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Abstract

Induction-recursion is a powerful definition method in intuitionistic type
theory. It extends (generalized) inductive definitions and allows us to de-
fine all standard sets of Martin-Löf type theory as well as a large collection
of commonly occurring inductive data structures. It also includes a vari-
ety of universes which are constructive analogues of inaccessibles and other
large cardinals below the first Mahlo cardinal. In this article we give a new
compact formalization of inductive-recursive definitions by modeling them as
initial algebras in slice categories. We give generic formation, introduction,
elimination, and equality rules generalizing the usual rules of type theory.
Moreover, we prove that the elimination and equality rules are equivalent to
the principle of the existence of initial algebras for certain endofunctors. We
also show the equivalence of the current formulation with the formulation of
induction-recursion as a reflection principle given in [12]. Finally, we discuss
two type-theoretic analogues of Mahlo cardinals in set theory: an external
Mahlo universe which is defined by induction-recursion and captured by our
formalization, and an internal Mahlo universe, which goes beyond induction-
recursion. We show that the external Mahlo universe, and therefore also the
theory of inductive-recursive definitions, have proof-theoretical strength of at
least Rathjen’s theory KPM.

1 Introduction

Induction-recursion is a powerful definition method in intuitionistic type theory in
the sense of Scott (“Constructive Validity”) [31] and Martin-Löf [17, 18, 19].

The first occurrence of formal induction-recursion is Martin-Löf’s definition of a
universe à la Tarski [19], which consists of a set U0 of codes for small sets together
with a decoding function T0 which maps a code to the small set it denotes. U0 is
inductively generated at the same time as T0 is defined by recursion on the elements
of U0, and the introduction rules for U0 refer to T0. It is called universe “à la Tarski”
because of the similarity with Tarski’s truth definition: U0 is a generalized syntax
of “formulas” and T0 maps each formula to its “meaning”. In earlier formulations
of Martin-Löf type theory [17, 18] universes are formulated “à la Russell”, where
there is no syntactic distinction between an element of U0 and the set it denotes.
Therefore there is no need for a decoding function and hence there is no (explicit)
induction-recursion.

Intuitionistic type theory with inductive-recursive definitions is also a suitable
metalanguage for intuitionistic metamathematics. For example, in Martin-Löf’s
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proof of normalization of an early version of his type theory [20] he introduces Tait-
style computability predicates for dependent types. Whereas Tait defines a family of
computability predicates indexed by the types of the simply typed lambda calculus,
Martin-Löf’s computability predicates are indexed by those types which themselves
are computable. This gives rise to a situation where the computable types are
inductively generated at the same time as the computability predicate on terms
of such a type is defined, and where the definition of a computable type refers to
the notion of a computable term. Martin-Löf presumably considered this definition
intuitionistically valid, but did not provide an explicit discussion of why this is so.

It is a non-trivial problem to give classical mathematical meaning to Martin-
Löf’s computability predicates. One approach is due to Aczel [1] for the closely
related construction of a Frege structure. Other approaches have been proposed by
Allen [2] and by Löfwall and Sjödin [16].

Although Martin-Löf’s computability predicates nowadays can be regarded as
an informal example of an inductive-recursive definition and therefore as a precursor
of the concept of induction-recursion, its inductive-recursive nature is not explicit:
instead of “computable type” Martin-Löf states when the notion of computability
for a certain type “has been defined” and there is no explicit notion of proof for the
fact that computability has been defined. In order to obtain an explicit inductive-
recursive definition one has to formalize the metalanguage. It is an example of
indexed induction-recursion [11, 13], since we are defining computability predicates
and thus by Curry-Howard indexed families of sets.

More examples of formal induction-recursion occur in recent work on large uni-
verses in type theory. These are constructive analogues of large cardinals in set
theory. For example, Martin-Löf’s universes are analogues of inaccessible cardi-
nals; Palmgren’s superuniverse [23] is an analogue of a hyperinaccessible cardinal.
Rathjen, Griffor and Palmgren’s quantifier universes [30] are analogues of Mahlo’s
π-numbers; Palmgren’s higher order universes [25] go even further and are gener-
ally conjectured to reach the strength of Rathjen’s theory KPM; in Section 6 we
will describe a weak version of Setzer’s Mahlo universe [36, 34, 35], which is still
inductive-recursive, and show that it has at least the strength of Rathjen’s theory
KPM [28]. Setzer’s original Mahlo universe is an example of a universe which goes
beyond induction-recursion.

Induction-recursion as a general unifying principle for definitions of this kind
was identified by Dybjer [8, 11], who presents an external schema for their syntactic
form. This schema extends earlier schemata for inductive definitions in type theory
[6, 7, 9, 26]. Dybjer and Setzer [12] give a finite axiomatization of induction-
recursion as a very general reflection principle. They also show the consistency
of their axiomatization by building a model in classical set theory extended by
a Mahlo cardinal. In this model function spaces are interpreted as full classical
function spaces.

Models for inductive-recursive definitions of a set U with decoding function T
are obtained as inductive definitions of the graph of T and captured formally as the
least fixed point of a monotone operator on the lattice of subsets of a sufficiently
large base set, see Dybjer [11] and the above-mentioned model by Dybjer and
Setzer [12]. This should explain why it has not been natural to isolate the concept
of induction-recursion in set theory. It also makes it difficult to trace the history of
the concept.

In this paper we give a new compact finite axiomatization IRelim of inductive-
recursive definitions based on the idea of modeling them as initial algebras in slice
categories. Such a categorical model is an abstraction of the above-mentioned set
theoretic semantics. It thus provides an alternative view of inductive-recursive
definitions to the axiomatization IRrefl given by Dybjer and Setzer [12].

The two axiomatizations highlight different aspects of inductive-recursive defi-
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nitions. IRrefl is based on the idea that induction-recursion is a reflection principle.
In the paradigmatic example operations on sets, such as Π and Σ, are reflected as
operations Π̂ and Σ̂ on a particular set, the first universe U0. Induction-recursion
generalizes this idea to operations on arbitrary types. Moreover, IRrefl is based on a
commuting square generalizing the usual initial algebra diagram used for modelling
inductive definitions with the following correspondences:

inductively defined set initial algebra
recursively defined function initial arrow

IRelim on the other hand coincides with a natural understanding of induction-
recursion: elements of a set U are introduced by a constructor, and for every such
element the value of the decoding function T is determined. Therefore it is closer
to the standard set theoretic model. It also leads in a natural way to the functors
on slice categories associated with the codes for inductive-recursive definition. (We
show that the introduction/elimination rules in IRelim are equivalent to the prin-
ciple that these functors have initial algebras.) The theory IRelim is shorter than
IRrefl; it has fewer rules and concepts. Moreover, it is easier to construct codes
for inductive-recursive definitions in IRelim. As a consequence it is more suitable
as a basis for an implementation of induction-recursion. However, each of the for-
mulations has conceptual advantages and is of importance for metamathematical
investigations.

Plan of the paper. In Section 2 we introduce the logical framework for intu-
itionistic type theory. In Section 3 we introduce IRelim. In Section 4 we introduce
IRext

init, which axiomatizes closure under certain initial algebras in slice categories,
and prove the equivalence of IRext

init and IRext
elim (the extensional version of IRelim).

In Section 5 we recall the theory IRrefl from Dybjer and Setzer [12] and show that
it is equivalent to the two other theories under certain assumptions. Finally, in
Section 6 we discuss Setzer’s Mahlo universes which are type-theoretic analogues of
Mahlo cardinals in set theory. There are two versions. One is an external Mahlo
universe which is defined by induction-recursion and can be formalized in IRelim.
We also determine a lower bound for its strength and therefore for IRelim, IRext

init

and IRrefl. The other version is Setzer’s original internal Mahlo universe, which
goes beyond induction-recursion.

2 A Logical Framework for Type Theory

2.1 Basic Rules

In the most recent versions, Martin-Löf type theory is presented in two stages:

• The first stage contains the most basic rules for dependent types. This is often
referred to as the “logical framework” or “theory of types”.

• The second stage contains the formation, introduction, elimination, and equal-
ity rules for a number of set formers such as Nn,N,+,Σ, . . .. This is some-
times referred to as the “theory of sets” and is about the basic notion of set
in Martin-Löf type theory, that is, sets as inductively defined data types. It is
important to distinguish between this notion of set and the notion of iterative
set in the sense of set theory.

All sets introduced at the second stage can be defined by induction-recursion and
the remaining sections of this paper provide a complete definition of this “theory
of sets”.
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In this section we will define the “theory of types”. This will contain the rules
for such a theory in Nordström et al [22], but also some new rules. We shall here
give an informal introduction and refer the reader to Appendix A for the complete
collection of rules.

The logical framework has four forms of judgement:

• A : type,

• A = B : type,

• a : A,

• a = b : A.

Each of these judgements can be hypothetical, that is, depend on a context Γ of
the form x1 : A1, . . . , xn : An, which specifies the types of the free variables xi of
the judgement. The empty context (n = 0) is denoted by ∅.

For the treatment of contexts we need a fifth judgement

• Γ context.

A hypothetical judgement is written Γ ⇒ A : type, etc. When presenting inference
rules we shall often simplify rules by omitting uniformly appearing contexts (see
Appendix A for details).

As usual, we have a type set, but we also add a new type stype of “small types”.
This contains all sets and is closed under 0, 1, 2, dependent product and depen-
dent function space. (All these constructions are introduced below. Synonyms of
“dependent product type” are “disjoint union of a family of types” and “Σ-type”,
and synonyms of “dependent function space” are “Cartesian products of a family
of types” and “Π-type”). However set itself is not an element of stype. The reason
for the need for stype is discussed in Section 3.2 and [11]. 1

We have the following rules:

set : type stype : type

A : set

A : stype

A : stype

A : type

A = B : set

A = B : stype

A = B : stype

A = B : type

0, 1 and 2 are stypes with 0, 1, 2 elements respectively. In the case of 1 we add
the η-rule. This has the effect that for any set A, the functions f0 := (x, y)x : A→
(1 → A) and f1 := (x)x(∗) : (1 → A) → A are inverses with respect to definitional
equality, that is, we have definitionally f0◦f1 = id and f1◦f0 = id (with id := (x)x).
The same holds for g0 := (x)〈x, ∗〉 : A → (A× 1) and g1 := (x)π0(x) : (A× 1) → A
(where π0 is left projection). The stype 0 is added for systematic reasons. If we
omitted it we could still define the empty set as the set N0 with only one constructor
of type N0 → N0, see p. 13.

1In the proof assistant Agda for type theory (developed by C. Coquand and T. Coquand [5])
the logical framework has been modified so that the type set is closed under the dependent product
and dependent function space of the logical framework. If we formulated induction-recursion based
on that version of the logical framework there would be no need to distinguish between stype and
set.
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The rules for 0, 1, 2 are:

0 : stype
a : 0 x : 0 ⇒ A : type

case0(a) : A

1 : stype ∗ : 1 a : 1

a = ∗ : 1

2 : stype ∗0 : 2 ∗1 : 2

x : 2 ⇒ A : type a : 2 b : A[x := ∗0] c : A[x := ∗1]

case2((x)A, a, b, c) : A[x := a]

x : 2 ⇒ A : type b : A[x := ∗0] c : A[x := ∗1]

case2((x)A, ∗0, b, c) = b : A[x := ∗0]

x : 2 ⇒ A : type b : A[x := ∗0] c : A[x := ∗1]

case2((x)A, ∗1, b, c) = c : A[x := ∗1]

Both type and stype are closed under dependent function types written as (x :
A) → B. Function abstraction is written as (x : A)a and application as a(b). They
are related by both the β- and the η-rule. Further type and stype are closed under
dependent products written as (x : A) × B. Pairs are written as 〈a, b〉 and the left
and right projection of a is written as π0(a) and π1(a). Again, we have analogues
of β and η (surjective pairing).

We also use some abbreviations. We omit the type in an abstraction, that
is, write (x)a instead of (x : A)a. We sometimes write curried function types as
(x1 : A1, . . . , xn : An) → A instead of (x1 : A1) → . . . → (xn : An) → A, and
omit variables which are not used. A → B := (A) → B. We write repeated
application as a(b1, . . . , bn) instead of a(b1) · · · (bn), and repeated abstraction as
(x1, . . . , xn)a instead of (x1) · · · (xn)a. Furthermore, if we apply an expression
f(a1, . . . , an) introduced in this form by a rule to arguments b1, . . . , bk, we write
f(a1, . . . , an, b1, . . . , bk) instead of f(a1, . . . , an)(b1, . . . , bk).

We will in the following not mention equality versions of the rules. Moreover,
we will omit types and premises in equality judgements and use “bracket notations”
like E[t] as usual, see General Assumption A.0.3 in Appendix A for details.

We introduce furthermore the following notation for the definition of a function
from one type into a product type from its two projections: Assume
Assume the following: A : type; x : A⇒ B[x] : type; x : A, y : B[x] ⇒ C[x, y] : type;
f : A→ B[x] and g : (x : A) → C[x, f(x)]. Then

〈f, g〉fun := (x)〈f(x), g(x)〉 : A→ ((y : B[x]) × C[x, y]) .

2.2 Extensions of the Logical Framework

In the subsequent three sections we shall give three different formalizations of
inductive-recursive definitions in type theory: IRelim (Section 3), IRext

init (Section
4) and IRrefl (Section 5). We shall also prove the equivalence of these three theories
extended by further rules and will therefore introduce additional theories.

Each of these theories consists of the rules of the logical framework together
with some (yet to be specified) rules for inductive-recursive definitions. A rule r
is here an n + 1-tuple Γ1 ⇒ θ1, . . . ,Γn+1 ⇒ θn+1 of dependent judgements in the
language of type theory with respect to a certain collection of constructors (for a
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full formalization of the language of type theory see for instance Setzer [33], chapter
2). If R is a collection of rules we introduce the type theory TT(R). We use the
notation R ` Γ ⇒ θ to make explicit that the judgement θ is derivable in the
context Γ by using the rules of the logical framework (without extensionality) and
by applying rules in R: If r is as above and R ` Γi ⇒ θi (i = 1, . . . , n), then
R ` Γn+1 ⇒ θn+1. We will as usual suppress R when writing down the judgements
of type theory and often also keep the context Γ implicit.

2.3 Extensional Equality

Some of the rules of the theory IRext
init will only be typeable if we assume certain rules

of extensional equality. These rules are similar to those of Martin-Löf’s extensional
type theory [18, 19] but are here formulated for the types and stypes of the logical
framework. (Martin-Löf’s extensional type theory was formulated without a logical
framework.)

A : type a : A b : A

a =A b : type

A : stype a : A b : A

a =A b : stype

A : type a : A

ref : a =A a

A : type a : A b : A r : a =A b

a = b : A

A : type a : A b : A r : a =A b

r = ref : a =A b

We define for A : type, x : A⇒ B[x] : type

(f =fun
(x:A)→B[x] g) := (x : A) → (f(x) =B[x] g(x)) ,

which is equivalent to f =(x:A)→B g, but has proof objects which can be used more
directly.

We will also need to add the extensionality rules to IRelim and IRrefl (yielding
IRext

elim and IRext
refl) in order to prove their equivalence to IRext

init.
We want to emphasize that the rules for extensional equality are not needed

when formulating IRelim and IRrefl: the formation, introduction, elimination, and
equality rules are all typeable in intensional type theory, and it is therefore possible
to consider them in that setting as well. However, our experience suggests that
some constructions in intuitionistic metamathematics are difficult and perhaps even
impossible to perform in intensional type theory, and that intensional type theory
is sometimes counterintuitive – proofs which one informally believes are correct
turn out to be incorrect when type checking them formally. It seems therefore that
the extensional versions IRext

elim or IRext
refl are closer to our mathematical intuition

and therefore more natural. On the other hand it is possible to construct non-
normalizing terms in extensional type theory so decidability of type-checking is
lost. It is this property that is used crucially in the elegant implementations of
proof assistants for intensional type theory.

2.4 The Category of Types

All three formalizations are based to a lesser or greater extent on category-theoretic
ideas. However the definitions in the category theoretical part can be done only
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in the presence of extensional equality. We shall introduce for each collection of
rules R, which contains the rules of extensionality, and each context Γ the category
TypeR(Γ). Its objects are A such that R ` Γ ⇒ A : type and we identify objects
A, B such that R ` Γ ⇒ A = B : type. Arrows from A to B are functions f for
which we can prove R ` Γ ⇒ f : A → B (and again we identify f , g such that
R ` Γ ⇒ f = g : A→ B).

We shall also usually suppress R and Γ in TypeR(Γ) and simply write Type.
It is only IRext

init which pursues the categorical approach fully. This theory
is obtained by postulating, in the language of type theory, that for each type
D and each code γ (for an inductive-recursive definition with decoding into D)
there exists a certain endofunctor F γ on the slice category Type/D (more pre-
cisely TypeIRext

init

(Γ)/D) and that this endofunctor has an initial algebra.

Here we recall that the objects of the slice category Type/D are pairs 〈U, T 〉 such
that U is an object and T : U → D in Type. Arrows from 〈U, T 〉 to 〈U ′, T ′〉 are pairs
〈f0, f1〉 of reindexing functions functions f0 : U → U ′ and proofs f1 : T ′◦f0 =fun

U→D T
(in R under assumption Γ). f1 is therefore a proof that a certain diagram commutes,
a fact indicated as follows:

U
f0 - U ′

f1

D
�

T
′T

-

Again we identify 〈f0, f1〉 and 〈f ′
0, f

′
1〉, such that f0 and f ′

0 are equal as arrows in
Type/D (which implies by uniqueness of equality proofs that we can prove in R
and under assumption Γ f1 = f ′

1.)
Both IRelim and IRrefl also use categorical ideas to some extent, but in both

cases the main guideline has been to formulate the rules in a way which is natural
from a type-theoretic perspective and which recovers the usual rules of type theory
without undue coding. So it will not be appropriate to investigate the categorical
properties of TypeIRelim

and TypeIRrefl
– in fact one needs to modify the definition

of Type first in order to obtain categories at all, which then still lack many of the
expected properties. However, in the presence of extensional equality and induction
on the collection of strictly positive functors these theories will be equivalent to
IRext

init.

3 A New Formalization of Induction-Recursion

In this section we shall give the formal rules of the theory IRelim. To motivate
these rules we shall begin with some informal discussion. There are two issues:

• the correspondence between certain endofunctors on slice categories and the
rules for inductive-recursive definitions;

• which endofunctors arise in this way.

3.1 Algebras in Slice Categories

Consider again the first universe à la Tarski U0 with decoding T0 : U0 → set. This
universe is closed under the formation of Σ-types, so there is a constructor2

Σ̂ : ((a : U0) × (T0(a) → U0)) → U0 ,

2Note that we here use the uncurried version of the constructor, whereas the usual logical
framework based version of type theory employs the curried version.
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which is decoded as
T0(Σ̂(〈a, b〉)) = Σ(T0(a),T0 ◦ b) .

Observe the occurrence of T0 in the introduction rule for U0.
We can draw the defining equation for T0 as a commuting diagram

(a : U0) × (T0(a) → U0)
Σ̂ - U0

set
�

T 0

〈a,b〉7→
Σ(T

0 (a),T
0 ◦b)

-

Consider now the above under the additional assumption of extensionality in the
slice category Type/set. We note that the above diagram expresses that we have
an F0-algebra for a certain endofunctor F0 on Type/set the object part of which
has the following two components:

F
U
0 (U, T ) = (a : U) × (T (a) → U) ,

F
T
0 (U, T, 〈a, b〉) = Σ(T (a), T ◦ b) .

(To avoid confusion, note that U in italic font is a variable ranging over arbitrary
sets, whereas U0 (and later U) in Roman font are constant sets defined by induction-
recursion, and similarly for italic T and Roman T0 and T.) When formalized in
type theory, this F0-algebra becomes a quadruple

〈U0,T0, Σ̂, eq0〉

(where eq0 is a proof of the commutativity of the above mentioned diagram).
In IRelim we will also have a principle of universe-elimination for U0 motivated

by syntactic considerations. In IRext
init however, universe-elimination is replaced by

the principle that 〈U0,T0, Σ̂, eq0〉 is an initial F0-algebra. Furthermore we shall
show in 4.4 that these principles are equivalent assuming rules of extensionality.

3.2 Inductive and Non-inductive Arguments

To get a complete formalization we must specify which endofunctors give rise to
type-theoretically justifiable constructions. To motivate this specification we shall
analyze the structure of a number of constructors (or introduction rules) for sets
in type theory, and in particular emphasize the distinction between inductive and
non-inductive arguments of a constructor (or premises of an introduction rule).

We shall first look at the case of inductive definitions, that is, the special case
of inductive-recursive definitions where a recursively defined function does not par-
ticipate in the inductive generation process.

The simplest inductive definition is that of a finite set Nk with constructors
ik : Nk

3 (i = 0, . . . , k − 1). The constructors have no arguments at all.

......

.......
.........

............
..................

...........................................................................................................................................................................................................................................................
................

...........
........
.......
....

........
........
........
........
........
........
........
........
....
.......
.............

........
........
........
........
........
........
........
........
.... ....................

Nk

0k (k − 1)k

3Note that ik is the ith element of the set Nk and should not be confused with the notation
for sequences as used in mathematics.
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In this diagram, the arrow represents the constructor.
The next example is the disjoint union of two sets A + B with constructors

i : A → A +B and j : B → A + B. A and B are arbitrary previously defined sets,
which we refer to as parameters of the definition.

......

.......
.........

...........
.................

.............................................................................................................................................................................................................................................................
...............

...........
........
.......
.....

.......
...........

..........................................................................................................................................................................

...........
.......

.......
.............

............................................................................................................................................................................................
............
.......

........
........
........
........
........
........
........
........
....
.......
.............

........
........
........
........
........
........
........
........
.... ....................

A + B
i(a) j(b)

a b

A B

The next example is the set Σ(A,B) with constructor p : (x : A,B(x)) →
Σ(A,B): it has two arguments, where the index set B(x) of the second one depends
on the first argument A. Again this can be parameterized by A : set and B : (x :
A) → set.

......

.......
........
...........

................
..............................................................................................................................................................................................................................................................
................

...........
........
.......
.....

.......
...........

...........................................................................................................................................................................
...........
......

......
.........

.......................................................................................................................................

.........
.....

...................
............
............
..........
..........
............
..............
....
......
...........

..................................................
....

Σ(A,B)

A

B(a)

a b

p(a,b)

In this diagram, the dotted arrows denote dependencies of later arguments of the
constructor on previous arguments.

The set N of natural numbers has constructors 0 : N and S : N → N. Here, the
type of the argument of S is N itself. We call such an argument “inductive”.4 In
contrast, all previous arguments are “non-inductive”, since their types only refer to
previously defined sets.

......

.......
.........

...........
.................

.............................................................................................................................................................................................................................................................
................

...........
........
.......
........................

.................................................................................................................................................................................................................
....................

.............
.........
........
........
........
......
........
.........
.......
.........
....... .........
...........

N

S

0

If we look at the set W(A,B) with constructor sup : (r : A, s : B(r) →
W(A,B)) → W(A,B) we see that we have one non-inductive argument r and a
family of inductive arguments s indexed by the set B(r):

......

.......
........
...........

................
..............................................................................................................................................................................................................................................................
................

...........
........
.......
.....

.......
............

..........................................................................................................................................................................
...........
......

.......
...........

...........................................................................................................................................................................
...........
......

..................

............................................
.................
... ................

....

.............

..............................................
................
........

....
.
.
.......
..............

..................
............
..........
........
........
.........
.........
.........
......
..
......
.........
.........
........
........
..........
..........
..........
.... ....................W(A,B) sup(r,s)

B(r)

A
r

s(x)

The primary example of proper induction-recursion is the definition of the uni-
verse à la Tarski. We note that U0 is defined inductively, and while defining it,
we simultaneously define recursively for every element a : U0 a set T0(a) : set.
Consider the constructor Σ̂ : (a : U0, b : T(a) → U0) → U0 with T0(Σ̂(a, b))=
Σ(T0(a), (x)T0(b(x))) : set. Σ̂ has two inductive arguments, where the second de-
pends on the first. This dependence is not direct (since U0 is not defined yet), but
indirect via T0, that is, using the recursion-hypothesis for T0. Finally, the definition
of T0(Σ̂(a, b)) refers to the value of T0 for all inductive arguments:

4In [11] the terminology “recursive argument” was used, but “inductive argument” seems to
be better in connection with induction-recursion, since it primarily has to do with the inductively
defined set and only indirectly with the recursively defined function.
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U
a Σ̂(a,b)

T(a)

T(a)

b(x)

b(y)

b(z)

T(b(x))

Σ (T(a),T◦b)

In this diagram 7→ represents the function mapping the constructed element to
the recursively defined result. The dotted arrows express dependencies of later
arguments of the constructor and of the recursively defined result of the constructor
on previous arguments.

We shall analyze the common structure of the examples above. First the argu-
ments are classified as either inductive or non-inductive.

The type of a non-inductive argument is an stype. The typical case is that
it is a set, for instance the two arguments of the constructor p for Σ(A,B) are
elements of the sets A and B(a). In the case of Π(A,B) we have one constructor
λ : (f : (x : A) → B) → Π(A,B) and the non-inductive argument f is indexed
over the stype (x : A) → B. This type is not a set. In fact, this is why we cannot
simply require that the type of a non-inductive argument is a set: we want to follow
Martin-Löf and define Π-sets as inductively generated by λ.

An inductive argument is indexed by an stype. It can be a set, for example the
second argument of W(A,B) is indexed by the set B(a), or it can be an stype, for
example the argument of the successor in N is indexed by 1. Note that because of
the η-rule for 1 there are bijections between 1 → A and A and an argument indexed
over 1 is nothing but a single argument.

The type of later arguments may depend on earlier arguments. The dependency
on a non-inductive argument is direct. However, a direct dependency on an in-
ductive argument is not possible, because we cannot make use of the set we are
currently defining. However an indirect dependency is possible, namely on the re-
sult of the recursively defined function T applied to the elements of the inductively
defined set U indexed by the argument.

The result of T for an element introduced by a constructor depends on the
arguments of the constructor in the same way as later arguments depend on previous
ones.

If a set has several constructors it will be convenient to code them as one con-
structor with an extra argument indexed by a finite set which selects the chosen
constructor. As we show below, the finite sets Nk can be built up successively from
0, 1, and 2 by using inductive definitions.

3.3 The Type OPD of Operators on Families of D

We want to define a type OPD of codes γ for all inductive-recursive definitions of
sets Uγ : set, Tγ : Uγ → D. Uγ will have one constructor, the arguments of which
are elements of an stype which depends on Uγ , Tγ . Further the result of Tγ for an
element introduced by a constructor will depend on Uγ , Tγ and the arguments of
that constructor. So we will associate with every γ a function

F γ : ((X : set) × (X → D)) → ((X : stype) × (X → D)) ,

and 〈Uγ ,Tγ〉 is the least set “closed under F γ”, i.e. such that every a : π0(F γ(〈Uγ ,Tγ〉))
is represented as a canonical element introγ(a) in Uγ with Tγ(introγ(a)) = π1(F γ(〈Uγ ,Tγ〉))(a).

10



The above definition cannot be simplified by defining by induction on γ directly
the type of the arguments of the constructor of Uγ : we cannot make use of the
induction hypothesis relative to Uγ′ ,Tγ′ .

So elements of OPD represent primarily functions from set-indexed to stype-
indexed families of D. The inductive-recursively defined sets are obtained as the
least set-indexed family of D which is “closed under this function”. In the theory
IRext

init, this picture becomes more clear: there OPD is a type of codes of endofunc-
tors in the slice category Type/D and Uγ , Tγ together with the constructor and
an equality proof form an initial algebra with respect to this functor.

In the following D will be a global parameter. Thus in the rest of the article we
shorten our notations as follows:

General assumption 3.3.1 (a) We assume Γ ⇒ D : type (but will usually sup-
press Γ).

(b) We suppress a first premise D : type, which has to be added to each rule
referring to D.

(c) We write, if some γ : OPD occurs as a parameter, γ instead of D, γ.

The formation rule for OP is

OPD : type .

To each code γ we associate the two components of F γ above (note however that
OP is an inductive definition, not an inductive-recursive definition on type level,
and the inductive definition of OPD does not refer to F

U, F
T).

γ : OPD U : set T : U → D

F
U
γ (U, T ) : stype

γ : OPD U : set T : U → D

F
T
γ (U, T ) : F

U
γ (U, T ) → D

We have the following rules for generating elements of OPD:

• Addition of a non-inductive argument:

A : stype γ : A→ OPD

σ(A, γ) : OPD

σ(A, γ) (where σ stands for the Σ-type) is a code for an inductive-recursive
definition the constructor of which has one non-inductive argument a : A and
depending on it other arguments given by γ(a). The result of T for an element
introduced by a constructor with argument starting with a : A is the result
obtained for the remaining arguments with respect to γ(a):

– F
U
σ(A,γ)(U, T ) = (a : A) × F

U
γ(a)(U, T ),

– F
T
σ(A,γ)(U, T, 〈a, b〉) = F

T
γ(a)(U, T, b).

• Addition of an inductive argument:

A : stype γ : (A → D) → OPD

δ(A, γ) : OPD

δ(A, γ) (where δ stands for dependent Σ) is a code for an inductive-recursive
definition the constructor of which has one inductive argument indexed over
A and, if this argument is f : A → U , the other arguments determined by
γ(T ◦ f). The result of T for an element introduced by a constructor with
such an argument is the result of it for the remaining arguments with respect
to γ(T ◦ f):

11



– F
U
δ(A,γ)(U, T ) = (f : A → U) × F

U
γ(T◦f)(U, T ),

– F
T
δ(A,γ)(U, T, 〈f, b〉) = F

T
γ(T◦f)(U, T, b).

• Base case:
ψ : D

ι(ψ) : OPD

ι(ψ) is an inductive-recursive definition with no arguments of the constructor
and ψ as the result of T for an element introduced by it:

– F
U
ι(ψ)(U, T ) = 1,

– F
T
ι(ψ)(U, T, ∗) = ψ.

Definition 3.3.2 The formation and introduction rules for OP are the rules in this
subsection.

3.4 Formation and Introduction Rules for U, T

Definition 3.4.1 Assume γ : OPD.
The formation rules for Uγ , Tγ are the following:

Uγ : set Tγ : Uγ → D

The introduction rules for Uγ and equality rules for Tγ are

a : F
U
γ (Uγ ,Tγ)

introγ(a) : Uγ

a : F
U
γ (Uγ ,Tγ)

Tγ(introγ(a)) = F
T
γ (Uγ ,Tγ , a) : D

The formation/introduction rules for U, T are the rules above.

3.5 Elimination and Equality Rules for U, T

We are going to define elimination rules for Uγ . Inductively defined sets like the set
of natural numbers or the W-type are special cases of inductive-recursive definitions,
so we obtain elimination rules for these sets as well as we do for universes (as
introduced by Palmgren [24]).

We have to collect the induction hypotheses with respect to an argument of
introγ , that is, with respect to an element u of F

U
γ (Uγ ,Tγ). The induction hypoth-

esis consists of the value of the function to be defined for all references to Uγ by
inductive arguments in u, and will be an element of type F

IH
γ (Uγ ,Tγ , E, u) with

the following formation and equality rules:

γ : OPD U : set T : U → D
u : F

U
γ (U, T ) x : U ⇒ E[x] : type

F
IH
γ (U, T,E, u) : type

F
IH
ι(ψ)(U, T,E, u) = 1 ,

F
IH
σ(A,γ)(U, T,E, 〈a, b〉) = F

IH
γ(a)(U, T,E, b) ,

F
IH
δ(A,γ)(U, T,E, 〈f, b〉) = ((x : A) → E[f(x)]) × F

IH
γ(T◦f)(U, T,E, b) .

Note that we allow E[x] to be an arbitrary type, that is, it does not need to be a
set as in ordinary elimination rules. See [11] for a discussion of the need for such a
large elimination schema in induction-recursion.
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For the equality rules we need to define elements of F
IH
γ (Uγ ,Tγ , E, u) from the

values of recursively defined functions on the inductive arguments of u. This is the
purpose of the operation F

map
γ :

γ : OPD U : set T : U → set

x : U ⇒ E[x] : type h : (x : U) → E[x]

F
map
γ (U, T,E, h) : (u : F

U
γ (U, T )) → F

IH
γ (U, T,E, u)

F
map
ι(ψ)(U, T,E, h, ∗) = ∗ ,

F
map
σ(A,γ)(U, T,E, h, 〈a, b〉) = F

map
γ(a)(U, T,E, h, b) ,

F
map
δ(A,γ)(U, T,E, h, 〈f, b〉) = 〈h ◦ f,Fmap

γ(T◦f)(U, T,E, h, b)〉 .

Definition 3.5.1 Assume γ : OPD.
The elimination rule for Uγ , Tγ is the following:

x : Uγ ⇒ E[x] : type

g : (u : F
U
γ (Uγ ,Tγ),F

IH
γ (Uγ ,Tγ , E, u)) → E[introγ(u)]

Rγ,E(g) : (u : Uγ) → E[u]

The equality rule is

x : Uγ ⇒ E[x] : type

g : (u : F
U
γ (Uγ ,Tγ),F

IH
γ (Uγ ,Tγ , E, u)) → E[introγ(u)]

u : F
U
γ (Uγ ,Tγ)

Rγ,E(g, introγ(u)) = g(u,Fmap
γ (Uγ ,Tγ , E,Rγ,E(g), u)) : E[introγ(u)]

Note that these rules presuppose the formation and introduction rules for OP and
for U, T.

Definition 3.5.2 IRelim is the extension of the logical framework by the forma-
tion and introduction rules for OP and the formation, introduction, elimination,
and equality rules for U,T. IRext

elim is the extension of IRelim by the rules of ex-
tensionality.

3.6 OPD-Codes for Some Standard Sets

Let us briefly review the examples of inductive and inductive-recursive definitions
in Section 3.2 and assign codes in OPD to them.

In the first examples, we just have inductive definitions - there is no recursively
defined Tγ participating in the generation of Uγ . In this case we introduce a dummy
function Tγ : Uγ → 1 so that the code for the inductive definition is an element
γ : OP1. We will only define the corresponding γ : OP1, the sets defined are then
Uγ . Let ι∗ := ι(∗) : OP1.

The empty stype 0 is part of our logical framework and we can code the set N0

as
γN0

:= σ(0, (x)ι∗) : OP1 .

But it is possible to define N0 without 0, since it can be defined as the set with
only one constructor with type N0 → N0. This definition has code

γ′N0
:= δ(1, (f)ι∗) : OP1 .

In Appendix B we prove that for the second definition of N0 we can define ex falsum
quodlibet.
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The other finite sets have codes

γN1
:= ι∗ : OP1 ,

γNn+2
:= σ(2, (x)case2(x, γNn+1

, ι∗)) : OP1 .

A+B and Σ(A,B) have codes

γA+B := σ(2, (x)case2(x, σ(A, (x)ι∗), σ(B, (x)ι∗))) ,

γΣ(A,B) := σ(A, (x)σ(B(x), (y)ι∗)) .

With this definition the constructor of Σ has two arguments. An alternative is to
have one argument having as type the dependent product of the logical framework:

γ′Σ(A,B) := σ((x : A) ×B, (y)ι∗) .

N has code

γN := σ(2, (x)case2(x, ι∗, δ(1, (y)ι∗))) .

Zero is here introγN(〈∗0, ∗〉), and the successor of n is introγN(〈∗1, 〈n, ∗〉〉).
W(A,B) has code

γW(A,B) := σ(A, (x)δ(B(x), (y)ι∗)) .

Finally, the first universe (consisting of U0 : set and T0 : U0 → set and for simplicity
closed under N and Σ only) has code

γU0,T0
:= σ(2, (x)case2(x, ι(N), δ(1, (A)δ(A(∗), (B)ι(Σ(A(∗), B)))))) : OPset .

4 Initial Algebras in Slice Categories

In this section we pursue the categorical point of view and introduce the theory
IRext

init which expresses closure under initial F γ-algebras. The ext in IRext
init indicates

that we here assume the rules of extensional equality.
We will also introduce the principle of OP-elimination and prove that this prin-

ciple entails the equivalence of IRext
init and IRext

elim. This can be viewed as yet
another theorem showing the correspondence between syntactic theories and cate-
gorical models, such as the correspondence between the typed lambda calculus and
Cartesian closed categories, between (impredicative) intuitionistic type theory in
the sense of Lambek and Scott [15] and toposes, etc. Note however, that we here
only treat the categorical semantics of induction-recursion and not of the logical
framework. The reader is referred to the literature on categorical semantics of de-
pendent types for the latter, see for example Cartmell [4], Seely [32], Dybjer [10] or
Hofmann [14].

The categorical semantics of universes has previously been investigated by Mendler
[21]. There he considers various universes which are all inductive-recursive defini-
tions with D = set. Our approach goes further since we consider inductive-recursive
definitions with arbitrary D and characterize the collection of endofunctors which
have initial algebras.

4.1 Strictly Positive Endofunctors on Type/D

First we shall show how to define an endofunctor F γ in the category Type/D.

For arguments U , T with U : set the object part of this functor coincides with F
U
γ
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and F
T
γ in IRelim. In order to obtain a functor in Type/D, we have to allow the

argument U to be a type as well. So we have the new rules:

γ : OPD U : type T : U → D

F
U
γ (U,D) : type

γ : OPD U : type T : U → D

F
T
γ (U,D) : F

U
γ (U, T ) → D

and the equality rules extended to U : type.
We shall now define the arrow part F

→
γ of the functor:

U
f0 - U ′

F
U
γ (U, T )

F
→
γ (f0, f1)- F

U
γ (U ′, T ′)

f1 7→ (x)ref

D
�

T
′T

-

D
� F

T
γ
(U
′ , T

′ )F T
γ (U, T

) -

Note that in this type-theoretic formalization F
→
γ (f0, f1) has two main argu-

ments: the arrow f0 and the proof f1 that the triangle commutes. The rules are:

γ : OPD
U : set T : U → D
U ′ : set T ′ : U ′ → D
f0 : U → U ′ f1 : T =fun

U→D T ′ ◦ f0
F

→
γ (f0, f1) : F

U
γ (U, T ) → F

U
γ (U ′, T ′)

(We have suppressed the arguments U , T , U ′, T ′ of F
→
γ , which are implicitly

contained in f0, f1.)

F
→
ι(ψ)(f0, f1, ∗) = ∗ ,

F
→
σ(A,γ)(f0, f1, 〈a, b〉) = 〈a,F→

γ(a)(f0, f1, b)〉 ,

F
→
δ(A,γ)(f0, f1, 〈g, b〉) = 〈f0 ◦ g,F

→
γ(T◦g)(f0, f1, b)〉 .

Note that in the last equality we use that T ′ ◦ f0 ◦ g = T ◦ g by f1 and exten-
sionality.

The commutativity of the right triangle in the diagram above is expressed by
the following rule:

γ : OPD
U : set T : U → D
U ′ : set T ′ : U ′ → D
f0 : U → U ′ f1 : T =fun

U→D T ′ ◦ f0
F

T
γ (U ′, T ′) ◦ F

→
γ (f0, f1) = F

T
γ (U, T ) : F

U
γ (U, T ) → D

(In extensional type theory the proof object of an equality type is irrelevant, since
it is equal to ref. Therefore, when stating rules which generate elements of equality
types, we will not introduce a new constant which generates a proof object, but
instead write the conclusion of such a rule in the form of a judgement r = s : A, as
in the rule above).

Further we have rules expressing the functor laws:

F
→
γ (id, (x)ref) = id : F

U
γ (U, T ) → F

U
γ (U, T ) ,

F
→
γ (f0 ◦ f1, (x)ref) = F

→
γ (f0, (x)ref) ◦ F

→
γ (f1, (x)ref) ,

: F
U
γ (U, T ) → F

U
γ (U ′′, T ′′) .
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Definition 4.1.1 The rules for F
→ are the rules above in this subsection. (They

presuppose the formation/introduction rules for OP and for U, T and the rules of
extensionality).

Remark 4.1.2 In the presence of elimination rules for OP (see below) the rules
expressing the functor laws and the equality F

T
γ (U ′, T ′)◦F

→
γ (f0, f1) = F

T
γ (U, T ) can

be proved by induction on γ and therefore be omitted in the formal theory.

The object part of the functors F γ refers to the argument U only strictly pos-
itively, but to T applied to these arguments both positively and negatively. This
motivates part (b) of the following definition:

Definition 4.1.3 (a) Let for γ : OPD be F γ the endofunctor on Type/D (with
respect to rules R which contain the rules introduced in this section and those
presupposed by it) with

• object part F γ(〈U, T 〉) := 〈FU
γ (U, T ),FT

γ (U, T )〉 and

• arrow part F γ(〈h0, h1〉) := 〈F→
γ (h0, h1), (x)ref〉.

(b) The strictly positive endofunctors on Type/D are the functors F γ for γ :
OPD.

We can give the following names to strictly positive endofunctors on Type/D:

• F
ι(ψ) is the “constant functor”, the result of which does not depend on the

arguments.

• F
σ(A,γ) is the “disjoint union of functors”: the first component of the object

part is a disjoint union of the first components of the object parts of F
γ(a)

(a : A), and the other parts are defined accordingly.

• F δ(A,γ) is the “dependent disjoint union of functors”: the first component of
the object part is the disjoint union of the first components of the object parts
of F

γ(T◦f) for f : A → U , referring to the arguments of the functor, and the
other parts are again defined accordingly.

The introduction rules for Uγ and equality rules for Tγ express that with

eqγ := (x)ref : Tγ ◦ introγ =fun
FU

γ (Uγ ,Tγ)→D F
T
γ (Uγ ,Tγ)

〈Uγ ,Tγ , introγ , eqγ〉 is an F γ-algebra:

Definition 4.1.4 An F γ-algebra is a quadruple 〈U, T, f0, f1〉, s.t.

U : type , T : U → D ,
f0 : F

U
γ (U, T ) → U , f1 : T ◦ f0 =fun

FU
γ (U,T )→D

F
T
γ (U, T ) ,

as expressed by the diagram

F
U
γ (U, T )

f0 - U

f1

D
�

T

F T
γ (U, T

) -

In the following we will define the rules expressing that 〈Uγ ,Tγ , introγ , eqγ〉
is an initial algebra and show that these rules are extensionally equivalent to the
standard elimination and equality rules for Uγ and Tγ .
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4.2 Rules for Initial Algebras in Slice Categories

We presuppose in this subsection the rules of extensionality, formation/introduction
rules for OP and for U, T (which express that 〈Uγ ,Tγ , introγ , eqγ〉 is an F γ-algebra),
and the rules for F

→.
Initiality of 〈Uγ ,Tγ , introγ , eqγ〉 means that for any other Fγ-algebra

〈U ′, T ′, f0, f1〉 there is a unique mediating arrow 〈h0, h1〉, such that the following
diagram commutes:

F
U
γ (Uγ ,Tγ)

introγ - Uγ

eqγ

(x)ref D
�

Tγ

F T
γ (U

γ ,T
γ ) -

h1 (∗)

f1

F
U
γ (U ′, T ′)

F
→
γ (h0, h1)

?

f0
-

F
T
γ
(U

′ , T
′ )

-

U ′

h0

?

�

T ′

The rules are (under additional assumption γ : OPD)

U ′ : type T ′ : U ′ → D
f0 : F

U
γ (U ′, T ′) → U ′ f1 : T ′ ◦ f0 =fun

F U
γ (U ′,T ′)→D

F
T
γ (U ′, T ′)

initmapγ(U
′, T ′, f0, f1) : Uγ → U ′

and, under the assumptions of the last rule,

T ′ ◦ initmapγ(U
′, T ′, f0, f1) = Tγ : Uγ → D

initmapγ(U
′, T ′, f0, f1) ◦ introγ= f0 ◦ F

→
γ (initmapγ(U

′, T ′, f0, f1), (x)ref)
: F

U
γ (Uγ ,Tγ) → U ′

h′0 : Uγ → U ′ h′1 : T ′ ◦ h′0 =fun
Uγ→D Tγ

q : h′0 ◦ introγ =fun
F U

γ (Uγ ,Tγ )→U ′
f0 ◦ F

→
γ (h′0, h

′
1)

initmapγ(U
′, T ′, f0, f1) = h′0 : Uγ → U ′

Definition 4.2.1 The theory IRext
init is the extension of the logical framework by

the formation/introduction rules for OP and for U, T, the rules of extensionality,
the rules for F

→ and the rules mentioned in this subsection.

4.3 Elimination Rules for OP

In Subsection 4.4 we will show that the elimination rules of U, T are equivalent to
the rules for the same sets as an initial algebra. This will be shown by induction on
γ : OPD and we need therefore to add elimination and equality rules for OP.

Definition 4.3.1 The elimination and equality rules for OP are the following:
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γ0 : OPD
γ : OPD ⇒ E[γ] : type

a : (ψ : D) → E[ι(ψ)]
b : (A : stype, γ : A→ OPD , f : (x : A) → E[γ(x)]) → E[σ(A, γ)]
c : (A : stype, γ : (A → D) → OPD, f : (x : A → D) → E[γ(x)])

→ E[δ(A, γ)]

ROP
D,E(γ0, a, b, c) : E[γ]

ROP
D,E(ι(ψ), a, b, c) = a(ψ) ,

ROP
D,E(σ(A, γ), a, b, c) = b(A, γ, (y)ROP

D,E(γ(y), a, b, c)) ,

ROP
D,E(δ(A, γ), a, b, c) = c(A, γ, (y)ROP

D,E(γ(y), a, b, c)) .

We call these rules OPelim. They presuppose the formation/introduction rules for
OP.

4.4 Equivalence of the Elimination Principle and the Exis-

tence of Initial Algebras

We shall show that the two theories IRext
elim and IRext

init are equivalent under the
assumption OPelim by interpreting them in each other. See the diagram at the end
of Sect. 5.3, p. 30 for a summary of the relationships.

Theorem 4.4.1 IRext
init can be interpreted in IRext

elim + OPelim.

Remark 4.4.2 More precisely, Theorem 4.4.1 means that we can translate each
symbol in the language of IRext

init to a term in the language of IRext
elim + OPelim,

such that each translated rule in IRext
init is provable in IRext

elim + OPelim, that is, if
the translated premises of the rule are provable so is the translated conclusion.

This translation can be extended by additional symbols and rules.

Proof: We work in IRext
elim extended with OP-elimination and construct the

family of functors F γ and initial algebras 〈Uγ ,Tγ , introγ , eqγ〉 for γ : OPD . First

the extensions of F
U
γ and F

T
γ to U : type and F

→
γ can be defined by straightforward

induction on γ such that the rules for F
U, F

T and F
→ hold.

We are going to show that 〈Uγ ,Tγ , introγ , eqγ〉 is an initial F γ-algebra for γ :
OPD. So let γ : OPD, 〈U ′, T ′, f0, f1〉 be another F γ-algebra, and construct a unique
mediating arrow h = 〈h0, h1〉, such that diagram (∗) on page 17 commutes. To this
end we shall use the elimination rule for Uγ with

E[u] := (u′ : U ′) × (T ′(u′) =D Tγ(u))

for u : Uγ . To this end define locally by induction on γ ′ : OPD:

kγ′ : ((u : F
U
γ′(Uγ ,Tγ)) × F

IH
γ′ (Uγ ,Tγ ,E, u)) → F

U
γ′(U ′, T ′) ,

kι(ψ)(〈∗, ∗〉) = ∗ ,

kσ(A,γ′)(〈〈a, b〉, c〉) = 〈a, kγ′(a)(〈b, c〉)〉 ,

kδ(A,γ′)(〈〈f
′, b〉, 〈g′, c〉〉) = 〈π0 ◦ g′, kγ′(Tγ◦f ′)(〈b, c〉)〉 .

In the last equality we use that T ′ ◦ π0 ◦ g′ = Tγ ◦ f ′ by extensionality and the
equality proof π1 ◦ g′. Moreover, we can show, by induction on γ ′, that kγ′ has
the property that both triangles in the following diagram commute (h′

0 : Uγ → U ′,
h′1 : T ′ ◦ h′0 =fun

Uγ→U ′ Tγ):
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F
U
γ′(Uγ ,Tγ)

(u : F
U
γ′(Uγ ,Tγ)) × F

IH
γ′ (Uγ ,Tγ ,E, u)

kγ′

-
�
〈id,

F
map

γ
′

(Uγ
,Tγ

,E,〈
h
′

0
,h

′

1
〉
fun )〉

fun

F
U
γ′(U ′, T ′)

F
→
γ′ (h′0, h

′
1)

?

D

F
T
γ′(U ′, T ′)

?

F T
γ ′ (U

γ ,T
γ ) ◦ π0 -

Now let

g = (u, v)〈f0(kγ(〈u, v〉)), ref〉

: (u : F
U
γ (Uγ ,Tγ),F

IH
γ (Uγ ,Tγ ,E, u)) → E[introγ(u)] .

ref has correct type since

Tγ(introγ(u)) = F
T
γ (Uγ ,Tγ , u) = F

T
γ (U ′, T ′, kγ(〈u, v〉))

diagram (∗)
= T ′(f0(kγ(〈u, v〉))) .

Now we can define the two components of the mediating arrow by

h0 := π0 ◦ Rγ,E(g) : Uγ → U ′ ,

h1 := π1 ◦ Rγ,E(g) : T ′ ◦ h0 =fun
Uγ→D Tγ .

To show the commutativity of the outer square in the initial algebra diagram
we use the equality rule for Rγ :

h0(introγ(u)) = π0(Rγ,E(g, introγ(u)))

= π0(g(u,F
map
γ (Uγ ,Tγ ,E,Rγ,E(g), u)))

= f0(kγ(〈u,F
map
γ (Uγ ,Tγ ,E, 〈h0, h1〉

fun, u)〉))

= f0(F
→
γ (h0, h1, u)) : U ′ .

Finally, to prove uniqueness of h we assume that we have another mediating
arrow 〈h′0, h

′
1〉, that is we have h′0 : Uγ → U ′, h′1 : T ′ ◦ h′0 =fun

Uγ→D Tγ , such that

h′0 ◦ introγ = f0 ◦ F
→
γ (h′0, h

′
1).

Let for u : Uγ E′[u] := (h0(u) =U ′ h′0(u)). By induction γ′ we can prove for all
u : F

U
γ′(Uγ ,Tγ) and v : F

IH
γ′ (Uγ ,Tγ ,E

′, u)

F
→
γ′ (h0, h1, u) =

F
U

γ′
(U ′,T ′) F

→
γ′ (h′0, h

′
1, u) .

So if u : F
U
γ (Uγ ,Tγ) and F

IH
γ (Uγ ,Tγ ,E

′, u) it follows that

h0(introγ(u)) = f0(F
→
γ (h0, h1, u)) = f0(F

→
γ (h′0, h

′
1, u)) = h′0(introγ(u)) : U ′ .

Hence, by the induction principle it follows that h0(u) =U ′ h′0(u) for all u : Uγ , and
thus by extensionality h0 = h′0 : Uγ → U ′. Hence, 〈h0, h1〉 = 〈h′0, h

′
1〉 as arrows in

the slice category.

Theorem 4.4.3 IRelim can be interpreted in IRext
init + OPelim.
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Proof: We shall work in IRext
init extended with OP-elimination and show how to

define the constants F
IH,Fmap, and R, which are specific to IRext

elim, so that their
equality rules can be verified.

First, we can define in a straightforward way F
IH
γ and F

map
γ by OP-elimination

and verify their equality rules.
We define now Rγ (the recursion operator for the inductive-recursive definition

of Uγ and Tγ) and verify the corresponding equality rule. So let E[u] be a type for
u : Uγ and assume

g : (u : F
U
γ (Uγ ,Tγ),F

IH
γ (Uγ ,Tγ , E, u)) → E[introγ(u)] .

We will define

Rγ,E(g) := π1 ◦ h0 : (u : Uγ) → E[π0(h0(u))] ,

and verify that π0(h0(u)) = u, where 〈h0, h1〉 is the unique mediating morphism in
the following initial F γ-algebra diagram:

F
U
γ (Uγ ,Tγ)

introγ - Uγ

eqγ

(x)ref D
�

Tγ
F T
γ (U

γ ,T
γ )

-
h1

F
U
γ (UE

γ ,T
E
γ )

F
→
γ (h0, h1)

? ∼=

〈F→
γ (π0, (x)ref), jγ〉fun

-

F
T
γ
(U
E
γ
,T
E
γ
)

-

(u : F
U
γ (Uγ ,Tγ)) × F

IH
γ (Uγ ,Tγ , E, u)

F
T
γ (Uγ ,Tγ) ◦ π0

6

〈introγ ◦ π0, g
′〉fun

- UE
γ

h0

?

�

TE
γ

Here g′ : ((u : F
U
γ (Uγ ,Tγ)) × F

IH
γ (Uγ ,Tγ , E, u)) → E[introγ(u)] is the uncurried

version of g, UE
γ := (x : Uγ) ×E[x] and TEγ := Tγ ◦ π0 : UE

γ → D. Furthermore jγ′

is defined by induction on γ′ : OPD as follows (this is a local definition):

jγ′ : (u : F
U
γ′(UE

γ ,T
E
γ )) → F

IH
γ′ (Uγ ,Tγ , E,F

→
γ′ (π0, (x)ref , u)) ,

jι(ψ)(∗) = ∗ ,

jσ(A,γ′)(〈a, b〉) = jγ′(a)(b) ,

jδ(A,γ′)(〈f, b〉) = 〈π1 ◦ f, jγ′(Tγ◦(π0◦f))(b)〉 .

(One can show by induction on γ ′ that 〈F→
γ′ (π0, (x)ref), jγ′〉fun is an isomorphism

F
U
γ′(UE

γ ,T
E
γ )

∼=
−→ (u : F

U
γ′(Uγ ,Tγ)) × F

IH
γ′ (Uγ ,Tγ , E, u), but this is not needed in

the current proof.) The lower left triangle in the initial algebra diagram commutes,
since F

→
γ (π0, (x)ref) is an arrow in the slice category and the lower right triangle

commutes by TEγ = Tγ ◦ π0. Therefore it follows that the two triangles together
form an F γ-algebra, and hence we can construct the unique mediating morphism
〈h0, h1〉.
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We show π0 ◦ h0 =fun
Uγ→Uγ

id and therefore Rγ,E(g) := π1 ◦ h0 : (u : Uγ) → E[u].
The following diagram commutes

F
U
γ (Uγ ,Tγ)

introγ - Uγ

F
U
γ (UE

γ ,T
E
γ )

F
→
γ (h0, h1)

?

〈introγ ◦ π0, g
′〉fun ◦ 〈F→

γ (π0, (x)ref), jγ〉fun
- UE

γ

h0

?

F
U
γ (Uγ ,Tγ)

F
→
γ (π0, (x)ref)

?
introγ - Uγ

π0

?

and all arrows are arrows in the slice category. So 〈π0◦h0, (x)ref〉fun and 〈id, (x)ref〉fun

are two arrows 〈h′0, h
′
1〉 from 〈Uγ ,Tγ〉 to itself in the slice category such that

h′0 ◦ introγ = introγ ◦ F
→
γ (h′0, h

′
1). Uniqueness of the arrows from an initial algebra

implies now π0 ◦ h0 = id, the assertion.
Finally, we show that the equality rules hold with the above interpretation:

Rγ,E(g, introγ(u))
= π1(h0(introγ(u)))
= g′(〈(F→

γ (π0, (x)ref) ◦ F
→
γ (h0, h1))(u), (jγ ◦ F

→
γ (h0, h1))(u)〉)

= g′(〈F→
γ (π0 ◦ h0︸ ︷︷ ︸

=id

, (x)ref , u),Fmap
γ (Uγ ,Tγ , E, π1 ◦ h0, u)〉)

= g′(〈u,Fmap
γ (Uγ ,Tγ , E,Rγ,E(g), u)〉)

= g(u,Fmap
γ (Uγ ,Tγ , E,Rγ,E(g), u)) ,

where the third equality uses the commutativity of the following diagram (which
can be proved by induction on γ ′ : OPD):

u : F
U
γ′(Uγ ,Tγ)

F
U
γ′(UE

γ ,T
E
γ )

F
→
γ′ (h0, h1)

?

jγ′

- F
IH
γ′ (Uγ ,Tγ , E, u)

F m
ap

γ ′ (U
γ ,T

γ ,E,π
1◦h

0)
-

4.5 Conclusion

We have seen that in extensional type theory together with the elimination rules for
OP, the principle of 〈Uγ ,Tγ , introγ , eqγ〉 being an initial algebra is equivalent to the
elimination/equality rules for Uγ . In intensional type theory we cannot even express
the principle of being an initial algebra, since the arrow part of the functors cannot
be defined. However, because of the above mentioned equivalence, the principle
of universe elimination can be described as a principle which can be formulated in
intensional type theory and in the presence of extensionality expresses the initiality
property.
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5 Induction-recursion as a Reflection Principle

5.1 Background

When working in the slice category both Uγ and Tγ become part of the initial
algebra and we break the pattern

inductively defined set initial algebra
recursively defined function initial arrow

The slice algebra approach is an abstraction of the set theoretic semantics of inductive-
recursive definitions in terms of inductive definitions. It suggests the view that Tγ

(and not only Uγ) is inductively generated.
From a type-theoretic point of view, however, it is unnatural to view inductive-

recursive definitions as special cases of inductive ones. We shall therefore recall an
alternative formalization of induction-recursion which maintains the distinctions in
the table above. This formalization was previously presented in Dybjer and Setzer
[12]. It expresses induction-recursion as a reflection principle: for any type D and
any D-operation d of “arity” φ, there is a set U′

φ,d which is closed under d and
has decoding function T′

φ,d : U′
φ,d → D (we add an accent to U, T, intro, R in the

current theory in order to distinguish them from the corresponding constants in
IRelim).

Consider again the case of the constructor Σ̂ for the first universe. We can
express the fact that Σ̂ reflects (inside U′

0) the set-operation Σ by the following
diagram:

(a : U′
0) × (T′

0(a) → U′
0)

Σ̂ - U′
0

(A : set) × (A → set)

〈a, b〉 7→ 〈T′
0(a),T

′
0 ◦ b〉

?

Σ
- set

T′
0

?

We have simply observed that the diagonal arrow in the diagram in Section 3.1
factors through Σ.

The general reflection principle is captured by the following commuting diagram:

argφ(U
′
φ,d,T

′
φ,d)

intro′φ,d- U′
φ,d

ArgD,φ

mapφ(U
′
φ,d,T

′
φ,d)

?

d
- D

T′
φ,d

?

Here φ is an element of the type SPD of D-arities. It encodes both the domain
ArgD,φ of d, the domain argφ(U

′
φ,d,T

′
φ,d) of the constructor intro′φ,d which reflects

d, and also the function mapφ(U
′
φ,d,T

′
φ,d) which decodes the arguments of intro′φ,d.

Note that this relationship with initial algebras is different from the initial alge-
bra diagram in the slice category Type/D discussed in the previous section. There
Uγ , Tγ arose as the carrier of an initial algebra and universe elimination arose as
the initial arrow.

In this section we shall show the equivalence between the two formulations. To
this end we briefly summarize the formalization in Dybjer and Setzer [12] and refer
the reader to that paper for more details and discussion.
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5.2 An Alternative Formalization

The first step is to introduce a new type SPD

SPD : type ,

containing codes for arities of D-operations. (The elements of SPD can also be
viewed as codes for strictly positive “functors”, hence the name.) SPD has five
associated operations (Again we write φ instead of D,φ in argument position. One
exception is ArgD,φ, where the equality rules refer to D.)

φ : SPD

ArgD,φ : type

φ : SPD U : set T : U → D

argφ(U, T ) : stype

φ : SPD U : set T : U → D

mapφ(U, T ) : (argφ(U, T )) → ArgD,φ

φ : SPD U : set T : (x : U) → D
x : U ⇒ E[x] : type b : argφ(U, T )

IHφ,U,T,E(b) : type

φ : SPD U : set T : (x : U) → D
x : U ⇒ E[x] : type h : (x : U) → E[x]

mapIHφ,U,T,E(h) : (x : argφ(U, T )) → IHφ,U,T,E(x)

We have the following introduction rules for SP:

nil : SPD

A stype φ : A→ SPD

nonind(A, φ) : SPD

A stype φ : (A → D) → SPD

ind(A, φ) : SPD

ArgD,nil = 1 ,
ArgD,nonind(A,φ) = (x : A) × ArgD,φ(x) ,

ArgD,ind(A,φ) = (f : A → D) × ArgD,φ(f) .

argnil(U, T ) = 1 ,
argnonind(A,φ)(U, T ) = (x : A) × (argφ(x)(U, T )) ,

argind(A,φ)(U, T ) = (f : A → U) × (argφ(T◦f)(U, T )) .

mapnil(U, T, ∗) = ∗ ,
mapnonind(A,φ)(U, T, 〈a, b〉) = 〈a,mapφ(a)(U, T, b)〉 ,

mapind(A,φ)(U, T, 〈f, b〉) = 〈T ◦ f,mapφ(T◦f)(U, T, b)〉 .

IHnil,U,T,E(∗) = 1 ,
IHσ(A,φ),U,T,E(〈a, b〉) = IHφ(a),U,T,E(b) ,
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IHδ(A,φ),U,T,E(〈f, b〉) = ((y : A) → E[f(y)]) × (IHφ(T◦f),U,T,E(b)) .

mapIHnil,U,T,E(h, ∗) = ∗ ,
mapIHσ(A,φ),U,T,E(h, 〈a, b〉) = mapIHφ(a),U,T,E(h, b) ,
mapIHδ(A,φ),U,T,E(h, 〈f, b〉) = 〈h ◦ f,mapIHφ(T◦f),U,T,E(h, b)〉 .

We are now ready to give the formal rules for U′ and T′. These rules have the
common additional premises φ : SPD and d : ArgD,φ → D:

Formation rules:
U′
φ,d : set

T′
φ,d : U′

φ,d → D

Introduction rule:
a : argφ(U

′
φ,d,T

′
φ,d)

intro′φ,d(a) : U′
φ,d

Equality rule for T′:

a : argφ(U
′
φ,d,T

′
φ,d)

T′
φ,d(intro′φ,d(a)) = d(mapφ(U

′
φ,d,T

′
φ,d, a))

Elimination rule:

e : (x : argφ(U
′
φ,d,T

′
φ,d), IHφ,U′

φ,d
,T′

φ,d
,E(x)) → (E[intro′φ,d(x)])

R′
φ,d,E(e) : (a : U′

φ,d) → E[a]

Equality rule:

R′
φ,d,E(e, intro′φ,d(b)) = e(b,mapIHφ,U′

φ,d
,T′

φ,d
,E(R′

φ,d,E(e), b)) .

Definition 5.2.1 (a) The theory IRrefl consists of the rules above in this sub-
section.

(b) IRext
refl is the extension of IRrefl by the rules of extensionality.

(c) The following are the elimination and equality rules for SP, called SPelim

(they presuppose the formation and introduction rules for SP):

φ0 : SPD
φ : SPD ⇒ E[φ] : type

a : E[nil]
b : (A : stype, φ : A→ SPD, f : (x : A) → E[φ(x)])

→ E[nonind(A, φ)]
c : (A : stype, φ : (A → D) → SPD, f : (x : A→ D) → E[φ(x)])

→ E[ind(A, φ)]

RSP
D,E(φ0, a, b, c) : E[φ]

RSP
D,E(nil, a, b, c) = a ,

RSP
D,E(nonind(A, φ), a, b, c) = b(A, φ, (y)RSP

D,E(φ(y), a, b, c)) ,

RSP
D,E(ind(A, φ), a, b, c) = c(A, φ, (y)RSP

D,E(φ(y), a, b, c)) .
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5.3 The Correspondence between IRelim and IRrefl

We are going to analyze the correspondence between IRelim and IRrefl. See the
diagram at the end of this section, p. 30 for a summary of the relationships.

First we show that, in the type theory containing rules of both theories, OPelim,
SPelim and extensionality laws, there is a 1-1 correspondence between objects
γ : OPD and pairs (φ : SPD, d : ArgD,φ → D) and that we obtain translations
between the associated operations. Then we interpret the theory IRelim in IRrefl

and IRelim + OPelim in IRrefl + SPelim (Theorem 5.3.3), and in a last step in-
terpret, using one additional rule, IRext

refl + SPelim in IRext
elim + OPelim (Theorem

5.3.9). Using the results of [12] the consistency of all theories considered in this
article follow (Corollary 5.3.4, Remark 5.3.6).

We start with translations between OPD and (φ : SPD) × (Argφ → D):

Definition 5.3.1 We define in a type theory containing formation/introduc-
tion/elimination/equality rules for OP and SP

spD : OPD → SPD ,

dD : (γ : OPD,Argsp(γ)) → D ,

opD : (φ : SPD, d : Argφ → D) → OPD ,

by (we omit the index D in sp, d, op)

sp(ι(ψ)) = nil ,
sp(σ(A, γ)) = nonind(A, sp ◦ γ) ,
sp(δ(A, γ)) = ind(A, sp ◦ γ) ,

d(ι(ψ), ∗) = ψ ,
d(σ(A, γ), 〈a, b〉) = d(γ(a), b) ,
d(δ(A, γ), 〈f, b〉) = d(γ(f), b) .

op(nil, d) = ι(d(∗)) ,
op(nonind(A, γ), d) = σ(A, (a)op(γ(a), (b)d(〈a, b〉))) ,

op(ind(A, γ), d) = δ(A, (f)op(γ(f), (b)d(〈f, b〉))) .

Theorem 5.3.2 Assume a type theory including formation/introduction/elimina-
tion/equality rules for OP and SP, rules for F

U, F
T, F

IH, F
mapIH, Arg, arg, map,

IH, mapIH and extensional equality. Then, with variables chosen of appropriate
type, the following holds (we omit in op, sp, d the parameter D):

F
U
γ (U, T ) = argsp(γ)(U, T ) ,

F
T
γ (U, T, a) = d(γ,mapsp(γ)(U, T, a)) ,

F
IH
γ (U, T,E, a) = IHsp(γ),U,T,E(a) ,

F
map
γ (U, T,E, h, a) = mapIHsp(γ),U,T,E(h, a) ;

argφ(U, T ) = F
U
op(φ,d)(U, T ) ,

d(mapφ(U, T, a)) = F
T
op(φ,d)(U, T, a) ,

IHφ,U,T,E(u) = F
IH
op(φ,d)(U, T,E, u) ,

mapIHφ,U,T,E(h, a) = F
map
op(φ,d)(U, T,E, h, a) ,

ArgD,φ = F
U
op(φ,d)(D, id) ,

mapφ = F
→
op(φ,d)(T

′
φ,d, (x)ref) ;

op(sp(γ), d(γ)) = γ ,

sp(op(φ, d)) = φ ,

d(op(φ, d)) = d .
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The following diagram summarizes the correspondence (γ = op(φ, d)):

argφ(U
′
φ,d,T

′
φ,d) = F

U
γ (U′

φ,d,T
′
φ,d)

intro′φ,d - U′
φ,d

ArgD,φ = F
U
γ (D, id)

mapφ(U
′
φ,d,T

′
φ,d) = F

→
γ (T′

φ,d, (x)ref)

?

d
- D

T′
φ,d

?

F T
γ (U ′

φ,d ,T ′
φ,d ) -

Proof of Theorem 5.3.2: Straightforward induction on OP and SP.

Theorem 5.3.3 (a) IRelim can be interpreted in IRrefl.

(b) IRelim + OPelim can be interpreted in IRrefl + SPelim.

Note that in Theorem 5.3.3 extensionality is not needed: the constants of IRelim

can all be defined in IRrefl in such a way that all the equality rules of IRelim are
translated into definitional equalities in IRrefl.

Corollary 5.3.4 (a) IRext
refl+SPelim, IRext

elim+OPelim and IRext
init+OPelim are

consistent.

(b) The same holds with subtheories IRrefl, IRext
refl, IRrefl + SPelim, IRelim,

IRext
elim, IRelim + OPelim, IRext

init.

Proof of the corollary: In [12] we gave a model for IRrefl. This model fulfills the
extensionality rules (with ref∗ := 0, r =A s := {0 | r∗ = s∗ ∧ s∗ ∈ A∗}), and we can
easily interpret RSP and verify SPelim. Therefore IRext

refl +SPelim is consistent. By
Theorems 4.4.1, 5.3.3 and the fact that the above interpretations hold if one extends
the theories by additional rules and constants, the consistency of IRext

elim + OPelim

and IRext
init + OPelim follows.

Proof of Theorem 5.3.3:
The following list gives an interpretation of all terms in the language of IRelim,
which are not in the language of IRrefl (this interpretation has to be applied in-
ductively to subterms as well)

OPD 7→ OP∗
D := (φ : SPD) × (Argφ → D) ,

and with

sp′ := (γ)π0(γ) : OP∗
D → SPD ,

d′ := (γ)π1(γ) : (γ : OP∗
D,Argsp′(γ)) → D ,

ι(ψ) 7→ 〈nil, (x)ψ〉 ,

σ(A, γ) 7→ 〈nonind(A, sp′ ◦ γ), d̃〉 with d̃(〈x, y〉) = d′(γ(x), y) ,

δ(A, γ) 7→ 〈ind(A, sp′ ◦ γ), d̃〉 with d̃(〈x, y〉) = d′(γ(x), y) ,

F
U
γ (U, T ) 7→ argsp′(γ)(U, T ) ,

F
T
γ (U, T, a) 7→ d′(γ,mapsp′(γ)(U, T, a) ,

F
IH
γ (U, T,E, a) 7→ IHsp′(γ),U,T,E(a) ,

F
map
γ (U, T,E, h, a) 7→ mapIHsp′(γ),U,T,E(h, a) ,

Uγ 7→ U′
sp′(γ),d′(γ) ,

Tγ(a) 7→ T′
sp′(γ),d′(γ)(a) ,

introγ(a) 7→ intro′sp′(γ),d′(γ)(a) ,

Rγ,E(e) 7→ R′
sp′(γ),d′(γ),E(e) .
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Further, in part (b) we have, with E ′[φ] := (d : Argφ → D) → E[〈φ, d〉] the
translation

ROP
D,E(γ, a, b, c) 7→ RSP

D,E′(sp′(γ),

(d) a(d(∗)),
(A, φ, f, d)b(A,

(x)〈φ(x), (y)d(〈x, y〉)〉
(x)f(x, (y)d(〈x, y〉))),

(A, φ, f, d)c(A,
(x)〈φ(x), (y)d(〈x, y〉)〉
(x)f(x, (y)d(〈x, y〉))))

(d′(γ))

One easily verifies that with this interpretation the rules of IRelim and IRelim +
OPelim hold in IRrefl, IRrefl + SPelim respectively.

We are now going to study the interpretation of IRrefl in IRelim. We will need
additionally OPelim, extensionality and the following rules:

Definition 5.3.5 (a) Let Casetype
2 be the following rules, expressing case dis-

tinction for 2 into type:

a : 2 A : type B : type

casetype

2 (a,A,B) : type

casetype

2 (∗0, A,B) = A

casetype

2 (∗1, A,B) = B

(b) Using Casetype
2 we define for A : type, B : type:

• A+B := (x : 2) × casetype

2 (x,A,B) : type.

• For a : A, inl(a) := 〈∗0, a〉 : A+B.

• For b : A, inr(b) := 〈∗1, b〉 : A+B.

• Using additionally an equality on 2, let for a : A+B
isl(a) := (π0(a) =2 ∗0) : stype.

Remark 5.3.6 Casetype
2 can be interpreted in the model of [12] in a straightfor-

ward way, therefore IRext
refl + SPelim + Casetype

2 , IRext
elim + OPelim + Casetype

2 ,

IRext
init + OPelim + Casetype

2 are consistent as well.

Further we need the subtree relation on OPD:

Lemma 5.3.7 In IRext
elim +OPelim the following holds under assumption D : type:

(a) We can define for γ : OPD

caseOP
D (γ) : D + (((A : stype) × (A → OPD))

+ ((A : stype) × ((A → D) → OPD))) ,

such that we can prove

• caseOP
D (ι(ψ)) = inl(ψ),

• caseOP
D (σ(A, γ)) = inr(inl(〈A, γ〉)),

• caseOP
D (δ(A, γ)) = inr(inr(〈A, γ〉)).

(b) For γ, γ′ : OPD we can define γ′ �D γ : type (expressing “γ ′ is a subtree of γ
or equal to γ”), such that we can prove
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• γ′ �D ι(ψ) iff γ′ = ι(ψ),

• γ′ �D σ(A, γ) iff γ′ = σ(A, γ) or γ′ �D γ(a) for some a : A,

• γ′ �D δ(A, γ) iff γ′ = δ(A, γ) or γ′ �D γ(f) for some f : A→ D,

• �D is transitive and reflexive.

Definition 5.3.8 In the situation of the last lemma we write ∀γ ′ �D γ.E[γ′] for

(γ′ : OPD) → γ′ �D γ → E[γ′] .

Proof of Lemma 5.3.7: (a) caseOP
D (γ) can be defined by induction on γ.

In (b) we cannot simply use elimination rules on γ since for this we need a type to
collect γ′ �D γ for all γ : OPD.
We define γ′ �D γ iff there exists n : N, f : Nn+1 → OPD, such that

• f(0n+1) = γ,

• f(nn+1) = γ′,

• if k + 1 < n+ 1, then f(kn+1) 6= ι(ψ) and

– if f(kn+1) = σ(A, γ′′), then f((k + 1)n+1) = γ′′(a) for some a : A, and

– if f(kn+1) = δ(A, γ′′), then f((k + 1)n+1) = γ′′(g) for some
g : A→ D.

The verification of the properties of �D is now easy.

Theorem 5.3.9 IRext
refl+SPelim can be interpreted in IRext

elim+OPelim+Casetype
2 .

Proof: The main problem is the interpretation of SP. Once this is done and
the formation/introduction/elimination/equality rules for SP are verified, we can
in a straightforward way define Arg, arg, map, IH, mapIH, op, sp, d and therefore
the equations in Theorem 5.3.2 hold. Now interpret U′

φ,d, T′
φ,d(a), intro′φ,d(a),

R′
φ,d,E(f) as Uop(φ,d), Top(φ,d)(a), introop(φ,d)(a), Rop(φ,d),E(f). All rules are then

trivially fulfilled and we are done.
We will now interpret SP and verify the rules for it and work in the following in

IRext
elim + OPelim + Casetype

2 .
We cannot interpret SPD as OPD. For instance, if D is empty, OPD is empty

but SPD is not empty. Instead we will interpret elements of SPD as γ : OPD+1,
such that

• for all subtrees of γ of the form ι(ψ) we have ψ = inl(∗), which corresponds
to the fact that in SPD leaves do not refer to D,

• all subtrees of γ of the form δ(A, γ ′) are such that

γ′(f) = σ((x : A) → isl(f(x)), γ ′′(f)) ,

which means that (since all proofs of (x : A) → isl(f(x)) are equal and force
f to be equal to inl ◦ f ′ for some f ′ : A → D) γ′′(f, g) = γ′′′(f ′) where
f ′ : A→ D such that f = inl ◦ f ′.

However, there will be no direct relationship between the functors on slice categories
coded by the corresponding elements in SPD and OPD+1, we use OPD+1 only as a
type of trees.

So SPD is interpreted as

SP∗
D := (γ : OPD+1) × CorD(γ) ,
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and we define

õp := (φ)π0(φ) : SP∗
D → OPD+1 ,

cor := (φ)π1(φ) : (φ : SP∗
D) → CorD(õp(φ)) ,

where for γ : OPD+1, CorD(γ) iff for all γ′ �D+1 γ:

• if γ′ = ι(ψ), then ψ = inl(∗);

• if γ′ = δ(A, γ′′), then γ′′(f) = σ((x : A) → isl(f(x)), γ ′′′) for some γ′′′.

ψ, A, γ′′, γ′′′ can be expressed as terms in γ ′ by using caseOP
D , and therefore CorD(γ)

is built from universal quantifications, implication and conjunction only with the
right side of all implications being an equality. By uniqueness of equality proofs
follows therefore

for all p, p′ : CorD(γ) p = p′ .

Further by transitivity of �D+1 it follows

CorD(γ) → ∀γ′ �D+1 γ.CorD(γ′) .

We now interpret

(i) nil as 〈ι(inr(∗)), p〉,

(ii) nonind(A, φ) as 〈σ(A, õp ◦ φ), q〉, and

(iii) ind(A, φ) as 〈δ(A, (f)σ((x : A) → isl(f(x)), (g)õp(φ(f ′)))), r〉.

Here p, q, r are suitable proofs of CorD(γ′) for the corresponding γ ′ : OPD+1 we
obtain using in (ii), (iii) cor ◦ φ. Further in (iii) f ′ : A→ D is obtained from f and
g such that inl ◦ f ′ = f .

By the uniqueness of elements of CorD(γ) and the uniqueness of proofs of (x :
A) → isl(f(x)) it follows:

• If γ : OPD such that CorD(γ), then

– γ = õp(nil) or

– γ = õp(nonind(A, φ)) for some unique A, φ or

– γ = õp(ind(A, φ)) for some unique A, φ.

We can now interpret RSP and verify its rules in the following way.
Assume γ0, E, a, b, c as in the premise of the elimination rule for SPD . We show

for γ : OPD+1,

g(γ) : (p : CorD(γ), γ′ : OPD, q : γ′ �D+1 γ).E[〈γ′, p′〉] ,

where g(γ) is defined using OPelim and p′ is a proof of CorD(γ′) obtained from p
and q.

Assume the assertion for immediate subtrees of γ, γ ′ �D+1 γ. If γ′ is a proper
subtree of γ, the assertion follows from the IH. Otherwise γ ′ = γ. Then γ′ = õp(nil)
or γ′ = õp(nonind(A, φ)) or γ ′ = õp(ind(A, φ)) for some φ. In the last two cases we
obtain, since for x : A respective x : A → (D + 1), õp(φ(x)) is a proper subtree of
γ by IH E[φ(x)], and therefore in all three cases by the steps a, b, c E[〈γ ′, p〉].

We now define the interpretation of RSP

RSP,∗
D,E (φ, a, b, c) := g(õp(φ), cor(φ), õp(φ), r(φ)) : E[φ] ,
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where r(φ) : õp(φ) �D+1 õp(φ). Note that from the uniqueness of proofs p :
CorD(γ) it follows that for all p, p′ : CorD(γ)

RSP,∗
D,E (〈γ, p〉, a, b, c) = RSP,∗

D,E (〈γ, p′〉, a, b, c)

.
It remains to verify that the equality rules for SP hold:

• RSP,∗
D,E (nil, a, b, c) = a is immediate.

• RSP,∗
D,E (nonind(A, φ), a, b, c) = b(A, φ, h).

• RSP,∗
D,E (ind(A, φ), a, b, c) = c(A, φ, h).

In the last two equations h(x) is a proof of E[φ(x)]. It follows that

RSP,∗
D,E (φ(x), a, b, c) = h(x).

Summary. The following diagram summarizes the relationships between the the-
ories considered above (5.3.9 requires the addition of Casetype

2 to the logical frame-
work):

IRext
refl + SPelim

IRext
elim + OPelim

5.3.9, with Casetype
2

?

5.3.3(b)

6

4.4.3 -�
4.4.1

IRext
init + OPelim

6 The Mahlo Universe

6.1 The Internal Mahlo Universe

In this final section we recall Setzer’s definition of a Mahlo universe [36, 34, 35]
in Martin-Löf type theory. In fact, we consider two versions of it, the original
“internal” version, and another, to our knowledge yet unpublished “external” one,
both of which have been the subject of much discussion during the last few years.

There are several interesting connections between Mahlo notions and induc-
tion-recursion. First, the external Mahlo universe is a powerful example of what
can be defined by induction-recursion in the current theory IRelim. Secondly, the
internal Mahlo universe is a canonical example of a definition which goes beyond
induction-recursion as formalized by IRelim. Whereas the external Mahlo universe,
as all inductive-recursive definitions in IRelim, has constructors which are strictly
positive in the set defined, this is not the case for the internal Mahlo universe.

The second author has determined a lower bound of the proof-theoretic strength
of the internal Mahlo universe [36] and shown that its strength is substantially
greater than the strength of the type theory known before (with W-type and finitely
iterated universes). He will show in Subsection 6.4 how to modify this result to
obtain a lower bound of the proof-theoretic strength of the external Mahlo universe,
which is only slightly below the strength of the internal Mahlo universe. As a
consequence we therefore get a lower bound of the proof-theoretic strength of the
theory of inductive-recursive definitions IRelim and its variants IRext

init and IRrefl.
The goal of the definition of the Mahlo universe is to find a constructive analogue

of a Mahlo cardinal and its recursive analogue, a recursively Mahlo ordinal. We
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briefly repeat the definitions. A cardinal κ is Mahlo (or more precisely weakly
Mahlo) if it is regular and every normal function f : κ → κ has a regular fixed
point.

The recursive analogue of a regular cardinal is an admissible, where an ordinal κ
is admissible if it is > 0 and for every (set theoretic) Π2-formula ϕ with parameters
in Lκ which holds in Lκ there exists an α < κ s.t. Lα contains the parameters and
ϕ holds in Lα. An ordinal is recursively Mahlo if it is > 0 and for every Π2-formula
ϕ (as before with parameters) which holds in Lκ there exists an admissible π < κ
s.t. ϕ holds in Lπ.

Related to the notion of a recursively Mahlo ordinal is the notion of recursively
inaccessible: an ordinal is recursively inaccessible if it is admissible and the limit
of admissibles. It can easily be seen that a recursively Mahlo ordinal is recursively
inaccessible, and that the π mentioned above can always be chosen to be inaccessible.
So an ordinal κ is recursively Mahlo, if it is recursively inaccessible and for every
Π2-formula ϕ with parameters which holds in Lκ there exists an inaccessible π < κ
such that ϕ holds in Lπ, and we will take this characterization as a basis for the
type-theoretic formulation.

In term models, W-sets correspond to inductive definitions which can be modeled
by iterations of a certain operator up to an admissible κ such that the interpretations
of the underlying sets are in Lκ. A universe is inductively defined and closed under
the W-formation and therefore modeled by iterating an operation up to a recursively
inaccessible ordinal. Roughly speaking recursively inaccessible ordinals correspond
to universes.

A universe V : set with decoding function S : V → set can be seen as the type
theoretic analogue of a recursively inaccessible κ, and the type theoretic analogue
of a Π2-formula, which holds in Lκ, is a function f : Fam(V ) → Fam(V ). Here
Fam(V ) := (a : V ) × (S(a) → V ) are V -indexed families of sets in V . The analogy
of the fact that for any Π2-formula there exists a recursively inaccessible closed
under it is now that for every function f as above there exists a universe Uf closed
under f .

So a formulation of the Mahlo principle in type theory is as follows: There exists
a universe V which is a set with decoding function S such that for every function
f : Fam(V) → Fam(V) there exists a subuniverse Uf of V, closed under f and
represented in V.

We can simplify this by currying f and splitting it into two functions f , g:
Instead of

f : ((a : V) × (S(a) → V)) → ((a : V) × (S(a) → V))

we take

f : (a : V, b : S(a) → V) → V ,

g : (a : V, b : S(a) → V, S(f(a, b))) → V .

The precise formalization of the Mahlo principle in type theory is now as follows:
First of all

V : set , S : V → set ,

and V, S is closed under the standard universe constructions.
Assume now f, g as before. Then the Mahlo principle claims that we have a

subuniverse Ufg , T̂fg of V, S closed under f and g and represented in V. So we
have

Ufg : set , T̂fg : Ufg → V ,

and define for a : Ufg

Tfg(a) := S(T̂fg(a)) : set .
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For the standard constructors of V, like

N̂ : V ,

S(N̂) = N ,

Π̂ : (a : V, b : S(a) → V) → V ,

S(Π̂(a, b)) = Π(S(a), S ◦ b) ,

we claim the existence of codes in Ufg , reflecting them, i.e.

N̂fg : Ufg ,

T̂fg(N̂fg) = N̂ ,

Π̂fg : (a : Ufg , b : Tfg(a) → Ufg) → Ufg ,

T̂fg(Π̂fg(a, b)) = Π̂(T̂fg(a), T̂fg ◦ b) .

Further Ûfg is closed under f and g, i.e. we have constructors

f̂fg : (a : Ufg, b : Tfg(a) → Ufg) → Ufg ,

T̂fg (̂ffg(a, b)) = f(T̂fg(a), T̂fg ◦ b) ;

ĝfg : (a : Ufg, b : Tfg(a) → Ufg , c : S(f(T̂fg(a), T̂fg ◦ b)))

→ Ufg ,

T̂fg(ĝfg(a, b, c)) = g(T̂fg(a), T̂fg ◦ b, c) ;

and Ufg is represented in V, i.e.

Ûfg : V , S(Ûfg) = Ufg .

Ufg , T̂fg are inductive-recursively defined: They can be defined as

Ufg = U′(V, S, f, g, N̂, Π̂, . . .), T̂fg = T′(V, S, f, g, N̂, Π̂, . . .) ,

(“. . .” stands for other universe constructions) where for V : set, S : V → set,
f : (x : V, y : S(x) → V ) → V , g : (x : V, y : S(x) → V, S(f(x, y))) → V , a : V ,
b : (x : V, y : S(x) → V ) → V etc.

U′(V, S, f, g, a, b, . . .) : set, T′(V, S, f, g, a, b, . . .) : U′(V, S, f, g, a, b, . . .) → V

can be defined by an inductive-recursive definition. However, V itself has apart from
the standard constructors, which are strictly positive in V, also one constructor,
which is not at all positive in it, namely

Û : (f : (a : V, b : S(a) → V) → V,

g : (a : V, b : S(a) → V, S(f(a, b))) → V) → V .

Therefore V definitely goes beyond induction-recursion as discussed in this article.
We call the above construction internal universe, since V is an element of set,

in contrast to the construction in Section 6.3, where the Mahlo-universe is not an
element of set, but set itself.

6.2 Simplification of Ufg

In the above definition we demanded Ufg to be closed under all standard universe
construction. However these can be coded into suitable functions f , g typed as
above.
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Assume f, g as above. Define functions f ′, g′ of the same type by

f ′(a, b) = N1 + N + (S(a) × S(a)) + (S(a) × S(a))
+N3 + N1 + S(f(a, b)) .

and, if we call the i-th injection into this disjoint union ii, then

g′(a, b, i0(01)) = N̂ , g′(a, b, i1(k)) = N̂k ,

g′(a, b, i2(〈c, d〉)) = Î(a, c, d) , g′(a, b, i3(〈c, d〉)) = b(c)+̂b(d) ,

g′(a, b, i4(03)) = Π̂(a, b) , g′(a, b, i4(13)) = Σ̂(a, b) ,

g′(a, b, i4(23)) = Ŵ(a, b) , g′(a, b, i5(01)) = f(a, b) ,
g′(a, b, i6(c)) = g(a, b, c) .

A non-empty sub-collection of sets of V, i.e. U : set, T : U → V, which is closed
under f ′, g′, but not necessarily under the standard universe constructions, has
representatives for all universe constructions and for f , g relativized to it, so it is
essentially a subuniverse closed under f , g. So we can omit the closure of Ufg under
universe constructions, except of one constant in order to obtain Ufg nonempty,
and still have a universe which is sufficiently closed. The canonical choice for the
constant would be N̂. Alternatively one could add additional parameters a : V,
b : S(a) → V to f, g and demand that Uabfg contains additionally codes for a and

b(x) (x : S(a)). Then closure under N̂ is not needed. Note however that V has in
any case to be closed under the standard universe constructions.

6.3 The External Mahlo Universe

The unproblematic part of the above definition was the definition of Ufg. Now,
instead of making this definition relative to V, we can make it relative to set as
well:

Assume

f : (A : set, B : A→ set) → set ,

g : (A : set, B : A→ set, f(A,B)) → set .

Then we can define inductive-recursively a universe Ufg , Tfg closed under the
standard universe constructions and under f, g. Again we can restrict the standard
universe constructions to one, e.g. N, and have the following constructors of Ufg :

N̂ : Ufg ,

Tfg(N̂) = N ,

f̂ : (a : Ufg , b : Tfg(a) → Ufg) → Ufg ,

Tfg (̂ffg(a, b)) = f(Tfg(a),Tfg ◦ b) ,

ĝ : (a : Ufg , b : Tfg(a) → Ufg , c : f(Tfg(a),Tfg ◦ b)) → Ufg ,

Tfg(ĝfg(a, b, c)) = g(Tfg(a),Tfg ◦ b, c) .

We obtain the following code for Ufg in OPset:

γUfg
= σ(2, (x)case2(x, ι(N) ,

σ(2, (x)case2(x, δ(1, (A)δ(A(∗), (B)ι(f(A(1), B))) ,

δ(1, (A)δ(A(∗), (B)σ(f(A(1), B)), (C)g(A(1), B, C)))))))) .

This is a nice example, which demonstrates how easy it is to verify that something is
an inductive-recursive definition: one just has to find a code for it in OPD. Note that
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we got inductive-recursive definitions relative to parameters for free: assuming f , g
as above we can derive elements of OPD and the corresponding sets and decoding
functions, like Ufg and Tfg above, will depend on these parameters.

We call the above construction, in which set plays the role of a Mahlo-universe
(although set can be closed under other constructions as well), and which is sub-
sumed by inductive-recursive definitions, the external Mahlo universe construction.

6.4 The Strength of the External Mahlo Universe

In [36] the second author showed that the strength of the internal Mahlo universe
is at least as strong as the extension of Rathjen’s Kripke-Platek set theory for re-
cursively Mahloness, KPM [28] by ω admissibles above a recursively Mahlo ordinal,
KPM+. [34] shows that this bound is sharp. The following theorem provides a
lower bound for the strength of the external Mahlo universe. It is due to the second
author.

Theorem 6.4.1 (Setzer). Let T be the type theory having standard type construc-
tions including the W-type, all with elimination rules into all types, and rules for
the universes Ufg, Tfg as above for every f, g of the above mentioned type (but no
elimination rules for Ufg or other universes). The strength of T is at least that of
KPM.

Roughly speaking, T as in the Theorem above can be called the type theory
with the external Mahlo universe and full elimination rules

Corollary 6.4.2 IRext
elim, IRext

init have at least the strength of KPM.

Proof of Corollary 6.4.2. The external Mahlo universe is an instance of
inductive-recursive definitions.

Proof of Theorem 6.4.1. We will show how to adapt the well-ordering proofs
[36] for the internal Mahlo universe to its external variant. In a future article, the
second author will give an alternative proof. There he will extend ordinal systems to
recursively Mahlo ordinals, and obtain simpler and more perspicuous well-ordering
proofs.

Most definitions, lemmata, theorems and proofs in [36] can be carried over di-
rectly to the external Mahlo universe, if we replace V everywhere by set. Especially
P(N) becomes the type N → set, and we can for A : P(N) define M(A),W(A) :
P(N), Ag(A) : type. W can be defined as a class, i.e. we can define a predicate
W(a) s.t.

a : N ⇒ W(a) : type

by
W(a) := (A : P(A)) × Ag(A) ×A(a) .

The only exception, where we can no longer carry over proofs from the internal
Mahlo universe, is from the last part of Lemma 5.11 (b) onwards, because there we
used W(W), which cannot be defined, since we are not allowed to define Wx : A.B
for types A, B.

Instead we argue as follows. First we have transfinite induction over W , for if
we have

∀x ∈ W .(∀y ≺ x.y ∈ W → ϕ(y)) → ϕ(x) ,

then, for every distinguished set A we have by A v W

∀x ∈ A.(∀y ≺ x.y ∈ A → ϕ(y)) → ϕ(x) ,
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and by transfinite induction over A therefore ∀x ∈ A.ϕ(x). Since every element of
W is in some distinguished set, it follows ∀x ∈ W .ϕ(x).

Next we define W ′
i by:

W ′
0 := (W ∩ M) ∪ {M} ,

W ′
i+1 := {ωα1 + · · · + ωαn | αi ∈ W ′

i} ,

which can be defined as classes. We have transfinite induction over W ′
0 and then

by Gentzen’s trick (transfinite induction over ordinals built by Cantor normal form
reduces to transfinite induction over the underlying ordinals) and Meta-induction
on i we can show transfinite induction over W ′

i .
Since W is closed under Cantor normal form, it follows W ′

i ∩M ∼= W ∩M. Next
we can show for (Meta-) all i ∈ N:

∀y ∈ W ′
i .∀κ ∈ W ′

0 ∩ R.{y, κ} ⊆ Cκ(y) → ψκ(y) ∈ W . (+)

This is done by induction on y. Assume y and the IH. We show

Cψκ(y)(W) ∩ Cκ(y) ∩ ωi(M + 1) ⊆ W ′
i ,

where ω0(α) := α, ωn+1(α) := ωωn(α).
This can be shown as in the proof of Lemma 5.2 (c), assertion (∗) with A replaced

by W , W(A) replaced by W ′
i , τ

+ replaced by ωi(M + 1) throughout in the proof.
Now it follows

Cψκy(W) ∩ ψκy ⊆ W ′
i ∩ M ⊆ W .

If y ≺ ψ̃κy, then

y ∈ W ′
i ∩ ψ̃κy

∼= W ∩ ψ̃κy ⊆ Cψκy(W) ,

Otherwise y ∈ M(W ′
i)

∼= M(W), y ∈ Cy(W) ⊆ Cψκy(W). Further κ ∈ W ′
0, κ ∈

M(W), κ ∈ Cκ(W) ⊆ Cψκy(W). It follows ψκy ∈ Cψκy(W). Now we have ψκy ∈
M(W), τW (ψκy) ∼= Cψκy(W) ∩ψκy ⊆ W ′

i ∩M ∼= W , ψκy ∈ AW (W)∩M ⊆ W , and
(+) is shown.

Now ωn(M + 1) ∈ W ′
n+1, Ω1 ∈ W , Ω1, ωn(M + 1) ∈ CΩ1

(ωn(M + 1)), therefore
by (+)

ψΩ1
(ωn(M + 1)) ∈ W ∩ Ω1 v OT ,

and from transfinite induction over W follows transfinite induction up to
ψΩ1

(ωn(M + 1)) for n ∈ ω, which in the limit reaches ψΩ1
(εM+1). Rathjen deter-

mined the strength of KPM in [27, 28, 29]. The ordinal notation systems we used
is based on [3], where it is shown that the strength of KPM is at most ψΩ1

(εM+1)
(which can be seen to be sharp as in [29] or by taking the above proof and adapting
it to KPM). Therefore the assertion of the theorem follows.

A Complete Rules of the Logical Framework

In this article we omit in general additional contexts in rules. So for n ≥ 1 a rule

∆1 ⇒ θ1 · · · ∆n ⇒ θn

∆ ⇒ θ

stands for
Γ,∆1 ⇒ θ1 · · · Γ,∆n ⇒ θn

Γ,∆ ⇒ θ

and a rule without premises ∆ ⇒ θ stands for Γ context

Γ,∆ ⇒ θ
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The only exception are the context and assumption rules.

Context- and Assumption-rules

∅ context Γ context Γ ⇒ A : type

Γ, x : A context

Γ context Γ ⇒ A : type

Γ, x : A ⇒ x : A

Γ ⇒ x : A Γ ⇒ B : type

Γ, y : B ⇒ x : A
(if x 6= y, y 6∈ FV(A))

Equality Rules

a : A

a = a : A

A : type

A = A : type

a = b : A

b = a : A

A = B : type

B = A : type

a = b : A b = c : A

a = c : A

A = B : type B = C : type

A = C : type

a : A A = B : type

a : B

a = b : A A = B : type

a = b : B

Rules for →

A : stype x : A ⇒ B : stype

(x : A) → B : stype

x : A⇒ B : type

(x : A) → B : type

A = A′ : stype x : A ⇒ B = B′ : stype

(x : A) → B = (x : A′) → B′ : stype

A = A′ : type x : A ⇒ B = B′ : type

(x : A) → B = (x : A′) → B′ : type

x : A ⇒ t : B

(x : A)t : (x : A) → B

x : A ⇒ t = t′ : B

(x : A)t = (x : A)t′ : (x : A) → B

x : A⇒ B : type t : (x : A) → B s : A

t(s) : B[x := s]

x : A ⇒ B : type t = t′ : (x : A) → B s = s′ : A

t(s) = t′(s′) : B[x := s]

x : A⇒ r : B s : A

((x : A)r)(s) = r[x := s] : B[x := s]

x : A⇒ B : type s : (x : A) → B

s = (x : A)s(x) : (x : A) → B
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Rules for ×

A : stype x : A⇒ B : stype

(x : A) ×B : stype

x : A⇒ B : type

(x : A) ×B : type

A = A′ : stype x : A ⇒ B = B′ : stype

(x : A) ×B = (x : A′) ×B′ : stype

A = A′ : type x : A ⇒ B = B′ : type

(x : A) ×B = (x : A′) ×B′ : type

r : A s : B[x := r] x : A ⇒ B : type

〈r, s〉 : (x : A) ×B

r = r′ : A s = s′ : B[x := r] x : A⇒ B : type

〈r, s〉 = 〈r′, s′〉 : (x : A) ×B

x : A ⇒ B : type r : (x : A) ×B

π0(r) : A

x : A⇒ B : type r = r′ : (x : A) ×B

π0(r) = π0(r
′) : A

x : A ⇒ B : type r : (x : A) ×B

π1(r) : B[x := π0(r)]

x : A⇒ B : type r = r′ : (x : A) ×B

π1(r) = π1(r
′) : B[x := π0(r)]

r : A s : B[x := r] x : A ⇒ B : type

π0(〈r, s〉) = r : A

r : A s : B[x := r] x : A ⇒ B : type

π1(〈r, s〉) = s : B[x := r]

x : A ⇒ B : type r : (x : A) ×B

r = 〈π0(r), π1(r)〉 : (x : A) ×B

In the paper we have the following general assumption about equality versions
of rules, omitting types in equality judgements and about bracket notations like
E[t]:

General assumption A.0.3 (a) In the following all rules are understood to be
supplemented by additional equality rules. For instance the rule

(x : A) ⇒ B : type

(x : A) → B : type

should be supplemented by

A = A′ : type (x : A) ⇒ B = B′ : type

(x : A) → B = (x : A′) → B′ : type
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and the rule
(x : A) ⇒ b : B

(x : A)b : (x : A) → B

should be supplemented by

(x : A) ⇒ b = b′ : B

(x : A)b = (x : A)b′ : (x : A) → B

(b) We will usually omit the type in an equality judgement and assumptions about
the types of the variables in it, it they can easily be filled in by the reader.

(c) We follow a common convention and write E[x] for an expression which may
depend on a free variable x. After the first occurrence of it, E[t] denotes the
result of substituting the term t for the variable x in E[x]. Further, after such
an occurrence, E not followed by a square bracket stands for (x)E[x]. The
latter will be used to denote parameters only.

B Derivation of Ex Falsum Quodlibet for N′
0

We verify that we can define ex falsum quodlibet for N′
0 defined by γ := σ(1, (f)ι∗):

Let N′
0 := Uγ , T′ := Tγ . Assume x : N′

0 ⇒ E[x] : type. We show that there
exists f : (x : N′

0) → E[x].
Define E′ := (x : N′

0) → E[x], E′′[y] := E′. Definitionally we have

F
IH
γ (N′

0,T
′, E′′, u) = F

IH
γ (N′

0,T
′, E′′, 〈π0(u), π1(u)〉)

= ((x : 1) → E′′[π0(u)]) × F
IH
ι∗

(N′
0,T

′, E′′, π1(u))

= (1 → E′) × 1 .

The argument of Rγ,E′′ has type

(u : F
U
γ (N′

0,T
′),F IH

γ (N′
0,T

′, E′′, u)) → E′′[introγ(u)]

= F
U
γ (N′

0,T
′) → ((1 → E′) × 1) → E′ .

g := (u, v)π0(v)(∗) has this type. Therefore g′ := Rγ,E′′(g) : N′
0 → (x : N′

0) → E′[x].
Define f := (x)g′(x, x).
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Technical Report R91-09, Swedish Institute of Computer Science, 1991.
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