a , f ′ := (x, y)a′ , g := (x, y, z)b(z) , f ′ := (x, y, z)b′(z)

Then
〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]]([[ V ]], [[ TV ]]) ,

therefore
〈vd,f,g, vd′,f ′,g′〉 ∈ [[ V ]] .

Let
[[ TV ]](vd,f,g) = V<β .

Then
〈〈a, b〉, 〈a′, b′〉〉 ∈ [[ IFam ]](V<β , T<β) .

But then
〈bdeg(d, a, b), bdeg(d′, a′, b′)〉 ∈ V<β ⊆ [[ V ]]

• We have
[[ subdeg ]] ∈ (d ∈ [[ Deg ]])

[[→ ]](a ∈ [[ V ]])
[[→ ]](b ∈ [[ TV ]](a) → [[ V ]])
[[→ ]][[ TV ]](bdeg(d, a, b))
[[→ ]][[ Deg ]] :

Assume 〈d, d′〉 ∈ [[ Deg ]], 〈a, a′〉 ∈ [[ V ]], 〈b, b′〉 ∈ [[ TV ]](a) → [[ V ]], 〈c, c′〉 ∈
[[ TV ]](bdeg(d, a, b)). Let d− := subdeg(d, a, b, c), d−

′ := subdeg(d′, a′, b′, c′).
We have to show

〈d−, d−

′〉 ∈ [[ Deg ]] .

In order to show this we need to prove that whenever

〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]]([[ V ]], [[ TV ]])

then
〈vd−,f,g , vd−

′,f ′,g′〉 ∈ [[ V ]]

So assume f, g, f ′, g′ as above. Let f̃ , g̃, f̃ ′, g̃′ ∈ [[ Term ]] such that module
reductions

〈f̃(x, y), g̃(x, y)〉 = 〈f(x, y), g(x, y)〉 ∪S

[[ IFam ]]([[V ]],[[TV ]])
〈a, b〉 ,

〈f̃ ′(x, y), g̃′(x, y)〉 = 〈f ′(x, y), g′(x, y)〉 ∪S

[[ IFam ]]([[V ]],[[TV ]]) 〈a
′, b′〉 .

Then
〈〈f̃ , g̃〉, 〈f̃ ′, g̃′〉〉 ∈ [[ IFamOper ]]([[ V ]], [[ TV ]])

Therefore
〈v

d, ef,eg
, v

d′, ef ′,eg′
〉 ∈ [[ V ]]

23



Let V<β = [[ v
d, ef,eg

]]. Then

〈〈f̃ , g̃〉, 〈f̃ ′, g̃′〉〉 ∈ [[ IFamOper ]](V<β , T<β)

and therefore

〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<β , T<β)
〈〈(x, y)a, (x, y)b〉, 〈(x, y)a′, (x, y)b′〉〉 ∈ [[ IFamOper ]](V<β , T<β)

Since [[ IFamOper ]](V<β , T<β) is not empty (it contains for instance

〈〈N̂1, (x)N̂1〉, 〈N̂1, (x)N̂1〉〉), we obtain therefore

〈〈a, b〉, 〈a′, b′〉〉 ∈ [[ IFam ]](V<β , T<β)

But then

〈vsubdeg(d,a,b,c),f,g, vsubdeg(d′,a′,b′,c′),f ′,g′〉 ∈ V<β ⊆ [[ V ]] .

• One easily verifies that Assumption 3.2 of [50] is fulfilled with U replaced

by V. Therefore, by Theorem 3.3 of [50] and the fact that Ãd(LP) holds
([[ V ]], [[ TV ]]) is closed under the universe constructions.

• That ([[ Ud,u ]]ρ, [[ TU,d,u ]]ρ) are closed under the universe constructions
follows by the construction.

• [[ T̂U,d,u(a) ]]ρ ∈ Flat([[ V ]]) follows since [[ Ud,u ]]ρ ⊆ [[ V ]], and T̂U,d,u(a) −→
a.

• The correctness of the introduction rule introducing vd,f,g follows by the
definition of [[ Deg ]].

• The closure of [[ Ud,vd,f,g
]]ρ under f̂U,d,f,g, ĝU,d,f,g, follows by the construc-

tion and the reduction rules for f̂, ĝ.

• Similarly follows, with d− := subdeg(d, T̂U,d,u(a), T̂U,d,u◦b, c), the closure

of [[ Ud−,ud,u,a,b,c,f,g
]]ρ under f̂u,d,u,a,b,c,f,g, ĝu,d,u,a,b,c,f,g.

• The correctness of the introduction rule introducing ud,u,a,b,c,f,g follows
by the definition the fact that u ∈ Flat([[ Univd ]]ρ) must be of the form
vd′′,f,g where 〈vd′,f,g , vd′′,f,g〉 ∈ [[ V ]] (d′ := [[ d ]]ρ), and that therefore
[[ Ud,u ]]ρ = [[ TV ]](vd′,f,g) = [[ TV ]](vd′′,f,g) is closed under the formation
of subuniverses.

[[ Deg ]] is closed under the introduction rule for Deg. We show directly
the correctness of the equality version of that rule, which implies the correctness
of the non-equality version of the rule as well. So assume
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(1) 〈r, r′〉 ∈ [[ IFamOper ]]0(V
<P, T<P) ,

(2) 〈s, s′〉 ∈ (a ∈ V<P)
[[→ ]](b ∈ (T<P(a) [[→ ]] V<P))
[[→ ]]T<P(r(a, b))

[[→ ]][[ Deg ]]
<P

.

Let d := deg(r, s), d′ := deg(r′, s′). Note that, since r(x, y) = bdeg(d, x, y),
s(x, y, z) = subdeg(d, x, y, z), similarly for r′ and s′, the above means that we
have

degClosure(V<P, T<P, d, d′) .

We have to show
〈d, d′〉 ∈ [[ Deg ]] .

For this assume

(3) 〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<P, T<P)

We have to show
〈vd,f,g, vd′,f ′,g′〉 ∈ V<P .

We have as well

(4) ∀α < P.∃β < P.α < β ∧ Ãd(Lβ),

(5) Ãd(LP).

We show that conditions (1) - (5) can be expressed as a Π3-formula

∀α < P.∃β < P.∀γ < P.ϕ(α, β, γ) ,

such that, if 0 < δ < P and

∀α < δ.∃β < δ.∀γ < δ.ϕ(α, β, γ) ,

then (1) - (5) follow with P replaced by δ.
But then we have by Theorem 3.3. of [50] that V<δ is closed under the

universe constructions,

degClosure(V<δ , T<δ, d, d′) ,

〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<δ , T<δ) .

This will imply that

〈vd,f,g, vd′,f ′,g′〉 ∈ Vδ+2 ⊆ V<P .

Before carrying this out, let us define the following asymmetric versions of
[[ IFamOper ]]:

Definition 4.2 Let (A, B), (C, D) ∈ [[ Fam ]](Set).

(a) [[ IFamOper′ ]]0(A, B, C) := (x ∈ A)
[[→ ]]((y ∈ B(x)) [[→ ]] A)
[[→ ]]C .
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(b) Assume 〈f, f ′〉 ∈ [[ IFamOper′ ]]0(A, B, C). Then

[[ IFamOper′ ]]1(A, B, C, D, f) := (x ∈ A)
[[→ ]]((y ∈ B(x)) [[→ ]] A)
[[→ ]]D(f(x, y))
[[→ ]]C .

(c)

[[ IFamOper′ ]](A, B, C, D) :=

{〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ Term ]]
4 | 〈f, f ′〉 ∈ [[ IFamOper′ ]]0(A, B, C)∧

〈g, g′〉 ∈ [[ IFamOper′ ]]1(A, B, C, D, f)} .

We will express (1) - (5) as Π2- or Π3-formulas (1’) - (5’), respectively, all
with parameter δ, such that

• they hold for δ = P,

• if condition (i’) (where i ∈ {1, . . . , 5}) holds for 0 < δ, and in case of (1’)
- (3’) as well (5’) holds and in case of (2’) as well (1’), then the condition
(i) holds w.r.t. δ.

Then the conjunction of these formulae will be equivalent to a Π3-formula as
well, and we are done.

• (4) is already a Π2-formula and (5) is already a Π3-formula.

• (1) 〈r, r′〉 ∈ [[ IFamOper ]]0(V
<δ , T<δ).

Let ϕ(δ) be the following Π2-formula:

∀α < δ.∃β < δ.〈r, r′〉 ∈ [[ IFamOper′ ]]0(V
<α, T<α, V<β) .

This holds for δ = P, since, for each α < δ, 〈x, x′〉 ∈ V<α and 〈y, y′〉 ∈
T<α(x) → V<α we can find a β such that 〈r(x, y), r′(x′, y′)〉 ∈ V<β . By

Ãd(LP), we can find for every α one β such that for all x, x′, y, y′ this
condition hold.

Furthermore, assume the formula holds for a δ which fulfils (5’). Assume

〈x, x′〉 ∈ V<δ ∧ 〈y, y′〉 ∈ T<δ(x) → V<δ .

Then by (5’) and [50], Lemma 3.4 there exists an α < δ such that

〈x, x′〉 ∈ V<α ∧ 〈y, y′〉 ∈ T<α(x) → V<α .

Therefore,
〈r(x, y), r′(x′, y′)〉 ∈ V<β ⊆ V<δ

for some β < δ.
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• (3) 〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<δ , T<δ).
Let ϕ(δ) be the following Π2-formula:

∀α < δ.∃β < δ.〈〈f, g〉, 〈f, g〉〉 ∈ [[ IFamOper′ ]](V<α, T<α, V<β , T<β) .

The argument in this case is similar as for (1).

• (2) This is the most complicated case, where a real Π3-formula emerges.
If we replace P by δ we obtain the formula (2′):

〈s, s′〉 ∈ (a ∈ V<δ) [[→ ]] (b ∈ (T<δ(a) [[→ ]] V<δ)) [[→ ]] T<δ(r(a, b)) [[→ ]] [[ Deg ]]
<δ

.

First 〈d, d′〉 ∈ [[ Deg ]]
<δ

is equivalent (provided δ fulfils (5’)) to an almost
Σ2-formula relative to δ

∀x ∈ ω.∃α < δ.∀β < δ.ϕ(α, β) .

namely the formula equivalent to the following

∀f, f ′, g, g′ ∈ [[ Term ]].
(∀α < δ.∃β < δ.〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper′ ]](V<α, T<α, V<β , T<β))
→ ∃γ < δ.〈vd,f,g, vd′,f ′,g′〉 ∈ V<γ .

This is clear, since under the condition (5’)

〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<δ , T<δ)

is by Lemma 3.4 of [50] equivalent to

∀α < δ.∃β < δ.〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper′ ]](V<α, T<α, V<β , T<β) .

Now (2′) is therefore, assuming (1′), (5′), equivalent to

∀α < δ.∃β < δ.∀〈a, a′〉 ∈ V<α.

∀〈b, b′〉 ∈ T<α(a) [[→ ]] V<α.

〈r(a, b), r′(a, b)〉 ∈ V<β ∧ ∀〈c, c′〉 ∈ T<β(r(a, b)).

〈s(a, b, c), s(a′, b′, c′)〉 ∈ [[ Deg ]]<δ
.

If we substitute for 〈s(a, b, c), s(a′, b′, c′)〉 ∈ [[ Deg ]]
<δ

the above mentioned
almost Σ2-formula in δ, we obtain therefore that (2′) is equivalent (assum-
ing (5’), which guarantees that we can move the quantifiers restricted only
to δ to the front of the formula, and assuming (1’)) to a Π3-formula.

Correctness of the equality rule for Univd. We show the correctness of
the equality rule for Univd, which expresses that if d = d′ : Deg then Univd =
Univd′ : Set. First we see easily by main induction on α and side-induction on
β that the following small lemma holds:

〈a, b〉 ∈ Vα → ∀β < α(〈a, a〉 ∈ Vβ ∨ 〈b, b〉 ∈ Vβ) → 〈a, b〉 ∈ Vβ .
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Now we show the following statement:

∀α < P.∀d, d′, f, g, a ∈ [[ Term ]].∀〈d, d′〉 ∈ [[ Deg ]].
(〈vd,f,g , a〉 ∈ Vα → 〈vd′,f,g , a〉 ∈ Vα)∧
(〈a, vd,f,g〉 ∈ Vα → 〈a, vd′,f,g〉 ∈ Vα) .

Then, since [[ V ]] is symmetric and transitive, we obtain that 〈d, d′〉 ∈ [[ Deg ]]
implies [[ Univd ]] = [[ Univd′ ]].

The statement is shown by induction on α. We need to show only the first
half, the second half follows by the symmetry of Vα (the symmetry is part of
Assumption 3.2 of [50]). Assume α, 〈d, d′〉 ∈ [[ Deg ]], 〈vd,f,g, a〉 ∈ Vα, and that
the assertion holds for β < α. Then a −→ vd′′,f ′,g′ for some d′′, f ′, g′. Let
Tα(vd,f,g) = V<β with β + 1 < α.

Therefore V<β is closed under the universe constructions,

〈〈f, g〉, 〈f ′, g′〉〉 ∈ [[ IFamOper ]](V<β , T<β) ,

and we have degClosure(V<β , T<β , d, d′′). We have that 〈d, d′〉 ∈ [[ Deg ]] implies
for 〈〈x, y〉, 〈x′, y′〉〉 ∈ [[ IFam ]]([[ V ]], [[ TV ]]) 〈bdeg(d, x, y), bdeg(d′, x′, y′)〉 ∈ [[ V ]]
and for 〈z, z′〉 ∈ [[ TV ]](bdeg(d, x, y)) we have 〈subdeg(d, x, y, z), subdeg(d′, x′, y′, z′)〉 ∈
[[ Deg ]]. But then we obtain using IH for ordinals < β that degClosure(V<β , T<β, d′, d′′).
Therefore 〈vd′,f,g , a〉 ∈ Vα.

Remaining construction of the model. The remaining steps are as for
the other models of type theory with universes in [50]: We need finitely many
admissibles above P in order to interpret the basic set constructions on top of
V, TV (each application of the W-type on top of V requires one more admissible).
Therefore the type theory can be interpreted in Kripke Platek set theory plus
one Π3-reflecting ordinal and finitely many admissibles (i.e. for Meta-each n we
have n admissibles ) above it. So we have given the essence of a proof of the
following theorem:

Theorem 4.3

(a) We can model MLW + (Π3 − refl) in (KPω + (Π3 − refl))+.

(b) |MLW + (Π3 − refl)| ≤ |(KPω + (Π3 − refl))+|.

(c) The previous statements hold as well if we replace intensional by exten-
sional equality.

We have currently only a sketch of a well-ordering proof which shows that the
above bound is sharp. We hope to soon be able to present it as a fully proven
result.
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5 Conclusion

We have indicated why a näıve approach for developing a Π3-reflecting universe
using reflection of type-2 functionals doesn’t work in type theory. We have
then shown how to develop an autonomous Mahlo universe and a Π3-reflecting
universe. We have developed a model for the Π3-reflecting universe and therefore
determined an upper bound for its proof theoretic strength.

Future research. Apart from showing that this bound is sharp, the next steps
will be to introduce stronger universes, for which we already have developed
draft versions: the ΠN -reflecting universe and a Π1

1-reflecting universe. However,
at the moment we haven’t yet gone through the pain of carrying out well-
ordering proofs (there are only rough sketches at present). Another line of
research would be to explore, whether variants of these universe constructions
can be used in general programming.

References

[1] P. Aczel and W. Richter. Inductive definitions and analogues of large car-
dinals. In W. Hodges, editor, Conference in Mathematical Logic, London
’70, Lecture Notes in Mathematics, Vol. 255, pages 1 – 9, Berlin, 1972.
Springer.

[2] T. Arai. Proof theory of theories of ordinals I: Reflecting ordinals. Draft,
1996.

[3] T. Arai. Systems of ordinal diagrams. Draft, 1996.

[4] T. Arai. Proof theory of theories of ordinals II: Σ1 stability. Draft, 1997.

[5] T. Arai. Proof theory of theories of ordinals III: Π1 collection. Draft, 1997.

[6] T. Arai. Ordinal diagrams for Π3-reflection. J. Symbolic Logic, 65(3):1375
– 1394, 2000.

[7] T. Arai. Ordinal diagrams for recursively Mahlo universes. Arch. Math.
Logic, 39(5):353 – 391, 2000.

[8] T. Arai. Proof theory for theories of ordinals. I. Recursively Mahlo ordinals.
Ann. Pure Appl. Logic, 122(1 – 3):1 – 85, 2003.

[9] T. Arai. Proof theory for theories of ordinals. i. recursively mahlo ordinals.
Ann. Pure Appl. Logic, 122(1 – 3):1 – 85, 2003.

[10] T. Arai. Proof theory for theories of ordinals. II. Π3-reflection. Ann. Pure
Appl. Logic, 129(1 – 3):39 – 92, 2004.

[11] J. Barwise. Admissible Sets and Structures. An Approach to Definability
Theory. Omega-series. Springer, 1975.

29



[12] M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and
proofs in dependent type theory. Nordic J. of Computing, 10(4):265–289,
2003.

[13] W. Buchholz. A simplified version of local predicativity. In P. Aczel,
H. Simmons, and S. S. Wainer, editors, Proof Theory. A selection of papers
from the Leeds Proof Theory Programme 1990, pages 115 – 147, Cambridge,
1992. Cambridge University Press.

[14] P. Dybjer. A general formulation of simultaneous inductive-recursive def-
initions in type theory. Journal of Symbolic Logic, 65(2):525–549, June
2000.

[15] P. Dybjer and A. Setzer. Finite axiomatizations of induc-
tive and inductive-recursive definitions. In Workshop on
Generic Programming, Marstrand, Sweden, 18 June 1998.
http://www.cs.ruu.nl/people/johanj/programme wgp98.html, 1998.

[16] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, Typed Lambda Calculi and Applica-
tions, volume 1581 of Lecture Notes in Computer Science, pages 129–146.
Springer, April 1999.

[17] P. Dybjer and A. Setzer. Indexed induction-recursion. In R. Kahle,
P. Schroeder-Heister, and R. Stärk, editors, Proof Theory in Computer
Science, volume 2183 of Lecture Notes in Computer Science, pages 93 –
113. Springer, 2001.

[18] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals
of Pure and Applied Logic, 124:1–47, 2003.

[19] P. Dybjer and A. Setzer. Indexed induction-recursion. 65 pp. To appear in
Journal of Logic and Algebraic Programming, 2006.

[20] M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts
and P. Dybjer, editors, Semantics and logics of computation, pages 79 –
130, Cambridge, 1997. Cambridge University Press.

[21] P. Hyvernat and P. Hancock. Programming interfaces and basic topology.
To appear in Annals of Pure and Applied Logic, 2005.
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[24] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, Naples, 1984.

[25] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s
type theory. An Introduction. Oxford University-Press, Oxford, 1990.

30



[26] B. Nordström, K. Petersson, and J. M. Smith. Martin-löf’s type theory. In
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