
Indexed Induction-Recursion

Peter Dybjer a,?

aDepartment of Computer Science and Engineering,

Chalmers University of Technology, 412 96 Göteborg, Sweden

Email: peterd@cs.chalmers.se, http://www.cs.chalmers.se/∼peterd/,
Tel: +46 31 772 1035, Fax: +46 31 772 3663.

Anton Setzer b,1

bDepartment of Computer Science,

University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK,

Email: a.g.setzer@swan.ac.uk, http://www.cs.swan.ac.uk/∼csetzer/,
Tel: +44 1792 513368, Fax: +44 1792 295651.

Abstract

An indexed inductive definition (IID) is a simultaneous inductive definition of an
indexed family of sets. An inductive-recursive definition (IRD) is a simultaneous
inductive definition of a set and a recursive definition of a function on that set. An
indexed inductive-recursive definition (IIRD) is a combination of both.

We present a closed theory which allows us to introduce all IIRD in a natural way
without much encoding. By specialising it we also get a closed theory of IID. Our
theory of IIRD includes essentially all definitions of sets which occur in Martin-Löf
type theory. We show in particular that Martin-Löf’s computability predicates for
dependent types and Palmgren’s higher order universes are special kinds of IIRD
and thereby clarify why they are constructively acceptable notions.

We give two axiomatisations. The first formalises a principle for introducing mean-
ingful IIRD by using the data-construct in the original version of the proof assistant
Agda for Martin-Löf type theory. The second one admits a more general form of in-
troduction rule, including the introduction rule for the intensional identity relation,
which is not covered by the first axiomatisation. If we add an extensional identity
relation to our logical framework, we show that the theories of restricted and general
IIRD are equivalent by interpreting them in each other.

Finally, we show the consistency of our theories by constructing a model in clas-
sical set theory extended by a Mahlo cardinal.

Key words: Dependent type theory, Martin-Löf Type Theory, inductive
definitions, inductive-recursive definitions, inductive families, initial algebras,
normalisation proofs, generic programming.

Preprint submitted to Elsevier Science 14 July 2005

1 Introduction

Martin-Löf type theory is a foundational framework for constructive math-
ematics. It is also a functional programming language with a powerful type
theory. In this theory, induction is one of the two principles for constructing
sets; the other is function space formation. For this reason, it has been impor-
tant to spell out the principles of inductive definability underlying Martin-Löf
type theory [11,12]. A similar notion of inductive definability is a core con-
cept of the Calculus of Inductive Constructions [10,28], the impredicative type
theory underlying the Coq-system.

Inductive-recursive definitions. Simple inductive definitions and func-
tion spaces alone do not suffice to define all sets in Martin-Löf type theory.
Consider for example the universe à la Tarski [22]. It consists of a set U of
codes for small sets, and a decoding function T, which maps a code to the
set it denotes. This definition is simultaneously inductive and recursive: U is
inductively generated at the same time as T is defined by recursion on the way
the elements of U are generated. To see why they are simultaneously defined
we look at the closure of small sets under Σ stating that the disjoint union of
a small family of small sets is small. This is expressed by an introduction rule
for U: if a : U and b(x) : U for x : T(a), then Σ̂(a, b) : U, that is,

Σ̂ : (a : U) → (T(a) → U) → U

is a constructor for U. Here (x : A) → B is the dependent function space, that
is, the set of functions f , which map an element a : A to an element f(a) of
B[x := a]. There is also a recursive equation for T:

T(Σ̂(a, b)) = Σx : T(a).T(b(x)).

Observe that the introduction rule for U refers to T, something which is not
allowed in an inductive definition. Therefore, T has to be defined simultane-
ously with U. To capture this we need the more general notion of an inductive-
recursive definition [13], where we simultaneously define a set U and a decoding
T : U → D into an arbitrary type D.

Other examples of inductive-recursive definitions were known before (larger
universes, computability predicates for dependent types), but the new idea
[13] was that these are instances of a general notion, equally natural as that of
an inductive definition. It is a constructively acceptable notion: its rules can

? Supported by Vetenskapsr̊adet, grant Typed Lambda Calculus and Applications.
1 Supported by Nuffield Foundation, grant ref. NAL/00303/G and EPSRC grant
GR/S30450/01.

2

be justified by meaning explanations in the sense of Martin-Löf in a similar
way as the rules for inductive definitions.

In the original presentation [13] induction-recursion is described as an external
schema spelling out criteria for correct formation, introduction, elimination,
and equality rules. However, this schema is not fully rigorous and the authors
therefore presented a closed axiomatisation of inductive-recursive definitions
in Martin-Löf type theory [14,16].

Indexed inductive-recursive definitions. There are many examples (see
Section 3) where we want to define a whole family of sets simultaneously, but
the previous articles [14,16] only consider the case of an inductive-recursive
definition of one set at a time. It is the objective of this paper to extend this
to indexed inductive-recursive definitions (IIRD), that is, inductive-recursive
definitions of indexed families of sets U(i) and functions T(i) : U(i) → D[i] for
i : I, where I is a set and D[i] is an I-indexed family of types. (We must write
D[i] rather than D(i), since the typing D : I → type is not expressible in our
logical framework. See Section 2 for more information about the notation.)

Our theories for IIRD are the most general existing versions of Martin-Löf type
theory. They encompass virtually all sets that have been used in Martin-Löf
type theory before, with the exception of some notions of even larger universes
(like the Mahlo universe) of proof-theoretic interest considered by the second
author [31,32].

Indexed inductive definitions (IID). IID is the principle of defining an
indexed family of sets by a simultaneous inductive definition. IID are ubiqui-
tous when using Martin-Löf type theory for formalising mathematics or pro-
gramming problems.

IID appear as special cases of IIRD where the recursively defined function is
degenerate (has codomain 1). Therefore, a side effect of our paper is to provide
the first closed axiomatisation of IID.

Several examples of IID can be found in Section 3.1 and of proper IIRD in
Section 3.2.

General and restricted IIRD. We consider two classes of indexed in-
ductive-recursive definitions: general IIRD (as in [13]) and restricted IIRD as
introduced by T. Coquand for use in the Half and Agda [7] systems. Coquand’s
restricted IIRD have not been spelled out in detail in the literature, although
they are supported by the Half and Agda systems. To illustrate the difference

3

between restricted and general IIRD, we consider the inductive definition of
the even number predicate Even : N → set. As a general IID, it is inductively
generated by the two rules

C0 : Even(0) ,

C1 : (n : N) → Even(n) → Even(S(S(n))) .

As a restricted IIRD, the constructors instead have the following types:

C′0 : (m : N) → (m =N 0) → Even(m) ,

C′1 : (m : N) → (n : N) → Even(n) → (m =N S(S(n))) → Even(m) ,

where =N is equality of natural numbers. In restricted IIRD, we can deter-
mine the constructors (and their arguments) of a particular set U(i) in the
family without analysing i. For example, Even(m) has constructors C′0(m) and
C′1(m). More formally, the first argument of each constructor is the index of
the element introduced by the constructor. In an implementation which al-
lows full recursion (like Agda), we can use case-distinction for one element as
elimination principle for restricted IIRD. For instance, an element of Even(m)
either has the form C′0(m, p) or the form C′1(m,n, p, q). In Agda, the argument
m of the constructor is omitted (instead there is some notation which makes
the whole type Even(m) part of the name of the constructor – we omit this
here). The notation for case distinction is therefore as follows:

case m of {C′0(p) → · · · ; C′1(n, p, q) → · · ·}

In general IIRD we do not have the above restriction: if C is a constructor
of an indexed set U and we apply it to the arguments ~a, then the index i
such that C(~a) : U(i) may depend on the arguments ~a in an arbitrary way.
Case-distinction is no longer possible for one individual element of U(i). For
example, in the definition of Even we have to define functions simultaneously
for all pairs 〈n, p〉 such that n : N and p : Even(n), and we need to use
pattern matching in order to distinguish between the cases 〈n, p〉 = 〈0,C0〉
and 〈n, p〉 = 〈S(S(m)),C1(m, q)〉.

Martin-Löf’s definition of the equality relation as inductively generated by
the reflexivity rule is a key example of a general IID with no corresponding
restricted version (unless we assume that the framework already contains an
equality =A in which case it would be pointless to introduce a second equality
relation).

The proof assistant Alf [19,2] supports the use of general IIRD by using Co-
quand’s pattern matching with dependent types [9]. Recently, a construct for
general IIRD has also been added to Agda.

4

Generic dependent type theory. Our axiomatisations of IIRD are related
to generic programming. In generic functional programming [18,17], generic
functions are defined by induction on the code of a data type. Our axiomatisa-
tion provides a type of codes for all IIRD, and therefore we can write programs
by induction on the codes for IIRD. In this sense, we here provide a “generic
dependent type theory”, a version of Martin-Löf type theory with generic
formation, introduction, elimination, and equality rules. Benke, Dybjer, and
Jansson [5] further develop an approach to generic programs and proofs which
is based on ideas from the present paper. Other references to generic programs
and proofs in dependent type theory are Pfeifer and Rueß [29] and Altenkirch
and McBride [3].

Alternative axiomatisations. We emphasise that our objective is to ax-
iomatise IIRD (and IID) as they are naturally presented in terms of rules for
generating new elements of a set. It is thus not only a question of presenting
a theory with a certain proof-theoretic strength: we would have reached equal
proof-theoretic strength using a version of Martin-Löf type theory with well-
orderings and a Mahlo universe. However, working with IIRD in such a theory
would require elaborate encodings. Instead, we achieve a close correspondence
between our codes for IIRD and the syntax for corresponding definitions in
the Agda-system (using the data-construct). The latter can be viewed as a
sugared version of the former.

By formalising a concrete theory of IIRD we give a rigorous definition of the
concept of IIRD which makes metamathematical analysis possible. For exam-
ple, in Section 7 we show how to interpret the theories of general and restricted
IIRD in each other. In future work we plan to show further reductions of the-
ories axiomatised in this way, for example, we plan to show how to interpret
the theory of IIRD in the theory of IRD and the theory of “small” general
IIRD in the theory of IID.

When explaining the idea behind our axiomatisations, we use some categorical
notions. In particular, we consider algebras of certain endofunctors on the
slice category Fam(I)/D, where Fam(I) is the category of I-indexed types
(see Subsection 4.1). From the point of view of category theory it would be
natural to use two more ideas from categorical semantics: that I-indexed types
can be represented as fibrations, and that we expect our algebras to be initial.
However, neither of these ideas taken literally gives rise to rules which are
close to the usual type-theoretic rules for IIRD. The goal of this paper is to
introduce and analyse theories with good intensional properties. The reduction
of our theory to initial algebras requires extensional equality. Moreover, even
in an extensional setting working directly with initial algebras would add an
overhead which may make it impractical for use in proof assistants.

5

Nevertheless, we use categorical ideas in a limited way and show for example
that Fam(I)/D is equivalent to the category Type/((i : I) × D[i]). This
equivalence suggests that it is possible to reduce IIRD to IRD (non-indexed
inductive-recursive definitions). As already mentioned we plan to show this
formally in a future publication, where we also plan to discuss the relationship
between IIRD and initial algebras.

2 The Logical Framework

Before giving the rules for IIRD we need to introduce the basic Logical Frame-
work of dependent types. This is essentially Martin-Löf’s Logical Framework
[25] extended with rules for dependent product types (x : A) × B and the
types 0, 1, and 2. The complete set of rules for the logical framework can be
found in Appendix A.1. Note that we will work in intensional type theory,
except for Sect. 7 and when explicitly stated.

The Logical Framework has the following forms of judgements: Γ context
(where Γ is of the form x1 : A1, . . . , xn : An); and A : type, A = B : type, a : A,
a = b : A, depending on contexts Γ (written as Γ ⇒ A : type, etc.). We have
set : type and if A : set, then A : type. The collection of types is closed under
the formation of dependent function types written as (x : A) → B. (Πx : A.B
is a common alternative notation for this construction, but it is used here for
dependent function sets, that is, the inductively defined sets with constructor
λ : ((x : A) → B) → (Πx : A.B).) The elements of (x : A) → B are denoted
by (x : A)a (abstraction of x in a – this is often denoted by λx : A.a in the
literature). Application is written as a(b). We follow Martin-Löf and have η-
rules (note that we are working in intensional type theory) as well as β-rules in
the logical framework. Types are also closed under the formation of dependent
products written as (x : A)×B. (A common alternative notation is Σx : A.B,
but this is here used for the inductively defined set with introduction rule
p : ((x : A) × B) → (Σx : A.B).) The elements of (x : A) × B are denoted by
〈a, b〉, the projection functions by π0 and π1 and again we have β and η-rule
(surjective pairing). There is the type 1, with unique element ? : 1 and η-rule
expressing that, if a : 1, then a = ? : 1. Furthermore, we have the empty type
0 with elimination rule case0.

Moreover, in our version of the logical framework we include the type 2
with two elements ?0 : 2 and ?1 : 2, ordinary elimination rule case2 : (i :
2, A[?0], A[?1]) → A[i] (where i : 2 ⇒ A[i] : type) and elimination into type,
expressed as casetype

2 (i, A, B) : type for i : 2, A : type, B : type. We need elim-
ination into type, since we want to inductively define indexed families of sets
U : I → set and functions T : (i : I) → U(i) → D[i] where D[i] depends non-
trivially on i, as in the definition of Palmgren’s higher-order universe (where

6

for instance D[0] := set, D[1] := ((X : set)× (X → set)) → ((X : set)× (X →
set)), etc; see Subsect. 3.2 for details).

We can now define the disjoint union of two types A + B := (i : 2) ×
casetype

2 (i, A, B), and prove the usual formation, introduction, elimination and
equality rules (see Def. A.2 for details).

We also add a level between set and type, which we call stype for small types:
stype : type. (The reason for the need for stype is discussed in [13].) If a : set
then a : stype. Moreover, stype is also closed under dependent function types,
dependent products and includes 0, 1, 2. However, set itself will not be in
stype. The logical framework does not have any rules for introducing elements
of set. They will be introduced by IIRD later and set will therefore consist
exactly of the sets introduced by IIRD.

In Section 7 and when explicitly stated, we will use the rules of extensional
equality (where a =A b is the equality type for a, b : A) which can be found in
Appendix A.2. Note that we introduce a =A b for A : type.

We also use some standard abbreviations, see Definition A.1 in Appendix A.1
for a complete list. We just mention the following: We omit the type in an
abstraction and write (x)a instead of (x : A)a; we write repeated function
spaces as (x1 : A1, . . . , xn : An) → A instead of (x1 : A1) → · · · (xn : An) → A,
repeated application as a(b1, . . . , bn) instead of a(b1) · · · (bn). We sometimes
put arguments in subscript position and thus also write ab1,...,bn for (repeated)
application. Repeated abstraction as is written as (x1 : A1, . . . , xn : An)a or
(x1, . . . , xn)a instead of (x1 : A1) · · · (xn : An)a; and we write (−) for the
abstraction (x) of a variable x, which is not used later.

In the following, we will sometimes refer to a type depending on a variable
x. We want to use the notation D[t] for D[x := t] for some fixed variable x
and D for (x)D[x]. Note that we cannot simply introduce D : I → type, since
this goes beyond the logical framework. Instead, we introduce the notion of an
abstracted expression, which is an expression together with one or several des-
ignated free variables. For an abstracted expression E, E[t1, . . . , tn] means the
substitution of the variables by t1, . . . , tn. If we let D above be an abstracted
expression of the form (x)E, then D[t] denotes D[x := t] and we can write D
as parameter for (x)E. More formally:

Definition 2.1 (a) An n-times abstracted expression is an expression
(x1, . . . , xn)E where x1, . . . , xn are distinct variables and E an expres-
sion of the language of type theory. An abstracted expression is a 1-times
abstracted expression.

(b) ((x1, . . . , xn)E)[t1, . . . , tn] := E[x1 := t1, . . . , xn := tn].
(c) Whenever we write s[a1, . . . , an], s is to be understood as an n-times

abstracted expression.

7

(d) If U : A→ B, we identify U with the abstracted expression (a)U(a).

3 Some Examples

3.1 Examples of Indexed Inductive Definitions

Trees and forests. Many IID occur as the simultaneous inductive definition
of finitely many sets, each of which has a different name. One example is the
set of well-founded trees Tree with finite branching degrees, which is defined
together with the set Forest of finite lists of such trees. The constructors are:

tree : Forest → Tree ,

nil : Forest ,

cons : Tree → Forest → Forest .

If we instead of Forest and Tree introduce Tree′ : 2 → set and replace Tree by
Tree′(?0) and Forest by Tree′(?1) in the types of tree, nil, cons above, then we
obtain an IID with index set 2.

The accessible part of a relation. Let I be a set and < : I → I → set be
a binary relation on it. We define the accessible part (the largest well-founded
initial segment) of < as a predicate Acc : I → set by a generalised indexed
inductive definition with one introduction rule:

acc : (i : I) → ((x : I) → (x < i) → Acc(x)) → Acc(i) .

Note that acc introduces elements of Acc(i) while referring to possibly in-
finitely many elements of the sets Acc(x) (for each x : I and each proof of
x < i).

The identity relation. This is the only example of an IID in Martin-Löf’s
original formulation of type theory with a non-trivial index type. For historical
reasons it is often referred to as the “intensional identity type” – a more
appropriate name would be “identity set”. Assume A : set. The rules for the
intensional identity on A express that it is the least reflexive relation on A.
The formation rule is I : A → A → set. The introduction rule expresses that
it is reflexive:

r : (a : A) → I(A, a, a) .

8

The elimination rule expresses that the only elements of an identity set are
those which are constructed by the introduction rule. So to define a function
a : A, b : A, p : I(A, a, b) ⇒ C[a, b, p] it is sufficient to define the step-function s
such that for every a : A we have s[a] : C[a, a, r(a)]. Thus the elimination rule
states that for every a, b : A and p : I(A, a, b) we have J(A,C, a, b, p, (x)s[x]) :
C[a, b, p]. Usually, in Martin-Löf type theory one assumes that C[a, b, p] is a set.
However, in this paper the elimination rule is strengthened so that C[a, b, p]
can be a type, that is, we have a so called large elimination rule. We will in
general consider large elimination rules in this paper.

Context free grammars. IID occur very frequently in applications in com-
puter science. For example a context free grammar over a finite alphabet Σ
and a finite set of nonterminals NT is an NT×Σ∗-indexed inductive definition,
where each production corresponds to an introduction rule.

As an example, consider the context free grammar with Σ = {a, b}, NT =
{A,B} and productions A −→ a, A −→ BB, B −→ AA, B −→ b. This
corresponds to an inductive definition of a family of sets L indexed over NT×
Σ∗, where L(A, α) is the set of derivation trees of the string α from the start
symbol A. So α is in the language generated by the grammar with start symbol
A iff L(A, α) is inhabited. L has one constructor for each production: C0 :
L(A, a), C1 : L(B, α) → L(B, β) → L(A, α∗β), and C2 : L(A, α) → L(A, β) →
L(B, α ∗ β), C3 : L(B, b), where ∗ denotes concatenation.

Alternatively, we can inductively define an NT-indexed set D of “abstract
syntax trees” for the grammar, and then recursively define the string d(A, p)
(“concrete syntax”) corresponding to the abstract syntax tree p : D(A). In the
example above we get C0 : D(A), C1 : D(B) → D(B) → D(A), C2 : D(A) →
D(A) → D(B), C3 : D(B). Furthermore,
d(A,C0) = a, d(A,C1(p, q)) = d(B, p) ∗ d(B, q),
d(B,C2(p, q)) = d(A, p) ∗ d(A, q), d(B,C3) = b.

The simply typed lambda calculus. The traditional way of introducing
the simply typed lambda calculus is to first define inductively the set of lambda
types Ltype, the set of lambda contexts Lcontext, and the set of “raw” lambda
terms Lraw. In typed lambda calculus à la Curry Lraw is just the set of
untyped lambda terms, whereas in the typed lambda calculus à la Church the
lambda terms have type labels associated with each binding occurrence of a
variable. Then we define the typing relation inductively by writing down the
typing rules for the simply typed lambda calculus. The typing relation is a
ternary relation on Lcontext × Lterm × Ltype.

We here show an alternative approach, which is to directly give an IID of the

9

well-typed terms Lterm(Γ, σ) of type σ in context Γ (see also Altenkirch and
Reus [4] and Qiao [30]).

We first define the type Ltype of lambda types, constructed from the basic
type o and function types (where ar(σ, τ) denotes the type σ → τ) as a simple
inductive definition, having constructors

o : Ltype

ar : Ltype → Ltype → Ltype

We define the type Lcontext of contexts as a list of types:

empty : Lcontext

cons : Lcontext → Ltype → Lcontext

A variable v of type σ in context Γ will be an element of a set Lvar(Γ, σ),
which is given as an IID indexed over Γ : Lcontext and σ : Ltype. In de Bruijn
notation, the variable v0 (denoted by zVar(· · ·) below) refers to the last ele-
ment bound in the context, and the variable vn+1 (denoted by sVar(· · · , y), if
y denotes vn) in context Γ, σ is the result of lifting the variable vn in context
Γ to context Γ, σ. So, we get the following IID:

zVar : (Γ : Lcontext, σ : Ltype) → Lvar(cons(Γ, σ), σ)

sVar : (Γ : Lcontext, σ : Ltype, τ : Ltype) → Lvar(Γ, τ)

→ Lvar(cons(Γ, σ), τ)

The set of λ-terms is given as follows: Variables are λ-terms; if s is a term of
type σ → τ and t a term of type σ then ap(s, t) is a term of type τ ; if s is a
term of type τ in context Γ, σ, then λ(s) is a term of type σ → τ in context
Γ. So, the sets Lterm(Γ, σ) of λ-terms of type σ in context Γ are given by the
following IID:

var : (Γ : Lcontext, σ : Ltype) → Lvar(Γ, σ) → Lterm(Γ, σ)

ap : (Γ : Lcontext, σ : Ltype, τ : Ltype)

→ Lterm(Γ, ar(σ, τ)) → Lterm(Γ, σ) → Lterm(Γ, τ)

lam : (Γ : Lcontext, σ : Ltype, τ : Ltype) → Lterm(cons(Γ, σ), τ)

→ Lterm(Γ, ar(σ, τ))

10

The definitions of Lvar and Lterm above correspond to the following four
typing rules for the simply typed lambda calculus, where we have omitted the
implicit fifth rule (corresponding to the constructor var) which expresses that
a variable of type σ is also a term of type σ.

Γ, σ ⇒ v0 : σ Γ ⇒ vn : τ

Γ, σ ⇒ vn+1 : τ

Γ ⇒ s : σ → τ Γ ⇒ t : σ

Γ ⇒ s t : τ

Γ, σ ⇒ s : τ

Γ ⇒ λ(s) : σ → τ

It is easy to translate the above into a restricted IID (without the need for a
built-in equality): First, we define equalities =Ltype and =Lcontext in a straight-
forward way by case analysis on Ltype and Lcontext respectively. The con-
structors Lvar and Lterm then have the following types:

zVar : (Γ : Lcontext, σ : Ltype,∆ : Lcontext, p : cons(∆, σ) =Lcontext Γ)

→ Lvar(Γ, σ)

sVar : (Γ : Lcontext, σ : Ltype,∆ : Lcontext, τ : Ltype)

→ (cons(∆, τ) =Lcontext Γ) → Lvar(∆, σ) → Lvar(Γ, σ)

lam : (Γ : Lcontext, σ : Ltype, τ : Ltype, ρ : Ltype, p : ar(τ, ρ) =Lterm σ)

→ Lterm(cons(Γ, τ), ρ) → Lterm(Γ, σ)

var has the same type as before, and ap has the same type as before, but with
arguments σ and τ interchanged.

More examples. There are many more examples of a similar kind. For
example, if Formula is the set of formulas of a formal system, then to be a
theorem can often be given by a Formula-indexed inductive definition of

Theorem : Formula → set

where the axioms and inference rules correspond to introduction rules. An
element d : Theorem(φ) is a derivation (proof tree) with conclusion φ. Fur-
ther examples are provided by the computation rules in the definition of the
operational semantics of a programming language.

Proofs by induction on the structure of an indexed inductive definition are

11

often called proofs by rule induction. Thus, the general form of rule induction
is captured by the elimination rule for unrestricted IIRD to be given later.

3.2 Examples of Indexed Inductive-Recursive Definitions

Martin-Löf’s computability predicates for dependent types. We shall
now turn to proper IIRD. As a first example, we shall formalise the Tait-style
computability predicates for dependent types introduced by Martin-Löf [23].
This example was crucial for the historical development of IIRD, since it may
be viewed as an early occurrence of the informal notion of an IIRD. In [23]
Martin-Löf presents a version of his intuitionistic type theory and proves a nor-
malisation theorem using such Tait-style computability predicates. He works
in an informal intuitionistic metalanguage but gives no explicit justification
for the meaningfulness of these computability predicates. (Later Aczel [1] has
shown how to model a similar construction in classical set theory.) Since the
metalanguage is informal the inductive-recursive nature of this definition is
implicit. One of the objectives of the current work is indeed to present an
extension of Martin-Löf type theory where the inductive-recursive nature of
this and other definitions is formalised. In this way, we hope to clarify the
reason why it is an acceptable notion from the point of view of intuitionistic
meaning explanations in the sense of Martin-Löf [20,22,21].

First, recall that for the case of the simply typed lambda calculus the Tait-
computability predicates φA are predicates on terms of type A which are de-
fined by recursion on the structure of A. We read φA(a) as “a is a computable
term of type A”. To match Martin-Löf’s definition [23] we consider here a
version where the clause for function types is

• If φB(b[a]) for all closed terms a such that φA(a) then φA→B(λx.b[x]).

How can we generalise this to dependent types? First, we must assume that
we have introduced the syntax of expressions for dependent types including
Π-types, with lambda abstraction and application. Now we cannot define φA

for all (type) expressions A but only for those which are “computable types”.
The definition of φA has several clauses, such as the following one for Π [23,
p. 161]:

4.1.1.2. Suppose that φA has been defined and that φB[a] has been defined
for all closed terms a of type A such that φA(a). We then define φΠx:A.B[x]

by the following three clauses.
4.1.1.2.1. If λx.b[x] is a closed term of type Πx : A.B[x] and φB[a](b[a])

for all closed terms a of type A such that φA(a), then φΠx:A.B[x](λx.b[x]).
4.1.1.2.2. . . .
4.1.1.2.3. . . .

12

(We omit the cases 4.1.1.2.2 and 4.1.1.2.3, which express closure under reduc-
tion. They are not relevant for the present discussion. Note that the complete
definition of the computability predicate also has one case for each of the other
type formers of type theory.)

We also note that Martin-Löf does not use the term “A is a computable
type” but only states “that φA has been defined”. We can understand Martin-
Löf’s definition as an indexed inductive-recursive definition by introducing a
predicate Φ on expressions, where Φ(A) stands for “φA is defined” or “A is a
computable type”. Moreover, we add a second argument to φ so that φA(p, a)
means that a is a computable term of the computable type A, where p is a
proof that A is computable. Now we observe that we define Φ inductively
while we simultaneously recursively define φ.

It would be possible to formalise Martin-Löf’s definition verbatim, but for
simplicity, we shall follow a slightly different version due to C. Coquand [8].
Assume that we have inductively defined the set Exp of expressions and have
an operation Apl : Exp → Exp → Exp for the application of one expression to
another. Apl is a constructor of Exp and we will write A b for Apl(A, b). There
are also additional reduction rules for expressions, like reduction of β-redexes.
We then define

Ψ : Exp → set ,

ψ : (A : Exp) → Ψ(A) → Exp → set .

by an Exp-indexed IIRD. Ψ is inductively defined and plays the rôle of U , and
ψ is recursively defined and plays the rôle of T : (A : Exp, U(A)) → D[A],
where D[A] = Exp → set for A : Exp. ψ will depend negatively on Ψ, so this
is not a simultaneous inductive definition.

Informally, C. Coquand’s variant of 4.1.1.2 and 4.1.1.2.1 above reads as follows
(note that the reference to λx.b[x] is replaced by the reference to arbitrary
terms b):

• If Ψ(A) and for all expressions a such that ψ(A, a) we have Ψ(B a), then
Ψ(Π(A,B)).

• If Ψ(Π(A,B)) holds according to the previous definition, then ψ(Π(A,B), b)
holds iff ψ(B a, b a) holds for all expressions a such that ψ(A, a).

This can be formalised as follows:

π : (A : Exp, p : Ψ(A), B : Exp)

→ (q : (a : Exp, ψ(A, p, a)) → Ψ(B a))

→ Ψ(Π(A,B)) .

13

Note that q refers negatively to ψ(A, p, a), which is short for ψ(A, p)(a), where
ψ(A, p) is the result of the recursively defined function for the second argument
p. The corresponding equality rule is

ψ(Π(A,B), π(A, p, B, q), b) = ∀a : Exp.∀x : ψ(A, p, a).ψ(B a, q(a, x), b a) .

Again, the reader should be aware that we have presented only one crucial
case of the complete IIRD in [8]. For instance, there are clauses corresponding
to closure under reductions.

Palmgren’s higher order universes [27]. This construction generalises
Palmgren’s super universe [26], which is a universe which is closed under all the
usual operators for forming small sets but is as well closed under the operator
for universe formation, that is, an operator which accepts an arbitrary family
of sets (a “universe”) and builds a universe containing that family.

Palmgren [27] shows how to generalise this idea to a universe which is closed
under higher order universe operators.

Let us first introduce some abbreviations. Let Ok be the type of universe
operators of order k and Fk of families of universe operators of order k : Nn

given by the following recursive definitions:

O0 =set

Ok+1 =Fk → Fk

Fk =(A : set) × (A→ Ok)

Note that n is given in advance and that Palmgren defines a family MLn of
Martin-Löf type theories with universes closed under universe operations of
level less than n. It is not possible to internalise the dependence on n : N,
since it would require that we could define a family of types by recursion on
n : N. In Palmgren [27] the definition of Ok and Fk are also given by an exter-
nal recursion on k, but since we included the constant casetype

2 which admits
elimination into type for elements of the type 2 in our logical framework, we
can internalise this recursion on the finite type Nn.

Let A : Nn+1 → set and B : (k : Nn+1) → Ak → Ok be a family of universe
operators. So Ak is an index set for universe operators of level k and Bk is the
family of universe operators of level k indexed by Ak.

We shall now give an IIRD of a family

14

U : Nn+1 → set

T : (k : Nn+1) → Uk → Ok

which depends on the parameters A and B. We will make the dependence on
parameters implicit in the sequel, so that U = U(A,B) and T = T(A,B).
The idea is that Uk is a set of codes for universe operators of level k with
decoding function Tk. Informally, U,T is inductive-recursively generated by
the following rules:

• There is one constructor for U0 corresponding to each of the standard set
formers Σ,Π,+, etc.

• There is a code for each index set Ak in U0.
• There is a code in Uk for each universe operator Bk(a).
• There are two constructors which together encode the application of an

operator of level i+1 to a family of operators of level i resulting in another
family of operators of level i. To see what this means more precisely, note
that families of operators of level i are coded by pairs a : U0 and b : (T0(a) →
Ui). So to each code f : Ui+1 for an operator of level i+1 and each code (a, b)
for a family of level i, we construct another code (a′, b′) for a family of level
i encoding the result of applying the operator encoded by f to the family
encoded by (a, b). Note that we need two constructors for this operation:
one returns a′ : U0 and the other returns b′(x′) : Ui for x′ : T0(a

′).

Let 0 : Nn+1, and let inj, succ : Nn → Nn+1 be the injections which map a
number in Nn to the corresponding number in Nn+1 and its successor in Nn+1,
respectively. We have constructors expressing that (U0,T0) is a universe closed
under Π, Σ, + etc. and the corresponding equality rules. Furthermore, we have
the following constructors for U (note that ap0

i (f, a, b) stands for ap0(i, f, a, b),
similarly for ap1

i (f, a, b, x))

Â : Nn+1 → U0

B̂ : (k : Nn+1) → Ak → Uk

ap0 : (i : Nn) → Usucc(i) → (a : U0) → (T0(a) → Uinj(i)) → U0

ap1 : (i : Nn) → (f : Usucc(i)) → (a : U0) → (T0(a) → Uinj(i)) →

T0(ap0
i (f, a, b)) → Uinj(i)

The equations for T are

T0(Âk)=Ak

Tk(B̂k(a))=Bk(a)

T0(ap0
i (f, a, b))= π0(Tsucc(i)(f)(〈T0(a),Tinj(i) ◦ b〉))

Tinj(i)(ap1
i (f, a, b, x)) = π1(Tsucc(i)(f)(〈T0(a),Tinj(i) ◦ b〉))(x)

15

As it stands the above is seems not to be an inductive-recursive definition,
since the type of ap1 depends on T0(ap0

i (f, a, b)), which is not the result of
applying T to one of the previous arguments of ap1. However, this type is by
the equality rules for T0 equal to π0(Tsucc(i)(f)(〈T0(a),Tinj(i) ◦ b〉)), which is
of the correct form: we make use of T0(a), Tinj(i)(b(x)) and Tsucc(i)(f), which
is always T applied to a previous inductive argument. Note that there is no
problem in applying Tsucc(i)(f) to 〈T0(a),Tinj(i) ◦ b〉: Once we have applied
Tsucc(i) to a previous inductive argument of ap1, we obtain an element of
Osucc(i) = Fi → Fi, which can be applied to arbritrary elements of Fi. If we
spell out the type of ap1 so that it is clear that it forms part of an IIRD, we
obtain the following:

ap1 : (i : Nn) → (f : Usucc(i)) → (a : U0) → (T0(a) → Uinj(i)) →

π0(Tsucc(i)(f)(〈T0(a),Tinj(i) ◦ b〉)) → Uinj(i)

For more information about higher-order universes the reader is referred to
Palmgren [27]. The difference between our version and Palmgren’s is that his
version is a simultaneous inductive-recursive definition of n universes, whereas
ours is an indexed inductive-recursive definition where Nn is the index set. Note
also that ours is a general IIRD.

Alternatively, we can define a restricted IIRD which is closer to Palmgren’s by
instead defining an external sequence of constructors (indexed by k = 0, . . . , n
and i = 0, . . . , n− 1):

Âk : U0

B̂k :Ak → Uk

ap0
i : Ui+1 → (a : U0) → (T0(a) → Ui) → U0

ap1
i : (f : Ui+1) → (a : U0) → (T0(a) → Ui) → T0(ap0

i (f, a, b)) → Ui

Again, by using the equality of T0 the type of ap1
i is equal to the following,

which makes clear that this is a constructor of an IIRD:

ap1
i : (f : Ui+1) → (a : U0) → (T0(a) → Ui) →

π0(Ti+1(f)(〈T0(a),Ti ◦ b〉)) → Ui

Note that there are 4n+ 2 constructors rather than the 4 constructors in the
first version. Note also the following subtlety: k in Ak is an external index,
whereas k in Uk is the corresponding internal index in Nn+1. Similarly, i is
also used both as internal and external index.

16

The equations for T are written in our notation in the same way as before,
except that inj(i), succ(i) are now replaced by i and i+1, respectively. However,
although they look the same, they are to be understood differently. We now
have 4n + 2 equations indexed externally by k and i, whereas before we had
4 equations, and k and i were internal variables.

We include Palmgren’s construction as an example of a proof-theoretically
strong construction which is subsumed by our theory of IIRD. The version, in
which elimination is restricted to sets, is conjectured to reach the strength of
Kripke-Platek set theory with one recursive Mahlo ordinal. Since U is given
by an IIRD it does not appear negatively in any type of its constructors.
Note however, that the type of the parameter B refers negatively to set, so
if U is considered as a constructor for set with the parameters as arguments,
then the type of this constructor refers negatively to set, and we thus have a
construction similar in character to the Mahlo universe.

Bove and Capretta’s analysis of the termination of nested recursive
definitions of functional programs. Bove and Capretta [6] use indexed
inductive-recursive definitions in their analysis of the termination of functions
defined by nested general recursion. Given such a function f the idea is to
simultaneously define a predicate D(x) expressing that f(x) terminates, and
a function f ′(x, p), which returns the same value as f(x), but has a proof
p : D(x) that f(x) terminates as second argument. So, f ′ is a total function
defined on the subset of arguments for which f terminates. The role of f ′ is
to be a version of f which is definable in intuitionistic type theory. For nested
recursion the introduction rules for D will refer to f ′ and thus we have an
indexed inductive-recursive definition.

Assume for instance the rewrite rules f(0) −→ f(f(1)), f(1) −→ 2, f(2) −→
f(1) on the domain {0, 1, 2}. We now inductive-recursively define the ter-
mination predicate D for f . We get one constructor for each rewrite rule:
C0 : (p : D(1), q : D(f ′(1, p))) → D(0), C1 : D(1), C2 : D(1) → D(2). Further-
more, the equality rules for f ′ are f ′(0,C0(p, q)) = f ′(f ′(1, p), q), f ′(1,C1) = 2,
f ′(2,C2(p)) = f ′(1, p). This is a proper IIRD, since in the type of C0 the second
argument depends on f ′(1, p), where p is the first argument.

3.3 Why Restricted Indexed Inductive-Recursive Definitions?

As already mentioned in the introduction (p. 3) the syntax of case expressions
in proof assistants based on dependent type theory is simpler when using
restricted IIRD rather than general IIRD. Restricted IIRD were introduced
by Thierry Coquand in the implementation of the proof assistant Half, and

17

were also used in the Agda system [7], the successor of Half. (Recently, general
IIRD have been added as a separate concept to Agda.) If U and T are given
by a restricted IIRD, then we can determine the arguments of a constructor
for a particular set U(i) in the family without analysing i. More precisely, if
C is a constructor and we write its type in uncurried form, then its type is of
the form ((i : I) × A(i)) → U(i).

An example which satisfies this restriction is the accessible part of a relation.
We will see in the next subsection how to write the example of trees and forests
and Palmgren’s higher order universes in restricted form.

It is easier to construct mathematical models of restricted IIRD, since they
can be modelled as initial algebras in an I-indexed slice category. Furthermore,
domain-theoretic models of restricted IIRD can be given more easily. One of
the reasons why some believe that a fully satisfactory understanding of the
identity type has not yet been achieved is that complications arise when intro-
ducing certain kinds of models, e.g. domain theoretic models, of unrestricted
IIRD.

3.4 The definition of Data Types in the Proof Assistant Agda

Agda [7] allows a slightly more general form of restricted IIRD, in which one
defines simultaneously finitely many sets inductively by defining different con-
structors for each of these sets. An example are the trees and forests mentioned
above (8). This is not directly an IIRD in restricted form: If we replace Tree
and Forest by Tree′(?0) and Tree′(?1) as mentioned above, the type of the
constructors is as follows:

tree : Tree′(?1) → Tree′(?0) ,

nil : Tree′(?1) ,

cons : Tree′(?0) → Tree′(?1) → Tree′(?1) .

These types are not of the form ((i : 2) × A(i)) → Tree′(i) as required in
restricted IIRD. However, we can easily translate this kind of general IIRD into
restricted form. In this example, we replace tree, nil, cons by one constructor

C : ((i : 2) × A(i)) → Tree′(i) ,

18

where A(i) is defined by case distinction on i : 2:

A(?0) = Tree′(?1) ,

A(?1) = 1 + (Tree′(?0) × Tree′(?1)) .

C(〈?0, a〉), C(〈?1, inl(?)〉), C(〈?1, inr(〈a, b〉)〉) now play the rôle of tree(a), nil
and cons(a, b), respectively. What we have done is to form for each index i : 2
the disjoint union A(i) of the product of the arguments of the constructors
with result type Tree′(i). This method can as well be applied to Palmgren’s
higher order universes, where the constructors at each index can be determined
by case analysis on Nn+1.

We will show how to generalise the above to the following situation: Assume
that we have i : I ⇒ Ji : stype, i : I, j : Ji ⇒ D[i, j] : type. Assume we define
inductive-recursively indexed over i : I, j : Ji

Uij : set , Tij : Uij → D[i, j] .

Assume that the constructors of Uij are given as

Cik : (j : Ji) → Bijk → Uij ,

where k : Ki for some Ki : stype. Here Bijk : stype for i : I, j : Ji, k : Ki. So
the constructors are in restricted form relative to j, but not relative to i, but
for each i : I the collection of constructors for Uij is given by an index set Ki.
Assume that we have the equations

Tij(Cik(j, b)) = Eik(j, b) : D[i, j] ,

and that the definition of Uij together with Tij forms an instance of a general
IIRD. We can simulate this general IIRD by a restricted IIRD by replacing
the constructors Cik by one constructor

C′ : (i : I, j : Ji, k : Ki,Bijk) → Uij

with equality rule

Tij(C
′(i, j, k, b)) = Eik(j, b) .

So (k : Ki)×Bijk is the disjoint union of the arguments of all constructors with
target type Uij, which generalises the sets A(i) in the example Tree′ above.

19

One can now interpret the constructors of the original general IIRD into this
restricted form by defining Cik := (j, b)C′(i, j, k, b). It is an easy exercise to
interpret the recursion operator of the general IIRD as well and to see that
with this interpretation the equalities required by the rules for the original
IIRD hold in the interpreted version.

In this sense restricted IIRD are closely related to the original inductive def-
inition facility of Agda. However, we should add that the correspondence is
not precise, since Agda has a more general termination check for functions.

4 Categories for IIRD

4.1 The Category of Indexed Families of Types

As for the non-indexed case, we shall derive a formalisation of IIRD by mod-
elling them as algebras of certain endofunctors in slice categories. Let R be
a set of rules for the language of type theory (where each rule is given by
a finite set of judgements as premises and one judgement as conclusion). R
includes the logical framework used in this article (but not necessarily exten-
sional equality). Let TT(R) be the type theory generated by the rules in R.
The category Type(R) is the category, the objects of which are A such that
TT(R) proves A : type, and which has as morphisms from A to B terms f
such that TT(R) proves f : A → B. We identify objects A, A′ such that
TT(R) proves A = A′ : type and functions f, f ′ : A → B such that TT(R)
proves f = f ′ : A → B. It is easy to see that we obtain a category. Note
that this only relies on properties of judgemental equality and holds even if R
does not contain any equality set. In particular it doesn’t rely on working in
extensional type theory.

In order to model I-indexed inductive-recursive definitions, where I is an arbi-
trary stype, we will use the category Fam(R, I) of I-indexed families of types.
An object of Fam(R, I) is an I-indexed family of types, that is, an abstracted
expression A for which we can prove i : I ⇒ A[i] : type in TT(R). An arrow
from A to B is an I-indexed function, that is, an abstracted expression f for
which we can prove i : I ⇒ f [i] : A[i] → B[i] (in TT(R)). Again, we identify
A,A′ such that we can prove i : I ⇒ A[i] = A′[i] : type and f, f ′ such that we
can prove i : I ⇒ f [i] = f ′[i] : B[i] → C[i]. Again, it is easy to verify that we
obtain a category.

In the following, we will usually omit the argument R in Fam(R, I) and
Type(R).

20

If C is a category and D an object in it, then C/D is the slice category with
objects pairs (A, f), where A is an object of C and f an arrow A → D,
and morphisms from (A, f) to (B, g) are C-morphisms h : A → B such that
g ◦ h = f . Note that we write, when working on the meta-level, pairs with
round brackets. This is different from the notation 〈a, b〉 for the pair of a and
b in the logical framework.

There are two alternative categories in which we can represent pairs (U, T)
such that U : I → set and T : (i : I, U(i)) → D[i] (assuming i : I ⇒ D[i] :
type).

One is Fam(I)/D, where we identify D with (i)D[i], which is therefore an
object of Fam(I). For U, T as given before (U, T) is directly an object of
Fam(I)/D.

The other is to model families as fibrations and to use that Fam(I) is equiv-
alent to Type/I (provided the rules of extensional equality are part of R).
Thus instead of Fam(I)/D we can equivalently use Type/D′ with D′ := (i :
I) × D[i]. An object of this category is a type U ′ together with a function
T ′ : U ′ → D′. Intuitively, from U ′, T ′ we obtain U(i) as the inverse image of i
under π0 ◦ T

′. Furthermore, if u : U(i) and π0(T
′(u)) = i, then we can define

T (i, u) := π1(T
′(u)) : D[i]. Note that in Type/D′ we access the elements of

U(i) in an indirect way.

We can thus construct an equivalence of categories (assuming extensional
equality):

E
Fam→Type
I,D :Fam(I)/D → Type/((i : I) ×D[i]) and

E
Type→Fam
I,D :Type/((i : I) ×D[i]) → Fam(I)/D .

The object part of these functors is defined as follows: Assume an element
(A, f) of Fam(I)/D. Then i : I ⇒ A[i] : type and f : (i : I, A[i]) → D[i].
We define E

Fam→Type
I,D (A, f) := (A′, f ′) where A′ := (i : I) × A[i] : type and

f ′ : A′ → ((i : I) × D[i]), f ′(〈i, a〉) := 〈i, f(i, a)〉. Assume an element (A, f)
of Type/((i : I) × D[i]). Then A : type, f : A → ((i : I) × D[i]). We define
E

Type→Fam
I,D (A, f) := (A′, f ′) where A′ := (i)((a : A)× (π0(f(a)) =I i)), so A′ is

an element of Fam(I), and f ′ : (i : I, A′[i]) → D[i], f ′(i, 〈a, p〉) := π1(f(a)).
We leave it to the reader to work out the morphism parts of these functors
and to show that they form an equivalence.

Note that E
Fam→Type
I,D and E

Type→Fam
I,D are meta-level functions, as are the nat-

ural transformations showing that they form an equivalence. For instance the
object part of E

Fam→Type
I,D cannot be defined as a function inside type theory –

we cannot even define its type. All we can do is to associate with every (A, f)

21

as above a corresponding pair (A′, f ′) as defined before.

General Assumption 4.1 (a) In the following, we assume I : stype,
i : I ⇒ D[i] : type (D an abstracted expression).

(b) We will often omit arguments I,D in functions and constructors in the
following, if they are implicitly contained in other arguments, e.g. when
one of the arguments is γ : OPI,D,E (where OP will be introduced below).

4.2 Coding Several Constructors into One

We can code several constructors of an IIRD into one: let J be a finite index set
for all constructors and Aj be the type of the jth constructor (see Appendix
A.3 for the definition of J). Then replace all constructors by one constructor
of type (j : J) → Aj which is definable using case-distinction on J . In case
of restricted IIRD we can obtain one constructor in restricted form with type
(i : I, j : J) → Aij → Ci, if the type of the jth constructor is (i : I) → Aij →
Ci.

In this way, it will suffice to consider only IIRD with one constructor intro in
the sequel.

4.3 Restricted IIRD as Algebras in Fam(I)/D

We already stated that for restricted IIRD, the first argument of the con-
structor determines the index of the constructed element. By uncurrying the
remaining arguments to an element of one set HU(U,T, i) we get the following
general form of a constructor

intro : (i : I) → HU(U,T, i) → U(i),

for certain functions (to be given later)

HU : (U : I → set, T : (i : I, U(i)) → D[i], I) → stype

with no free occurrences of U, T and i.

The equality rule for T has the form

T(i, intro(i, a)) = HT(U,T, i, a) ,

for certain functions (also to be given later)

HT : (U : I → set, T : (i : I, U(i)) → D[i], i : I,HU(U, T, i)) → D[i]

22

with no free occurrences of U, T, i or a. We draw the equality rule as a
commuting diagram

HU(U,T, i)
intro(i)- U(i)

D[i]

T(i)

?

H T
(U,T, i) -

in the category Fam(I), that is, the objects D[i], U(i), etc, and the arrows
are i : I-indexed families. We will later see that, if we assume extensionality,
HU,HT can be extended to work on all families of types (not just on families
of sets) so that they together form the components of an endofunctor H on
Fam(I)/D, where H(U, T) := (HU(U, T),HT(U, T)). 2 Hence (U,T) together
with intro will be an H-algebra in Fam(I)/D.

As an example, consider our second formulation of Palmgren’s higher-order
universe which is a restricted IIRD with 4n+2 constructors. We only consider
the constructor

ap0
i : Ui+1 → (a : U0) → (T0(a) → Ui) → U0

where 0 ≤ i ≤ n− 1. The equality rule is

T0(ap0
i (f, a, b)) = π0(Ti+1(f)(〈T0(a),Ti ◦ b〉))

We consider the uncurried version of ap0
i and draw a diagram:

〈f, a, b〉 : Ui+1 × (a : U0) × (T0(a) → Ui)
ap0

i - Ui

π0(Ti+1(f)(〈T0(a),Ti ◦ b)〉))

-

: Oi

Ti

?

H T
ap 0

i
(U,T, i) -

Hence, we have

HU
ap0

i
(U, T, i) :=Ui+1 × (a : U0) × (T0(a) → Ui)

HT
ap0

i
(U, T, i, 〈f, a, b〉) :=π0(Ti+1(f)(〈T0(a), Ti ◦ b)〉))

2 To be pedantic: one has to replace H(U, T), HU(U, T), HT(U, T) by uncurried
variants H′((U, T)), H′

U((U, T))

23

To define HU(U, T, i) for all constructors, we first do case analysis on i and then
take the disjoint union of HU

C(U, T, i) for all constructors C with codomain Ui.

The diagram for IIRD generalises the situation for non-indexed induction-
recursion [16], where the rules for U and T give rise to an algebra of an
appropriate endofunctor F on the slice category Type/D.

If D[i] := 1 and therefore H(U, T, i) does not depend on T , we have the
important special case of a restricted indexed inductive definition (IID). Here
follows as an example the diagram for the accessible part of a relation (we
replace (x : I) → (x < i) → Acc(x) by its uncurried form ((x : I) × (x <
i)) → Acc(x) in order to obtain the form (x : B) → Acc(x) of an inductive
argument of an IID):

(((x : I) × (x < i)) → Acc(x))
acc(i)- Acc(i)

1

!

?

!

-

that is, HU(U, T, i) := ((x : I) × (x < i)) → U(x).

4.4 General IIRD and Functors from Type/((i : I) ×D[i]) to Fam(I)/D

In the general case, the constructor intro of an IIRD has no special first
argument which determines the index. Instead, the index i : I, such that
intro(a) : U(i), is a function of the arguments. So the general form of the type
of a constructor is

intro : (a : GU(U,T)) → U(GI(U,T, a))

for some

GU : (U : I → set, T : (i : I, U(i)) → D[i]) → stype ,

GI : (U : I → set, T : (i : I, U(i)) → D[i]) → GU(U, T, a)) → I .

Furthermore, we have

T(GI(U,T, a), intro(a)) = GT(U,T, a)

24

for some

GT : (U : I → set, T : (i : I, U(i)) → D[i])

→ GU(U, T, a) → D[GI(U, T, a)] ,

We can combine GI and GT to get one function

GIT := (U, T, a)〈GI(U, T, a),GT(U, T, a)〉

: (U : I → set, T : (i : I, U(i)) → D[i])

→ GU(U, T, a) → ((i : I) ×D[i]) .

Now we see that GU and GIT together form the two components of a function

G : (U : I → set, T : (i : I, U(i)) → D[i])

→ ((U ′ : stype) × (U ′ → ((i : I) ×D[i]))) .

We will later see that this can be extended from sets to types, and that we can
prove, if we assume extensionality, that it forms the object part of a functor

G : Fam(I)/D → Type/((i : I) ×D[i]) .

The equality rule is

T(GI(U,T, a), intro(a)) = GT(U,T, a) ,

as expressed by the following “diagram”:

(a : GU(U,T))
intro- U(GI(U,T, a))

D[GI(U,T, a)]

T(GI(U,T, a))

?

G T
(U,T, a) -

In the example of the identity relation, we define I := A × A, D[i] := 1,
GU(U, T) := A, GI(U, T, a) := 〈a, a〉, and U(〈a, a〉) := IA(a, a). We obtain the

25

following “diagram”:

(a : A)
r- IA(a, a)

1

!

?

!
-

As a second illustration, we show how to obtain the rules for computability
predicates for dependent types. (As in Section 3, we only give a definition con-
taining one case, but the complete definition [8] can be obtained by expanding
the definition corresponding to the additional constructors).

GU(Ψ, ψ) := (A : Exp) × (p : Ψ(A))×

(B : Exp) × ((a : Exp) → ψ(A, p, a) → Ψ(B a)) ,

GI(Ψ, ψ, 〈A, p, B, q〉) := Π(A,B) ,

GT(Ψ, ψ, 〈A, p, B, q〉) := (b)∀a : Exp.∀x : ψ(A, p, a).ψ(B a, q(a, x), b a) .

4.5 Initial Algebras on Type/((i : I) ×D[i])

If we assume extensional equality, we can extend the operation G for a general
IIRD to a functor G : Fam(I)/D → Type/((i : I)×D[i]). We can also define
the endofunctor F := G ◦ E

Type→Fam
I,D on Type/((i : I) × D[i]). If we define

H := E
Fam→Type
I,D ◦ G, we also obtain an endofunctor H which has the same

domain and codomain as the endofunctors corresponding to restricted IIRD,
but H will usually not be strictly positive in the sense that it arises from
a code for restricted IIRD. So we obtain the following diagram where the
two triangles commute and E

Fam→Type
I,D and E

Fam→Type
I,D form an equivalence of

categories:

Type/((i : I) ×D[i])
F - Type/((i : I) ×D[i])

Fam(I)/D

E
Fam→Type
I,D

6

E
Type→Fam
I,D

? H -

G

-

Fam(I)/D

E
Type→Fam
I,D

?

E
Fam→Type
I,D

6

Instead of considering families of sets introduced by a functor G, we can con-
sider initial algebras of the corresponding functor F according to the above
diagram. This essentially amounts to a reduction of IIRD to non-indexed

26

inductive-recursive definitions, assuming extensional equality. We plan to prove
this in detail in a future paper.

5 Formalising the Theory of IIRD

5.1 A Uniform Theory for Restricted and General IIRD

We now show how to formalise a uniform theory for restricted and general
IIRD. To this end, we will introduce a theory which can be instantiated to
these two cases. This may seem surprising, since restricted IIRD are naturally
viewed as special cases of general IIRD – why not just formalise general IIRD,
and then explain the restriction? The reason is that restricted IIRD give rise to
an interesting simpler theory which can be defined without reference to general
IIRD. Nevertheless, the theory of restricted IIRD shares much structure with
the theory of general IIRD. It is therefore more economical to put both under
one hat.

Recall that a general IIRD will be given by a functor

G : Fam(I)/D → Type/((x : I) ×D[i])

and a restricted IIRD by a functor

H : Fam(I)/D → Fam(I)/D .

Remark. By a functor, we here mean that we can define the object part of
the functor and, assuming extensional equality, that we can also define the
morphism part and prove the functor laws. However, only the object part
of the functor will be used in the formalisation of the theories of IIRD, and
therefore our theories can be used in an intensional setting.

Every element (U, T) : Fam(I)/D is uniquely determined by its projections
πi(U, T). We also note that for every sequence of functors Hi : Fam(I)/D →
Type/D[i] there exists a unique functor H : Fam(I)/D → Fam(I)/D such
that πi ◦ H = Hi. H and G will be strictly positive functors in much the
same way as F in [16]. We draw a diagram which summarises the relationship

27

between these functors:

Fam(I)/D
G- Type/((i : I) ×D[i])

Type/D[i]

Hi

?
�
πi

Fam(I)/D

E
Fam→Type
I,D

6
H

-

However, since H is determined by πi ◦H and both πi ◦ H and G are functors
Fam(I)/D −→ Type/E, (where E := (i : I) × D[i] in the general case and
E := D[i] in the restricted case), it is more economical to introduce the more
general notion of a strictly positive functor

K : Fam(I)/D −→ Type/E

for an arbitrary type E. From this we can derive the functors G (by setting
E := (i : I) ×D[i]) and H (by defining πi ◦ H using E := D[i]).

We proceed as in an earlier article [16] and define the type of indices OPI,D,E

of strictly positive functors

E : type

OPI,D,E : type

together with

KU
γ : (U : I → set, T : (i : I, U(i)) → D[i]) → stype ,

KT
γ : (U : I → set, T : (i : I, U(i)) → D[i], a : KU

γ (U, T)) → E ,

for γ : OPI,D,E. (We suppress the arguments I,D,E, when the parameter γ
is given.) We remark that one could extend the rules below and define for
i : I ⇒ U [i] : type, T : (i : I, U [i]) → D[i]

KU
γ (U, T) : type ,

KT
γ (U, T) : (a : KU

γ (U, T)) → E .

However, this kind of extension will not play any rôle in our theories of IIRD.
We mention it only to be able to consider Kγ as a functor which is defined
for all elements (U, T) of Fam(I)/D. Assuming extensional equality, we define
the morphism part of this functor (but as before this will not be part of our
rules): if i : I ⇒ U ′[i] : type, T ′ : (i : I, U ′[i]) → D[i], then

28

Kmor
γ (U, T, U ′, T ′) : (f : (i : I, U [i]) → U ′[i])

→ ((i : I, a : U [i]) → T ′(i, f(i, a)) =D[i] T (i, a))

→ KU
γ (U, T) → KU

γ (U ′, T ′)

We leave it to the reader to verify (by induction on γ) that
Kmor

γ (U, T, U ′, T ′, f, p) will be a morphism (i.e. to verify the corresponding
commutative diagram) and that the functor laws hold.

We construct elements of OPI,D,E in a similar way as in the non-indexed case:

• Base case: This corresponds to having an IIRD with no arguments of the
constructor (i.e. the argument is of type 1). We only have to determine the
result of E, which encodes the result of T(intro(a)) for restricted IIRD and
both this result and the index i such that intro(a) : U(i) for general IIRD
(Note that we suppress the dependency of ι on I,D,E, similarly for the
other constructors of OPI,D,E)

ι : E → OPI,D,E ,

KU
ι(e)(U, T) = 1 ,

KT
ι(e)(U, T, ?) = e ,

and, assuming extensionality

Kmor
ι(e) (U, T, U

′, T ′, f, p, ?) = ? .

• Non-dependent union of functors: This corresponds to the situation where
the constructor has a first non-inductive argument of type A (that is, an
argument which does not refer to U) and where the remaining arguments
are coded by γ(a) which depends on a : A.

σ : (A : stype, γ : A→ OPI,D,E) → OPI,D,E ,

KU
σ(A,γ)(U, T) = (a : A) × KU

γ(a)(U, T) ,

KT
σ(A,γ)(U, T, 〈a, b〉) = KT

γ(a)(U, T, b) .

and, assuming extensionality

Kmor
σ(A,γ)(U, T, U

′, T ′, f, p, 〈a, b〉) = 〈a,Kmor
γ(a)(U, T, U

′, T ′, f, p, b)〉 .

• Dependent union of functors: This corresponds to the situation where the
constructor has an inductive argument, referring to U. This argument has
the form g : (a : A) → U(i(a)), where i : A → I. Later arguments can
depend on T applied to elements of U, that is, on (see Def. A.6 in Appendix

29

A for the definition of T ◦ 〈〈i, g〉〉):

T ◦ 〈〈i, g〉〉 : (a : A) → D[i(a)] .

Therefore the later arguments are given by a function γ : ((a : A) →
D[i(a)]) → OPI,D,E. So the parameters of the constructor for the dependent
union of elements of OPI,D,E are the stype A, the index function i and the
function γ. If A, i, γ are given, the inductive argument will be of type
(a : A) → U(i(a)). This argument is followed by the arguments given by
γ(T ◦ 〈〈i, g〉〉), and the result of E will be determined by the remaining
arguments (which depend on T◦〈〈i, g〉〉). So we have the following constructor
and equations:

δ : (A : stype, i : A→ I, γ : ((a : A) → D[i(a)]) → OPI,D,E) → OPI,D,E ,

KU
δ(A,i,γ)(U, T) = (g : (a : A) → U(i(a))) × KU

γ(T◦〈〈i,g〉〉)(U, T) ,

KT
δ(A,i,γ)(U, T, 〈g, b〉) = KT

γ(T◦〈〈i,g〉〉)(U, T, b) ,

and, assuming extensionality

Kmor
δ(A,i,γ)(U, T, U

′, T ′, f, p, 〈g, b〉) = 〈f ◦ 〈〈i, g〉〉,Kmor
γ(T◦〈〈i,g〉〉)(U, T, b)〉 .

5.2 Formation and Introduction Rules for Restricted IIRD

Restricted IIRD (indicated by a superscript r) are given by strictly posi-
tive endofunctors H on the category Fam(I)/D, which can be given by their
(strictly positive) projections πi ◦H : Fam(I)/D → Type/D[i]. So, the set of
codes for these functors is given as a family of codes for πi ◦ H. The type of
codes is given as

OPr
I,D := (i : I) → OPI,D,D[i] : type .

Assume now γ : OPr
I,D, U : I → set, T : (i : I, U(i)) → D[i], i : I. The object

part of H is defined as

HU
γ (U, T, i) := KU

γ(i)(U, T) : stype

HT
γ (U, T, i, a) := KT

γ(i)(U, T, a) : D[i]

for U : I → set, T : (i : I, U(i)) → D[i], and a : HU
γ (U, T, i).

Using extensionality we obtain the morphism part

30

Hmor
γ (U, T, U ′, T ′, f, p, i, a) := Kmor

γ(i)(U, T, U
′, T ′, f, p, a) : HU

γ (U ′, T ′, i)

We have the following formation rules for Ur
γ and Tr

γ :

Ur
γ(i) : set , Tr

γ(i) : Ur
γ(i) → D[i] .

Ur
γ(i) has constructor

intror
γ(i) : HU

γ (Ur
γ ,T

r
γ , i) → Ur

γ(i) ,

and the equality rule for Tr
γ(i) is:

Tr
γ(i, intror

γ(i, a)) = HT
γ (Ur

γ,T
r
γ , i, a) .

5.3 Formation and Introduction Rules for General IIRD

For general IIRD (as indicated by superscript g) we consider strictly positive
functors Gγ : Fam(I)/D → Type/((i : I)×D[i]) for each code γ in the type
of codes for general IIRD, defined as

OPg
I,D := OPI,D,(i:I)×D[i] : type .

The object part of the functor Gγ consists of the following three components:

GU
γ (U, T) := KU

γ (U, T) : stype

GI
γ(U, T, a) := π0(K

T
γ (U, T, a)) : I

GT
γ (U, T, a) := π1(K

T
γ (U, T, a)) : D[GI

γ(U, T, a)]

for U : I → set, T : (i : I, U(i)) → D[i], and a : GU
γ (U, T).

Using extensionality we obtain the morphism part

Gmor
γ (U, T, U ′, T ′, f, p, a) := Kmor

γ (U, T, U ′, T ′, f, p, a) : GU
γ (U ′, T ′) .

We have essentially the same formation rules for Ug
γ and Tg

γ as in the restricted
case:

Ug
γ : I → set , Tg

γ : (i : I,Ug
γ(i)) → D[i] .

There is one constructor for all Ug
γ(i). The introduction rule is:

introg
γ : (a : GU

γ (Ug
γ ,T

g
γ)) → Ug

γ(G
I
γ(U

g
γ,T

g
γ , a)) .

31

where GI
γ(U

g
γ ,T

g
γ, a) determines the index from the argument of the construc-

tor.

The equality rule for Tg
γ is:

Tg
γ(G

I
γ(U

g
γ ,T

g
γ, a), introg

γ(a)) = GT
γ (Ug

γ ,T
g
γ, a) .

5.4 Elimination Rules for IIRD

We now give the induction principle both for the restricted and the general
case. We deviate in an important way from our previous formalisation [16] of
non-indexed inductive-recursive definitions. In that paper we constructed the
following type of induction hypotheses for the elimination and equality rules:

D : type γ : OPD U : set

T : U → D a : FU
γ (U, T) x : U ⇒ E[x] : type

FIH
γ (U, T, E, a) : type

Moreover, for the recursive call in the equality rule we defined

Fmap
γ (U, T, E, h, a) : FIH

γ (U, T, E, a) ,

where h : (u : U) → E[u] and a : FU
γ (U, T).

FIH
γ (U, T, E, a) collects the types (b : B) → E[u′(b)] of induction hypothe-

ses for each inductive argument of the form u′ : B → U contained in a.
Fmap

γ (U, T, E, h, a) composes these inductive arguments with h and creates an
element of the corresponding induction hypothesis h ◦ u′ : (b : B) → E[u′(b)].
The elimination rule and equality rule were then defined as follows:

g : (a : FU
γ (Uγ,Tγ),F

IH
γ (Uγ,Tγ , E, a)) → E[introγ(a)]

Rγ,E(g) : (u : Uγ) → E[u]

Rγ,E(g, introγ(a)) = g(a,Fmap
γ (Uγ,Tγ , E,Rγ,E(g), a)) .

As pointed out to us by Ralph Matthes [24], the problem with that approach,
is that FIH

γ (U, T, E, a) is a type and cannot be defined by OP-elimination. This
led to problems when interpreting theories into each other. (We plan to publish
a note in which we elaborate on this and show how to redeem that problem).
Since we would get similar problems in this article, we give an alternative

32

definition. We first define (by OP-elimination)

FIArg
γ (U, T, a) : stype ,

FIArg→U
γ (U, T, a) : FIArg

γ (U, T, a) → U .

(FIArg
γ (U, T, a),FIArg→U

γ (U, T, a)) is a family of elements of U , namely those
elements in U referred to in a by an inductive argument. FIArg

γ (U, T, a) is
obtained as the disjoint union of all B such that an inductive argument u′ :
B → U occurs in a. If b : FIArg→U

γ (U, T, a) originates from b′ : B, where B is as
before, then FIArg→U

γ (U, T, a) maps b to u′(b′) : U . Now we can define a variant
of FIH

γ and Fmap
γ :

FIH
γ

′
(U, T, E, a) := (v : FIArg

γ (U, T, a)) → E[FIArg→U
γ (U, T, a, v)] ,

Fmap
γ
′(U, T, E, g, a) := (v)g(FIArg→U

γ (U, T, a, v)) : FIH
γ

′
(U, T, E, a) .

In appendix B the variants of the theories for inductive-recursive definitions
will be introduced in detail.

In case of indexed inductive-recursive definitions, we also need a function which
maps elements of FIArg

γ (U, T, a) to the index i : I which the original inductive
argument (of the form u′ : (b : B) → U(i(b))) was referring to. In general we
proceed as follows:

First we define more generally KIArg
γ , KIArg→I

γ and KIArg→U
γ for γ : OPI,D,E.

Assume

γ : OPI,D,E , U : I → set , T : (i : I, U(i)) → D[i] ,

a : KU
γ (U, T) .

Then we have the following rules:

KIArg
γ (U, T, a) : stype ,

KIArg→I
γ (U, T, a) : KIArg

γ (U, T, a) → I ,

KIArg→U
γ (U, T, a) : (v : KIArg

γ (U, T, a)) → U(KIArg→I
γ (U, T, a, v)) .

K
IArg
ι(e) (U, T, F, ?) = 0 ,

K
IArg→I
ι(e) (U, T, F, ?, x) = case0(, x) ,

K
IArg→U
ι(e) (U, T, F, ?, x) = case0(, x) .

33

K
IArg
σ(A,γ)(U, T, 〈a, b〉) = K

IArg
γ(a) (U, T, b) ,

K
IArg→I
σ(A,γ) (U, T, 〈a, b〉, c) = K

IArg→I
γ(a) (U, T, b, c) ,

K
IArg→U
σ(A,γ) (U, T, 〈a, b〉, c) = K

IArg→U
γ(a) (U, T, b, c) .

K
IArg
δ(A,i,γ)(U, T, 〈f, b〉) = A+ K

IArg
γ(T◦〈〈i,f〉〉)(U, T, b) ,

K
IArg→I
δ(A,i,γ)(U, T, 〈f, b〉, inl(a)) = i(a) ,

K
IArg→U
δ(A,i,γ) (U, T, 〈f, b〉, inl(a)) = f(a) ,

K
IArg→I
δ(A,i,γ)(U, T, 〈f, b〉, inr(a)) = K

IArg→I
γ(T◦〈〈i,f〉〉)(U, T, b, a) ,

K
IArg→U
δ(A,i,γ) (U, T, 〈f, b〉, inr(a)) = K

IArg→U
γ(T◦〈〈i,f〉〉)(U, T, b, a) .

We now define for U : I → stype, T : (i : I, U(i)) → D[i],
i : I, u : U ⇒ F [i, u] : type, a : KU

γ (U, T), g : (i : I, u : U) → F [i, u],

KIH
γ (U, T, F, a):=(v : KIArg

γ (U, T, a)) → F [KIArg→I
γ (U, T, a, v),KIArg→U

γ (U, T, a, v)]

: type ,

Kmap
γ (U, T, F, g, a):=(v)g(KIArg→I

γ (U, T, a, v),KIArg→U
γ (U, T, a, v))

: KIH
γ (U, T, F, a) .

In the restricted case, the elimination and equality rules are

Rr
γ,F (h) : (i : I, u : Ur

γ(i)) → F [i, u] ,

Rr
γ,F (h, i, intror

γ(i, a)) = h(i, a,Kmap
γ(i) (Ur

γ,T
r
γ , F,R

r
γ,F (h), a)) ,

under the assumptions

γ : OPr
I,D ,

i : I, u : Ur
γ(i) ⇒ F [i, u] : type ,

h : (i : I, a : HU
γ (Ur

γ ,T
r
γ, i),K

IH
γ(i)(U

r
γ,T

r
γ , F, a)) → F [i, intror

γ(i, a)] .

In the general case the elimination and equality rules are

Rg
γ,F (h) : (i : I, u : Ug

γ(i)) → F [i, u] ,

Rg
γ,F (h,GI

γ(U
g
γ ,T

g
γ, a), introg

γ(a)) = h(a,Kmap
γ (Ug

γ,T
g
γ , F,R

g
γ,F (h), a)) ,

34

under the assumptions

γ : OPg
I,D ,

i : I, u : Ug
γ(i) ⇒ F [i, u] : type ,

h : (a : GU
γ (Ug

γ ,T
g
γ),K

IH
γ (Ug

γ ,T
g
γ, F, a)) → F [GI

γ(U
g
γ ,T

g
γ, a), introg

γ(a)] .

5.5 Elimination Rules for OP

Definition 5.1 The elimination and equality rules for OP are (assuming E :
type and γ : OPI,D,E ⇒ F [γ] : type):

a : (e : E) → F [ι(e)]

b : (A : stype, γ : A→ OPI,D,E, f : (x : A) → F [γ(x)]) → F [σ(A, γ)]

c : (A : stype, i : A→ I, γ : ((a : A) → D[i(a)]) → OPI,D,E)

→ (f : (x : (a : A) → D[i(a)]) → F [γ(x)])

→ F [δ(A, i, γ)]

ROP
I,D,E,F(a, b, c) : (γ : OPI,D,E) → F [γ]

ROP
I,D,E,F(a, b, c, ι(e)) = a(e) ,

ROP
I,D,E,F(a, b, c, σ(A, γ)) = b(A, γ, (x)ROP

I,D,E,F(a, b, c, γ(x))) ,

ROP
I,D,E,F(a, b, c, δ(A, i, γ)) = c(A, i, γ, (x)ROP

I,D,E,F(a, b, c, γ(x))) .

We call these rules OPelim. They presuppose the formation/introduction rules
for OP.

5.6 The Resulting Theories

Definition 5.2 (a) OPintro consists of the logical framework and the forma-
tion and introduction rules for OP.

(b) The basic theory of indexed inductive-recursive definitions (Bas-IIRD)
consists of OPintro and the defining rules for KU, KT, KIArg, KIArg→I,
KIArg→U, KIH and Kmap.

(c) The theory IIRDr of restricted indexed inductive-recursive definitions
consists of Bas-IIRD, the defining rules for OPr, HU, HT, and the for-
mation/introduction/elimination/equality rules for Ur,Tr, intror, and Rr.

35

(d) The theory IIRDg of general indexed inductive-recursive definitions con-
sists of Bas-IIRD, the defining rules for OPg, GU, GI, GT, and the
formation/introduction/elimination/equality rules for Ug,Tg, introg, and
Rg.

(e) By ext we mean the rules of extensionality.

Note that we did not include the morphism parts of the functors into our
rules. Assuming extensionality, they can be defined by recursion on γ, as long
as we restrict ourselves as in the rules above to U : I → set.

6 The Examples Revisited

We first introduce the following abbreviations:

γ0 +OP γ1 := σ(2, (x)case2(, x, γ0, γ1)) ,

and, if n ≥ 2,

γ0 +OP · · · +OP γn := (· · · ((γ0 +OP γ1) +OP γ2) +OP · · ·+OP γn) .

So, if γi are codes for constructors Ci, γ0 + γ1 is a code for a constructor
C, which encodes C0 and C1. The first argument of C encodes an element
i of {0, 1}. The later arguments of C are the arguments of the constructor
Ci. Similarly γ0 +OP · · · +OP γn is a code for a constructor C which encodes
the union of the constructors Ci corresponding to γi. Let for i : I, ιg?(i) :=
ι(〈i, ?〉) : OPg

I,(−)1, and let ιr? := ι(?) : OPI,D,1.

• The trees and forests have code γ : OPr
2,(−)1 (= 2 → OP2,(−)1,1), where

γ(?0) = δ(1, (−)?1, (−)ιr?) ,

γ(?1) = ιr? +OP δ(1, (−)?0, (−)δ(1, (−)?1, (−)ιr?)) .

Then Tree = Ur
2,(−)1,γ(?0), Forest = Ur

2,(−)1,γ(?1) (we don’t suppress the
arguments I = 2, D = (−)1).

• The even number predicate as a general IID as mentioned in the introduction
has code

ιg?(0) +OP σ(N, (n)δ(1, (−)n, (−)ιg?(S(S(n))))): OPg
N,(−)1

(= OPN,(−)1,N×1) .

• The accessible part of a relation has code

(i)δ((x : I) × (x < i), (z)π0(z), (−)ιr?): OPr
I,(−)1

(= (i : I) → OPI,(−)1,1) .

As a general IIRD, it has code

36

σ(I, (i)δ((x : I) × (x < i), (z)π0(z), (−)ιg?(i))): OPg
I,(−)1

(= OPI,(−)1,I×1) .

• The identity set has code
σ(A, (a)ιg?(〈a, a〉)) : OPg

A×A,(−)1 (= OPA×A,(−)1,(A×A)×1) .
• The simply typed lambda calculus (p. 9) given as a general IIRD can be

encoded in the following way. First, Lvar can be encoded as an element of
OPg

Lcontext×Ltype,(−)1 by:

γLvar := γzVar
Lvar +OP γ

sVar
Lvar

γzVar
Lvar := σ(Lcontext, (Γ)σ(Ltype, (α)ιg?(〈cons(Γ, α), α〉)))

γsVar
Lvar := σ(Lcontext, (Γ)σ(Ltype, (α)σ(Ltype, (β)

δ(1, (−)〈Γ, β〉, (−)ιg?(〈cons(Γ, α), β〉)))))

After introducing notations for Lvar and its constructors one can introduce
a code for Lterm as an element of OPg

Lcontext×Ltype,(−)1 as follows:

γLterm := γvar
Lterm +OP γ

ap
Lterm +OP γ

lam
Lterm

γvar
Lterm := σ(Lcontext, (Γ)σ(Ltype, (α)σ(Lvar(Γ, α), (−)

ιg?(〈Γ, α〉))))

γap
Lterm := σ(Lcontext, (Γ)σ(Ltype, (α)σ(Ltype, (β)

δ(1, (−)〈Γ, ar(α, β)〉, (−)δ(1, (−)〈Γ, α〉, (−)

ιg?(〈Γ, β〉))))))

γlam
Lterm := σ(Lcontext, (Γ)σ(Ltype, (α)σ(Ltype, (β)

δ(1, (−)〈cons(Γ, α), β〉, (−)

ιg?(〈Γ, ar(α, β)〉)))))

• For the Tait-style computability predicates for dependent types we have
I = Exp, D[i] = Exp → set. The rules given in Subsection 3.2 are incom-
plete, additional constructors have to be added by using +OP (the current
definition actually defines the empty set). The code for the constructor given

37

in Subsection 3.2 is

σ(Exp, (A)

δ(1, (−)A, (f)

σ(Exp, (B)

δ((a : Exp) × f(?, a), (y)(B π0(y)), (g)

ι(〈Π(A,B), (b)∀a : Exp.∀x : f(?, a).g(〈a, x〉, b a)〉)))))

: OPg
I,D (= OPI,D,(i:I)×D[i]) .

• The first version of Palmgren’s higher order universes given by a general
IIRD has code

γ := γg
Univ + γ

Â
+ γ

B̂
+ γap0 + γap1 : OPg

Nn+1,(k)Ok ,

where γg
Univ : OPg

Nn+1,(k)Ok is a code expressing that Uγ
g

Univ
,0,Tγ

g

Univ
,0 is closed

under the standard constructors for a universe, and

γ
Â

:= σ(Nn+1, (k)ι(〈0, Ak〉)) ,

γ
B̂

:= σ(Nn+1, (k)σ(Ak, (a)ι(〈k, Bk(a)〉))) ,

γap0 := σ(Nn+1, (i) δ(1, (−)succ(i), (Tf)

δ(1, (−)0, (Ta)

δ(Ta(?), (−)inj(i), (Tb)

ι(〈0, π0(Tf (?, 〈Ta(?), Tb〉))〉))))) ,

γap1 := σ(Nn+1, (i) δ(1, (−)succ(i), (Tf)

δ(1, (−)0, (Ta)

δ(Ta(?), (−)inj(i), (Tb)

σ(π0(Tf(?, 〈Ta(?), Tb〉)), (x)

ι(〈inj(i), π1(Tf (?, 〈Ta(?), Tb〉))(x)〉)))))) .

• The second version of Palmgren’s higher order universes given by a restricted
IIRD has code

γ : OPr
Nn+1,(k)Ok

38

where

γ(0) := γr
Univ +OP γÂ0

+OP · · ·+OP γÂn
+OP γB̂0

+OP

γap0
0
+OP γap0

1
+OP · · ·+OP γap0

n−1
+OP γap1

0
,

γ(i) := γ
B̂i

+OP γap1
i

(i = 1, . . . , n− 1) ,

γ(n) := γ
B̂n

,

γr
Univ : OPr

Nn+1,(k)Ok(0) expresses as γg
Univ above that Uγr

Univ
,0,Tγr

Univ
,0 is closed

under the standard constructors for a universe, and

γ
Âk

:= ι(Ak) ,

γ
B̂k

:= σ(Ak, (a)ι(Bk(a))) ,

γap0
i

:= δ(1, (−)(i + 1), (Tf)

δ(1, (−)0, (Ta)

δ(Ta(?), (−)i, (Tb)

ι(π0(Tf(?, 〈Ta(?), Tb〉)))))) ,

γap1
i

:= δ(1, (−)(i + 1), (Tf)

δ(1, (−)0, (Ta)

δ(Ta(?), (−)i, (Tb)

σ(π0(Tf(?, 〈Ta(?), Tb〉)), (x)

ι(π1(Tf (?), 〈Ta(?), Tb〉)(x)))))) .

7 Interpretations between Restricted and General IIRD

7.1 Preliminaries

We assume the rules ext of extensionality. For concrete examples, some of
these translations can be carried out using only definitional equality. In such
examples we usually only have finitely many levels of nesting of OP, whereas in
our theory we may introduce infinitely nested (but still well-founded) elements
of OP. For instance, assuming A : N → set, let for n : N

ρ(n) := σ(A(0), (−)σ(A(1), · · ·σ(A(n), (−)ιg?(∗)) · · ·)) : OPg
1,(−)1 ,

39

and define γ := σ(N, (n)ρ(n)) : OPg
1,(−)1. ρ(n) has n+1 nesting of OP. There-

fore γ has infinite nesting. Ug
γ has constructor

introg
γ(〈n, 〈a0, 〈a1, . . . , 〈an, 1〉 · · ·〉〉〉)

where n : N, ai : A(i). So, introg
γ has an unbounded number of arguments.

When translating codes we need to prove certain equalities by recursion on
γ which require extensional equality in the presence of unbounded nesting of
γ. These equalities often become definitional equalities if the nesting is finite,
which is the case for most concrete examples.

We will assume OPelim in order to be able to carry out various definitions by
induction on γ.

For simplicity, we identify set and stype in the sequel. Note that for every stype
A there exists a set A′ together with functions f : A → A′ and g : A′ → A
such that ∀a : A.g(f(a)) =A a and ∀a : A′.f(g(a)) =A′ a. Take as A′ the
set, which is inductively defined with constructor C : A → A′. It is easy to
define A′, f , g in any of the theories under consideration and prove the above
equalities (using intensional or extensional equality).

We will work informally. From the proof it follows that terms of the first
language can be interpreted in the second language such that all rules are
valid (that is, the conclusion can be derived from the premises). Note that
what we achieve is not just a reduction of categorical principles, but the proof
theoretic result that the formal theories can be interpreted into each other.
This is especially important when translating the elimination rules – we have
to make sure that we can translate the elimination rules of one theory into
the other. Most of these proofs rely on recursion on OP.

Notations: In this section, we will make use of the Notation A.4 (informal
use of equality).

We summarise the results of this section in the following theorem

Theorem 7.1 (a) IIRDr + OPelim + ext and IIRDg + OPelim + ext can
be interpreted into each other.

(b) The same holds with the restriction of these theories to D[i] : stype.

7.2 Interpretations between Restricted and General IIRD

Informally it is clear that restricted IIRD are special cases of general IIRD.
Moreover, we argued in Section 3.3 that general IIRD can be represented by
restricted IIRD, provided we have an equality on the index set.

40

Below we show that the two theories, the one with restricted IIRD and the
one with general IIRD can be formally interpreted in each other, provided
they are extended with OP-elimination and extensional equality.

Modelling Restricted IIRD by General IIRD. The translation of re-
stricted IIRD into general IIRD is quite simple: in restricted IIRD, we have
a constructor intro : (i : I) → A → Ui for some set A. In general IIRD,
we have a constructor intro′ : (a : A′) → U′i′(a) for some set A′ and some
function i′ : A′ → I. So, in order to reduce restricted to general IIRD, we
define A′ := (i : I)×A and i′(a) := π0(a). This means turning the special first
argument i : I of a restricted IIRD into a similar non-inductive argument of
a general IIRD. When we have no argument of the constructor, we have to
provide an element of (i : I) ×D[i] instead of an element of e : D[i] as in the
restricted case: this element will be 〈i, e〉.

Categorically, this transformation can be seen as follows: From a functor H :
Fam(I)/D → Fam(I)/D of a restricted IIRD we obtain a functor G :=
E

Fam→Type
I,D ◦ H : Fam(I)/D → Type/((i : I) × D[i]) of a general IIRD. G

satisfies the following equations (where H(U, T, i) = (HU(U, T, i),HT(U, T, i))
and G(U, T) = (GU(U, T), (a)〈GI(U, T, a),GT(U, T, a)〉)):

GU(U, T)= (i : I) × HU(U, T, i) ,

GI(U, T, 〈i, a〉)= i ,

GT(U, T, 〈i, a〉)= HT(U, T, i, a) .

We are going to show that this translates strictly positive functors for re-
stricted IIRD into strictly positive functors for general IIRD. For every γ :
OPr

I,D we define γ∧ : OPg
I,D such that Gγ∧ = E

Fam→Type
I,D ◦ Hγ . (This equality

is to be understood componentwise, see Subsection 4.1 for how E
Fam→Type
I,D is

to be understood type-theoretically.) We first define γ∧,i : OPg
I,D for i : I,

γ : OPI,D,D[i]:

ι(e)∧,i = ι(〈i, e〉) ,

σ(A, γ)∧,i = σ(A, (a)(γ(a))∧,i) ,

δ(A, j, γ)∧,i = δ(A, j, (f)(γ(f))∧,i) .

For γ : OPr
I,D we define

γ∧ := σ(I, (i)(γ(i))∧,i) : OPg
I,D .

Note that the above amounts to the replacement of the special first argument
of a restricted IIRD by a similar non-inductive argument and in the base case
(ι) the replacement of the argument e by 〈i, e〉.

41

Using extensional equality one easily derives for i : I, ρ : OPI,D,D[i], γ : OPr
I,D,

U : I → set, T : (i : I, U(i)) → D[i], a : KU
γ (U, T) the following (the first three

equations are shown by induction on ρ):

GU
ρ∧,i(U, T)= KU

ρ (U, T) ,

GI
ρ∧,i(U, T, a)= i ,

GT
ρ∧,i(U, T, a)= KT

ρ (U, T, a) ,

GU
γ∧(U, T)= (i : I) × HU

γ (U, T, i) ,

GI
γ∧(U, T, 〈i, a〉)= i ,

GT
γ∧(U, T, 〈i, a〉)= HT

γ (U, T, i, a) .

The interpretation of restricted IIRD into general IIRD is defined by

Ũr
γ := Ug

γ∧ , T̃r
γ := Tg

γ∧ ,

and for i : I, a : HU
γ (Ũr

γ , T̃
r
γ , i),

ĩntror
γ(i, a) := introg

γ∧(〈i, a〉) : Ũr
γ(i) (= Ug

γ∧(G
I
γ∧(Ũ

r
γ, T̃

r
γ , 〈i, a〉))) .

We have

T̃r
γ(ĩntror

γ(i, a))= Tg
γ∧(introg

γ∧(〈i, a〉))

= GT
γ∧(Ũ

r
γ , T̃

r
γ , 〈i, a〉)

= HT
γ (Ũr

γ , T̃
r
γ , i, a) .

The following “diagram” summarises the relationships:

Ũr
γ(i)

〈i, a〉 : GU
γ∧(Ũ

r
γ, T̃

r
γ))

intro
g
γ∧

-

= (i : I) × HU
γ (Ũr

γ, T̃
r
γ)

ĩnt
ro
r
γ

-

D[i]

T̃r
γ(i)

?

H T
γ (Ũ r

γ , T̃ r
γ , i) -

GT
γ∧(Ũr

γ , T̃r
γ)

-

where we let (for typographical reasons) ĩntror
γ represent its uncurried version

42

〈i, a〉 7→ ĩntror
γ(i, a).

We will now interpret the elimination rules. First, one easily derives by induc-
tion over ρ, assuming i : I, ρ : OPI,D,D[i], U : I → set, T : (i : I, U(i)) → D[i],

a : KU
ρ (U, T), and v : K

IArg
ρ∧,i (U, T, a) the following equations:

K
IArg
ρ∧,i (U, T, a)= KIArg

ρ (U, T, a) ,

K
IArg→I
ρ∧,i (U, T, a, v)= KIArg→I

ρ (U, T, a, v) ,

K
IArg→U
ρ∧,i (U, T, a, v)= KIArg→U

ρ (U, T, a, v) .

Therefore we obtain for γ : OPg
I,D; i : I; a : KU

γ∧(i)(U, T); v : K
IArg
γ∧(i)(U, T, a);

i : I, u : U ⇒ E[i, u] : type; g : (i : I, u : U(i)) → E[i, u]:

K
IArg
γ∧ (U, T, 〈i, a〉)= K

IArg
γ(i) (U, T, a) ,

K
IArg→I
γ∧ (U, T, 〈i, a〉, v)= K

IArg→I
γ(i) (U, T, a, v) ,

K
IArg→U
γ∧ (U, T, 〈i, a〉, v)= K

IArg→U
γ(i) (U, T, a, v) ,

KIH
γ∧(U, T, E, 〈i, a〉)= KIH

γ(i)(U, T, E, a) ,

K
map
γ∧ (U, T, E, g, 〈i, a〉, v)= K

map
γ(i) (U, T, E, g, a, v) .

Now assume the assumptions of the elimination rules, that is,

i : I, u : Ũr
γ(i) ⇒ E[i, u] : type ,

h : (i : I, a : HU
γ (Ũr

γ, T̃
r
γ , i),K

IH
γ(i)(Ũ

r
γ, T̃

r
γ , E, a)) → E[i, ĩntror

γ(i, a)] .

Define

h′ := (a, b)h(π0(a), π1(a), b)

: (a : GU
γ∧(U

g
γ∧,T

g
γ∧),K

IH
γ∧(U

g
γ∧ ,T

g
γ∧, E, a))

→ E[GI
γ∧(U

g
γ∧,T

g
γ∧, a), introg

γ∧(a)] .

Then we can interpret Rr
γ,E(h) as

k := Rg
γ∧,E(h′) : (i : I, u : Ũr

γ(i)) → E[i, u] ,

and can verify

k(i, ĩntror
γ(i, a))= h(i, a,Kmap

γ(i) (Ũr
γ, T̃

r
γ , E, k, a)) .

43

So, we have shown

Lemma 7.2 IIRDr +OPelim +ext can be interpreted in IIRDg +OPelim +
ext. The same holds if we restrict D[i] to stype or to D[i] = 1 in both theories.

Modelling General IIRD by Restricted IIRD. From a functor
G : Fam(I)/D → Type/((i : I) × D[i]) of a general IIRD we obtain a
functor H := E

Type→Fam
I,D ◦ G : Fam(I)/D → Fam(I)/D. To define E

Type→Fam
I,D

we need however an extensional equality relation =I on I. Then H satisfies
the following equations (where as before H(U, T, i) = (HU(U, T, i),HT(U, T, i))
and G(U, T) = (GU(U, T), (a)〈GI(U, T, a),GT(U, T, a)〉)):

HU : (U : I → set, T : (i : I, U(i)) → D[i]) → I → set ,

HU(U, T, i)= (a : GU(U, T)) × (GI(U, T, a) =I i) ,

HT : (U : I → set, T : (i : I, U(i)) → D[i])

→ (i : I) → HU(U, T, i) → D[i] ,

HT(U, T, i, 〈a, p〉)= GT(U, T, a) .

Note that the constructors have an additional argument, namely a proof of
GI(U, T, a) =I i. This will add a computational overhead when working with
proof assistants.

We show that for every strictly positive functor for a general IIRD the above
essentially yields a strictly positive functor for a restricted IIRD, that is, we
define for every γ : OPg

I,D a γ∨ : OPr
I,D such that Hγ∨ is isomorphic to

E
Type→Fam
I,D ◦ Gγ . (We do not obtain equality. Assume for simplicity that γ

does not impose a variable number of arguments and that therefore GU
γ (U, T)

can be written as A1×A2×· · ·×An. Then we will get HU
γ∨(U, T, i) = A1×(A2×

· · ·×(An×GI(U, T, a) =I i)) instead of (A1×A2×· · ·×An)×(GI(U, T, a) =I i).)

First, we define for γ : OPg
I,D γ∨,i : OPI,D,D[i] as follows:

ι(〈i′, e〉)∨,i = σ(i′ =I i, (−)ι(e)) ,

σ(A, γ)∨,i = σ(A, (a)(γ(a))∨,i) ,

δ(A, j, γ)∨,i = δ(A, j, (f)(γ(f))∨,i) .

Now let for γ : OPg
I,D

γ∨ := (i)γ∨,i : OPr
I,D .

E
Fam→Type
I,D and E

Type→Fam
I,D form an equivalence, and Hγ∨ is isomorphic to

E
Type→Fam
I,D ◦ Gγ Therefore, Gγ is isomorphic to E

Fam→Type
I,D ◦ Hγ∨ . In order

to interpret IIRDg + OPelim + ext in IIRDr + OPelim + ext, we need to

44

introduce such an isomorphism in IIRDr+OPelim+ext. Therefore, we define
in this theory

Fγ(U, T) : (a : GU
γ (U, T)) → HU

γ∨(U, T,G
I
γ(U, T, a)) ,

Gγ(U, T) : (i : I) → HU
γ∨(U, T, i) → GU

γ (U, T) .

We then show that (we use here the notation (f, g) introduced in Def. A.7 in
Appendix A) (GI

γ ,Fγ) : Gγ
·
→ E

Fam→Type
I,D ◦Hγ∨ and Gγ : E

Fam→Type
I,D ◦Hγ∨

·
→ Gγ

are natural isomorphisms as expressed by the following diagram 3 :

GU
γ (U, T)

(GI
γ(U, T),Fγ(U, T))

-�
Gγ(U, T)

(EFam→Type
I,D ◦ Hγ∨)

U(U, T)

= (i : I) × HU
γ∨(U, T, i)

(i : I) ×D[i]

(GI
γ(U, T),GT

γ (U, T))

? �
(E

Fam
→

Type

I,D

◦Hγ
∨

)T (U,T)

=(b)〈π
0(b

),H
T
γ
∨
(U,T,π0(b

),π1(b
))〉

Fγ and Gγ are defined as follows:

Fι(e)(U, T, ?) = 〈ref, ?〉 ,

Fσ(A,γ)(U, T, 〈a, b〉) = 〈a,Fγ(a)(U, T, b)〉 ,

Fδ(A,i,γ)(U, T, 〈f, b〉) = 〈f,Fγ(T◦〈〈i,f〉〉)(U, T, b)〉 ,

Gι(e)(U, T, i, 〈p, ?〉) = ? ,

Gσ(A,γ)(U, T, i, 〈a, b〉) = 〈a,Gγ(a)(U, T, i, b)〉 ,

Gδ(A,i,γ)(U, T, i, 〈f, b〉) = 〈f,Gγ(T◦〈〈i,f〉〉)(U, T, i, b)〉 .

The commutativity of the above diagram is expressed by the following equa-
tions, which can be shown by induction on γ (assuming U : I → set, T : (i :
I, U(i)) → D[i], a : GU

γ (U, T), i : I, b : HU
γ∨(U, T, i)):

Gγ(U, T,G
I
γ(U, T, a),Fγ(U, T, a))= a ,

GI
γ(U, T,Gγ(U, T, i, b))= i ,

3 More precisely, in the previous equations and in the diagram below we refer
to an uncurried version of Gγ(U, T) of type ((i : I) × HU

γ∨(U, T, i)) → GU
γ (U, T).

Furthermore, if A is an object of the slice category Type/((i : I) × D[i]), then we
denote its two components by AU : Type and AT : AU → ((i : I) × D[i]).

45

GT
γ (U, T,Gγ(U, T, i, b))= HT

γ∨(U, T, i, b) ,

Fγ(U, T,Gγ(U, T, i, b))= b .

One can verify that we have obtained natural transformations, but that fact
will not be needed in our interpretation.

From the above equations follows

HT
γ∨(U, T,G

I
γ(U, T, a),Fγ(U, T, a)) = GT

γ (U, T, a) .

Now define
Ũg

γ := Ur
γ∨ , T̃g

γ := Tr
γ∨ ,

and for a : GU
γ (Ũg

γ, T̃
g
γ),

ĩntrog
γ(a) := intror

γ∨(G
I
γ(Ũ

g
γ, T̃

g
γ , a),Fγ(Ũ

g
γ, T̃

g
γ , a)) : Ũg

γ(GI
γ(Ũ

g
γ , T̃

g
γ , a)) .

We easily obtain

T̃g
γ(GI

γ(Ũ
g
γ , T̃

g
γ , a), ĩntrog

γ(a)) = GT
γ (Ũg

γ , T̃
g
γ , a) .

The above is summarised by the following diagram 4 :

Ũg
γ(GI

γ(Ũg
γ ,T̃g

γ))

GU
γ (Ũg

γ ,T̃g
γ))

(GI
γ(Ũg

γ ,T̃g
γ),Fγ(Ũg

γ ,T̃g
γ)) -�

Gγ(Ũg
γ ,T̃g

γ)

ĩntro
g
γ

-

(i:I)×HU

γ∨
(Ũg

γ ,T̃g
γ ,i)

in
tr
o
r

γ
∨

-

D[GI
γ(Ũg

γ ,T̃g
γ)]

T̃g
γ(GI

γ(Ũg
γ ,T̃g

γ))

?

H T
γ ∨ (Ũ g

γ ,T̃ g
γ)

-
GT

γ (Ũg
γ ,T̃g

γ)

-

By induction on γ we can easily derive:

K
IArg
γ∨(i)(U, T, a)= KIArg

γ (U, T,Gγ(U, T, i, a)) ,

K
IArg→I
γ∨(i) (U, T, a, v)= KIArg→I

γ (U, T,Gγ(U, T, i, a), v) ,

K
IArg→U
γ∨(i) (U, T, a, v)= KIArg→U

γ (U, T,Gγ(U, T, i, a), v) .

4 Again we are using uncurried versions of intror
γ∨ , H

T
γ∨(Ũ

g
γ , T̃g

γ),Gγ(Ũg
γ , T̃g

γ) and

GT
γ (Ũg

γ , T̃g
γ).

46

Therefore, assuming i : I, u : U(i) ⇒ E[i, u] : type, g : (i : I, u : U(i)) →
E[i, u], and a : KU

γ∨(i)(U, T), we get

KIH
γ∨(i)(U, T, E, a)= KIH

γ (U, T, E,Gγ(U, T, i, a)) ,

K
map
γ∨(i)(U, T, E, g, a)= Kmap

γ (U, T, E, g,Gγ(U, T, i, a)) .

For interpreting the elimination rules assume that

i : I, a : Ũg
γ(i) ⇒ E[i, a] : type ,

h : (a : GU
γ (Ũg

γ , T̃
g
γ),KIH

γ (Ũg
γ, T̃

g
γ , E, a)) → E[GI

γ(Ũ
g
γ , T̃

g
γ , a), ĩntrog

γ(a)] .

Define

h′ := (i, a, v)h(Gγ(Ũ
g
γ , T̃

g
γ , i, a), v)

: (i : I, a : HU
γ∨(U

r
γ∨,T

r
γ∨, i),K

IH
γ∨(i)(U

r
γ∨,T

r
γ∨, E, a)) → E[i, intror

γ∨(i, a)] .

Note that the type of h′(i, a, v) is

E[GI
γ(Ũ

g
γ , T̃

g
γ ,Gγ(Ũ

g
γ, T̃

g
γ , i, a)),

intror
γ∨(G

I
γ(Ũ

g
γ , T̃

g
γ,Gγ(Ũ

g
γ , T̃

g
γ , i, a)),Fγ(Ũ

g
γ, T̃

g
γ ,Gγ(Ũ

g
γ , T̃

g
γ , i, a)))]

= E[i, intror
γ∨(i, a)] .

Now we can interpret Rg
γ,E(h) as

k := Rr
γ∨,E(h′) : (i : I, u : Ũg

γ(i)) → E[i, u] ,

and obtain

k(GI
γ(Ũ

g
γ , T̃

g
γ , a), ĩntrog

γ(a)) = h(a,Kmap
γ (Ũg

γ , T̃
g
γ , E, k, a)) .

So, we have shown

Lemma 7.3 IIRDg +OPelim +ext can be interpreted in IIRDr +OPelim +
ext. The same holds if we restrict D[i] to stype or to D[i] = 1 in both theories.

47

8 A Model for IIRDg

We will prove the consistency of the theory IIRDg by constructing a set-
theoretic model of it.

We modify the full set-theoretic model in Dybjer and Setzer [14]. The reader
is referred to that paper for more information, since we lack space to repeat
all definitions here.

The general setting is as given in [14] (like interpretation of the function type
as the full function space, of set and stype as set∗ := stype∗ := VM for some
Mahlo cardinal M, of type as type∗ := VΛ, and the interpretation of the
logical framework). However, in this article Λ will be the first inaccessible
cardinal above M and we omit all statements about λn. This is necessary
since OPI,D,E now refers to families of types D. One could probably avoid
this by constructing a more refined model, but our model uses too much
strength anyway. We conjecture that the ωth admissible above a recursive
Mahlo ordinal suffices in order to build a model.

In the model one uses the standard term and type constructors and elimina-
tion constants from the underlying type theory with their arities. The set of
raw terms is then defined as the set of expressions formed using constructors,
elimination constants, application, abstraction and variables. The interpreta-
tion A∗ρ will be given for all raw terms A and all environments ρ referring to
arbitrary raw terms, independent of whether A : type or A : B is derivable
or not. Therefore A∗ρ might be undefined (which means it will be a special set
used for undefinedness), written as A∗ρ ↑, or defined, in which case we write
A∗ρ ↓. Consequently, equalities will be usually partial equalities, written as
', where A ' B means that A ↓⇔ B ↓ and that if A ↓, B ↓ then A and
B are the same set. By A :' B we mean that we define A in such a way
that A ' B. It will be part of the soundness theorem, that whenever we can
derive in the type theory in question x1 : A1, . . . , xn : An ⇒ A : type or
x1 : A1, . . . , xn : An ⇒ A : B and ai : Ai[x1 := a1, . . . , xi−1 := ai−1], then with
ρ := [x1 := a1, . . . , xn := an] we will have that A∗ρ ↓.

The interpretation of SP, arg and map has to be replaced by interpretations
of the new constructions. So, we interpret

• (OPI,D,E)∗ρ :' OP∗I∗ρ ,λx∈I∗ρ .D[x]∗ρ,E∗ρ
,

• σ(A, γ)∗ρ :' σ∗(A∗ρ, γ
∗
ρ) ,

• similarly for the other new constructors,

where for I ∈ set∗, D ∈ I → type∗, E ∈ type∗ we define OP∗I,D,E as the least

48

fixed point of the operator

Ψ(X) = E + ΣA∈set∗(A→ X) + ΣA∈set∗Σi∈(A→I).((Πa∈A.D(i(a))) → X) .

By the inaccessibility of Λ, we have I,D,E ∈ Vα for some α < Λ, and therefore
there exists a regular cardinal κ < Λ such that for all A ∈ set∗ and i ∈ (A→ I)
we have that the cardinality of E, A, Πa∈AD(i(a)) is < κ. The fixed point is
obtained by iterating Ψ up to κ. Since Λ is an inaccessible cardinal, this
solution is an element of VΛ = type∗.

The interpretations of ι, σ, δ, and ι∗, σ∗ and δ∗ are similar to analogous
definitions of nil, nonind, ind in [14], and we define (OPg

I,D)∗ρ :' OPg,∗
I∗ρ ,(i)D[i]∗ρ

with OPg,∗
I,D := OP∗I,D,E, where E := Σi : I.D[i].

We define (KU
γ (U, T))∗ρ :' KU∗

γ∗ρ
(U∗ρ , T

∗
ρ), similarly for the other operations on

K, where we define for γ ∈ OPg,∗
I,D, I ∈ type∗, D ∈ I → type∗, E ∈ type∗ by

recursion on γ the set KU∗
I,D,E,γ(U, T) ∈ stype∗ as follows (if γ, I,D,E are not

of this form, we have KU∗
I,D,E,γ(U, T) ↑; a similar proviso applies to all future

definitions in this section):

KU∗
I,D,E,ι∗(e)(U, T)= 1∗ ,

KU∗
I,D,E,σ∗(A,γ)(U, T)= Σa∈AKU∗

I,D,E,γ(a)(U, T) ,

KU∗
I,D,E,δ∗(A,i,γ)(U, T)= Σf∈Πa∈AU(i(a)) KU∗

I,D,E,γ(λx∈A.T (i(x))(f(x)))(U, T) .

In a similar way, we can define KT∗
I,D,E,γ, K

IArg∗
I,D,E,γ, K

IArg→I∗
I,D,E,γ , K

IArg→U∗
I,D,E,γ , and

then define GU∗
I,D,γ, GI∗

I,D,γ, GT∗
I,D,γ, KIH∗

I,D,E,γ, K
map∗
I,D,E,γ in an obvious way. Now

we interpret

(UI,D,γ(i))
∗
ρ :'UM

I∗ρ ,(i)D[i]∗ρ,γ∗ρ
(i∗ρ) ,

(TI,D,γ(i, x))
∗
ρ :'TM

I∗ρ ,(i)D[i]∗ρ,γ∗ρ
(i∗ρ, x

∗
ρ) ,

where we define for I ∈ set∗, D ∈ I → type∗, γ ∈ OPg,∗
I,D, i ∈ I by recursion on

γ simultaneously Uα
I,D,γ(i) ∈ stype∗ and Tα

I,D,γ(i) : Uα
I,D,γ(i) → type∗, (written

more briefly as Uα(i), Tα(i, x)) as follows:

Uα(i) = {x | x ∈ GU∗
I,D,γ(U

<α,T<α)∧

GI∗
I,D,γ(U

<α,T<α, x) = i} ,

Tα(i, x) = GT∗
I,D,γ(U

<α,T<α, x) .

with U<α := λi ∈ I.
⋃

β<α U
β(i), T<α := λi ∈ I.

⋃
β<α T

β(i).

49

We interpret introg using introg,∗
γ (a) := a and Rg as Rg,∗, where for α ∈

Ord and x ∈ U<α
γ (i) we define Rg,∗

γ,F (g, i, x) by recursion on α in such a way

that the definition is independent on α. Let Rg,<α
γ,F (g, i, x) be the restriction of

Rg,∗
γ,F (g, i, x) to x ∈ U<α

γ (i). Assume x ∈ Uα
γ (i). If x ∈ U<α

γ (i), then

Rg,∗
γ,F (g, i, x) :' Rg,<α

γ,F (g, i, x) .

Otherwise we have x ∈ GU∗
I,D,γ(U

<α
γ ,T<α

γ) and i = GI∗
I,D,γ(U

<α
γ ,T<α

γ , x). Let

J := K
IArg∗
I,D,γ(U

<α
γ ,T<α

γ , x) ,

for a ∈ J j(a) := K
IArg→I∗
I,D,E,γ (U<α

γ ,T<α
γ , x, a) ,

for a ∈ J u(a) := K
IArg→U∗
I,D,E,γ (U<α

γ ,T<α
γ , x, a) ,

c := λa : J.Rg,<α
γ,F (g, j(a), u(a)) ,

Rg,∗
γ,F (g, i, x) :' g(x, c) .

We can now state a similar soundness theorem as in [14]:

Theorem 8.1 (Soundness theorem)

(a) If ` Γ context, then Γ∗ ↓.
(b) If ` Γ ⇒ A : E, where E ≡ type or E is a term, then Γ∗ ↓,

∀ρ ∈ Γ∗.A∗ρ ↓ ∧A∗ρ ∈ E∗ρ , and if E 6≡ type, ∀ρ ∈ Γ∗.E∗ρ ↓ ∧E∗ρ ∈ type∗.
(c) If ` Γ ⇒ A = B : E, where E ≡ type or E is a term, then Γ∗ ↓,

∀ρ ∈ Γ∗(A∗ρ ↓ ∧A∗ρ ∈ E∗ρ ∧ B∗ρ = A∗ρ), and if E 6≡ type, ∀ρ ∈ Γ∗.E∗ρ ↓
∧E∗ρ ∈ type∗.

(d) 6` a : 0.

The only difficulty is to show that U∗(i) ∈ set∗, that U∗(i) is closed under
introg,∗, and that R∗ is total and fulfils the equality rules. We introduce the
following abbreviations for I ∈ set∗, D ∈ I → type∗:

(a) Fam(I,D) := {(U, T) | U ∈ I → set∗ ∧ T ∈ Πi∈I(U(i) → D(i))}.
(b) If (U, T), (U ′, T ′) ∈ Fam(I,D), then

(U, T) ≤I,D (U ′, T ′) ⇔ ∀i ∈ I.(U(i) ⊆ U ′(i) ∧ T (i′) � U(i) = T (i)).

The analogue of Lemma 1 in [14] is now as follows:

Lemma 1 Assume I ∈ set∗, D ∈ I → type∗, γ ∈ OPg∗
I,D, (U, T), (U ′, T ′) ∈

Fam(I,D), (U, T) ≤I,D (U ′, T ′), a ∈ GU∗
I,D,γ(U, T), E := Σi : I.D[i]. Then

(a) GU∗
I,D,γ(U, T) ⊆ GU∗

I,D,γ(U
′, T ′).

(b) GI∗
I,D,γ(U

′, T ′) � GU∗
I,D,γ(U, T) = GI∗

I,D,γ(U, T).
(c) GT∗

I,D,γ(U
′, T ′) � GU∗

I,D,γ(U, T) = GT∗
I,D,γ(U, T).

50

(d) K
IArg∗
I,D,E,γ(U

′, T ′) � GU∗
I,D,γ(U, T) = K

IArg∗
I,D,E,γ(U, T).

(e) K
IArg→I∗
I,D,E,γ (U ′, T ′, a) = K

IArg→I∗
I,D,E,γ (U, T, a).

(f) K
IArg→U∗
I,D,E,γ (U ′, T ′, a) = K

IArg→U∗
I,D,E,γ (U, T, a).

As in [14], we define by induction on γ ∈ OPg∗
I,D sets AuxI,D,γ(U, T) by

AuxI,D,ι∗(e)(U, T)=1 ,

AuxI,D,σ∗(A,γ)(U, T)=Πx∈AAuxI,D,γ(x)(U, T) ,

AuxI,D,δ∗(A,j,γ)(U, T)=A + Πf∈Πx∈AU(j(x))AuxI,D,γ(T◦f)(U, T) .

The analogue of Lemma 2 in [14] is as follows:

Lemma 2 Assume I ∈ set∗, D ∈ I → type∗, E := Σi∈ID(i), γ ∈ OPg∗
I,D. Let

κ be an inaccessible cardinal and let for α < κ, (Uα, T α) ∈ Fam(I,D) such
that for α < β < κ we have (Uα, T α) ≤I,D (Uβ, T β). Assume for some α0 < κ
and for all α0 ≤ α < κ

AuxI,D,γ(U
α, T α) ∈ Vκ .

Then

GU∗
I,D,γ(U

<κ, T<κ) =
⋃

α<κ

GU∗
I,D,γ(U

α, T α) .

Note that Lemma 2 does not hold if we assume I ∈ type∗, so indexed induction-
recursion over a proper type as index set is not covered by this model.

The proof is similar to the proof in [14] (one just lets φ = δ∗(A, j, γ) and
replaces f : A→ U<β by f ∈ Πa∈AU

<β(j(a))).

The analogue of [14], Lemma 3 can be stated as follows:

Lemma 3 Assume I ∈ set∗, D ∈ I → type∗, E := Σi∈ID(i), γ ∈ OPg∗
I,D.

Abbreviate Uα(i) := Uα
I,D,γ(i), Tα(i, x) := Tα

I,D,γ(i, x), and note that
UU∗

I,D,γ(i) = UM(i), TU∗
I,D,γ(i, x) = TM(i, x). Then the following holds:

(a) For α < M (Uα,Tα) ∈ Fam(I,D).
(b) If α < β, then (Uα,Tα) ≤I,D (Uβ,Tβ).
(c) There exists κ < M such that Uα = UM (and therefore Tα = TM) for all

α > κ.
(d) UM ∈ VM

(e) For all x ∈ GU∗(I,D, γ,UM,TM), x ∈ UM(GI∗(I,D, γ,UM,TM, x)).

The proof is similar to the proof of Lemma 3 in [14]. The chain of equivalences

51

now reads:

x ∈ Uκ(i) ⇔ x ∈ GU∗
I,D,γ(U

<κ,T<κ) ∧ GI∗
I,D,γ(U

<κ,T<κ, x) = i

⇔ ∃α < κ.(x ∈ GU∗
I,D,γ(U

α,Tα) ∧ GI∗
I,D,γ(U

α,Tα, x) = i)

⇔ ∃α < κ.x ∈ Uα+1(i)

⇔ x ∈ U<κ(i) .

The remaining proof of Lemma 3 follows as in [14].

By Lemma 3 (e) it follows that UM is closed under introg,∗. The totality of R∗

follows from its definition above (which was by induction on α) and verifying
(using Lemma 1) that all definitions given there result in defined values and
the constructions are elements of the interpretations of their types, even when
referring intermittently to U<α

γ ,T<α
γ instead of UM

γ ,T
M
γ : We use the variables

x, a, u(a), j(a) as above. We have x ∈ UM
γ (i), J = K

IArg∗
I,D,γ(U

M
γ ,T

M
γ , x), for a ∈ J ,

j(a) = K
IArg→I∗
I,D,E,γ (UM

γ ,T
M
γ , x, a) ∈ I, but also j(a) = K

IArg→I∗
I,D,E,γ (U<α

γ ,T<α
γ , x, a),

u(a) = K
IArg→U∗
I,D,E,γ (UM

γ ,T
M
γ , x, a), but as well u(a) = K

IArg→U∗
I,D,E,γ (U<α

γ ,T<α
γ , x, a) ∈

U<α
γ (j(a)), therefore (using that by definition Rg,∗

γ,F (g) � U<α
γ = Rg,<α

γ,F (g))
c = K

map∗
I,D,E,γ(U

M
γ ,T

M
γ , F,R

g,∗
γ,F (g), x), which is an element of the interpretation

of its associated type. Therefore g(a, c) ∈ F [i, introg,∗
γ (a)].

The correctness of the interpretation of the equality rules for TM
γ and for Rg

γ,F

follows easily.

9 Acknowledgements

We would like to thank the anonymous referee for valuable comments on
previous versions of this paper. We thank as well Ralph Matthes for discovering
[24] an error in a previous article [16] about IRD. As a consequence, we have
modified the corresponding constructions for IIRD, too.

An earlier and much shorter version of this paper appeared in LNCS 2183
[15].

52

A Appendix: The Logical Framework

A.1 Complete Rules of the Logical Framework

In this article we usually do not write out the whole contexts in rules. So, for
n ≥ 1 a rule

∆1 ⇒ θ1 · · · ∆n ⇒ θn

∆ ⇒ θ

stands for

Γ,∆1 ⇒ θ1 · · · Γ,∆n ⇒ θn

Γ,∆ ⇒ θ

and a rule without premises ∆ ⇒ θ stands for Γ context

Γ,∆ ⇒ θ

The only exception are the context and assumption rules.

Context- and Assumption-rules

∅ context Γ context Γ ⇒ A : type

Γ, x : A context

Γ context Γ ⇒ A : type

Γ, x : A⇒ x : A

Γ ⇒ x : A Γ ⇒ B : type

Γ, y : B ⇒ x : A

(if x 6= y, y 6∈ FV(A))

53

Rules Relating type, stype, set

set : type stype : type A : set

A : stype

A : stype

A : type

A = B : set

A = B : stype

A = B : stype

A = B : type

Equality Rules

a : A

a = a : A

A : type

A = A : type

a = b : A

b = a : A

A = B : type

B = A : type

a = b : A b = c : A

a = c : A

A = B : type B = C : type

A = C : type

a : A A = B : type

a : B

a = b : A A = B : type

a = b : B

Rules for →

A : stype x : A⇒ B : stype

(x : A) → B : stype

x : A⇒ B : type

(x : A) → B : type

A = A′ : stype x : A⇒ B = B′ : stype

(x : A) → B = (x : A′) → B′ : stype

A = A′ : type x : A⇒ B = B′ : type

(x : A) → B = (x : A′) → B′ : type

54

x : A⇒ t : B

(x : A)t : (x : A) → B

x : A⇒ t = t′ : B

(x : A)t = (x : A)t′ : (x : A) → B

x : A⇒ B : type t : (x : A) → B s : A

t(s) : B[x := s]

x : A⇒ B : type t = t′ : (x : A) → B s = s′ : A

t(s) = t′(s′) : B[x := s]

x : A⇒ r : B s : A

((x : A)r)(s) = r[x := s] : B[x := s]

x : A⇒ B : type s : (x : A) → B

s = (x : A)s(x) : (x : A) → B

Rules for ×

A : stype x : A⇒ B : stype

(x : A) ×B : stype

x : A⇒ B : type

(x : A) × B : type

A = A′ : stype x : A⇒ B = B′ : stype

(x : A) × B = (x : A′) × B′ : stype

A = A′ : type x : A⇒ B = B′ : type

(x : A) × B = (x : A′) ×B′ : type

r : A s : B[x := r] x : A⇒ B : type

〈r, s〉 : (x : A) × B

r = r′ : A s = s′ : B[x := r] x : A⇒ B : type

〈r, s〉 = 〈r′, s′〉 : (x : A) × B

55

x : A⇒ B : type r : (x : A) × B

π0(r) : A

x : A⇒ B : type r = r′ : (x : A) ×B

π0(r) = π0(r
′) : A

x : A⇒ B : type r : (x : A) × B

π1(r) : B[x := π0(r)]

x : A⇒ B : type r = r′ : (x : A) ×B

π1(r) = π1(r
′) : B[x := π0(r)]

r : A s : B[x := r] x : A⇒ B : type

π0(〈r, s〉) = r : A

r : A s : B[x := r] x : A⇒ B : type

π1(〈r, s〉) = s : B[x := r]

x : A⇒ B : type r : (x : A) × B

r = 〈π0(r), π1(r)〉 : (x : A) × B

Rules for 0, 1, 2

0 : stype
a : 0 x : 0 ⇒ A : type

case0((x)A, a) : A[x := a]

1 : stype ? : 1 a : 1

a = ? : 1

2 : stype ?0 : 2 ?1 : 2

x : 2 ⇒ A : type a : 2 b : A[x := ?0] c : A[x := ?1]

case2((x)A, a, b, c) : A[x := a]

56

x : 2 ⇒ A : type b : A[x := ?0] c : A[x := ?1]

case2((x)A, ?0, b, c) = b : A[x := ?0]

x : 2 ⇒ A : type b : A[x := ?0] c : A[x := ?1]

case2((x)A, ?1, b, c) = c : A[x := ?1]

a : 2 A : type B : type

casetype
2 (a, A,B) : type

casetype
2 (?0, A, B) = A : type casetype

2 (?1, A, B) = B : type

Definition A.1 (a) We write (x)a instead of (x : A)a (abstraction).
(b) We write a(b1, . . . , bn) instead of a(b1) · · · (bn) for iterated application.
(c) We write repeated abstraction as (x1 : A1, . . . , xn : An)a or (x1, . . . , xn)a

instead of (x1 : A1) · · · (xn : An)a.
(d) We write (x1 : A1, . . . , xn : An) → C for

(x1 : A1) → · · · → (xn : An) → C.
(e) We write A→ B for (x : A) → B for some fresh x.
(f) We write (x : A,B) → C for (x : A, y : B) → C for some fresh y and

similarly for longer terms.
(g) We write A× B for (x : A) × B for some fresh x;
(h) We write (x : A) × (y : B) × C for (x : A) × ((y : B) × C) and similarly

for longer products.
(i) We write (x : A) × B × C for (x : A) × (y : B) × C for some fresh y.

A× (y : B) × C, A×B × C and similar notions for longer products are
defined in the same way.

(j) We write π3
0(x) for π0(x), π

3
1(x) for π0(π1(x)) and π3

2(x) for π0(π1(π1(x))).
These are the 3 projections of a product (x : A) × (y : B) × C. Similarly
we define the projections πn

i for n > 3, i < n.
(k) (−) stands for an abstraction (x) for a variable x, which is not used later.
(l) We usually omit in case0((x)A, · · ·) and case2((x)A, · · ·) the first argu-

ment (x)A, and write case0(, · · ·), case2(, · · ·) instead.

The disjoint union of two types is not a primitive notion in our logical frame-
work, but it can be defined as follows (note that it doesn’t refer to an equality
type; in the following definition, we usually suppress arguments A, B):

Definition A.2 (a) We define an equality =′2 on 2 as follows x =′2 y :=
case2((−)stype, x, case2(, y, 1, 0), case2(, y, 0, 1)) : stype. Note that
(?0 =′2 ?0) = (?1 =′2 ?1) = 1, (?0 =′2 ?1) = (?1 =′2 ?0) = 0.

(b) Define ref ′ : (x : 2) → (x =′2 x), ref ′ x = case2(, x, ?, ?). We write ref ′x
for ref ′ x.

(c) We define for A,B : type, h : (x : 2) → (x =′2 ?0) → casetype
2 (x,A,B) →

A, h(x) = case2(, x, (p, y)y, (p, y)case0(, p)), and have h(?0, p, x) = x.

57

Similarly we define k : (x : 2) → (x =′2 ?1) → casetype
2 (x,A,B) → B s.t.

k(?1, p, x) = x.
(d) We define A + B := (x : 2) × casetype

2 (x,A,B), and for a : A, inl(a) :=
〈?0, a〉 : A+B, and for b : B, inr(b) := 〈?1, b〉 : A+B.

(e) We define for A,B : type, x : (A+B) ⇒ C[x] : type

h′(C) : (x : 2, p : x =′2 ?0, y : casetype
2 (x,A,B), C[inl(h(x, p, y))])

→ C[〈x, y〉] ,

h′(C, x) = case2(, x, (p, y, c)c, (p, y, c)case0(, p)).
Similarly we define

k′(C) : (x : 2, p : x =′2 ?1, y : casetype
2 (x,A,B), C[inr(k(x, p, y))])

→ C[〈x, y〉] ,

and we note that h′(C, ?0, p, y, c) = c, k′(C, ?1, p, y, c) = c.
(f) We define for x : A+B ⇒ C[x] : type,

elim+(C) : (stepA : (a : A) → C[inl(a)],

stepB : (b : B) → C[inr(b)],

c : A +B) → C[c]

by elim+(C, stepA, stepB, c) = f(π0(c), c, refπ0(c)), where

f : (y : 2) → (x : A+B) → π0(x) =2 y → C[x] ,

f(y) := case2(, y,

(x, p)h′(C, π0(x), p, π1(x), stepA(h(π0(x), p, π1(x))),

(x, p)k′(C, π0(x), p, π1(x), stepB(k(π0(x), p, π1(x)))) .

Note that
elim+(C, stepA, stepB, inl(a)) = f(?0, inl(a), ref?0

) =
h′(C, ?0, ref?0

, a, stepA(h(?0, ref?0
, a)) = stepA(a)

and similarly elim+(C, stepA, stepB, inr(b)) = stepB(b).
(g) Because of the previous definition, we can define t[x] : C[x] depending on

x : A+B for some type C[x] by defining t[inl(a)] := sinl[a] and t[inr(b)] =
sinr[b] for some sinl, sinr s.t. a : A⇒ sinl[a] : C[inl(a)] and b : B ⇒ sinr[b] :
C[inr(b)]. This amounts to defining t[x] := elim+(x, (a)sinl[a], (b)sinr[b]).

In this paper, we have the following general assumption about equality versions
of rules and omitting types in equality judgements:

General Assumption A.3 (a) In this article, except for the previous part
of the Appendix, all rules are understood to be supplemented by additional
equality rules. For the rules of the logical framework above, the equality
rules were already included above. They give examples how rules are to

58

be supplemented: E.g. the rule

(x : A) ⇒ B : type

(x : A) → B : type

was supplemented by

A = A′ : type (x : A) ⇒ B = B′ : type

(x : A) → B = (x : A′) → B′ : type

and the rule

(x : A) ⇒ b : B

(x : A)b : (x : A) → B

was supplemented by

(x : A) ⇒ b = b′ : B

(x : A)b = (x : A)b′ : (x : A) → B

(b) We will usually omit the type in an equality judgement and assumptions
about the types of the variables in it, as they can easily be filled in by the
reader.

When proving the equivalence of theories, we will often argue informally, and
use the following convention:

Notation A.4 By “we prove a = b” by induction on some parameter we
mean (assuming a, b : C for some type C) that we introduce p : a =C b by
induction on this parameter. Note that in the presence of extensionality, the
existence of such a p is equivalent to a = b : C.

We introduce the concept of isomorphisms between types:

Definition A.5 (a) Let A,B : type. Then

A ∼= B := (f : A→ B)×

(g : B → A)×

((x : A) → (g(f(x)) =A x))

((x : B) → (f(g(x)) =B x)

(b) Assume f : A ∼= B. Then we define (see Lemma A.1 (j) for the definition
of πn

i):

59

f→ := π4
0(f) : A→ B ,

f← := π4
1(f) : B → A ,

f
→
← := π4

2(f) : (a : A) → f←(f→(a)) =A a ,

f
←
→ := π4

3(f) : (b : B) → f→(f←(b)) =B b .

When referring to the later arguments on previous inductive arguments, we
often make use of the expression T ◦ 〈〈i, f〉〉.

Definition A.6 Assume A,B : type, b : B ⇒ C[b] : type,
b : B, c : C[b] ⇒ F [b, c] : type, g : A→ B, h : (a : A) → C[g(a)],
f : (b : B, c : C[b]) → F [b, c]. Then we define

f ◦ 〈〈g, h〉〉 := (a)f(g(a), h(a)) : (a : A) → F [g(a), h(a)] .

We introduce as well a notation for forming the product of two functions (we
cannot use the usual notation in category theory 〈f, g〉, since it is used for
pairs):

Definition A.7 Assume A,B : type, b : B ⇒ C[b] : type, f : A → B,
g : (a : A) → C[f(a)]. Then we define

(f, g) : (a : A) → ((b : B) × C[b]) ,

(f, g)(a):= 〈f(a), g(a)〉 .

A.2 Rules of Extensionality

We have explained above how to define the equality set as an indexed inductive
definition, but this equality will not be extensional. For some purposes we need
to assume that we have an extensional equality type and add the following
rules (ext) of extensionality. They are only added to our theory if mentioned
explicitly.

A : type a : A b : A

a =A b : type

A : stype a : A b : A

a =A b : stype

60

A : type a : A

ref : a =A a

A : type a : A b : A r : a =A b

a = b : A

A : type a : A b : A r : a =A b

r = ref : a =A b

A.3 Finite Sets with Elimination into Type

From the rules of 2 we can derive for any natural number n the set n of
n-elements with elimination into type as follows:

• n is defined as 0, 1, 2 for n <= 2.
• For n ≥ 3, n = m + 1, n := (a : 2) × casetype

2 (a,m, 1).
• For n ≥ 3, n = m + 1, a : n, A1, . . . , An : type, we define

casetype
n (a, A1, . . . , An) := casetype

2 (π0(a), casetype
m (π1(a), A1, . . . , Am), An) .

• Ordinary case distinction casen can be defined similarly.

B Appendix: Modified Rules for Inductive-Recursive Definitions

We define in the following the theory IRext
elim

′
, in which the use of FIH

γ , Fmap
γ

for defining the elimination and equality rules for Uγ is replaced by FIArg
γ and

61

FIArg→U
γ . See Subsection 5.4 on the motivation for this change.

γ : OPD U : set

T : U → D a : FU
γ (U, T)

FIArg
γ (U, T, a) : stype

γ : OPD U : set T : U → D

a : FU
γ (U, T) v : FIArg

γ (U, T, a)

FIArg→U
γ (U, T, a, v) : U

F
IArg
ι(e) (U, T, ∗) = 0 ,

F
IArg→U
ι(e) (U, T, ∗, x) = case0(, x) ,

F
IArg
σ(A,γ)(U, T, 〈a, b〉) = F

IArg
γ(a) (U, T, b) ,

F
IArg→U
σ(A,γ) (U, T, 〈a, b〉, c) = F

IArg→U
γ(a) (U, T, b, c) ,

F
IArg
δ(A,γ)(U, T, 〈f, b〉) = A+ F

IArg
γ(T◦f)(U, T, b) ,

F
IArg→U
δ(A,γ) (U, T, 〈f, b〉, inl(a)) = f(a) ,

F
IArg→U
δ(A,γ) (U, T, 〈f, b〉, inr(a)) = F

IArg→U
γ(T◦f) (U, T, b, a) ,

γ : OPD

x : Uγ ⇒ E[x] : type

g : (a : FU
γ (Uγ,Tγ), ih : (v : FIArg

γ (Uγ ,Tγ, a)) → E[FIArg→U
γ (Uγ,Tγ , a, v)]) → E[introγ(a)]

Rγ,E(g) : (u : Uγ) → E[u]

Rγ,E(g, introγ(a)) = g(a, (v)Rγ,E(g,FIArg→U
γ (U, T, a, v)))

Definition B.1 (a) The theory IRext
elim

′
is obtained from the theory IRext

elim,
as defined in [16], by replacing the logical framework by the one used in
this article (that is, with casetype

2), omitting the constants FIH, Fmap and
the rules for introducing them, adding the rules for FIArg and FIArg→U as
introduced above and replacing the elimination and equality rules for Uγ

by the rules above.
(b) OPs

intro and OPs
elim are the introduction and elimination rules for OPD

for inductive-recursive definitions as introduced in [16]. Note that OPs
intro

is contained in the rules for IRext
elim

′
, but not OPs

elim.

Lemma B.2 Let (FIH) be the rules for FIH. Define Fmap
γ by using OPs

elim.

62

Define in IRext
elim

′
+ (FIH) + OPs

elim

FIH
γ

′
(U, T, E, a) := (v : FIArg

γ (U, T, a)) → E[FIArg→U
γ (U, T, a, v)] ,

Fmap
γ
′(U, T, E, g, a) := (v : FIArg

γ (U, T, a))g(FIArg→U
γ (U, T, a, v)) .

Then in IRext
elim

′
+(FIH)+OPs

elim one can introduce the following isomorphism
and show the following equation:

FIH,∼=
γ (U, T, E, a) : FIH

γ

′
(U, T, E, a) ∼= FIH

γ (U, T, E, a)

FIH,∼=
γ (U, T, E, a)→(Fmap

γ
′(U, T, E, g, a)) = Fmap

γ (U, T, E, g, a)

In this sense it follows that the new rules are equivalent to the old rules. Note
that however FIH

γ (U, T, E, a) cannot be defined using the new rules.

References

[1] P. Aczel. Frege Structures and the Notions of Proposition, Truth, and Set, pages
31–59. North-Holland, 1980.

[2] T. Altenkirch, V. Gaspes, B. Nordström, and B. von Sydow. A user’s
guide to ALF. http://www.cs.chalmers.se/ComputingScience/Research/
Logic/alf/guide.html, 1996.

[3] T. Altenkirch and C. McBride. Generic programming within dependently typed
programming. In Generic Programming, 2003. Proceedings of the IFIP TC2
Working Conference on Generic Programming, Schloss Dagstuhl, July 2002.

[4] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In Computer Science Logic, 1999.

[5] M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs
in dependent type theory. Nordic Journal of Computing, 10:265–289, 2003.

[6] A. Bove and V. Capretta. Nested general recursion and partiality in type
theory. In R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher

Order Logics: 43th International Conference, TPHOLs 2001, volume 2152 of
Springer-Verlag, LNCS, pages 121–135, September 2001.

[7] C. Coquand. Agda. 2000. http://www.cs.chalmers.se/∼catarina/agda/.

[8] C. Coquand. A realizability interpretation of Martin-Löf’s type theory. In
G. Sambin and J. Smith, editors, Twenty-Five Years of Constructive Type

Theory. Oxford University Press, 1998.

63

[9] T. Coquand. Pattern matching with dependent types. In B. Nordström and
Kent Petersson and Gordon Plotkin, editor, Proceedings of The 1992 Workshop

on Types for Proofs and Programs, June 1992.

[10] T. Coquand and C. Paulin. Inductively defined types, preliminary version.
In COLOG ’88, International Conference on Computer Logic, volume 417 of
LNCS. Springer-Verlag, 1990.

[11] P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-
theoretic semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks,
pages 280–306. Cambridge University Press, 1991.

[12] P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 1994.

[13] P. Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. Journal of Symbolic Logic, 65(2):525–549, June 2000.

[14] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, Typed Lambda Calculi and Applications,
volume 1581 of Lecture Notes in Computer Science, pages 129–146. Springer,
April 1999.

[15] P. Dybjer and A. Setzer. Indexed induction-recursion. In Proof Theory

in Computer Science International Seminar, PTCS 2001 Dagstuhl Castle,

Germany, number 2183 in LNCS, pages 93–113, October 2001.

[16] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals of

Pure and Applied Logic, 124:1–47, 2003.

[17] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory. In R. Backhouse
and J. Gibbons, editors, Generic Programming, number 2793 in LNCS, pages
1 – 56. Springer-Verlag, 2003.

[18] P. Jansson and J. Jeuring. PolyP — a polytypic programming language
extension. In Proc. POPL’97, pages 470–482. ACM Press, 1997.

[19] L. Magnusson and B. Nordström. The ALF proof editor and its proof engine.
In Types for proofs and programs, volume 806 of Lecture Notes in Computer

Science, pages 213–317. Springer, 1994.

[20] P. Martin-Löf. Constructive mathematics and computer programming. In
Logic, Methodology and Philosophy of Science, VI, 1979, pages 153–175. North-
Holland, 1982.

[21] P. Martin-Löf. On the meaning of the logical constants and the justification of
the logical laws, 1983. Notes from a series of lectures given in Siena.

[22] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[23] P. Martin-Löf. An intuitionistic theory of types. In G. Sambin and J. Smith,
editors, Twenty-Five Years of Constructive Type Theory. Oxford University
Press, 1998. Reprinted version of an unpublished report from 1972.

64

[24] R. Matthes. Review of Dybjer, Peter and Setzer, Anton: Induction-recursion
and initial algebras. Mathematical Reviews, MR2013392, 2005. To appear.

[25] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type

Theory: an Introduction. Oxford University Press, 1990.

[26] E. Palmgren. On Fixed Point Operators, Inductive Definitions and Universes

in Martin-Löf ’s Type Theory. PhD thesis, Uppsala University, 1991.

[27] E. Palmgren. On universes in type theory. In G. Sambin and J. Smith, editors,
Twenty-Five Years of Constructive Type Theory. Oxford University Press, 1998.

[28] C. Paulin-Mohring. Inductive definitions in the system Coq - rules and
properties. In Proceedings Typed λ-Calculus and Applications, pages 328–245.
Springer-Verlag, LNCS, March 1993.

[29] H. Pfeifer and H. Rueß. Polytypic proof construction. In Y. Bertot, editor,
Proc. TPHOLs’99, volume 1690 of LNCS, pages 55–72. Springer-Verlag, 1999.

[30] Qiao Haiyan. Formalising formulas-as-types-as-objects. In T. Coquand,
P. Dybjer, B. Nordström, and J. Smith, editors, Types for Proofs and Programs,
volume 1956 of Lecture Notes in Computer Science, pages 174–194. Springer,
2000.

[31] A. Setzer. Extending Martin-Löf type theory by one Mahlo-universe. Arch.

Math. Log., 39:155 – 181, 2000.

[32] A. Setzer. Proof theory of Martin-Löf type theory – an overview. Mathematiques

et Sciences Humaines, 42 année, no165:59 – 99, 2004.

65

