
How to Reason Coinductively

Informally

Anton Setzer∗

February 14, 2016

Dedicated to Gerhard Jäger on occasion of his 60th Birthday

Abstract

We start by giving an overview of the theory of indexed inductively
and coinductively defined sets. We consider the theory of strictly positive
indexed inductive definitions in a set theoretic setting. We show the equiv-
alence between the definition as an indexed initial algebra, the definition
via an induction principle, and the set theoretic definition of indexed in-
ductive definitions. We review as well the equivalence of unique iteration,
unique primitive recursion, and induction. Then we review the theory
of indexed coinductively defined sets or final coalgebras. We construct
indexed coinductively defined sets set theoretically, and show the equiv-
alence between the category theoretic definition, the principle of unique
coiteration, of unique corecursion, and of iteration together with bisimula-
tion as equality. Bisimulation will be defined as an indexed coinductively
defined set. Therefore proofs of bisimulation can be carried out corecur-
sively. This fact can be considered together with bisimulation implying
equality as the coinduction principle for the underlying coinductively de-
fined set. Finally we introduce various schemata for reasoning about coin-
ductively defined sets in an informal way: the schemata of corecursion, of
indexed corecursion, of coinduction, and of corecursion for coinductively
defined relations. This allows to reason about coinductively defined sets
similarly as one does when reasoning about inductively defined sets using
schemata of induction. We obtain the notion of a coinduction hypothesis,
which is the dual of an induction hypothesis.

1 Introduction

When reasoning about inductive defined sets such as the natural numbers, we
are used to argue informally while referring to the induction hypothesis. When
for instance showing ∀x, y, z ∈ N.(x + y) + z = x + (y + z), we do not define

∗Department of Computer Science, Swansea University, Singleton Park, Swansea SA2 8PP,
UK, Email: a.g.setzer@swan.ac.uk, http://www.cs.swan.ac.uk/∼csetzer/

1

first a relation R(z) ⇔ ∀x, y.(x + y) + z = x + (y + z) and then argue that R
is closed under 0 and successor S. Instead one proves (x+ y) + 0 = x+ (y + 0)
and proves (x + y) + S(z) = x + (y + S(z) by using the induction hypothesis
(x+ y) + z = x+ (y + z).

Although these two versions are obviously equivalent, the version using the
induction hypothesis is much more lightweight, and easier to teach to students.

When referring to coinductively defined sets, i.e. final coalgebras, we are
currently usually following principles which are similar to referring to the clo-
sure of the relation R under 0,S in inductive definitions. For instance when
showing that two elements of a labelled transition system are bisimilar, one de-
fines a relation on pairs of states of the transition system and shows that it is a
bisimulation relation.

In this article we will discuss how to argue about coinductively defined sets in
a similar way as we argue about inductive sets. This is made easier by following
the approach in [1, 2, 27, 28] of introducing final coalgebras by their elimination
rules rather than their introduction rules. For instance, instead of defining the
set of streams of natural numbers as a set closed under cons : N → Stream →
Stream (and allowing infinite sequences of cons applications), we define Stream
as a set such that we have head : Stream→ N, and tail : Stream→ Stream. This
makes it easier to describe what the correct use of the corecursion hypothesis
is: we can define s : A → Stream by defining head(s(a)) ∈ N and tail(s(a)) ∈
Stream. For defining tail we can use the corecursion hypothesis, i.e. define
tail(s(a)) = s(a′) for some a′ (depending on a).

Coinduction is the dual of induction. In Sect. 3 we will review the well-
known fact that the principle of induction is equivalent to the fact that there
is only one solution for the equations defining a function by the principle of
iteration. Therefore the principle of induction is just one way of expressing the
fact that the principle of iteration has a unique solution. Dually, coinduction
is a principle expressing that the principle of coiteration has a unique solu-
tion. In Sect. 8, Theorem 8.7 we will show that this principle is equivalent to
the fact that bisimulation on coalgebras implies equality. Bisimulation can be
defined coinductively. Therefore we can give proofs of bisimilarity by corecur-
sion. Therefore coinduction can be considered as the principle that we can give
proofs of equality by corecursion over the coinductive definition of bisimulation.
The coinduction hypothesis is essentially the corecursion hypothesis in defining
elements of the bisimilarity corecursively.

We hope that such schemata will make arguing about coinductively defined
sets easier and less technical than it is at the moment.

We will in this article often use “coinductively defined set” for final coalgebra.
The reason is that we want to use a terminology which suggests the use of
corecursion and coinduction principles like those developed in this article, and
which makes it clear that coinductively defined sets are the dual of inductively
defined sets.

2

Content of this article We will start by introducing some notations in
Sect. 2, where we will transfer notations from dependent type theory into set
theory. Then we review in Sect. 3 the theory of indexed inductive definitions,
and prove the equivalence between the category theoretic definition and the
definition by induction. We use here restricted indexed inductive definitions as
introduced in Peter Dybjer’s and the author’s articles [11, 13]. In Sect. 4 the
notions of iteration and primitive recursion and their equivalence, if uniqueness
is added, are reviewed. The main purpose of Sect. 3 and 4 is to motivate anal-
ogous definitions for coinductively defined sets, and make clear how they are
obtained by dualising the concepts related to inductively defined sets. Our set
theoretic definition of inductive definitions is based on defining its elements as
terms, which are well-founded (in most standard examples therefore finitary)
objects, and which can be represented in set theory in a straightforward way.
Defining the elements of coinductively defined sets is more complicated, since
the näıve interpretation using constructors would result in non-well-founded sets
[3], whereas in ZF set theory all sets are well-founded. In Sect. 5 we give one
way of introducing elements of coinductive sets set theoretically. Our construc-
tion is defined in such a way that it reflects the fact that coinductively defined
sets are formed by giving their elimination rules or observations. In Sect. 6 we
introduce the notions of coiteration, corecursion, and show the equivalence of
those principles. In Sect. 7 we discuss a more convenient way of introducing
elements of coinductively defined sets corecursively without having for each in-
dex to define a function. In Sect. 8 we introduce bisimulation, a principle of
coinduction, and show that this principle of coinduction is equivalent to unique
coiteration/corecursion. Finally in Sect. 9 we introduce various schemata for
reasoning about coinductively defined sets informally. The schemata we in-
troduce are corecursion, indexed corecursion, coinduction, and coinduction for
bisimulation relations. We finish with a conclusion in Sect. 10.

We want to note that most of the material in Sect. 3 – 4 is well known in
the theory of initial algebras and inductively defined sets. The purpose of those
sections is to give an overview over the theory of indexed inductive definitions, so
that it is easier to see in later sections how coinductively defined sets are the dual
of inductively defined sets. Sect. 5 is the adaption of a well known categorical
construction to the indexed case. We hope the fact that it is rather concrete and
reflects the fact that coinductively defined sets are formed by their elimination
rules or observations helps to get a better understanding of coinductively defined
sets. The main contribution of this article are in Sects. 6 – 9, where the last
section demonstrates, how to reason informally about coinductively defined sets.

We will work in this article set theoretically. The main reason for this is that
the goal of this article is that ordinary mathematicians, who not necessarily
work in type theory, should be able to use the schemata introduced in this
article for reasoning about coalgebras. We believe that the reasoning principles
can be transferred to extensional type theory, although further work is needed
in order to make sure that all principles type-check. A transfer to intensional
type theory, and therefore proof assistants such as Agda, would require further
modifications. The main problem is that in order to obtain decidable type

3

checking in intensional type theory one needs to replace final coalgebras by
weakly final coalgebras. So coinduction can only be used to prove that elements
are bisimilar rather than equal.

Related Work The equivalence between induction principles and category
theoretic definition of initial algebras is well known, in case of inductive-recursive
definitions it has for instance been worked out in [12], although the equivalence
of inductive definitions has been known much longer. The reduction of indexed
inductive-definitions to Petersson-Synek Trees has been developed in container
theory, see esp. [19, 14] but as well [6, 21]. There are various set theoretic
models of final coalgebras, examples are de Bruin [8], Barr [7] or Aczel [4]. The
equivalence between final coalgebras and bisimulation as equality and iteration
is well known in the theory of coalgebras, see for instance the articles and
textbooks by Rutten and Sangiori [24, 25, 26] (the theory is much older). The
notion of bisimulation of processes was initially defined by Park [22] and Milner
[20] as a greatest fixed point, and therefore as a coinductively defined relation.
Dybjer has defined a set theoretic interpretation of type theory in [9] and with
the author in [10].

In our previous article [27] we introduced coalgebras into type theory by giv-
ing formation-, elimination-, introduction- and equality-rules. There we argued,
that coalgebras are formed by giving their elimination rules, and that the intro-
duction rules and equality rules are derived. We didn’t explore the principle of
coinduction in that article. The current article elaborates on this, however not
in the context of type theory but in a general set theoretic setting. The difficulty
is that in intensional type theory we obtain only weakly final coalgebras.

Acknowledgements. The author wants to thank the anonymous referee for
valuable comments which greatly have improved this article. The diagrams in
this article were typeset using the diagrams package by Paul Taylor.

2 Notations

In the following, we will work mainly set theoretically, using for simplicity the
theory of Zermelo Fraenkel set theory with the axiom of choice. Since our inspi-
ration comes from Martin-Löf type theory, we will simulate basic constructions
in type theory in set theory.

We will work in this article in the set theoretical model of type theory, as
introduced for instance in Sect. 6 of [10]. In this model inductively defined sets
are modelled as sets of terms, introduced by constructors, and function types
are modelled as set theoretic functions. Since the idea of this article is to work
directly in set theory, we will identify inductively defined sets with the least set
introduced by constructors, and function types with the set theoretic function
set.

4

Assumption 2.1 (a) We assume a finite set of constructor symbols C1, , . . . ,
Cn together with an arity arity(Ci) ∈ N associated with each of them.

(b) We assume a Gödel number dCie ∈ N associated with each Ci such that
dCie 6= dCje for i 6= j.

(c) We assume some standard encoding of sequences of sets a1, . . . , an as a
set 〈a1, . . . , an〉, including the case n = 0. We assume this is done in such
a way that there are functions which obtain from a code 〈a1, . . . , an〉 its
length n and the ith element ai.

Definition 2.2 (a) Let Set be the collection of sets.

(b) We will in the following use set theoretic notation for function application,
i.e. we will write f(a) for the application of f to a.

(c) If C is an n-ary constructor we define

C : Setn → Set
C(t1, . . . , tn) := 〈dCe, t1, . . . , tn〉

Definition 2.3 (a) Let A ∈ Set and B(x) ∈ Set depending on x ∈ A. We
define the dependent function set as

(a ∈ A)→ B(a) := {f ∈ A→
⋃
a∈A

B(a) | ∀a ∈ A.f(a) ∈ B(a)}

and the dependent product as

(a ∈ A)×B(a) := {〈a, b〉 | a ∈ A, b ∈ B(a)}

Let π0 and π1 be the first and second projections, i.e. π0(〈a, b〉) = a,
π1(〈a, b〉) = b.

(b)

(x1 ∈ A1)→ (x2 ∈ A2)→ · · · → (xn ∈ An)→ B
:= (x1 ∈ A1)→ ((x2 ∈ A2)→ (· · · → ((xn ∈ An)→ B) · · ·))

(c)

(x1 ∈ A1)× (x2 ∈ A2)× · · · × (xn ∈ An)
:= (x1 ∈ A1)× ((x2 ∈ A2)× (· · · × (xn ∈ An) · · ·))

(d) For A,B ∈ Set let A + B := {inl(a) | a ∈ A} ∪ {inr(b) | b ∈ B}, where
inl, inr are unary constructors.

(e) × binds stronger than + and + binds stronger than →.

(f) Let 1 := {∗} where ∗ is a 0-ary constructor.

5

(g) Let for a relation R(x1, . . . , xn)

R̂(x1, . . . , xn) :=

{
1 if R(x1, . . . , xn)
∅ otherwise

When writing an argument of a function as being an element of a relation,
we write R(x1, . . . , xn) instead of R̂(x1, . . . , xn). For instance
(n ∈ N)→ (n > 0)→ · · · means more precisely (n ∈ N)→ (n >̂ 0)→ · · ·.

(h) When having functions f : (x ∈ A) → (y ∈ B(x)) → C(x, y) we write
f(x, y) for f(x)(y), similarly for functions with more arguments.

(i) When referring to a function f : (x ∈ A) → (y ∈ B(x)) → C(x, y) in a

diagram we sometimes need its uncurried form f̂ : (x ∈ A)× (y ∈ B(x))→
C(x, y). In order to reduce notational overhead we will usually write f

instead of f̂.

(j) When defining f : (x ∈ (A × B)) → (c ∈ C(x)) → D(x, c) we write
f(a, b, c) instead of f(〈a, c〉, c), similarly for longer products or functions
with more arguments.

Definition 2.4 (a) For I ∈ Set let SetI be the category of I-indexed sets with
objects A ∈ I → Set and morphisms f : A → B being set theoretic func-
tions f : (i ∈ I)→ A(i)→ B(i).

(b) For A,B ∈ SetI, Let A+SetI B := λi.A(i) +B(i),
A×SetI B = λi.A(i)×B(i). Furthermore, let

inlSetI := λi, x.inl(x) : A→ A+B

similarly for inr, π0, π1.

(c) For X ⊆ SetI let ⋂
SetI X := λi.

⋂
{y(i) | y ∈ X}⋃

SetI X := λi.
⋃
{y(i) | y ∈ X}

(d) For X,Y ∈ SetI let X ⊆SetI Y :⇔ ∀i ∈ I.X(i) ⊆ Y (i).

(e) We will usually omit the index SetI in the notations introduced above.

3 Initial Algebras and Inductively Defined Sets

We consider in the following the theory of simultaneous inductive definitions of
sets D(i) for i ∈ I. We fix I ∈ Set.

In [11, 13] Dybjer and the author introduced indexed inductive-recursive
definitions. We defined an indexed inductively defined set U : I → Set while
simultaneously recursively defining a function T : (i ∈ I) → U(i) → E[i] for

6

some type E[i]. U(i) was a universe of codes for elements of a type, and T(i, u)
was the type corresponding to code u. The special case of indexed inductively
defined sets (more precisely strictly positive indexed inductively defined sets)
is obtained by taking E[i] = 1. Therefore T is equal to λi, x.∗. T becomes
trivial and can be omitted. We call the set defined inductively in the following
D instead of U and omit in the following T.

In [11, 13] we considered two versions of indexed inductive(-recursive) defi-
nitions, restricted and generalised ones. Generalised inductive definitions have
constructors of the form

C : (x1 ∈ A1)→ (x2 ∈ A2(x1))→ · · · → (xn ∈ An(x1, . . . , xn−1))
→ D(i(x1, . . . , xn))

whereas in restricted ones the index of the result of C is given by the first
argument, so

C : (i ∈ I)→ (x1 ∈ A1(i))→ (x2 ∈ A2(i, x1))→ · · · → (xn ∈ An(i, x1, . . . , xn−1))
→ D(i)

Restricted indexed inductive definitions allow decidable case distinction on
elements of the set D defined inductively: an element of D(i) must be of the
form C(i, x1, . . . , xn) for one of the constructors of D. In case of general indexed
inductive definitions we can in general not decide whether C(x1, . . . , xn) forms
an element of D(i), since we can in general not decide whether i(x1, . . . , xn) = i.

We consider in the following only restricted indexed inductive definitions,
since indexed inductive definitions are here mainly treated in order to motivate
coinductively defined sets later, for which restricted ones are the natural choice.

Strictly positive restricted indexed inductive definitions are the least sets
closed under constructors like C as before. In a notation borrowed from the
type theoretic theorem prover Agda we write for the fact that Tree is this least
set:

data D : I→ Set where
C : (i ∈ I)→ (x1 ∈ A1(i))→ · · · → (xn ∈ An(i, x1, . . . , xn−1))→ D(i)
C′ : (i ∈ I)→ (y1 ∈ A′1(i))→ · · · → (ym ∈ A′m(i, y1, . . . , ym−1))→ D(i)
· · ·

Strict positivity means that Ak(i, ~x) are either sets which were defined be-
fore D(i) was introduced (non-inductive arguments), or are of the form (b ∈
B(i, ~x)) → D(j(i, ~x, b)) (inductive arguments). Since we do not know anything
about D(i), later arguments cannot depend on previous inductive arguments.1

Therefore we obtain an equivalent inductive definition by moving all in-
ductive arguments to the end. Now we can replace all non-inductive argu-
ments by one single one by forming a product (and letting the later argu-
ments depend on the projections). The inductive arguments ((b ∈ B1(i, ~x)) →

1This holds only in indexed inductive-definitions; in indexed inductive-recursive definitions
arguments can depend on T applied to previous inductive arguments.

7

D(j1(i, ~x, b))) → · · · → ((b ∈ Bk(i, ~x)) → D(jk(i, ~x, b)) → can be replaced by
((b ∈ (B1(i, ~x) × · · · × Bk(i, ~x))) → D(j′(i, ~x, b)) for some suitable j′ (in the
special case where there is no inductive argument, we obtain an inductive argu-
ment ∅ → D). Therefore an inductive definition can be replaced by one having
constructors of the form

Ck : (i ∈ I)→ (a ∈ Ak(i))→ ((b ∈ Bk(i, a))→ D(j(i, a, b)))→ D(i)

Assuming we have constructors C0, . . . ,Cn−1 we can replace all constructors by
one single one of type

C : (i ∈ I)
→ (k ∈ {0, . . . , n− 1})
→ (a ∈ Ak(i))
→ ((b ∈ Bk(i, a))→ D(j(i, a, b)))
→ D(i)

which after merging the two non-inductive arguments into one becomes

C : (i ∈ I)→ (a ∈ A(i))→ ((b ∈ B(i, a))→ D(j(i, a, b)))→ D(i)

This is the Petersson-Synek Tree ([23]), which is an indexed version of Martin-
Löf’s W-type. The Petersson-Synek trees subsume all strictly positive inductive
definitions. They are initial algebras of indexed containers in the theory of
containers, see [6, 21]. In [14, 19] a formal proof that initial algebras of indexed
containers and therefore Petersson-Synek trees subsume all indexed inductive
definitions is given.

We write in the following Tree instead of D and tree for the constructor C.
Let us fix in the following A,B, j:

Assumption 3.1 (a) In the following assume

I ∈ Set
A : I→ Set
B : (i ∈ I)→ A(i)→ Set
j : (i ∈ I)→ (a ∈ A(i))→ B(i, a)→ I

(b) Let tree be a constructor of arity 3.

In the above we have

tree : (i ∈ I)→ (a ∈ A(i))→ ((b ∈ B(i, a))→ Tree(j(i, a, b)))
→ Tree(i)

In the data-notation introduced above we denote this by:

data Tree : I→ Set where
tree : (i ∈ I)→ (a ∈ A(i))→ ((b ∈ B(i, a))→ Tree(j(i, a, b)))

→ Tree(i)

8

We will now repeat the well-known argument, that the categorical definition
of inductive definitions is equivalent to the induction principle. The dual of this
argument will then be used to determine the equivalence between the categorical
definition of coalgebras and the corresponding coinduction principle.

Definition 3.2 (a) Let the functor F : SetI → SetI be given by

F(X, i) := (a ∈ A(i))× ((b ∈ B(i, a))→ X(j(i, a, b)))
and for f : X → Y
F(f) : F(X)→ F(Y)
F(f, i, 〈a, g〉) := 〈a, λb.f(j(i, a, b), g(b))〉

(b) An F-algebra, where F is as above, is a pair (X, f) such that X ∈ SetI

and f : F(X)→ X.

(c) The categorical definition2 of Tree is that (Tree, tree) is an initial F-
algebra3, which means:

• (Tree, tree) is an F-algebra.

• For any other F-algebra (X, f) there exists a unique g : Tree → X
s.t. the following diagram commutes

F(Tree)
tree- Tree

F(X)

F(g)

? f - X

∃!g

?

We call g the unique F-algebra homomorphism into (X, f).

(d) The inductive definition of Tree is given by4

• (Tree, tree) is an F-algebra

• for any formula ϕ(i, x) depending on i ∈ I and x ∈ Tree(i) we have
that if

∀i ∈ I.∀a ∈ A(i).∀f ∈ (b ∈ B(i, a))→ Tree(j(i, a, b)).
(∀b ∈ B(i, a).ϕ(j(i, a, b), f(b)))
→ ϕ(i, tree(i, a, f)) (Prog(ϕ))

2Note that we deviate from standard category theory in so far as we fix the function
tree: tree is the curried version of the constructor, which we introduced before. In standard
category theory both the set Tree and the function tree can be arbitrary, and therefore the
initial algebra is only unique up to isomorphism. Note as well that above we had the convention
that we identify tree with its uncurried form t̂ree. Without this convention one would say
that (Tree, t̂ree) is an F-algebra.

3Here, F is as above, i.e. strictly positive.
4Again tree is the curried version of the constructor defined before.

9

then
∀i ∈ I.∀x ∈ Tree(i).ϕ(i, x)

We call the assumption Prog(ϕ) that “ϕ is progressive”.

(e) The set theoretic definition of Tree is given by

Tree = [[Tree]]

where
[[Tree]] :=

⋂
{X ∈ SetI | (X, tree) is an F-algebra}

Lemma 3.3 [[Tree]] is a set.

Proof: We repeat the standard argument. Define by induction on the
ordinals Fα,F<α ∈ SetI,

Fα(i) := {tree(i, a, f) | 〈a, f〉 ∈ F(F<α, i)}
F<α :=

⋃
β<α Fβ

F is monotone, and therefore Fα ⊆ Fβ for α < β. Let κ be a regular infinite car-
dinal, κ > card(B(i, a)) for i ∈ I and a ∈ A(i) (where card(x) is the cardinality
of x).

We show that (F<κ, tree) is an F-algebra. Assume 〈a, f〉 ∈ F(F<κ, i). Then
a ∈ A(i), f ∈ (b ∈ B(i, a)) → F<κ(j(i, a, b)). Therefore, for b ∈ B(i, a) there
exist β < κ s.t. f(b) ∈ Fβ(j(i, a, b)). By the regularity of κ and κ > card(B(i, a))
there exists a γ < κ s.t. for all b ∈ B(i, a) we have f(b) ∈ Fγ(j(i, a, b)). Therefore
tree(i, a, f) ∈ Fγ+1(i) ⊆ F<κ(i).

It follows [[Tree]] ⊆ F<κ which is a set.
In fact [[Tree]] = F<κ, since one can show by induction on α that for any

F-algebra (X, tree) we have Fα ⊆ X, and therefore F<κ ⊆ X, so (Fκ, tree) is
the initial algebra.

The following theorem is well known. We show it since it provides the key
idea for the coinduction principle introduced later.

Theorem 3.4 The following is equivalent:

(a) The categorical definition of Tree.

(b) The inductive definition of Tree.

(c) The set theoretic definition of Tree.

Proof: (a) implies (b): Let ϕ(i, x) be progressive. Define E ∈ SetI, E(i) :=
{x ∈ Tree(i) | ϕ(i, x)}. By progressivity of ϕ we obtain tree : F(E) → E,

10

therefore (E, tree) is an F-algebra. Let h := λi.x.x : E → Tree be the embedding
function, g the unique F-algebra homomorphism E → Tree, and consider

F(Tree)
tree- Tree

F(E)

F(g)

? tree - E

∃g

?

F(Tree)

F(h)

? tree- Tree

h

?

The upper diagram commutes by definition of g. The lower diagram obviously
commutes. h ◦ g : Tree → Tree and the identity function id : Tree → Tree are
two functions which make the outer diagram commute. By uniqueness of this
function we get that h◦g = id, i.e. ∀i ∈ I.∀x ∈ Tree(i).g(i, x) = x, and therefore
∀i ∈ I.∀x ∈ Tree(i).x ∈ E(i), ∀i ∈ I.∀x ∈ Tree(i).ϕ(i, x).

Proof of (b) implies (a): Let (X, f) be an F-homomorphism. The existence
of a unique g follows as for the recursion theorem in set theory: One first defines
for i ∈ I and t ∈ Tree(i) TC(i, t) as the least set such that,

• if t = tree(i, a, g), b ∈ B(i, a) then 〈j(i, a, b), g(b)〉 ∈ TC(i, t),

• if 〈i′, tree(i′, a, g)〉 ∈ TC(i, t) and b ∈ B(i′, a) then 〈j(i′, a, b), g(b)〉 ∈
TC(i, t).

So Tree(i, t) contains all proper subtrees of t and contains for every tree its
subtrees.

Then it follows that we have course of value induction on Tree, i.e. if ϕ is
course of value progressive, written Progcoursevalue(ϕ), i.e.

∀i ∈ I.∀t ∈ Tree(i).(∀〈i′, t′〉 ∈ TC(i, t).ϕ(i′, t′))→ ϕ(i, t)

then ∀i ∈ I.∀t ∈ Tree(i).ϕ(i, t). When showing this one shows first by induction
on i ∈ I, t ∈ Tree(i) that ∀i ∈ I.∀t ∈ Tree(i).∀〈i′, y〉 ∈ TC(i, t).ϕ(i′, y), which
implies ∀i ∈ I.∀t ∈ Tree(i).ϕ(i, t). Let TC′(i, t) ∈ SetI, TC′(i, t, i′) = {t′ |
〈i′, t′〉 ∈ TC(i, t)}. Then one shows by course of value induction that for every
i ∈ I, t ∈ Tree(i) there exists a unique function g : TC′(i, t) → X which
fulfils the condition of the iteration principle given by the categorical diagram,
restricted to TC′(i, t). We now obtain a function g : Tree → X fulfilling the
same equations, and show easily its uniqueness.

Proof of (c) implies (b): Assume ϕ is progressive. Define E as in the direction
“(a) implies (b)”. (E, tree) is an F-algebra, therefore Tree ⊆ E.

Proof of (b) implies (c): We show first by induction on Tree that ∀i ∈ I.∀x ∈
Tree(i).x ∈ [[Tree]](i), therefore Tree ⊆ [[Tree]]. Furthermore, (b) implies that
(Tree, tree) is an F-algebra, and therefore [[Tree]] ⊆ Tree.

11

4 Iteration, Recursion, Induction

In Sect. 6 we will introduce the principles of coiteration and corecursion. In order
to see that these principles are the dual of iteration and primitive recursion, we
repeat in this section the definition of those principles as well as the principle of
type theoretic induction. We will give as well the (well-known) proof that the
principles of being an initial F-algebra, of unique iteration, of unique primitive
recursion, and of type theoretic induction are equivalent, which will as well be
dualised in Sect. 6.

Definition 4.1 Assume Tree : I→ Set and tree : F(Tree)→ Tree.5

(a) By “(Tree, tree) satisfies the principle of unique iteration” we mean the
following: Assume

X : I→ Set
f : (i ∈ I)→ ((a ∈ A(i))× ((b ∈ B(i, a))→ X(j(i, a, b))))

→ X(i)

Then there exists a unique g : Tree→ X such that

g(i, tree(i, a, h)) = f(i, 〈a, λb.g(j(i, a, b), h(b))〉)

(b) By “(Tree, tree) satisfies the principle of unique primitive recursion” we
mean the following: Assume

X : I→ Set
f : (i ∈ I)→ ((a ∈ A(i))×

((b ∈ B(i, a))→ (Tree(j(i, a, b))×X(j(i, a, b)))))
→ X(i)

Then there exists a unique g : Tree→ X such that

g(i, tree(i, a, h)) = f(i, 〈a, λb.〈h(b), g(j(i, a, b), h(b))〉〉)

(c) By “(Tree, tree) satisfies the principle of unique type theoretic induction”
we mean the following: Assume

X : (i ∈ I)→ Tree(i)→ Set
f : (i ∈ I)→ ((a ∈ A(i))×

(h : (b ∈ B(i, a))→ ((t ∈ Tree(j(i, a, b)))×X(j(i, a, b), t))))
→ X(i, tree(i, a, π0 ◦ h))

Then there exists a unique g : (i ∈ I)→ (t ∈ Tree(i))→ X(i, t) such that

g(i, tree(i, a, h)) = f(i, 〈a, λb.〈h(b), g(j(i, a, b), h(b))〉〉)
5Note that in contrast to other sections, tree can be an arbitrary function of this type, and

Tree is assumed just to be an element of SetI.

12

(d) By “(Tree, tree) satisfies the principle of iteration, primitive recursion or
type theoretic induction” we mean that it satisfies the corresponding prin-
ciple as above, but omitting the condition that g is unique.

Theorem 4.2 Assume Tree is a set s.t. tree : F(Tree)→ Tree.
The following are equivalent

(a) (Tree, tree) is an initial F-algebra.

(b) (Tree, tree) satisfies the principle of unique iteration.

(c) (Tree, tree) satisfies the principle of unique primitive recursion.

(d) (Tree, tree) satisfies the principle of type theoretic induction.

(e) (Tree, tree) satisfies the principle of unique type theoretic induction.

Proof: (a) and (b) are equivalent since the principle of iteration is nothing
but the commutativity of the diagram spelt out.

(a) implies (e): Define forX, f as in the definition of type-theoretic induction

X ′ : I→ Set
X ′(i) = (t ∈ Tree(i))×X(i, t)

h : F(X ′)→ X ′

h(i, 〈a, k〉) = 〈tree(i, a, π0 ◦ k), f(i, 〈a, k〉)〉

Consider the diagram

F(Tree)
tree - Tree

F(X ′)

F(g′)

? h - X ′

∃!g′

?
F(π0 ◦ g′),F(id)

?
F(Tree)

F(π0)

? tree - Tree

π0

?

π0 ◦ g′, id

?

There exists a unique g′ such that the upper part of the diagram commutes. The
lower part of the diagram commutes trivially. Both π0 ◦ g′ and id : Tree→ Tree
make the outer diagram commute. By uniqueness we get π0 ◦g′ = id. Therefore
g′(i, t) = 〈t, g(i, t)〉 for some g : (i : I) → Tree(i) → X ′(i, t), and we see
immediately that g satisfies the equations for type-theoretic induction.

Assume g0 is another solution for the equations for type theoretic induction
in the theorem. Let g′0 : Tree → X ′, g′0(i, t) = 〈t, g0(i, t)〉. Then the upper

13

diagram above with g′ replaced by g′0 commutes as well. By uniqueness of g′ it
follows g′0 = g′ and therefore g0 = g.

Obviously, (e) implies (d).
(d) implies (c). We immediately obtain (d) implies the principle of primitive

recursion, since it is a special case of type theoretic induction. We get as well
unique primitive recursion: Assume X, f as in the definition of unique primitive
recursion, and let g, g′ : Tree → X be two solutions for the primitive recursion
equation. Let

X ′ : (i ∈ I)→ Tree(i)→ Set
X ′(i, t) = g(i, t) =̂ g′(i, t)

Let f ′ be of the type of the function underlying the principle of type-theoretic
induction w.r.t. X ′, f ′(i, 〈a, h〉) = ∗ ∈ X ′(i, t), where t := tree(i, a, π0 ◦ h).
f ′(i, 〈a, h〉) ∈ X ′(i, t), since for b ∈ B(i, a) we have, with j′ := j(i, a, b), that
π1(h(b)) ∈ X ′(j′, π0(h(b))), therefore g(j′, π0(h(b))) = g′(j′, π0(h(b))), and there-
fore g(i, t) = g′(i, t). Let g′′ be defined by the principle of induction w.r.t. X ′

and f ′. Then we have g′′ : (i ∈ I) → (t ∈ Tree(i)) → X ′(i, t), and therefore for
i ∈ I, t ∈ Tree(i) we have g(i, t) = g′(i, t).

(c) implies (b) since iteration is a special case of primitive recursion.
When dualising inductive definitions, we will not obtain a direct dual of type

theoretic induction. We obtain only duals of iteration and recursion. So when
dualising the current theorem, we need to omit (d) and (e) and therefore dualise
a proof that (a) implies (c). But a proof that (a) implies (c) is essentially the
same as the proof that (a) implies (e), where one omits the dependencies of X ′

on Tree(i).

5 Modelling Coinductive Sets in Set Theory

In case of inductive definitions it was easy to model inductively defined sets
set-theoretically, since we could simply model the well-founded trees set the-
oretically. When defining coinductively defined sets (or final coalgebras) we
obtain non-well-founded trees. If we define the elements as terms introduced by
the constructor tree as used before (which was fixed function), then the coinduc-
tively defined set would need to be defined as a non-well-founded sets [3]. This
can be overcome by introducing coinductively defined sets by their eliminators,
and in the following we will give one concrete way of defining them. We can
then define a constructor for introducing elements, this constructor is not the
function tree defined before. We note that there are many different ways known
for defining non-well-founded trees in set theory, our approach here is inspired
by Aczel [4]. It can be considered as an indexed explicit version of the standard
limit construction of coalgebras. This construction is a category theoretic con-
struction, it is essentially the ω-limit of Fn. One of the earliest versions of such
a construction seems to be [5], which is an extension of [3].

One advantage of this concrete representation of coinductively defined sets
over other more abstract constructions is that because it is very concrete it is
easy to have a feeling of what the elements of the coinductively defined sets

14

are. As one can see the elements of coalgebras are descriptions of the result
of applying the eliminators to them (several times in case of the eliminator E2

which returns an element of the coalgebra). So this construction follows the
slogan “an element of a coalgebra is determined by the result of applying the
eliminators to it”.

Assume I,A,B, j, F as before.

Definition 5.1 • An F-coalgebra (X, f) is given by X ∈ SetI and f : X →
F(X).

• An F-coalgebra (X, f) is a final F-coalgebra if for any F-coalgebra (Y, g)
there exists a unique h : Y → X s.t.

Y
g - F(Y)

X

∃!h

? f - F(X)

F(h)

?

We will in the following construct a final F-coalgebra ([[Tree∞]],E). So we
have

E : (i ∈ I)→ [[Tree∞]](i)
→ ((a ∈ A(i))× ((b ∈ B(i, a))→ [[Tree∞]](j(i, a, b))))

We can replace the eliminator (or case distinction) E by two eliminators

E1 : (i ∈ I)→ [[Tree∞]](i)→ A(i)
E2 : (i ∈ I)→ (t ∈ [[Tree∞]](i))→ (b ∈ B(i,E1(i, t)))→ [[Tree∞]](j(i,E1(i, t), b))

E1 returns the label of the tree and E2 its subtrees. Since E1,E2 are the two
components of E we will in the following freely switch between E and E1,E2.

We summarise that [[Tree∞]] is an F-coalgebra as follows:

[[Tree∞]] : I→ Set
E1 : (i ∈ I)→ [[Tree∞]](i)→ A(i)
E2 : (i ∈ I)→ (b ∈ B(i,E1(i, t)))→ [[Tree∞]](j(i,E1(i, t), b))

The idea for defining [[Tree∞]] : I → Set and Ei as follows: An element of
[[Tree∞]] is anything which, when applying E1 and E2 to it, returns meaningful
results. When applying E1 we obtain an element of A(i), which we can observe
directly. When applying E2 (with an argument in B(i, a)) we obtain an element
of [[Tree∞]](j) for some j, which we cannot observe directly. However we can
continue applying E2 several times and then E1 to obtain an observable result.
The observations we have are therefore that we apply several times E2 to it and
then E1 to it and obtain an element of A(i) for some i.

This means that the observations from an element of [[Tree∞]](i) are if we
set i0 = i, an element a0 ∈ A(i0) which would be the result of applying E1; we

15

can then continue by choosing an arbitrary b0 ∈ B(i0, a0), have now a new index
i1 = j(i0, a0, b0). For this index we could apply E1 to it and obtain an element
a1 ∈ A(i1), or apply for an arbitrary b1 ∈ B(i0, a0), an element corresponding
to index i2 = j(i0, a0, b0) and so on.

The observations are therefore a set of sequences 〈i0, a0, b0, i1, a1, b1, . . . , in, an〉,
where i0 = i, ak ∈ A(ik), bk ∈ B(ik, ak) and ik+1 = j(ik, ak, bk). Here bk can be
chosen freely, whereas ak is defined uniquely depending on previous occurrences
of bk′ . An element of [[Tree∞]] is determined by those observations and there-
fore identified with those observations. This gives rise to the following definition
of [[Tree∞]] as a set of such sequences:

Definition 5.2 (a) Let for i ∈ I

Seq[[Tree∞]](i) := {〈i0, a0, b0, i1, a1, b1, . . . , in, an〉 |
n ≥ 0, i0 = i,
(∀k ∈ {0, . . . , n− 1}.bk ∈ B(ik, ak) ∧ ik+1 = j(ik, ak, bk)),
∀k ∈ {0, . . . , n}.ak ∈ A(ik)}

(b) Let [[Tree∞]](i) be the set of t ⊆ Seq[[Tree∞]](i) such that the following

holds:

• 〈i0, a0, b0, . . . , in+1, an+1〉 ∈ t→ 〈i0, a0, b0, . . . , in, an〉 ∈ t
• ∃!a.〈i, a〉 ∈ t,
• 〈i0, a0, b0, . . . , in, an〉 ∈ t ∧ bn ∈ B(in, an) ∧ in+1 = j(in, an, bn)

→ ∃!an+1.〈i0, a0, b0, . . . , in, an, bn, in+1, an+1〉 ∈ t

(c) Define
E1 : (i ∈ I)→ [[Tree∞]](i)→ A(i)
E1(i, t) := a if 〈i, a〉 ∈ t

(d) Define

E2 : ((i ∈ I)→ (t ∈ [[Tree∞]](i))→ (b ∈ B(i,E1(i, t)))
→ [[Tree∞]](j(i,E1(i, t), b))

E2(i, t, b) := {〈i1, a1, b1, . . . , in+1, an+1〉
| 〈i,E1(i, t), b, i1, a1, b1, . . . , in+1, an+1〉 ∈ t}

(e) Define

E : (i ∈ I)→ (t ∈ [[Tree∞]](i))
→ ((a ∈ A(i))× ((b ∈ B(i, a))→ [[Tree∞]](j(i, a, b))))

E(i, t) = 〈E1(i, t), λb ∈ B(i,E1(i, t)).E2(i, t, b)〉

Lemma 5.3 E1,E2,E in the previous definition are well defined.

Proof: Straightforward by definition.

16

Lemma 5.4 Assume

G : I→ Set
â : (i ∈ I)→ G(i)→ A(i)
ĝ : (i ∈ I)→ (g ∈ G(i))→ (b ∈ B(i, â(i, g)))→ G(j(i, â(i, g), b))

Then there exists a unique f : (i ∈ I) → G(i) → [[Tree∞]](i) such that for all
i ∈ I, g ∈ G(i), b ∈ B(i, â(i, g)) we have

E1(i, f(i, g)) = â(i, g)
E2(i, f(i, g), b) = f(j(i,E1(i, f(i, g)), b), ĝ(i, g, b))

Proof: Define for i ∈ I, g ∈ G(i),

f(i, g) = {〈i0, a0, b0, i1, a1, b1, . . . , in, an〉 |
〈i0, g0, a0, b0, i1, a1, g1, b1, . . . , in, gn, an〉 ∈ Y (i, g)} where

Y (i, g) = {〈i0, g0, a0, b0, i1, a1, g1, b1, . . . , in, gn, an〉 |
g0 = g, i0 = i
(∀j ∈ {0, . . . , n}.aj = â(ij , gj)),
∀j ∈ {0, . . . , n− 1}.bj ∈ B(ij , aj) ∧ ij+1 = j(ij , aj , bj)

∧gj+1 = ĝ(ij , gj , bj)}

One easily sees that f(i, g) ∈ [[Tree∞]](i).
〈i, g, â(i, g)〉 ∈ Y (i, g), therefore 〈i, â(i, g)〉 ∈ f(i, g), therefore
E1(i, f(i, g)) = â(i, g).
Furthermore,

E2(i, f(i, g), b) = {〈i1, a1, b1, . . . , in, an〉 |
〈i,E1(i, f(i, g)), b, i1, a1, b1, . . . , in, an〉 ∈ f(i, g)}

= {〈i1, a1, b1, . . . , in, an〉 |
〈i, g,E1(i, f(i, g)), b, i1, g1, a1, b1, . . . , in, gn, an〉 ∈ Y (i, g)}

= f(j(i,E1(i, f(i, g)), b), ĝ(i, g, b))

Therefore f fulfils the required equations.
Assume now

f ′ : (i ∈ I)→ G(i)→ [[Tree∞]](i) s.t.
E1(i, f ′(i, g)) = â(i, g)
E2(i, f ′(i, g), b) = f ′(j(i,E1(i, f ′(i, g)), b), ĝ(i, g, b))

Then

〈i′, a′〉 ∈ f ′(i, g) ⇔ i′ = i ∧ a′ = â(i, g)⇔ 〈i′, a′〉 ∈ f(i, g)

Therefore sequences of length 2 in f ′(i, g) and f(i, g) coincide. Furthermore,

E2(i, f ′(i, g), b) = f ′(j(i, â(i, g), b), ĝ(i, g, b))

17

Therefore

E2(i, f ′(i, g), b) = {〈i1, a1, b1, . . . , in, an〉 |
〈i, â(i, g), b, i1, a1, b1, . . . , in, an〉 ∈ f ′(i, g)}

= f ′(j(i, â(i, g), b), ĝ(i, g, b))

which is the same equation as fulfilled by f(i, g). This equation reduces se-
quences in f ′(i, g) of length > 2 to sequences of shorter length in some f ′(i′, g′)
for some i′, g′, similarly for f . Together with the statement about sequences of
length 2 above it follows by induction on length(σ)

∀σ.∀i, g.σ ∈ f ′(i, g)⇔ σ ∈ f(i, g)

therefore ∀i, g.f(i, g) = f ′(i, g), f = f ′.

Main Theorem 5.5 ([[Tree∞]],E) is a final F-coalgebra.

Proof: ([[Tree∞]],E) is an F-coalgebra. Assume (G, g) is an F-coalgebra.
Let g(i, x) = 〈â(i, x), ĝ(i, x)〉. Lemma 5.4 implies that there exists a unique
f : G→ [[Tree∞]] s.t. the following diagram commutes:

G
g - F(G)

[[Tree∞]]

∃!f

? tree- F([[Tree∞]])

F(f)

?

Above we used the notation with keyword data for denoting an inductively
defined set as given by its constructors. A similar notation expressing that
[[Tree∞]] is a final coalgebra with eliminators E1, E2, would be:

coalg [[Tree∞]] : I→ Set where
E1 : (i ∈ I)→ [[Tree∞]](i)→ A(i)
E2 : (i ∈ I)→ (b ∈ B(i,E1(i, t)))→ [[Tree∞]](j(i,E1(i, t), b))

6 Coiteration and Corecursion

We will in this section introduce the dual of iteration and primitive recursion,
namely coiteration and corecursion. We do not know how to directly formulate
the dual of type theoretic induction (or dependent primitive recursion), since
one cannot directly invert the arrow in a dependent function type. In Sect. 8 we
will introduce a principle of coinduction, which can be considered as the dual
of induction, although it is not its direct dual.

We show as well that the principles of being a final F-coalgebra, of unique
coiteration, and of unique corecursion are equivalent. The definitions and the

18

proof in this section are the exact dual of Sect. 4 (omitting type theoretic in-
duction). Note that the dual of the product × is the disjoint union +. In
the principle of primitive recursion we can make use of both the inductive ar-
gument and the recursion hypothesis, corresponding to the product (×). In
the principle of corecursion we can either return a given element from Tree∞

or recursively call the function in question, which is a call to the corecursion
hypothesis, corresponding to the disjoint union (+).

Definition 6.1 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2

be the two components of E as defined before.

(a) By “(Tree∞,E) satisfies the principle of unique coiteration” we mean the
following: Assume

X : I→ Set
â : (i ∈ I)→ X(i)→ A(i)
x̂ : (i ∈ I)→ (x ∈ X(i))→ (b ∈ B(i, â(i, x)))

→ X(j(i, â(i, x), b))

Then there exists a unique f : X → Tree∞ such that

E1(i, f(i, x)) = â(i, x)
E2(i, f(i, x), b) = f(j(i,E1(i, f(i, x)), b), x̂(i, x, b))

(b) By “(Tree∞,E) satisfies the principle of unique corecursion” we mean the
following: Assume

â : (i ∈ I)→ X(i)→ A(i)
x̂ : (i ∈ I)→ (x ∈ X(i))→ (b ∈ B(i, â(i, x)))

→ X(j(i, â(i, x), b)) + Tree∞(j(i, â(i, x), b))

Then there exists a unique f : X → Tree∞ such that

E1(i, f(i, x)) = â(i, x)

E2(i, f(i, x), b) =

{
f(j(i,E1(i, f(i, x)), b), x′) if x̂(i, x, b) = inl(x′)
x′ if x̂(i, x, b) = inr(x′)

(c) By “(Tree∞,E) satisfies the principle of corecursion or coiteration” we
mean that it fills the corresponding principle as above, but omitting the
condition that f is unique.

Lemma 6.2 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2 be
the two components of E as defined before.

The following are equivalent

(a) (Tree∞,E) is a final F-coalgebra.

(b) (Tree∞,E) satisfies the principle of unique coiteration.

19

(c) (Tree∞,E) satisfies the principle of unique corecursion.

Proof: (a) and (b) are equivalent since â, x̂ are the two components of a
morphism g : X → F(X), so the unique existence of f as in (b) is equivalent to
the unique existence of f in the diagram for defining final coalgebras.

Obviously, (c) implies (b), since coiteration is a special case of corecursion.
(a) implies (c): Define for X, â, x̂ as in the definition of corecursion

X ′ : I→ Set
X ′(i) = X(i) + Tree∞(i)

h : (i ∈ I)→ X ′(i)→ F(X ′, i)
h(i, inl(x)) = 〈â(i, x), λb.x̂(i, x, b)〉
h(i, inr(t)) = 〈E0(i, t), λb.inr(E1(i, t, b))〉

Consider the diagram

Tree∞
E- F(Tree∞)

X ′

inr

? h - F(X ′)

F(inr)

?
g′ ◦ inr, id

?
Tree∞

∃!g′

? E- F(Tree∞)

F(g′)

?

F(g′ ◦ inr),F(id)

?

There exists a unique g′ such that the lower part of the diagram commutes. The
upper part of the diagram commutes trivially. Both g′ ◦ inr and id : Tree∞ →
Tree∞ make the outer diagram commute. By uniqueness we get g′ ◦ inr = id.
Let g := g′ ◦ inl : X → Tree∞. By g′(inr(x)) = x we have that g satisfies the
desired equation. Assume g0 is another solution for the corecursion equation
in the lemma. Let g′0 : X ′ → Tree∞, g′0(i, inl(x)) = g0(x), g′0(i, inr(x)) = x.
Then the lower diagram above with g′ replaced by g′0 commutes as well. By
uniqueness of g′ follows g′0 = g′ and therefore g0 = g.

7 Indexed Corecursion

When defining elements of coinductively defined sets, we often want to define
for some X ∈ Set and î : X → I a function f : (x ∈ X) → Tree∞(̂i(x))
corecursively. This can be reduced to corecursion as follows:

20

Lemma 7.1 Let (Tree∞,E) be a final F-coalgebra, where F is as before.
Assume

X ∈ Set

î : X → I

â : (x ∈ X)→ A(̂i(x))

x̂ : (x ∈ X)→ (b ∈ B(̂i(x), â(x)))

→ {x ∈ X | î(x) = j(̂i(x), â(x), b)}+ Tree∞(j(̂i(x), â(x), b)))

Then there exists a unique f : (x ∈ X)→ Tree∞(̂i(x)), such that

E1(̂i(x), f(x)) = â(x)

E2(̂i(x), f(x), b) =

{
f(y) if x̂(x, b) = inl(y)
t if x̂(x, b) = inr(t)

Proof: Let Y : I → Set, Y (i) := {x ∈ X | î(x) = i}. f satisfying the
equations as stated in the lemma is equivalent to the function

f ′ : (i ∈ I)→ Y (i)→ Tree∞(i)
f ′(i, x) = f(x)

satisfying the equations.

E1(i, f ′(i, x)) = â(x)

E2(i, f ′(i, x), b) =

{
f ′(j(i, â(x), b), y) if x̂(x, b) = inl(y)
t if x̂(x, b) = inr(t)

By existence and uniqueness of f ′ satisfying those equations follows existence
and uniqueness of f .

8 Bisimulation and Coinduction

Definition 8.1 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2

be the two components of E as defined before.

(a) Let for i ∈ I, t, t′ ∈ Tree∞(i)

IBisim := (i ∈ I)× Tree∞(i)× Tree∞(i)

ABisim : IBisim → Set
ABisim(i, t, t′) := (E0(i, t) = E0(i, t′)) (more precisely (E0(i, t) =̂ E0(i, t′)))

BBisim : (i ∈ IBisim)→ ABisim(i)→ Set
BBisim(i, t, t′, a) := B(i, a)

jBisim : (i ∈ IBisim)→ (a ∈ ABisim(i))→ (b ∈ BBisim(i, a))→ IBisim

jBisim(i, t, t′, ∗, b) = 〈j(i,E0(i, t), b),E1(i, t, b),E1(i, t′, b)〉

FBisim : SetI
Bisim

→ SetI
Bisim

FBisim(X, i) = (a ∈ ABisim(i))× ((b ∈ BBisim(i, a))→ X(jBisim(i, a, b))

21

We note that, if (Bisim,EBisim) is an FBisim-coalgebra, and EBisim
0 ,EBisim

1

are the two components of EBisim, then

EBisim
0 (i, t, t′) ∈ (E0(i, t) = E0(i, t′))

i.e. the existence of EBisim
0 (i, t, t′) is equivalent to E0(i, t) = E0(i, t′)

and for a ∈ ABisim(i, t, t′), b ∈ BBisim(i, t, t′, a) = B(i, a)
EBisim
1 (i, t, t′, b) ∈ Bisim(j(i,E0(i, t), b),E1(i, t, b),E1(i, t′, b))

Definition 8.2 For X ∈ Set which is considered as a relation we will in for-
mulae write X instead of (∃x.x ∈ X)

Lemma 8.3 Assume the axiom of choice. Assume X : IBisim → Set.
There exists a g s.t. (X, g) is an FBisim-coalgebra iff

∀i, t, t′.X(i, t, t′)
→ E0(i, t) = E0(i, t′)
∧∀b ∈ B(i,E0(i, t)).X(j(i,E0(i, t), b),E1(i, t, b),E1(i, t′, b))

Proof “⇒” is obvious. For “⇐” define g : X → FBisim(X), g(i, t, t′, x) =
〈∗, h〉 where h(b) = some y ∈ X(j(i,E0(i, t), b),E1(i, t, b),E1(i, t′, b)).

Induction is a proof principle which is equivalent to the principle that an
F-algebra is an initial F-algebra, or, as we have seen, the principle of unique
iteration or unique primitive recursion. Dually coinduction should be a proof
principle which is equivalent to the principle that an F-coalgebra is a final F-
coalgebra, or equivalently, that it satisfies the principle of unique coiteration or
the principle of unique corecursion.

We will see below that the principle of being a final F-coalgebra is equivalent
to the fact that bisimulation implies equality. The latter is a proof principle.
As it stands it does not seem to be of the same character as the principle of
induction as a proof principle. However, bisimulation is a coalgebra, and proofs
of bisimulation can therefore be carried out corecursively, and that will give
rise to the dual of an induction hypothesis, namely a coinduction hypothesis.
This way we obtain proof principle which we believe is of similar character
as induction. We will elaborate this in Subsect. 9.3 where we will introduce
schemata for coinduction.

We therefore call the fact that bisimulation implies equality the principle of
coinduction:

Definition 8.4 Let (Tree∞,E) be an F-coalgebra.
By “(Tree∞,E) satisfies the principle of coinduction” we mean that it sat-

isfies the principle of corecursion and for the final FBisim-coalgebra (Bisim,E′)
we have

∀i, t, t′.Bisim(i, t, t′)→ t = t

Remark 8.5 Note that since proofs by bisimulation can be carried out by core-
cursion on Bisim(i, t, t′) the principle of coinduction becomes a proper proof
principle.

22

Lemma 8.6 Let (Tree∞,E) be an F-coalgebra. The following is equivalent

(i) (Tree∞,E) is a final F-coalgebra.

(ii) (Tree∞,E) satisfies the principle of corecursion and for any FBisim-coalgebra
(X,h) we have
∀i, t, t′.X(i, t, t′)→ t = t′.

(iii) (Tree∞,E) satisfies the principle of coinduction.

Proof: By Lemma 6.2, in (i) - (iii) the principle of corecursion is satisfied.
(i) implies (ii): Assume (X,h) is a FBisim-coalgebra.

Let
G : I→ Set
G(i) := {〈t, t′〉 ∈ Tree∞ × Tree∞ | X(i, t, t′)}

Define
g : G→ F(G)
g(i, 〈t, t′〉) = 〈E1(i, t), λb.〈E1(i, t, b),E1(i, t′, b)〉〉}

Consider

G
g - F(G)

Tree∞

∃!h

? E- F(Tree∞)

F(h)

?

There exists a unique h which makes this diagram commute. Both the first and
second projection (lifted to SetI) make this diagram commute. By uniqueness
follows they are equal and therefore the assertion follows.

(ii) implies (iii) is obvious since by the previous section there exist such a
coalgebra.

(iii) implies (ii) since for any FBisim-coalgebra (X,h) we obtain a function
f : X → Bisim. Therefore that X(i, t, t′) is inhabited implies that Bisim(i, t, t′)
is inhabited.

(ii) implies (i): Let (X, g) be an F-coalgebra and assume h, h′ are two solu-
tions which make the following diagram commute:

X
g - F(X)

Tree∞

h

?

h′

? E- F(Tree∞)

F(h)

?

F(h′)

?

23

Let g(i, x) = 〈â(i, x), λb.x̂(i, x, b)〉.
Let

H : (i ∈ I)→ Tree∞(i)→ Tree∞(i)→ Set
H(i, t, t′) = {x ∈ X(i) | t = h(i, x), t′ = h′(i, x)}

It follows for i ∈ I, x ∈ X(i) and therefore x ∈ H(i, h(i, x), h′(i, x)) that

E0(i, h(i, x)) = π0(F(h)(i, g(i, x))) = π0(g(i, x)) = E0(i, h′(i, x))

and for b ∈ B(i,E0(i, h(i, x)))

E1(i, h(i, x), b)= π1(F(h)(i, g(i, x)))(b)
= h(j(i, π0(g(i, x)), b), π1(g(i, x))(b))
= h(j(· · ·), x̂(i, x, b))

E1(i, h′(i, x), b) = h′(j(· · ·), x̂(i, x, b))
x̂(i, x, b) ∈ H(j(· · ·),E1(i, h(i, x), b),E1(i, h′(i, x), b))
〈∗, λb.x̂(i, x, b)〉 ∈ FBisim(H)(i, x, b)
λi, x.〈∗, λb.x̂(i, x, b)〉 ∈ H → FBisim(H)

Therefore (H,h) is an FBisim-coalgebra, H(i, t, t′) inhabited implies t = t′, and
therefore ∀x ∈ X(i).h(i, x) = h′(i, x).

Main Theorem 8.7 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let
E1,E2 be the two components of E as defined before.

The following are equivalent

(a) (Tree∞,E) is a final F-coalgebra.

(b) (Tree∞,E) satisfies the principle of unique coiteration.

(c) (Tree∞,E) satisfies the principle of unique corecursion.

(d) (Tree∞,E) satisfies the principle of coinduction.

Proof: By Lemmata 6.2 and 8.6.

9 Schemata for Corecursive Definitions and Coin-
ductive Proofs

9.1 Schema for Corecursion

By Lemma 6.2 we can introduce elements of the coinductively defined set (final
F-coalgebra) ([[Tree∞]],E) as follows:

24

Assume A : I→ Set, [[Tree∞]],E1,E2 as before. We can define a function

f : (i ∈ I)→ X(i)→ [[Tree∞]](i)

corecursively by defining for i ∈ I, x ∈ X(i)

• a value a′ := E1(i, f(i, x)) ∈ A(i)

• and for b ∈ B(i, a) a value E2(i, f(i, x), b) ∈ [[Tree∞]](i′, b)
where i′ := j(i, a′, b)
and we can define E2(i, f(i, x), b)

– as an element of [[Tree∞]](i′) defined before

– or corecursively define E2(i, f(i, x), b) = f(i′, x′)
for some x′ ∈ X(i′).
Here, f(i′, x′) will be called the corecursion hypothesis.

As a simple example we consider Streams. Streams are the final F-coalgebra
on Set with F(X) = N×X. So we have I = 1, A(∗) = N, B(∗, x) = 1. Omitting
the arguments in 1 we obtain F(X) as above. Let (Stream,E) be the final
F-coalgebra, and let head, tail be the two components of E. Then we get

head : Stream→ N
tail : Stream→ Stream

The above schema is instantiated as follows:

Let A ∈ Set. We can define

f : A→ Stream

corecursively by defining for a ∈ A

• head(f(a)) ∈ N and

• tail(f(a)) ∈ Stream,
where for defining tail(f(a)) we can

– either return an element of Stream defined before or

– corecursively define tail(f(a)) = f(a′) for some a′ ∈ A.
Here, f(a′) will be called the corecursion hypothesis.

So we can for instance define by corecursion

s ∈ Stream s.t.
head(s) = 0
tail(s) = s

25

(Here, A = 1, and we omit the argument in A.) Or we define

s′ : N→ Stream s.t.
head(s′(n)) = 0
tail(s′(n)) = s′(n+ 1)

or define
cons : N→ Stream→ Stream s.t.
head(cons(n, s)) = n
tail(cons(n, s)) = s

(Here, A = N× Stream, and we curried the function.)

9.2 Schema for corecursively defined indexed functions

By Lemma 7.1 we have the following schema:

Assume X ∈ Set, ĵ : X → I.
We can define

f : (x ∈ X)→ [[Tree∞]](̂i(x))

corecursively by determining for x ∈ X with i := ĵ(x),

• a := E1(i, f(x)) ∈ A(i)

• and for b ∈ B(i, a) with i′ := j(i, a, b) the value
E2(i, f(x), b) ∈ [[Tree∞]](i′)
where we can define E2(i, f(x), b) as

– a previously defined value of [[Tree∞]](i′)

– or corecursively define E2(i, f(x), b) = f(x′) for some x′ such

that î(x′) = i′.
f(x′) will be called the corecursion hypothesis.

As an example consider the coinductively defined set of stacks of a certain
height, Stack : N→ Set with destructors

top : (n ∈ N)→ (n > 0)→ Stack(n)→ N
pop : (n ∈ N)→ (n > 0)→ Stack(n)→ Stack(n− 1)

We can define empty : Stack(0), where we do not need to define anything since
(0>̂0) = ∅. Furthermore, we can define

push : (n ∈ N)→ Stack(n)→ Stack(n+ 1) s.t.
top(n+ 1, ∗,push(n, s)) = n
pop(n+ 1, ∗,push(n, s)) = s

More complicated examples of indexed coinductively defined sets are state-
dependent interactive programs, see [17, 16, 15, 18], or bisimulation relations as
defined below.

26

9.3 Schema for Coinduction

When proving that elements of a coinductively defined set are bisimilar one
usually defines certain elements which should be shown to be bisimilar simulta-
neously. This amounts to having

J : Set

î : J → I

x0, x1 : (j ∈ J)→ [[Tree∞]](̂i(j))

and showing ∀j ∈ J.x0(j) = x1(j) by proving ∀j ∈ J.Bisim(̂i(j), x0(j), x1(j)).
Using the same method as in the previous subsection, and using the fact that

b ∈ Bisim(i, x, x′) implies equality, we can show this statement by coinduction
by showing the following:

∀j ∈ J.E0(̂i(j), x0(j)) = E0(̂i(j), x1(j))∧
∀b ∈ B(i,E0(̂i(j), x0(j))).E1(̂i(j), x0(j), b) = E1(̂i(j), x1(j), b)∨

∃j′ .̂i(j′) = j(̂i(j),E0(̂i(j), x0(j), b))∧
x0(j′) = E0(̂i(j), x0(j), b)∧
x1(j′) = E0(̂i(j), x1(j), b)

This means that we have the following principle of coinductive proofs:

Assume
J : Set

î : J → I

x0, x1 : (j ∈ J)→ [[Tree∞]](̂i(j))

We can show ∀j ∈ J.x0(j) = x0(j′) coinductively by showing

• E0(̂i(j), x0(j)) and E0(̂i(j), x1(j)) are equal

• and for all b that
E1(̂i(j), x0(j), b) and E1(̂i(j), x0(j), b) are equal,
where we can use either the fact that

– this was shown before,

– or we can use the coinduction-hypothesis, which means using the
fact
E1(̂i(j), x0(j), b) = x0(j′) and E1(̂i(j), x1(j), b) = x1(j′) for some
j′ ∈ J .

Examples of proofs by coinduction in the example of streams with s, s′, cons
are as follows:

• We show ∀n ∈ N.s = s′(n) by coinduction: For using the schema above
we have J = N, x0(j) = s, x1(j) = s′(n). The argument is as follows:

27

We show ∀n ∈ N.s = s′(n). Assume n ∈ N. head(s) = head(s′(n)) and
tail(s) = s = s′(n + 1) = tail(s′(n)), where s = s′(n + 1) follows by the
coinduction hypothesis.

• We show cons(0, s) = s by coinduction:
head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s), where
we did not use the coinduction hypothesis.

9.4 Schema for Coinductively defined Relations

The previous example can be generalised to arbitrary coinductively defined sets
relating elements of an indexed set. A typical example would be the bisimulation
relation on a labelled transition system, which we consider below. Assume
I ∈ Set, D : I→ Set (not necessarily a coinductively defined set). Let

I+ := (i ∈ I)×D(i)×D(i)

Assume

A : (i ∈ I)→ D(i)→ D(i)→ Set
B : (i ∈ I)→ (d ∈ D(i))→ (d′ ∈ D(i))→ A(i, d, d′)→ Set
j : (i ∈ I)→ (d ∈ D(i))→ (d′ ∈ D(i))→ (a ∈ A(i, d, d′))→ B(i, d, d′, a)

→ I
d0, d1 : (i ∈ I)→ (d ∈ D(i))→ (d′ ∈ D(i))→ (a ∈ A(i, d, d′))→ B(i, d, d′, a)

→ D(j(i, d, d′, a))

Define

F : SetI
+

→ SetI
+

F(X, i, d, d′) = (a ∈ A(i, d, d′))
×((b ∈ B(i, d, d′, a))
→ X(j(i, d, d′, a, b), d0(i, d, d′, a, b), d1(i, d, d′, a, b)))

Let (B̂,E) be the final F-coalgebra, E1,E2 be the two components of E.
Assume

Ĵ : Set

ĵ : Ĵ → I

d̂0, d̂1 : (j ∈ Ĵ)→ D(ĵ(j))

A schema of corecursion (which may be called, if B̂ is a bisimulation relation
and therefore an equality like relation as a coinduction principle) is as follows:

28

In the above situation we can define a function

b̂ : (j ∈ J)→ B̂(ĵ(j), d̂0(j), d̂1(j))

coinductively by determining for j ∈ J

• an element â(j) ∈ A(ĵ(j), d̂0(j), d̂1(j)),

• and for b ∈ B(ĵ(j), d̂0(j), d̂1(j), â(j))

with i′ := j(̂j(j), d̂0(j), d̂1(j), â(j), b),

d′i := di(̂j(j), d̂0(j), d̂1(j), â(j), b),

an element b̂′ ∈ B̂(i′, d′0, d
′
1),

where for defining b̂′ we can use

– an existing element of B̂(i′, d′0, d
′
1)

– or corecursively define b̂′ = b̂(j′) for some j′

such that ĵ(j′) = i′, d̂0(j′) = d′0, d̂1(j′) = d′1.

b̂(j′) will be called the corecursion-hypothesis.

As an example we consider bisimulation for a labelled transition system.
A labelled transition system is given by set of states S, a set of labels L a

relation −→⊆ S×L× S where we write s
l−→ s′ for 〈s, l, s′〉 ∈−→. Bisimulation

Bisim(s, s′) in a transition system can be given by the coalgebraically defined
relation Bisim(s, s′) for the eliminators

E1 : (s, s′ ∈ S)→ Bisim(s, s′)→ (l ∈ L)→ (s0 ∈ {s0 ∈ S | s l−→ s0})
→ ((s′0 ∈ {s′0 ∈ S | s′ l−→ s′0})× Bisim(s0, s

′
0))

E2 : (s, s′ ∈ S)→ Bisim(s, s′)→ (l ∈ L)→ (s′0 ∈ {s′0 ∈ S | s′ l−→ s′0})
→ ((s0 ∈ {s0 ∈ S | s l−→ s0})× Bisim(s0, s

′
0))

The existence of E1 and E2 is equivalent to

∀s, s′ ∈ S.Bisim(s, s′)→ ∀l ∈ L.∀s0 ∈ S.(s
l−→ s0)

→ ∃s′0 ∈ S.s′
l−→ s′0 ∧ Bisim(s0, s

′
0)

∀s, s′ ∈ S.Bisim(s, s′)→ ∀l ∈ L.∀s′0 ∈ S.(s′
l−→ s′0)

→ ∃s0 ∈ S.s
l−→ s0 ∧ Bisim(s0, s

′
0)

Note that the type of E1 is equivalent to

E′1 : (s, s′ ∈ S)→ Bisim(s, s′)

→ (s′0 ∈ (l ∈ L)→ {s0 ∈ {s0 ∈ S | s l−→ s0} → S)

×((〈l, s0〉 ∈ ((l ∈ L)× {s0 ∈ S | s l−→ s0}))→ Bisim(s0, s
′
0(l, s0)))

similarly for E2 and both constructors can be unified into one. Therefore this
relation is an instance of a strictly positive indexed coinductively defined set as
defined in this article.

29

A proof of bisimulation by corecursion can be done by using the following
schema: Let I ∈ Set, s, s′ : I → S.

We can prove ∀i ∈ I.Bisim(s(i), s′(i)) coinductively by defining for any i ∈ I

• for any l ∈ L, s0 ∈ S s.t. s(i)
l−→ s0 an

s′0 ∈ S s.t.

– s′(i)
l−→ s′0

– and s.t. Bisim(s0, s
′
0)

where one can for prove the latter by invoking the Coinduction
Hypothesis
Bisim(s(i′), s′(i′)) for some i′ such that s(i′) = s0, s′(i′) = s′0.

• for any l ∈ L, s′0 ∈ S s.t. s′(i)
l−→ s′0 an

s0 ∈ S s.t.

– s(i)
l−→ s0

– and s.t. Bisim(s0, s
′
0)

where one can prove the latter by invoking the Coinduction Hy-
pothesis
Bisim(s(i′), s′(i′)) for some i′ such that s(i′) = s0, s′(i′) = s′0.

As an example consider S = 1 × N, L = tick with transitions ∗ tick−→ ∗ and

n
tick−→ (n + 1). We show ∀n ∈ N.Bisim(∗, n) by coinduction on Bisim. Assume

n ∈ N.
Assume ∗ l−→s. Then l = tick, s = ∗, n tick−→(n+1) and by co-IH Bisim(∗, n+1).

Assume n
l−→ s. Then l = tick, s = n+ 1, ∗ tick−→∗ and by co-IH Bisim(∗, n+ 1).

10 Conclusion

We have investigated indexed inductive and coinductively defined sets and
shown that induction is equivalent to the initial algebra definition and coinduc-
tion, corecursion and coinduction are equivalent. We have developed schemata
for defining informally elements of coinductively defined sets corecursively and
for proving equality of elements by coinduction. We have seen that examples
how to actually carry out such definitions and proofs informally.

We belief that carrying out such arguments about coinductively defined sets
by corecursion and coinduction informally while referring to the coinduction and
corecursion hypothesis makes it more intuitive to carry out such arguments. We
hope that it will in the future become as natural to carry out such arguments
as it has become natural to define functions into inductively defined sets by
primitive recursion and to prove properties by induction in an intuitive way.

30

References

[1] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a unified
approach to termination and productivity. In G. Morrisett and T. Uustalu,
editors, ACM SIGPLAN International Conference on Functional Program-
ming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 185–
196. ACM, 2013.

[2] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Program-
ming infinite structures by observations. In R. Giacobazzi and R. Cousot,
editors, Proceedings of the 40th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL ’13, pages 27–38, New
York, NY, USA, 2013. ACM.

[3] P. Aczel. Non-wellfounded set theory, volume 14. CSLI Lecture notes,
Stanford, CA: Stanford University, Center for the Study of Language and
Information, 1988.

[4] P. Aczel. Algebras and coalgebras. In R. Backhouse, R. Crole, and J. Gib-
bons, editors, Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, volume 2297 of Lecture Notes in Computer Science,
pages 79–88. Springer, 2002.

[5] P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt, D. E.
Rydeheard, P. Dybjer, A. M. Pitts, and A. Poigné, editors, Category Theory
and Computer Science, volume 389 of Lecture Notes in Computer Science,
pages 357–365. Springer Berlin / Heidelberg, 1989. 10.1007/BFb0018361.

[6] T. Altenkirch and P. Morris. Indexed containers. In Logic In Computer
Science, 2009. LICS ’09. 24th Annual IEEE Symposium on, pages 277–285,
2009.

[7] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comput.
Sci., 114(2):299–315, 1993.

[8] P. J. de Bruin. Inductive Types in constructive languages. PhD
thesis, Faculty of Mathematics and Natural Sciences, University of
Groningen, Groningen, The Netherlands, March 1995. Available from
https://www.rug.nl/research/portal/publications/pub%2887db58af-1fd6-
4030-a862-98b5651d6be8%29.html and http://www.peterdebruin.net/.

[9] P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and
their set-theoretic semantics. In G. Huet and G. Plotkin, editors, Logical
frameworks, pages 280 – 306. Cambridge University Press, 1991.

[10] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, Typed Lambda Calculi and Applica-
tions, volume 1581 of Lecture Notes in Computer Science, pages 129–146.
Springer, April 1999.

31

[11] P. Dybjer and A. Setzer. Indexed induction-recursion. In R. Kahle,
P. Schroeder-Heister, and R. Stärk, editors, Proof Theory in Computer
Science, volume 2183 of Lecture Notes in Computer Science, pages 93–113.
Springer, 2001.

[12] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals
of Pure and Applied Logic, 124:1 – 47, 2003.

[13] P. Dybjer and A. Setzer. Indexed induction-recursion. Journal of Logic
and Algebraic Programming, 66:1 – 49, 2006.

[14] P. Hancock, C. McBride, N. Ghani, L. Malatesta, and T. Altenkirch. Small
induction recursion. In M. Hasegawa, editor, Typed Lambda Calculi and
Applications, volume 7941 of Lecture Notes in Computer Science, pages
156–172. Springer, 2013.

[15] P. Hancock and A. Setzer. Interactive programs in dependent type theory.
In P. Clote and H. Schwichtenberg, editors, Computer Science Logic, vol-
ume 1862 of Lecture Notes in Computer Science, pages 317–331. Springer,
2000.

[16] P. Hancock and A. Setzer. Specifying interactions with dependent types.
In Workshop on subtyping and dependent types in programming, Portu-
gal, 7 July 2000, 2000. Electronic proceedings, available via http://www-
sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html.

[17] P. Hancock and A. Setzer. Interactive programs and weakly fi-
nal coalgebras (extended version). In T. Altenkirch, M. Hofmann,
and J. Hughes, editors, Dependently typed programming, number 04381
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2004. Available
via http://drops.dagstuhl.de/opus/volltexte/2005/176/.

[18] P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras
in dependent type theory. In L. Crosilla and P. Schuster, editors, From Sets
and Types to Topology and Analysis. Towards Practicable Foundations for
Constructive Mathematics, pages 115 – 134, Oxford, 2005. Clarendon Press.

[19] L. Malatesta, T. Altenkirch, N. Ghani, P. Hancock, and C. McBride.
Small induction recursion, indexed containers and dependent poly-
nomials are equivalent. Submitted for publication. Available from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.3934

&rep=rep1&type=pdf, 2012.

[20] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267 – 310, 1983.

[21] P. Morris, T. Altenkirch, and N. Ghani. Constructing strictly positive
families. In Proceedings of the Thirteenth Australasian Symposium on The-
ory of Computing - Volume 65, CATS ’07, pages 111–121, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc.

32

[22] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Theoretical Computer Science, volume 104 of Lecture Notes in Com-
puter Science, pages 167–183. Springer Berlin Heidelberg, 1981.

[23] K. Petersson and D. Synek. A set constructor for inductive sets in Martin-
Löf’s Type Theory. In D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M. Pitts,
and A. Poigné, editors, Category Theory and Computer Science, volume 389
of Lecture Notes in Computer Science, pages 128–140, London, UK, UK,
1989. Springer.

[24] J. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer
Science, 249(1):3 – 80, 2000.

[25] D. Sangiorgi. Introduction to bisimulation and coinduction. Cambridge
University Press, 2011.

[26] D. Sangiorgi and J. Rutten. Advanced topics in bisimulation and coinduc-
tion, volume 52. Cambridge University Press, 2011.

[27] A. Setzer. Coalgebras as types determined by their elimination rules. In
P. Dybjer, S. Lindström, E. Palmgren, and G. Sundholm, editors, Episte-
mology versus Ontology, volume 27 of Logic, Epistemology, and the Unity
of Science, pages 351–369. Springer Netherlands, 2012. 10.1007/978-94-
007-4435-6 16.

[28] A. Setzer, A. Abel, B. Pientka, and D. Thibodeau. Unnesting of copat-
terns. In G. Dowek, editor, Rewriting and Typed Lambda Calculi. Proceed-
ings RTA-TLCA 2014, volume 8560 of Lecture Notes in Computer Science,
pages 31–45. Springer, 2014.

33

