Interactive Programs in
Dependent Type Theory
Anton Setzer, Uppsala

(Joint work with Peter Hancock, Edinburgh)
Sept. 18, 1999

1. IO-trees.
2. Constructions for defining IO-trees.

(3. Normalizing version.
4. State-dependent 10.)



1. IO-trees

Problem: Ordinary programs in type theory
are functions.

- One input.

- One output.



Goal: Addition of Interactive Programs
Models for Input/Output:

1) Streams.
Inputstream = I x Inputstream.
Largest fixed point.
Elements: <ig, <t1,<t9,,...>>>
Outputstream = O x Outputstream.
Largest fixed point.
Elements: <og, <01,<02,,...>>>
Interactive programs =
Inputstream — Outputstream.
Problem:
- Additional concept of coinductive
definitions necessary.
- Difficulties with unbounded many input/output
devices
- Timing between input/output depends
on evaluation strategy.



2) The IO0-Monad

The IO-monad is a triple (I0,n, ), s.t.:
- IO : Set — Set.

_/’7

* .

IO(A) = set of interactive programs, which,
if they terminate, return an element

a: A.

(A :Set,a: A) - I0(A).

nd: no interaction, returns a.

(A:Set,B:Set,p:1I0(A),q: A —10(B))
— IO(B).

p x4 pq Starts with p.

If p returns a, then it continues with

g(a) and returns its result.



Abbreviations

= Na .= 772?:
-pxqI=p*sRq.
Laws

Let A,B,C :Set,a: A,p:I0(A),
qg: A—I10(B),r: B—I10(C):

- na *q = q(a).

- px Ax.Ne = p.

- (pxq)*xr =pxAzx.(q(x) *7).



To get real programs, add constructions like
input(d) : IO(1,)
input from input-device d an element a : I;
and return a.
output(d) : O4 — IO({*})
for a : O4 output a on output-device d
and return = (= success).

IO-Monad in Haskell:
Small part of the program interactive.
Large part purely functional.

Problems of the 10-Monad:

- *x cannot be a constructor.
= Monads do not fit into the conceptual
framework of Martin-LOof type theory.

- Equalities can hold only extensionally.



3) Our Definition of IO-programs: The IO-tree

Worlds
A world w is a pair (C,R) s.t.

- C : Set (Commands).
- R: C — Set (responses to a command).

Example:

C = data { readstr, writestr(s: string)}
: Set

R: C -> Set,
R(readstring)
R(writestring(s)) = {x}

string



IO-trees
Assume w = (C, R) a world.

IOw(A) or shorter IO(A) is the set of

(possibly non-well-founded) trees with

- leaves in A.

- nodes marked with elements of C.

- nodes marked with ¢ have branching degree
R(c).



A Set
IO, (A) : Set

a: A
leaf(a) : IOw(A)

c:C p: R(c) —> I0w(A)
do(c,p) : IO (A)

Note: 10, (A) parametrized w.r.t. w.



Execution of IO-programs:
Add operation execute.

Status:
- Like function “compute head normal form”.
- No construction inside type theory.

Let wg be a fixed world (real commands).

execute applied to p : IOy,(A) does the
following:
- It reduces p to canonical form.
- If p = leaf(a), it terminates and returns a.
- If p = do(c,q), then it
- carries out command c;
- interprets the result as an element
r . R(c);
- then continues with ¢(r).

Essentially normalization of p but with inter-

action with the real world.
10



Example: “Hello world”

C = data { readstr, writestr(s: string)}

: Set
R: C -> Set
R(readstring) = string

R(writestring(s)) = {x}

helloworld
= do readstring
\s.if (s = "Hello")
then (do
(writestring "World")
\a.leaf success)
else (leaf fail)
I0({success,fail})

11



2. Constructions for Defining
IO-trees

2. 1. Definition of n, %
ne = leaf(a).
leaf(a) * ¢ = q(a).
do(c,p) * ¢ = do(c, Az.(p(x) * q)).

For well-founded trees monad laws provable
w.r.t. extensional equality.

12



2.2. While

Assume:

- Sets A, B,

- an initial value a : A
-p:A— (I0(A) +10(B)).

while4 g(a,p) : IO(B) does the following:

- If p(a) is in IO(A) then it carries out this

program.
If it terminates with result &/, it continues
with whileg(d’, p).

- If p(a) is in IO(B) then it carries out this

program.
When it stops it returns the result.

13



Problem:
Black hole recursion for trees which consist of
leaves.

Therefore define set of trees which have at
least one command at the root:

A : Set
IOT(A) : Set
c:C p: R(c) - 10(A)
dot(c,p) : IOT(A)
a 10T (A)
a” :IO(A)

dot(e,p)” = do(e, p)

14



Definition of while

Assume A, B : Set.

a:.A p:A— (I0T(A) +10(B))

while4 g(a,p) : IO(B)

e If p(a) = inl(q) then
while(a, p) = ¢~ * Aa’.while(a’, p)

e If p(a) = inr(q) then
while(a,p) = ¢

15



2.3. Repeat

Assume:

- Sets A, B,

- an initial valuea : A
-p: A— (I0T7(A+ B)).

repeaty p(a,p) : IO(B) does the following:

- It carries out p(a).
If the result is a’ : A it repeats the loop

starting with a’.
If the result is b: B, it terminates with b.

16



Assume A, B : Set.

a:A p:A—IO0OT(A+4+ B)
repeaty g(a,p) : IO(B)

repeat(a,p) = p(a)™ * Ac.case c of
{inl(a") — repeat(d’,p),
inr(b) — leaf(b)}.

EXxercise: Reduce repeat to while.

17



Example: A rudimentary editor.

C = data{ readchar} : Set

R : C —-> Set

R(c) = data{ch(c: char), cursorleft,
terminate}

editor

= repeat

C R string string ""

(\s -> do
readchar
\l -> case 1 of {

ch c

-> leaf (inl (coms c 8)),
cursorleft

-> leaf (inl (truncate s)),
terminate

-> leaf (inr s)}’}

18



2.4. Redirect

Assume

-w=(C,R), w' = (C',R") are worlds.
- A Set,

- p 10w (A).

- q:(c: C) =107 (R(c)).

Define redirect(p, q) : IO,/ (A):

redirect(leaf(a), q) = leaf(a).
redirect(do(e,p),q) = q(c) *xAr.redirect(p(r),q).

19



Example
Highlevel world wq:

CO = data{ readstring, writestring(s: string)}
: Set

RO : CO -> Set
RO(readstring) = string
RO(writestring) = {*}

Lowlevel world wi:

Cl = data{readkey, writesymbol(l: char),
movecursorleft, movecursorright}

Rl1: C1 -> Set
R1(readkey) = char
+ {cursorleft, cursorright, Escape}
Ri(writesymbol 1) = {x}
R1(movecursorleft) = {*}
R1(movecursorright) = {*}

20



Redirect programs in wg to programs in wq by

q: (c: CO) -> I0+ w1 (RO c)
q(readstring) = some editor
I0+ w1l string

q(writestring s) = some outputroutine for s
10+ wl {*}

21



(optional)
2.5. Equality

Equality corresponding to extensional equality
on non-well-founded trees:
Bisimulation (definition according I. Lindstrom):

p:IO(A) qg:1I0O(A)
Ea(p, q) : Set
p:IO(A) qg:I0O(A) n: N

Ead'(n,p,q) : Set

Ea(p,q) = Vn : N.Ed'(n,p,q).

Eq'(n, leaf(a),do(c, p))
= Ed'(n,do(c,p),leaf(a)) = L

Eq’'(n,leaf(a),leaf(a’)) =1(A,a,d’).
Eq’(0,do(c,p),do(d, p")) =1(C,¢,c).

Ed’(S(n),do(c,p),do(d,p")) =
>q:1(C,c,d).Vr: R(c).Eq(n,p(r),p'(---r--.)).



e Eqg is the natural extension of extensional
equality to non-well-founded trees (if we
take for I extensional equality).

e Monad laws w.r.t. EqQ are provable.

e Two programs are equal w.r.t. Eq, if their
IO-behaviour is identical.
= Extensionally, for every IO-behaviour there
IS exactly one program.
= [IO-tree = suitable model of IO.

23



Problem: NoO normalization
Let A= B =C = N, R(c¢) arbitrary.
Assume f : N — N.

p = An.inl(doT(f(n), \y.leaf(n + 1)))
N = (I0T(A) +10(B))

g

hile(0, p)
do(f(0), Azx.leaf(1)) * Am.while(m, p)
do(f(0), Az.(leaf(1) * Am.while(m,p)))

do(f(0), Az.(while(1,p)))

do(f(0), Az.(do(f(1), Az.while(2,p))))

do(f(0), Az.(do(f(1), Az.(do(f(2),
Az.while(3,p))))))

Ll

Consequence: with intensional equality type-
checking undecidable.

24



3. Normalizing version

Add while as a constructor.

Problem: while refers to IO1(B) + IO(A).
Therefore while needs to be defined simulta-
neously for all sets.

Correct solution: Restrict A, B to be elements
of a universe.
(Restriction of B would suffice).

For simplicity not in this lecture.

25



A Set A Set

IO (A) : Set 105 (A) : Set

a: A
leaf(a) : IO(A)
c:C p: R(c) - 10(A)

do(H) (e, p) : IO(H)(A)
B : Set b: B p: B — (I01(B) +10(A))
whileg (b, p) : IO(A)

p:IOT(A)
p~ :I0O(A)

dot (e, p)” = do(e, p)

26



Let IO\(N'I]Z)(A) be the set IO{(1T)(A4) as defined
in this section.

Let Iog_ggwf(A) be IO(t)(A) as defined before.

Define embf4+) ; IO\(N_I]Z)(A) ~10tt) (A):

e emb(leaf(a)) = leaf(a).
e emb{t)(do(t)(c,p)) = do{t) (e, A\z.emb(p(x))).

e emb(whileg(b,p)) =
whileg(b, Az.emb’(p(z)))
with emb’(inl(p)) = inl(emb(p)),
emb/(inr(p)) = inr(embt(p)).

Now n, *, redirect, Eq on IO onwf(A) can be
mimiced by corresponding operations on IO,,s(A).

27



Decompose:

Define
decompose : IO s(A)

— A+ 3c:C.(R(c) > 1I0yw(A))
S.t.:

If emb(p) = leaf(a),
decompose(p) = inl(a).
If emb(p) = do(c,q),
then decompose(p) = inr(c,q¢’) where ¢’ s.t.

emb(q'(z)) = q(z).
Execute(p) does the following:

- If decompose(p) = inl(a), then terminate
with result a.

- If decompose(p) = inr(<c,¢>), then carry out
command ¢, get response r and continue

with q(r).

28



Result:

e All derivable terms are strongly normaliz-
ing.

e T herefore in the beginning and after ev-
ery IO-command execute will terminate ei-
ther completely or carry out the next I0O-
command.

e However, execute might carry out infinitely
many IO-commands.

e Notion of “strongly-normalizing IO-programs’.

29



4. State-dependent 1O

For simplicity we will work with non-well-founded
trees.

Now let set of commands depend on the state
of knowledge.

States = “objective knowledge” about the de-
vices.

The state is influenced by commands, e.g.
- open a new window.

- switch on a printer.

- test whether the printer is switched on.

30



Worlds with State-dependency

A world is a quadruple (S,C, R,ns) s.t.

S : Set (set of states).

C : S — Set (set of commands).

- R:(s:85,C(s)) — Set (set of responses).
-ns:(s:S,c:C(s),r: R(e,s)) = S

(next state).

Let w = (S,C, R,ns) be a world.

31



A: S — Set s: S
IO(A,s) : Set

Assume A : S — Set.

s:S a: A(s)
Ieaf(a) IO(A, s)

s. S
c:C(s)
p:(r:R(s,c)) =-10(A,ns(s,c,7))
do(c,p) : IO(A, s)

32



Composition of Programs

Let A,B . S — Set,

sg .S
p:IO(A,s)
qg:(s:S,a: A(s)) - I0O(B,s)

A B
p*sq q:10(B,s)

do(c, p) *s ¢ = do(c, Ar.(p(r) * q)).
leaf(a) *s g = q(s,a).

33



While

IOT (A, s) defined as before.

B :S — Set
SQ - S
b: B(sg)
qg:(s:S,b:B(s)) —» (I0T(B,s) +10(4,5s))

whileg (b, q) : IO(A,s)

If g(sg,b) = inl(p) then
whileg 4,(b,q) = p~ * )\sl,b’.whileB’S/(b’,q).

If g(sg,b) = inr(p) then
whileg 5, (b,q) = p.

34



Redirect

Assume
-w=(S,C,R,ns), w = (5, C", R ns")
are worlds.
- A: S — Set,
- Rel : S — S’ — Set,
-q:(s:8,¢c:C(s),s" : 8, Rel(s,s"))
— IO;I}_,()\S”.(ZT : R(s,c).Rel(ns(s,c,r),s")), s,
-85,
-s .5
- rel : Rel(s,s'),
- p:I0Ow(A,s).

Define
redirect,, ,/(A, Rel,q,s,s',rel, p)

1 10,,/(As".Zs : S.(Rel(s,s") N A(s)))
by

35



redirect,, ,,/(A, Rel, g, s, s’ rel,leaf(a)) =
leaf(<s, rel,a>).

redirectw,w,(A, Rel,q, s, s',rel,do(c,p)) =
q(s,c, s, rel)
As", <r rel’>.
redirectw’w/(A, Rel,q,ns(s,c,r),s”, rel’, p(r)).

36



Execute

Let wg = (Sp, Co, Rg,nsg) be a standard world,
sg . S be a state which corresponds to the
existence of knowledge about the environment.
Assume p : IOy (A, so).

execute applied to p normalizes p by carrying
out commands as before.

(If one has a program which requires a certain
state s of the environment, compose before it
a program, which starts from the initial state,
and making tests of the environment tries to
move to state s; if it fails it terminates. Exe-
cute the result).

37



Conclusion

e Inductive definition of the IO-monad by IO-
trees.

e Parameterized over worlds (over input/output).

e New constructions: while, redirect.

e EXxtensions to state-dependent command
sets.

Possible Extensions:

e Nondeterminism,

e parallelism.

38



